1
|
Sousa BC, Klein ZG, Taylor D, West G, Huipeng AN, Wakelam MJO, Lopez‐Clavijo AF. Comprehensive lipidome of human plasma using minimal sample manipulation by liquid chromatography coupled with mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39 Suppl 1:e9472. [PMID: 36652341 PMCID: PMC12062770 DOI: 10.1002/rcm.9472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE The present work shows comprehensive chromatographic methods and MS conditions that have been developed based on the chemical properties of each lipid subclass to detect low-abundance molecular species. This study shows that the developed methods can detect low- and/or very-low-abundant lipids like phosphatidic acid (PA) in the glycerophospholipid (GP) method; dihydroceramide (dhCer) and dihydrosphingosine/sphinganine (dhSPB) in the sphingolipid (SP) method; and lysophosphatidic acid (LPA), LPI, LPG and sphingosine-1-phosphate (SPBP) in the lysolipid method. METHODS An optimised method for the extraction of lysolipids in plasma is used in addition to Folch extraction. Then, four chromatographic methods coupled with mass spectrometry using targeted and untargeted approaches are described here. Three of the methods use a tertiary pumping system to enable the inclusion of a gradient for analyte separation (pumps A and B) and an isocratic wash (pump C). This wash solution elutes interfering compounds that could cause background signal in the subsequent injections, reducing column lifetime. RESULTS Semi-quantitative values for 37 lipid subclasses are reported for a plasma sample (NIST SRM 1950). Furthermore, the methods presented here enabled the identification of 338 different lipid molecular species for GPs (mono- and diacyl-phospholipds), SPs, sterols and glycerolipids. The methods have been validated, and the reproducibility is presented here. CONCLUSIONS The comprehensive analysis of the lipidome addressed here of glycerolipids, GPs, sterols and SPs is in good agreement with previously reported results, in the NIST SRM 1950 sample, by other laboratories. Ten lipid subclasses LPS, LPI, alkyl-lysophosphatidic acid/alkenyl-lysophosphatidic acid, alkyl-lysophosphatidylethanolamine/alkenyl-lysophosphatidylethanolamine, dhCer (d18:0), SPB (d18:1), dhSPB (d18:0) and SPBP (d18:2) have been detected using this comprehensive method and are uniquely reported here.
Collapse
Affiliation(s)
- Bebiana C. Sousa
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
| | - Zulema Gonzalez Klein
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Diane Taylor
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
| | - Greg West
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
| | | | | | | |
Collapse
|
2
|
Zhang Y, Jing Y, He J, Dong R, Li T, Li F, Zheng X, Liu G, Jia R, Xu J, Wu F, Jia C, Song J, Zhang L, Zhou P, Wang H, Yao Z, Liu Q, Yu Y, Zhou J. Bile acid receptor FXR promotes intestinal epithelial ferroptosis and subsequent ILC3 dysfunction in neonatal necrotizing enterocolitis. Immunity 2025; 58:683-700.e10. [PMID: 40023163 DOI: 10.1016/j.immuni.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/14/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a common pediatric emergency primarily afflicting preterm infants, yet its mechanisms remain to be fully understood. Here, we report that plasma fibroblast growth factor (FGF)19, a target of farnesoid X receptor (FXR), was positively correlated with the clinical parameters of NEC. NEC patients and the NEC murine model displayed abundant FXR in intestinal epithelial cells (IECs), which was restricted by microbiota-derived short-chain fatty acids (SCFAs) under homeostasis. Genetic deficiency of FXR in IECs caused remission of NEC. Mechanistically, FXR facilitated ferroptosis of IECs via targeting acyl-coenzyme A synthetase long-chain family member 4 (Acsl4). Lipid peroxides released by ferroptotic IECs suppressed interleukin (IL)-22 secretion from type 3 innate lymphoid cells (ILC3s), thereby exacerbating NEC. Intestinal FXR antagonist, ACSL4 inhibitor, and ferroptosis inhibitor ameliorated murine NEC. Furthermore, the elevated lipid peroxides in NEC patients were positively correlated with FGF19 and disease parameters. These observations demonstrate the therapeutic value of targeting intestinal FXR and ferroptosis in NEC treatment.
