1
|
Jakubek P, Parchem K, Wieckowski MR, Bartoszek A. The Interplay between Endogenous and Foodborne Pro-Oxidants and Antioxidants in Shaping Redox Homeostasis. Int J Mol Sci 2024; 25:7827. [PMID: 39063068 PMCID: PMC11276820 DOI: 10.3390/ijms25147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials. Fortunately, research on the health-promoting properties of antioxidants has been ongoing. Subsequent years showed that the former assumption that all antioxidants acted similarly was greatly oversimplified. Redox-active compounds differ in their chemical structures, electrochemical properties, mechanisms of action, and bioavailability; therefore, their efficacy in protecting against oxidative stress also varies. In this review, we discuss the changing perception of oxidative stress and its sources, emphasizing everyday-life exposures, particularly those of dietary origin. Finally, we posit that a better understanding of the physicochemical properties and biological outcomes of antioxidants is crucial to fully utilize their beneficial impact on health.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| |
Collapse
|
2
|
Al Abyad D, Serfaty X, Lefrançois P, Arbault S, Baciou L, Dupré-Crochet S, Kouzayha A, Bizouarn T. Role of the phospholipid binding sites, PX of p47 phox and PB region of Rac1, in the formation of the phagocyte NADPH oxidase complex NOX2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184180. [PMID: 37245861 DOI: 10.1016/j.bbamem.2023.184180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In phagocytes, superoxide anion (O2-), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme. To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1-286), p67phox(aa 1-212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.
Collapse
Affiliation(s)
- Dina Al Abyad
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France; Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Xavier Serfaty
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Pauline Lefrançois
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France
| | - Stephane Arbault
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Laura Baciou
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Sophie Dupré-Crochet
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Achraf Kouzayha
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Tania Bizouarn
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France.
| |
Collapse
|
3
|
Zhang Q, Ling S, Hu K, Liu J, Xu JW. Role of the renin-angiotensin system in NETosis in the coronavirus disease 2019 (COVID-19). Pharmacotherapy 2022; 148:112718. [PMID: 35176710 PMCID: PMC8841219 DOI: 10.1016/j.biopha.2022.112718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
Myocardial infarction and stroke are the leading causes of death in the world. Numerous evidence has confirmed that hypertension promotes thrombosis and induces myocardial infarction and stroke. Recent findings reveal that neutrophil extracellular traps (NETs) are involved in the induction of myocardial infarction and stroke. Meanwhile, patients with severe COVID-19 suffer from complications such as myocardial infarction and stroke with pathological signs of NETs. Due to the extremely low amount of virus detected in the blood and remote organs (e.g., heart, brain and kidney) in a few cases, it is difficult to explain the mechanism by which the virus triggers NETosis, and there may be a different mechanism than in the lung. A large number of studies have found that the renin-angiotensin system regulates the NETosis at multiple levels in patients with COVID-19, such as endocytosis of SARS-COV-2, abnormal angiotensin II levels, neutrophil activation and procoagulant function at multiple levels, which may contribute to the formation of reticular structure and thrombosis. The treatment of angiotensin-converting enzyme inhibitors (ACEI), angiotensin II type 1 receptor blockers (ARBs) and neutrophil recruitment and active antagonists helps to regulate blood pressure and reduce the risk of net and thrombosis. The review will explore the possible role of the angiotensin system in the formation of NETs in severe COVID-19.
Collapse
|
4
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 352] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
5
|
Li AL, Zhu YM, Gao LQ, Wei SY, Wang MT, Ma Q, Zheng YY, Li JH, Wang QF. Exploration of the Immune-Related Signatures and Immune Infiltration Analysis in Melanoma. Anal Cell Pathol (Amst) 2021; 2021:4743971. [PMID: 33511023 PMCID: PMC7826228 DOI: 10.1155/2021/4743971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, we aimed to investigate immune-related signatures and immune infiltration in melanoma. The transcriptome profiling and clinical data of melanoma were downloaded from The Cancer Genome Atlas database, and their matched normal samples were obtained from the Genotype-Tissue Expression database. After merging the genome expression data using Perl, the limma package was used for data normalization. We screened the differentially expressed genes (DEGs) and obtained immune signatures associated with melanoma by an immune-related signature list from the InnateDB database. Univariate Cox regression analysis was used to identify potential prognostic immune genes, and LASSO analysis was used to identify the hub genes. Next, based on the results of multivariate Cox regression analysis, we constructed a risk model for melanoma. We investigated the correlation between risk score and clinical characteristics and overall survival (OS) of patients. Based on the TIMER database, the association between selected immune signatures and immune cell distribution was evaluated. Next, the Wilcoxon rank-sum test was performed using CIBERSORT, which confirmed the differential distribution of immune-infiltrating cells between different risk groups. We obtained a list of 91 differentially expressed immune-related signatures. Functional enrichment analysis indicated that these immune-related DEGs participated in several areas of immune-related crosstalk, including cytokine-cytokine receptor interactions, JAK-STAT signaling pathway, chemokine signaling pathway, and Th17 cell differentiation pathway. A risk model was established based on multivariate Cox analysis results, and Kaplan-Meier analysis was performed. The Kruskal-Wallis test suggested that a high risk score indicated a poorer OS and correlated with higher American Joint Committee on Cancer-TNM (AJCC-TNM) stages and advanced pathological stages (P < 0.01). Furthermore, the association between hub immune signatures and immune cell distribution was evaluated in specific tumor samples. The Wilcoxon rank-sum test was used to estimate immune infiltration density in the two groups, and results showed that the high-risk group exhibited a lower infiltration density, and the dominant immune cells included M0 macrophages (P = 0.023) and activated mast cells (P = 0.005).