Collapse
MESH Headings
- Animals
- Ferroptosis/immunology
- Humans
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/pathology
- Mice
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Infant, Newborn
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Fibroblast Growth Factors/blood
- Fibroblast Growth Factors/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Coenzyme A Ligases/metabolism
- Mice, Knockout
- Female
- Male
- Immunity, Innate
Collapse
Affiliation(s)
- Yuxin Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Yuchao Jing
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Immunology, Basic Medical College, Changzhi 046000, China
| | - Juan He
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Rui Dong
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Tongyang Li
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Fang Li
- Department of Central Laboratory, Changzhi Medical College, Changzhi 046000, China
| | - Xiaoqing Zheng
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gaoyu Liu
- Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Fan Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Jin Song
- Department of Pediatric Surgery Maternal and Child Health Care of Changzhi, Changzhi 046011, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Haitao Wang
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin 300211, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China
| | - Qiang Liu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300050, China
| | - Ying Yu
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin 300070, China; Laboratory of Immunity, Inflammation & Cancer, Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Yang Y, Yang G, Zhang W, Xin L, Zhu J, Wang H, Feng B, Liu R, Zhang S, Cui Y, Chen Q, Guo D. Application of lipidomics in the study of traditional Chinese medicine. J Pharm Anal 2025; 15:101083. [PMID: 39995576 PMCID: PMC11849089 DOI: 10.1016/j.jpha.2024.101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 02/26/2025] Open
Abstract
Lipidomics is an emerging discipline that systematically studies the various types, functions, and metabolic pathways of lipids within living organisms. This field compares changes in diseases or drug impact, identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states. Through employing analytical chemistry within the realm of lipidomics, researchers analyze traditional Chinese medicine (TCM). This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions, assessing drug efficacy, understanding mechanisms of action and toxicity, and generating innovative ideas for disease prevention and treatment. This manuscript assesses recent literature, summarizing existing lipidomics technologies and their applications in TCM research. It delineates the efficacy, mechanisms, and toxicity research related to lipidomics in Chinese medicine. Additionally, it explores the utilization of lipidomics in quality control research for Chinese medicine, aiming to expand the application of lipidomics within this field. Ultimately, this initiative seeks to foster the integration of traditional medicine theory with modern science and technology, promoting an organic fusion between the two domains.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Lingyi Xin
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Jing Zhu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Hangtian Wang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Baodong Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Renyan Liu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Shuya Zhang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Yuanwu Cui
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Dean Guo
- Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
4
|
Stoller F, Hinds E, Ionescu T, Khatamsaz E, Marston HM, Hengerer B. Forceps minor control of social behaviour. Sci Rep 2024; 14:30492. [PMID: 39681620 DOI: 10.1038/s41598-024-81930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The PRISM project, funded by the EU's Innovative Medicines Initiative, has identified a transdiagnostic, pathophysiological relationship between the integrity of the default mode network (DMN) and social dysfunction. To explore the causal link between DMN integrity and social behaviour, we employed a preclinical back-translation approach, using focal demyelination of the forceps minor to disrupt DMN connectivity in mice. By applying advanced techniques such as functional ultrasound imaging and automated analysis of social behaviour, we demonstrated that reduced DMN connectivity leads to impaired social interactions and increased anxiety in mice. Notably, these effects were reversible, indicating that the forceps minor, a critical fibre tract connecting key DMN regions in the prefrontal cortex, plays a crucial role in social function. This study provides direct evidence for a causal relationship between DMN integrity and social dysfunction, with potential implications for developing targeted treatments in precision psychiatry.
Collapse
Affiliation(s)
| | - Eleanor Hinds
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tudor Ionescu
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Hugh M Marston
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | |
Collapse
|
5
|