Collapse
Affiliation(s)
- Ai-lan Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Yong-mei Zhu
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Lai-qiang Gao
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Shu-yue Wei
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Ming-tao Wang
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qiang Ma
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - You-you Zheng
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Jian-hua Li
- Department of Dermatology, Dongying People's Hospital, Dongying 257091, China
| | - Qing-feng Wang
- College of Integrated Chinese and Western Medicine, Liaoning University of traditional Chinese Medicine, Shenyang 110079, China
| |
Collapse
|
6
|
From Past to Present: The Link Between Reactive Oxygen Species in Sperm and Male Infertility. Antioxidants (Basel) 2019; 8:antiox8120616. [PMID: 31817049 PMCID: PMC6943565 DOI: 10.3390/antiox8120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) can be generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. In sperm cells, while ROS may function as signalling molecules for some physiological pathways, the oxidative stress arising from the ubiquitous production of these compounds has been implicated in the pathogenesis of male infertility. In vitro studies have undoubtedly shown that spermatozoa are indeed susceptible to free radicals. However, many reports correlating ROS with sperm function impairment are based on an oxidative stress scenario created in vitro, lacking a more concrete observation of the real capacity of sperm in the production of ROS. Furthermore, sample contamination by leukocytes and the drawbacks of many dyes and techniques used to measure ROS also greatly impact the reliability of most studies in this field. Therefore, in addition to a careful scrutiny of the data already available, many aspects of the relationship between ROS and sperm physiopathology are still in need of further controlled and solid experiments before any definitive conclusions are drawn.
Collapse
|
7
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
8
|
Belarbi K, Cuvelier E, Destée A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson's disease: a systematic review. Mol Neurodegener 2017; 12:84. [PMID: 29132391 PMCID: PMC5683583 DOI: 10.1186/s13024-017-0225-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, is thought to play an important role in dopaminergic neurotoxicity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are multi-subunit enzymatic complexes that generate reactive oxygen species as their primary function. Increased immunoreactivities for the NADPH oxidases catalytic subunits Nox1, Nox2 and Nox4 have been reported in the brain of PD patients. Furthermore, knockout or genetic inactivation of NADPH oxidases exert a neuroprotective effect and reduce detrimental aspects of pathology in experimental models of the disease. However, the connections between NADPH oxidases and the biological processes believed to contribute to neuronal death are not well known. This review provides a comprehensive summary of our current understanding about expression and physiological function of NADPH oxidases in neurons, microglia and astrocytes and their pathophysiological roles in PD. It summarizes the findings supporting the role of both microglial and neuronal NADPH oxidases in cellular disturbances associated with PD such as neuroinflammation, alpha-synuclein accumulation, mitochondrial and synaptic dysfunction or disruption of the autophagy-lysosome system. Furthermore, this review highlights different steps that are essential for NADPH oxidases enzymatic activity and pinpoints major obstacles to overcome for the development of effective NADPH oxidases inhibitors for PD.
Collapse
Affiliation(s)
- Karim Belarbi
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Elodie Cuvelier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Alain Destée
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Bernard Gressier
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France. .,Inserm UMR S-1172 Team "Early stages of Parkinson's Disease", 1 Place de Verdun, 59006, Lille, France.
| |
Collapse
|
9
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
10
|
Thomas DC, Clare S, Sowerby JM, Pardo M, Juss JK, Goulding DA, van der Weyden L, Storisteanu D, Prakash A, Espéli M, Flint S, Lee JC, Hoenderdos K, Kane L, Harcourt K, Mukhopadhyay S, Umrania Y, Antrobus R, Nathan JA, Adams DJ, Bateman A, Choudhary JS, Lyons PA, Condliffe AM, Chilvers ER, Dougan G, Smith KG. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med 2017; 214:1111-1128. [PMID: 28351984 PMCID: PMC5379978 DOI: 10.1084/jem.20161382] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 02/02/2023] Open
Abstract
The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.
Collapse
Affiliation(s)
- David C. Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - John M. Sowerby
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Mercedes Pardo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Jatinder K. Juss
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - David A. Goulding
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Daniel Storisteanu
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England, UK
| | - Marion Espéli
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Shaun Flint
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - James C. Lee
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Kim Hoenderdos
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - Leanne Kane
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Yagnesh Umrania
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - James A. Nathan
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - David J. Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England, UK
| | - Jyoti S. Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Paul A. Lyons
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Alison M. Condliffe
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Kenneth G.C. Smith
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| |
Collapse
|
11
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 854] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
12
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 521] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
13
|
Matono R, Miyano K, Kiyohara T, Sumimoto H. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 2014; 289:24874-84. [PMID: 25056956 DOI: 10.1074/jbc.m114.581785] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The phagocyte NADPH oxidase Nox2, heterodimerized with p22(phox) in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47(phox) and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22(phox) and p67(phox), leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47(phox) conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47(phox) and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67(phox), AA induces the direct interaction of Rac-GTP-bound p67(phox) with the C-terminal cytosolic region of Nox2. p67(phox)-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67(phox) activation domain that localizes the C-terminal to the Rac-binding domain. Thus the "third" switch (AA-inducible interaction of p67(phox)·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.
Collapse
Affiliation(s)
- Rumi Matono
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei Miyano
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Kiyohara
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Comparison of free radical formation induced by baicalein and pentamethyl-hydroxychromane in human promyelocytic leukemia cells using electron spin resonance. J Food Drug Anal 2014; 22:379-390. [PMID: 28911429 PMCID: PMC9354873 DOI: 10.1016/j.jfda.2014.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/10/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
Baicalein and pentamethyl-hydroxychromane (PMC) have been investigated for use as antioxidants. However, antioxidants may stimulate free radical formation under certain conditions. The aim of our study was to determine whether PMC and baicalein exhibit both pro-oxidant and antioxidant activities in human promyelocytic leukemia (HL-60) cells. In this study, electron spin resonance spectrometry was used to investigate the effects of baicalein and PMC on free radical formation. In HL-60 cells, baicalein and PMC produced hydroxyl and phenoxyl radicals, respectively, but each inhibited radical formation by the other. The PMC pro-oxidant activity required H2O2, whereas baicalein produced hydroxyl radicals during the cell resting state only. The antioxidant effect of baicalein on PMC-induced oxidative stress in HL-60 cells may involve myeloperoxidase inhibition, which produces the myeloperoxidase-protein radical. Our investigation of the antioxidant effects of baicalein on arachidonic acid (AA)-induced oxidative stress in HL-60 cells showed that the baicalein-phenoxyl radical was the primary product, and that either carbon-centered or acyl radicals were the secondary products. However, the antioxidant effects of PMC on AA-induced oxidative stress produced only nonradical products. In conclusion, we showed that baicalein displayed both pro-oxidant and antioxidant activities in HL-60 cells. PMC exhibited no pro-oxidant activity during the cells’ resting state but produced the PMC-phenoxyl radical in the presence of H2O2. The reaction of baicalein with AA in HL-60 cells produced baicalein-derived phenoxyl radicals that may initiate various pro-oxidative reactions. However, PMC does not produce radicals when it acts as an antioxidant. Thus, PMC is more beneficial as an antioxidant than baicalein.
Collapse
|
15
|
Mechanisms of ascorbyl radical formation in human platelet-rich plasma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:614506. [PMID: 24696859 PMCID: PMC3947840 DOI: 10.1155/2014/614506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
Abstract
Recently, many clinical reports have suggested that the ascorbyl free radical (Asc∙) can be treated as a noninvasive, reliable, real-time marker of oxidative stress, but its generation mechanisms in human blood have rarely been discussed. In this study, we used upstream substances, enzyme inhibitors, and free radical scavengers to delineate the mechanisms of Asc∙ formation in human platelet-rich plasma (PRP). Our results show that the doublet signal was detected in PRP samples by using electron spin resonance, and the hyperfine splitting of the doublet signal was aH = 1.88 gauss and g-factor = 2.00627, which was determined to be the Asc∙. We observed that the inhibitors of NADPH oxidase (NOX), cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (CYP450), mitochondria complex III, and nitric oxide synthase (NOS), but not xanthine oxidase, diminished the intensity of the Asc∙ signal dose dependently. All enzyme inhibitors showed no obvious antioxidant activity during a Fenton reaction assay. In summary, the obtained data suggest that Asc∙ formation is associated with NOX, COX, LOX, CYP450, eNOS, and mitochondria in human PRP.
Collapse
|
16
|
Jayaram B, Kowluru A. Phagocytic NADPH oxidase links ARNO-Arf6 signaling pathway in glucose-stimulated insulin secretion from the pancreatic β-cell. Cell Physiol Biochem 2012; 30:1351-62. [PMID: 23095975 DOI: 10.1159/000343324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Recent findings from our laboratory have demonstrated that glucose-stimulated insulin secretion (GSIS) involves interplay between a variety of small G proteins belonging to the Rho (e.g., Cdc42 and Rac1) and ADP-ribosylation factor (e.g., Arf6) subfamilies. Using immunological, pharmacological and molecular biological approaches, we have also identified guanine nucleotide exchange factors (GEFs) for Rac1 (e.g., Tiam1) and Arf6 (e.g., ARNO) in clonal INS-1 832/13 cells, normal rat islets and human islets. As a logical extension to these studies, we investigated, herein, potential downstream signaling steps involved in Arf6/ARNO-mediated GSIS. METHODS Using a selective pharmacological inhibitor of ARNO/Arf6 signaling axis (e.g., secinH3) we assessed regulatory roles for Arf6/ARNO in promoting phospholipase D (PLD), phagocytic NADPH oxidase (Nox2), reactive oxygen species (ROS), extracellular-regulated kinases (ERK 1/2) and cofilin (actin-severing protein] signaling steps in clonal INS-1 832/13 cells. RESULTS Our data suggested a marked inhibition by secinH3 of glucose-induced PLD activation, ERK1/2 phosphorylation and dephosphorylation of cofilin, suggesting that Arf6/ ARNO signaling mediates PLD, ERK1/2 and cofilin activation in beta-cells. In addition, secinH3 blocked glucose-induced Nox2 activation and associated ROS generation, thus placing Nox downstream to Arf6/ARNO signaling step. Lastly, we also demonstrate a significantly higher cofilin phosphorylation (inactive) in islets derived from type 2 diabetic human donors as well as the Zucker Diabetic Fatty (ZDF) rat, a model for type 2 diabetes. CONCLUSION Together, our current findings identify signaling steps downstream to ARNO/Arf6 axis leading to insulin secretion.