Brady A, Tomaszewski M, Garrison TM, Lawrenz MB. Approaches for the Inactivation of Yersinia pestis. APPLIED BIOSAFETY 2024; 29:221-231. [PMID: 39735406 PMCID: PMC11669761 DOI: 10.1089/apb.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Introduction Yersinia pestis is the gram-negative, facultative intracellular bacterium that causes the disease known as plague. Due to the risk for aerosol transmission, a low infectious dose, and the acute and lethal nature of pneumonic plague, research activities with Y. pestis require Biosafety Level 3 (BSL-3) facilities to provide the appropriate safeguards to minimize accidental exposures and environmental release. However, many experimental assays cannot be performed in BSL-3 due to equipment availability, and thus require removal of samples from the BSL-3 laboratory to be completed. Objectives To remove samples from BSL-3 containment and safely handle them at lower containment requires effective inactivation of any viable organisms from the samples prior to removal. While commonly used inactivation methods have been published for various select agents, there is an absence in the literature of a single source providing detailed examples for inactivation methods for Y. pestis. Our objective here is to provide examples of dose-dependent kill curves for commonly used inactivation approaches against Y. pestis. Methods Time- and dose-dependent kill curves using heat, methanol, and formaldehyde inactivation methods, and common nucleic acid extraction procedures. Results/Conclusions We show data demonstrating the complete inactivation of Y. pestis using these methods. While not all-inclusive, this study provides data and examples that can be used by other researchers to develop their own in-house validated inactivation protocols for Y. pestis.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Maggie Tomaszewski
- Department of Microbiology and Immunology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Taylor M. Garrison
- Department of Microbiology and Immunology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology; University of Louisville School of Medicine, Louisville, Kentucky, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases; University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Gutmann F, Fritsche-Guenther R, Dias DB, Kirwan JA. Comparing the Extraction Performance in Mouse Plasma of Different Biphasic Methods for Polar and Nonpolar Compounds. J Proteome Res 2024; 23:2961-2969. [PMID: 38318665 PMCID: PMC11301682 DOI: 10.1021/acs.jproteome.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Many metabolomic studies are interested in both polar and nonpolar analyses. However, the available sample volume often precludes multiple separate extractions. Therefore, there are major advantages in performing a biphasic extraction and retaining both phases for subsequent separate analyses. To be successful, such approaches require the method to be robust and repeatable for both phases. Hence, we determined the performance of three extraction protocols, plus two variant versions, using 25 μL of commercially available mouse plasma. The preferred option for nonpolar lipids was a modified diluted version of a method employing methyl tert-butyl ether (MTBE) suggested by Matyash and colleagues due to its high repeatability for nonpolar compounds. For polar compounds, the Bligh-Dyer method performs best for sensitivity but with consequentially poorer lipid performance. Overall, the scaled-down version of the MTBE method gave the best overall performance, with high sensitivity for both polar and nonpolar compounds and good repeatability for polar compounds in particular.
Collapse
Affiliation(s)
- Friederike Gutmann
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Max-Delbrück-Center
for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße
10, 13125 Berlin, Germany
- Charité
− Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, Charitéplatz
1, 10117 Berlin, Germany
- Experimental
and Clinical Research Center, a cooperation
between the Max-Delbrück-Center for Molecular Medicine in the
Helmholtz Association and the Charité − Universitätsmedizin
Berlin, Lindenberger
Weg 80, 13125 Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Daniela B. Dias
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin
Institute of Health at Charité − Universitätsmedizin
Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jennifer A. Kirwan
- Metabolomics
Platform, Berlin Institute of Health at
Charité − Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Max-Delbrück-Center
for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße
10, 13125 Berlin, Germany
| |
Collapse
|
7
|
Hooshmand K, Xu J, Simonsen AH, Wretlind A, de Zawadzki A, Sulek K, Hasselbalch SG, Legido-Quigley C. Human Cerebrospinal Fluid Sample Preparation and Annotation for Integrated Lipidomics and Metabolomics Profiling Studies. Mol Neurobiol 2024; 61:2021-2032. [PMID: 37843799 DOI: 10.1007/s12035-023-03666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Cerebrospinal fluid (CSF) is a metabolically diverse biofluid and a key specimen for exploring biochemical changes in neurodegenerative diseases. Detecting lipid species in CSF using mass spectrometry (MS)-based techniques remains challenging because lipids are highly complex in structure, and their concentrations span over a broad dynamic range. This work aimed to develop a robust lipidomics and metabolomics method based on commonly used two-phase extraction systems from human CSF samples. Prioritizing lipid detection, biphasic extraction methods, Folch, Bligh and Dyer (B&D), Matyash, and acidified Folch and B&D (aFolch and aB&D) were compared using 150 μL of human CSF samples for the simultaneous extraction of lipids and metabolites with a wide range of polarity. Multiple chromatographical separation approaches, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), and gas chromatography (GC), were utilized to characterize human CSF metabolome. The aB&D method was found as the most reproducible technique (RSD < 15%) for lipid extraction. The aB&D and B&D yielded the highest peak intensities for targeted lipid internal standards and displayed superior extracting power for major endogenous lipid classes. A total of 674 unique metabolites with a wide polarity range were annotated in CSF using, combining RPLC-MS/MS lipidomics (n = 219), HILIC-MS/MS (n = 304), and GC-quadrupole time of flight (QTOF) MS (n = 151). Overall, our findings show that the aB&D extraction method provided suitable lipid coverage, reproducibility, and extraction efficiency for global lipidomics profiling of human CSF samples. In combination with RPLC-MS/MS lipidomics, complementary screening approaches enabled a comprehensive metabolite signature that can be employed in an array of clinical studies.