Collapse
Affiliation(s)
- Bhavaani Jayaram
- Beta-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
17
|
Gatto GJ, Ao Z, Kearse MG, Zhou M, Morales CR, Daniels E, Bradley BT, Goserud MT, Goodman KB, Douglas SA, Harpel MR, Johns DG. NADPH oxidase-dependent and -independent mechanisms of reported inhibitors of reactive oxygen generation. J Enzyme Inhib Med Chem 2011; 28:95-104. [PMID: 22136506 DOI: 10.3109/14756366.2011.636360] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
NADPH oxidase isoform-2 (NOX2) generates reactive oxygen species (ROS) that contribute to neurodegenerative and cardiovascular pathologies. However, validation of NOX2 as a pharmacotherapeutic target has been hampered by a lack of mechanistically-defined inhibitors. Using cellular and biochemical assays, we explored previously reported inhibitors of ROS production (perhexiline, suramin, VAS2870 and two Shionogi patent compounds) as direct NOX2 inhibitors. All but suramin, which presumably lacks cell penetrance, inhibit cellular ROS production. However, only perhexiline and suramin inhibit biochemical NOX2 activity. Indeed, our data suggest that NOX2 inhibition by perhexiline may contribute significantly to its demonstrated cardioprotective effects. Inhibition of protein kinase CβII explains the cellular activity of the Shionogi compounds, whereas VAS2870 inhibits by an as-yet unidentified mechanism unrelated to direct NOX2 function or subunit assembly. These data delineate the mechanisms of action of these compounds and highlight their strengths and limitations for use in future target validation studies.
Collapse
Affiliation(s)
- Gregory J Gatto
- Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The Fc receptor-cytoskeleton complex from human neutrophils. J Proteomics 2011; 75:450-68. [PMID: 21911091 DOI: 10.1016/j.jprot.2011.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/23/2022]
Abstract
The Fc receptor complex and its associated phagocytic cytoskeleton machinery were captured from the surface of live cells by IgG coated microbeads and identified by mass spectrometry. The random and independently sampled intensity values of peptides were similar in the control and IgG samples. After log transformation, the parent and fragment intensity values showed a normal distribution where ≥99.9% of the data was well above the background noise. Some proteins showed significant differences in intensity between the IgG and control samples by ANOVA followed by the Tukey-Kramer honestly significant difference test. However many proteins were specific to the IgG beads or the control beads. The set of detected cytoskeleton proteins, binding proteins and enzymes detected on the IgG beads were used to predict the network of actin-associated regulatory factors. Signaling factors/proteins such as PIK3, PLC, GTPases (such CDC42, Rho GAPs/GEFs), annexins and inositol triphosphate receptors were all identified as being specific to the activated receptor complex by mass spectrometry. In addition, the tyrosine kinase Fak was detected with the IgG coated beads. Hence, an activated receptor cytoskeleton complex and its associated regulatory proteins were captured from the surface of live human primary leukocytes.
Collapse
|
19
|
Lacy P, Willetts L, Kim JD, Lo AN, Lam B, Maclean EI, Moqbel R, Rothenberg ME, Zimmermann N. Agonist activation of f-actin-mediated eosinophil shape change and mediator release is dependent on Rac2. Int Arch Allergy Immunol 2011; 156:137-47. [PMID: 21576984 PMCID: PMC3104871 DOI: 10.1159/000322597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/03/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Tissue recruitment and activation of eosinophils contribute to allergic symptoms by causing airway hyperresponsiveness and inflammation. Shape changes and mediator release in eosinophils may be regulated by mammalian Rho-related guanosine triphosphatases. Of these, Rac2 is essential for F-actin formation as a central process underlying cell motility, exocytosis, and respiratory burst in neutrophils, while the role of Rac2 in eosinophils is unknown.We set out to determine the role of Rac2 in eosinophil mediator release and F-actin-dependent shape change in response to chemotactic stimuli. METHODS Rac2-deficient eosinophils from CD2-IL-5 transgenic mice crossed with rac2 gene knockout animals were examined for their ability to release superoxide through respiratory burst or eosinophil peroxidase by degranulation. Eosinophil shape change and actin polymerization were also assessed by flow cytometry and confocal microscopy following stimulation with eotaxin-2 or platelet-activating factor. RESULTS Eosinophils from wild-type mice displayed inducible superoxide release, but at a small fraction (4-5%) of human eosinophils. Rac2-deficient eosinophils showed significantly less superoxide release (p < 0.05, 26% less than wild type). Eosinophils lacking Rac2 had diminished degranulation (p < 0.05, 62% less eosinophil peroxidase) and shape changes in response to eotaxin-2 or platelet-activating factor (with 68 and 49% less F-actin formation, respectively; p < 0.02) compared with wild-type cells. CONCLUSION These results demonstrate that Rac2 is an important regulator of eosinophil function by contributing to superoxide production, granule protein release, and eosinophil shape change. Our findings suggest that Rho guanosine triphosphatases are key regulators of cellular inflammation in allergy and asthma.
Collapse
Affiliation(s)
- Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alta., Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Svensson Holm ACB, Bengtsson T, Grenegård M, Lindström EG. Platelet membranes induce airway smooth muscle cell proliferation. Platelets 2011; 22:45-55. [DOI: 10.3109/09537104.2010.515696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase. Blood 2010; 116:6027-36. [PMID: 20861461 DOI: 10.1182/blood-2010-08-300889] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutrophil nicotinamide adenine dinucleotide phosphate-oxidase is a multisubunit enzyme (comprising gp91(phox), p22(phox), p67(phox), p40(phox), p47(phox), and Rac) that plays a vital role in microbial killing. The recent discovery of a chronic granulomatous disease patient who expresses a mutant p40(phox) subunit, together with the development of mouse models of p40(phox) function, indicate phosphatidylinositol 3-phosphate binding to the PX domain of p40(phox) is an important signal for oxidase activation. However, the presence of other conserved residues and domains in p40(phox) suggest further regulatory roles for this protein. To test this, we introduced wild-type and mutated versions of p40(phox) into fully differentiated mouse neutrophils by retroviral transduction of p40(phox)(-/-) bone marrow progenitors and repopulation of the bone marrow compartment in radiation chimaeras. Phosphorylation of p40(phox) on threonine 154, but not serine 315, was required for full oxidase activation in response to formylated bacterial peptide fMLP, serum-opsonized S aureus, and immunoglobulin-opsonized sheep red blood cells. A functional SH3 domain was not required for oxidase activation, and deletion of the entire domain resulted in enhanced oxidase responses. Phosphorylation of threonine 154 in response to S aureus was mediated by protein kinase Cδ and was required for full translocation of p47(phox) to phagosomes. These results define an important new element in the physiological activation of the oxidase.
Collapse
|
22
|
Rasmussen I, Pedersen LH, Byg L, Suzuki K, Sumimoto H, Vilhardt F. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol 2010; 11:44. [PMID: 20825680 PMCID: PMC2944333 DOI: 10.1186/1471-2172-11-44] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the major actin regulatory protein LIM kinase-1 (LIMK1), and shRNA knock-down of cofilin to modulate the cellular F/G-actin ratio in the Ra2 microglia cell line, and we use Fluorescence Recovery after Photobleaching (FRAP) in β-actin-YFP-transduced cells to obtain a dynamic measure of actin recovery rates (actin turn-over rates) in different F/G-actin states of the actin cytoskeleton. Our data demonstrate that stimulated NADPH oxidase function was severely impaired only at extreme actin recovery rates and F/G-actin ratios, and surprisingly, that any moderate changes of these parameters of the actin cytoskeleton invariably resulted in an increased NADPH oxidase activity. Conclusion moderate actin polymerization and depolymerization both increase the FMLP and PMA-stimulated NADPH oxidase activity of microglia, which is directly correlated with neither actin recovery rate nor F/G- actin ratio. Our results indicate that NADPH oxidase functions in an enhanced state of activity in stimulated phagocytes despite widely different states of the actin cytoskeleton.
Collapse
Affiliation(s)
- Izabela Rasmussen
- Dept of Cellular and Molecular Medicine, The Panum Institute, Copenhagen University, 2200N Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
23
|
Szaingurten-Solodkin I, Hadad N, Levy R. Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia 2010; 57:1727-40. [PMID: 19455582 DOI: 10.1002/glia.20886] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Alzheimer's disease, extracellular deposits of amyloid beta(1-42) (Abeta(1-42)) may induce activation of microglial cells by releasing proinflammatory factors that contribute to the neurodegeneration process. Since the activation of cytosolic phospholipase A(2)alpha (cPLA(2)alpha) has been reported in inflammatory conditions, its role in primary rat microglial cell activated by aggregated Abeta(1-42) was elucidated. The results of the present study show that activation of microglia by 5 microM aggregated Abeta(1-42) (as evident by the amoeboid morphology and increased CD68 immunofluorescence reactivity) caused an immediate activation of cPLA(2)alpha, measured by its phosphorylated form and its specific activity, followed by a gradual elevation of its expression and activity during 24 h. Inhibition of cPLA(2)alpha expression and activity by the presence of 1 microM specific antisense resulted in a significant decrease in NADPH oxidase activity that releases superoxides, PGE(2) formation, iNOS expression, and NO production, indicating a major role for cPLA(2)alpha in the regulation of these inflammatory processes. NADPH oxidase activity, which is under cPLA(2)alpha regulation, was found to upregulate cPLA(2)alpha and COX-2 protein expression through the redox-sensitive NFkappaB activation as evident by its phosphorylation on Ser-536, resulting in increased PGE(2) formation. The secreted PGE(2) induced the synthesis of iNOS and the production of NO through the PKA-CREB pathway. Taken together, our results suggest that the response of cPLA(2)alpha to aggregated Abeta(1-42) is probably a key player in the oxidative stress present in AD, regulating potent oxidative agents: the production of superoxides by NADPH oxidase and NO formation by iNOS.
Collapse
Affiliation(s)
- I Szaingurten-Solodkin
- Infectious Diseases and Immunology Laboratory, Department of Clinical Biochemistry, Faculty of Health Sciences, Soroka University Medical Center and Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
24
|
Lee YS. Arachidonic Acid Activates K-Cl-cotransport in HepG2 Human Hepatoblastoma Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:401-8. [PMID: 19915704 DOI: 10.4196/kjpp.2009.13.5.401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 09/30/2009] [Accepted: 10/07/2009] [Indexed: 12/20/2022]
Abstract
K(+)-Cl(-)-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase A(2) (PLA(2))-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced K(+) efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activator-induced K(+) efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calcium-independent PLA(2) (iPLA(2)), whereas it was not significantly altered by arachidonyl trifluoromethylketone (AACOCF(3)) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic PLA(2) (cPLA(2)) and the secretory PLA(2) (sPLA(2)), respectively. NEM increased AA liberation in a dose- and time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas AACOCF(3) and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that iPLA(2)-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.
Collapse
Affiliation(s)
- Yong Soo Lee
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| |
Collapse
|
25
|
Díaz-Cruz A, Guinzberg R, Guerra R, Vilchis M, Carrasco D, García-Vázquez FJ, Piña E. Adrenaline stimulates H2O2generation in liver via NADPH oxidase. Free Radic Res 2009; 41:663-72. [PMID: 17516239 DOI: 10.1080/10715760701268751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It is known that adrenaline promotes hydroxyl radical generation in isolated rat hepatocytes. The aim of this work was to investigate a potential role of NADPH oxidase (Nox) isoforms for an oxidative stress signal in response to adrenaline in hepatocytes. Enriched plasma membranes from isolated rat liver cells were prepared for this purpose. These membranes showed catalytic activity of Nox isoforms, probably Nox 2 based on its complete inhibition with specific antibodies. NADPH was oxidized to convert O(2) into superoxide radical, later transformed into H(2)O(2). This enzymatic activity requires previous activation with either 3 mM Mn(2+) or guanosine 5'-0-(3-thiotriphosphate) (GTPgammaS) plus adrenaline. Experimental conditions for activation and catalytic steps were set up: ATP was not required; S(0.5) for NADPH was 44 microM; S(0.5) for FAD was 8 microM; NADH up to 1 mM was not substrate, and diphenyleneiodonium was inhibitory. Activation with GTPgammaS plus adrenaline was dose- and Ca(2+)-dependent and proceeded through alpha(1)-adrenergic receptors (AR), whereas beta-AR stimulation resulted in inhibition of Nox activity. These results lead us to propose H(2)O(2) as additional transduction signal for adrenaline response in hepatic cells.
Collapse
Affiliation(s)
- Antonio Díaz-Cruz
- Department of Animal Nutrition and Biochemistry, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lambertucci RH, Hirabara SM, Silveira LDR, Levada-Pires AC, Curi R, Pithon-Curi TC. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J Cell Physiol 2008; 216:796-804. [PMID: 18446788 DOI: 10.1002/jcp.21463] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.
Collapse
Affiliation(s)
- Rafael Herling Lambertucci
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
27
|
Graham DB, Robertson CM, Bautista J, Mascarenhas F, Diacovo MJ, Montgrain V, Lam SK, Cremasco V, Dunne WM, Faccio R, Coopersmith CM, Swat W. Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCgamma2 signaling axis in mice. J Clin Invest 2008; 117:3445-52. [PMID: 17932569 DOI: 10.1172/jci32729] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/18/2007] [Indexed: 01/08/2023] Open
Abstract
Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C-gamma2 (PLC-gamma2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-gamma2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav.
Collapse
Affiliation(s)
- Daniel B Graham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Carvalho DD, Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, Kovacic H. Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int J Cancer 2008; 122:1757-64. [PMID: 18076063 DOI: 10.1002/ijc.23300] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The catalytic subunit of the NADPH oxidase complex, Nox1 (homologue of gp91phox/Nox2), expressed mainly in intestinal epithelial and vascular smooth muscle cells, functions in innate immune defense and cell proliferation. The molecular mechanisms underlying these functions, however, are not completely understood. We measured Nox1-dependent O2- production during cell spreading on Collagen IV (Coll IV) in colon carcinoma cell lines. Knocking down Nox1 by shRNA, we showed that Nox1-dependent O2- production is activated during cell spreading after 4 hr of adhesion on Collagen IV. Nox1 activation during cell spreading relies on Rac1 activation and arachidonic metabolism. Our results showed that manoalide (a secreted phospholipase A2 inhibitor) and cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (a 12-lipoxygenase inhibitor) inhibit O2- production, cell spreading and cell proliferation in these colonic epithelial cells. 12-Lipoxygenase inhibition of ROS production and cell spreading can be reversed by adding 12-HETE, a 12-lipoxygenase product, supporting the specific effect observed with cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate. In contrast, Nox1 shRNA and DPI (NADPH oxidase inhibitor) weakly affect cell spreading while inhibiting O2- production and cell proliferation. These results suggest that the 12-lipoxygenase pathway is upstream of Nox1 activation and controls cell spreading and proliferation, while Nox1 specifically affects cell proliferation.
Collapse
Affiliation(s)
- Daniela D de Carvalho
- CNRS FRE 2737, Cytosquelette et Intégration des Signaux du Microenvironnement Tumoral (CISMET), Aix-Marseille Université, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, van Deurs B, Vilhardt F. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem 2007; 283:7983-93. [PMID: 18160398 DOI: 10.1074/jbc.m708281200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The p21-activated kinase-1 (PAK1) is best known for its role in the regulation of cytoskeletal and transcriptional signaling pathways. We show here in the microglia cell line Ra2 that PAK1 regulates NADPH oxidase (NOX-2) activity in a stimulus-specific manner. Thus, conditional expression of PAK1 dominant-positive mutants enhanced, whereas dominant-negative mutants inhibited, NADPH oxidase-mediated superoxide generation following formyl-methionyl-leucylphenylalanine or phorbol 12-myristate 13-acetate stimulation. Both Rac1 and the GTP exchange factor VAV1 were required as upstream signaling proteins in the formyl-methionyl-leucyl-phenylalanine-induced activation of endogenous PAK1. In contrast, PAK1 mutants had no effect on superoxide generation downstream of FcgammaR signaling during phagocytosis of IgG-immune complexes. We further present evidence that the effect of PAK1 on the respiratory burst is mediated through phosphorylation of p47(Phox), and we show that expression of a p47(Phox) (S303D/S304D/S320D) mutant, which mimics phosphorylation by PAK1, induced basal superoxide generation in vivo. In contrast PAK1 substrates LIMK-1 or RhoGDI are not likely to contribute to the PAK1 effect on NADPH oxidase activation. Collectively, our findings define a VAV1-Rac1-PAK1 signaling axis in mononuclear phagocytes regulating superoxide production in a stimulus-dependent manner.
Collapse
Affiliation(s)
- Kirstine Roepstorff
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200N Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P, Holmdahl R. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal 2007; 9:1541-67. [PMID: 17678439 DOI: 10.1089/ars.2007.1569] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) are chronic diseases that cannot be prevented or cured If the pathologic basis of such disease would be known, it might be easier to develop new drugs interfering with critical pathway. Genetic analysis of animal models for autoimmune diseases can result in discovery of proteins and pathways that play key function in pathogenesis, which may provide rationales for new therapeutic strategies. Currently, only the MHC class II is clearly associated with human RA and animal models for RA. However, recent data from rats and mice with a polymorphism in Ncf1, a member of the NADPH oxidase complex, indicate a role for oxidative burst in protection from arthritis. Oxidative burst-activating substances can treat and prevent arthritis in rats, as efficiently as clinically applied drugs, suggesting a novel pathway to a therapeutic target in human RA. Here, the authors discuss the role of oxygen radicals in regulating the immune system and autoimmune disease. It is proposed that reactive oxygen species set the threshold for T cell activation and thereby regulate chronic autoimmune inflammatory diseases like RA. In the light of this new hypothesis, new possibilities for preventive and therapeutic treatment of chronic inflammatory diseases are discussed.
Collapse
Affiliation(s)
- Kyra A Gelderman
- Unit for Medical Inflammation Research, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, Leto TL, Saito N. A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Mol Biol Cell 2007; 18:441-54. [PMID: 17122360 PMCID: PMC1783789 DOI: 10.1091/mbc.e06-08-0731] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 11/11/2022] Open
Abstract
In the phagocytic cell, NADPH oxidase (Nox2) system, cytoplasmic regulators (p47(phox), p67(phox), p40(phox), and Rac) translocate and associate with the membrane-spanning flavocytochrome b(558), leading to activation of superoxide production. We examined membrane targeting of phox proteins and explored conformational changes in p40(phox) that regulate its translocation to membranes upon stimulation. GFP-p40(phox) translocates to early endosomes, whereas GFP-p47(phox) translocates to the plasma membrane in response to arachidonic acid. In contrast, GFP-p67(phox) does not translocate to membranes when expressed alone, but it is dependent on p40(phox) and p47(phox) for its translocation to early endosomes or the plasma membrane, respectively. Translocation of GFP-p40(phox) or GFP-p47(phox) to their respective membrane-targeting sites is abolished by mutations in their phox (PX) domains that disrupt their interactions with their cognate phospholipid ligands. Furthermore, GFP-p67(phox) translocation to either membrane is abolished by mutations that disrupt its interaction with p40(phox) or p47(phox). Finally, we detected a head-to-tail (PX-Phox and Bem1 [PB1] domain) intramolecular interaction within p40(phox) in its resting state by deletion mutagenesis, cell localization, and binding experiments, suggesting that its PX domain is inaccessible to interact with phosphatidylinositol 3-phosphate without cell stimulation. Thus, both p40(phox) and p47(phox) function as diverse p67(phox) "carrier proteins" regulated by the unmasking of membrane-targeting domains in distinct mechanisms.
Collapse
Affiliation(s)
- Takehiko Ueyama
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Toshihiko Tatsuno
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takumi Kawasaki
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Satoshi Tsujibe
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yasuhito Shirai
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Thomas L. Leto
- Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Naoaki Saito
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
32
|
Morgan D, Cherny VV, Finnegan A, Bollinger J, Gelb MH, DeCoursey TE. Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2 alpha activity. J Physiol 2006; 579:327-44. [PMID: 17185330 PMCID: PMC2075394 DOI: 10.1113/jphysiol.2006.124248] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prevailing hypothesis that a signalling pathway involving cPLA(2)alpha is required to enhance the gating of the voltage-gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA(2)alpha as a final activator of proton channels. In human eosinophils studied in the perforated-patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase-generated electron current (I(e)) and enhanced proton channel gating identically in the presence or absence of three specific cPLA(2)alpha inhibitors, Wyeth-1, pyrrolidine-2 and AACOCF(3) (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA(2)alpha gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA(2)alpha is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612 USA
| | | | | | | | | | | |
Collapse
|
33
|
Choi HS, Cha YN, Kim C. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47phox. Int Immunopharmacol 2006; 6:1431-40. [PMID: 16846837 DOI: 10.1016/j.intimp.2006.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 11/27/2022]
Abstract
Neutrophils produce microbicidal oxidants to destroy the invading pathogens using nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a membrane-associated enzyme complex that generates superoxide anion (O(2)(-)). Upon stimulation, the cytosolic components of NADPH oxidase, p47(phox) and p67(phox) and the small GTPase Rac move to phagosomal and plasma membranes where they become associated with the membrane components of NADPH oxidase, gp91(phox) and p22(phox) and express enzyme activity. We previously showed that taurine chloramine (Tau-Cl) inhibits O(2)(-) production in mouse peritoneal neutrophils (Kim, 1996). In the present study, we investigated the mechanisms underlying Tau-Cl-derived inhibition on O(2)(-) production using a human myeloid leukemia cell line, PLB-985 cell, which has been differentiated into neutrophil-like cell. Tau-Cl inhibited the phorbol myristate acetate (PMA)-elicited O(2)(-) production as previously observed in murine peritoneal neutrophils. Translocation of p47(phox), p67(phox) and Rac was increased in response to PMA, and Tau-Cl inhibited the PMA-stimulated translocation of p47(phox) and p67(phox) to plasma membrane without affecting the translocation of Rac. In addition, Tau-Cl inhibited the PMA-derived phosphorylation of p47(phox), a requirement for the translocation of cytosolic NADPH oxidase component to the plasma membrane. These results suggest that Tau-Cl inhibits PMA-elicited O(2)(-) production in PLB-985 granulocytes by inhibiting phosphorylation of p47(phox) and translocation of p47(phox) and p67(phox), eventually blocking the assembly of NADPH oxidase complex.
Collapse
Affiliation(s)
- Hyung Sim Choi
- Laboratory of Leukocyte Signaling Research and Center for Advanced Medical Education by BK21 Project, Inha University College of Medicine, Incheon 400-712, South Korea
| | | | | |
Collapse
|
34
|
Wilkinson B, Koenigsknecht-Talboo J, Grommes C, Lee CYD, Landreth G. Fibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J Biol Chem 2006; 281:20842-20850. [PMID: 16728400 DOI: 10.1074/jbc.m600627200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microglial interaction with extracellular beta-amyloid fibrils (fAbeta) is mediated through an ensemble of cell surface receptors, including the B-class scavenger receptor CD36, the alpha(6)beta(1)-integrin, and the integrin-associated protein/CD47. The binding of fAbeta to this receptor complex has been shown to drive a tyrosine kinase-based signaling cascade leading to production of reactive oxygen species and stimulation of phagocytic activity; however, little is known about the intracellular signaling cascades governing the microglial response to fAbeta. This study reports a direct mechanistic link between the fAbeta cell surface receptor complex and downstream signaling events responsible for NADPH oxidase activation and phagosome formation. The Vav guanine nucleotide exchange factor is tyrosine-phosphorylated in response to fAbeta peptides as a result of the engagement of the microglia fAbeta cell surface receptor complex. Co-immunoprecipitation studies demonstrate an Abeta-dependent association between Vav and both Lyn and Syk kinases. The downstream target of Vav, the small GTPase Rac1, is GTP-loaded in an Abeta-dependent manner. Rac1 is both an essential component of the NADPH oxidase and a critical regulator of microglial phagocytosis. The direct role of Vav in fAbeta-stimulated intracellular signaling cascades was established using primary microglia obtained from Vav(-/-) mice. Stimulation of Vav(-/-) microglia with fAbeta failed to generate NADPH oxidase-derived reactive oxygen species and displayed a dramatically attenuated phagocytic response. These findings directly link Vav phosphorylation to the Abeta-receptor complex and demonstrate that Vav activity is required for fAbeta-stimulated intracellular signaling events upstream of reactive oxygen species production and phagosome formation.
Collapse
Affiliation(s)
- Brandy Wilkinson
- Alzheimer Research Laboratory, Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.
| | - Jessica Koenigsknecht-Talboo
- Alzheimer Research Laboratory, Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Christian Grommes
- Alzheimer Research Laboratory, Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - C Y Daniel Lee
- Alzheimer Research Laboratory, Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Gary Landreth
- Alzheimer Research Laboratory, Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
35
|
Abstract
Term newborns have a higher frequency of microbial infections than older children and adults. Extremely premature newborns (<28 weeks gestation) have an even higher frequency. Quantitative and qualitative differences in the development of the immune system have been identified as a partial explanation for the increase in the incidence of infectious sequelae in these two patient populations. A less studied population of patients is late preterm newborns that are 34 to 35 6/7 weeks gestation. In general, this subset of patients is frequently grouped with term newborns. However, recent studies have provided data suggesting a potential unrecognized risk to health in this population, including at least a clinical suspicion for an increased risk of sepsis. Although little specific data on the host-defense capability of the near-term newborn exist, recent advancements in developmental immunology provide a framework for understanding the mechanisms underlying the propensity of infections in the preterm, near-term, and term newborn.
Collapse
Affiliation(s)
- D Wade Clapp
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|