Collapse
Affiliation(s)
| | - Jin Xu
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Asger Wretlind
- System Medicine, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Karolina Sulek
- System Medicine, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cristina Legido-Quigley
- System Medicine, Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
8
|
Thompson BM, Astarita G. High-Throughput Lipidomic and Metabolomic Profiling for Brain Tissue and Biofluid Samples in Neurodegenerative Disorders. Methods Mol Biol 2024; 2785:221-260. [PMID: 38427197 DOI: 10.1007/978-1-0716-3774-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Recent research has revealed the potential of lipidomics and metabolomics in identifying new biomarkers and mechanistic insights for neurodegenerative disorders. To contribute to this promising area, we present a detailed protocol for conducting an integrated lipidomic and metabolomic profiling of brain tissue and biofluid samples. In this method, a single-phase methanol extraction is employed for extracting both nonpolar and highly polar lipids and metabolites from each biological sample. The extracted samples are then subjected to liquid chromatography-mass spectrometry-based assays to provide relative or semiquantitative measurements for hundreds of selected lipids and metabolites per sample. This high-throughput approach enables the generation of new hypotheses regarding the mechanistic and functional significance of lipid and metabolite alterations in neurodegenerative disorders while also facilitating the discovery of new biomarkers to support drug development.
Collapse
Affiliation(s)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
9
|
Gianazza E, Macchi C, Banfi C, Ruscica M. Proteomics and Lipidomics to unveil the contribution of PCSK9 beyond cholesterol lowering: a narrative review. Front Cardiovasc Med 2023; 10:1191303. [PMID: 37378405 PMCID: PMC10291627 DOI: 10.3389/fcvm.2023.1191303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.
Collapse
Affiliation(s)
- Erica Gianazza
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Bimpeh K, Hines KM. A rapid single-phase extraction for polar staphylococcal lipids. Anal Bioanal Chem 2023:10.1007/s00216-023-04758-9. [PMID: 37261465 DOI: 10.1007/s00216-023-04758-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
The lipid membrane is gaining appreciation as a critical factor in the emergence of antibiotic resistance, both for antibiotics that target lipid synthesis or the membrane directly and for cell-wall-targeting antibiotics. The methods used to study the emergence of antibiotic resistance in vitro can generate a large number of samples that may be low in volume and in cell density. As in eukaryotic/mammalian lipidomics, two-phase liquid-liquid extractions are the most commonly used approach to recover lipids from bacteria. The need to separate the lipid layer is cumbersome for high-throughput applications and can be a source of poor reproducibility or contaminant introduction. While several single-phase extractions have been proposed for serum, tissue, and eukaryotic cells, there have been far fewer efforts to adapt or develop such methods for bacteria lipidomics. Here, we describe a simple, single-phase lipid extraction method based on methanol, acetonitrile, and water-the MAW method. The merits of the MAW method are evaluated against the Bligh & Dyer (B&D) method for the recovery of the major membrane lipids (phosphatidylglycerols, diglycosyldiacylglycerols, and lysyl-phosphatidylglycerols) in the Gram-positive pathogen Staphylococcus aureus. We demonstrate that the MAW method achieves recoveries that are comparable to that of the B&D extraction (≥ 85% for PG 15:0/d7-18:1). The benefits of the MAW method enable the detection of lipids from lower amounts of bacteria than the B&D method (0.57 vs 0.74 McFarlands for PG 32:0, respectively) and is easily scaled down to microplate volumes to facilitate high-throughput studies of bacterial lipids.
Collapse
Affiliation(s)
- Kingsley Bimpeh
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Dhariwal S, Maan K, Baghel R, Sharma A, Malakar D, Rana P. Systematic untargeted UHPLC-Q-TOF-MS based lipidomics workflow for improved detection and annotation of lipid sub-classes in serum. Metabolomics 2023; 19:24. [PMID: 36971892 DOI: 10.1007/s11306-023-01983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
INTRODUCTION AND OBJECTIVE Taking into consideration the challenges of lipid analytics, present study aims to design the best high-throughput workflow for detection and annotation of lipids. MATERIAL AND METHODS Serum lipid profiling was performed on CSH-C18 and EVO-C18 columns using UHPLC Q-TOF-MS and generated lipid features were annotated based on m/z and fragment ion using different software. RESULT AND DISCUSSION Better detection of features was observed in CSH-C18 than EVO-C18 with enhanced resolution except for Glycerolipids (triacylglycerols) and Sphingolipids (sphingomyelin). CONCLUSION The study revealed an optimized untargeted Lipidomics-workflow with comprehensive lipid profiling (CSH-C18 column) and confirmatory annotation (LipidBlast).
Collapse
Affiliation(s)
- Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Apoorva Sharma
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | | | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
12
|
Li N, Xu X, Qi Z, Gao C, Zhao P, Yang J, Damirin A. Lpar1-mediated Effects in Endothelial Progenitor Cells Are Crucial for Lung Repair in Acute Respiratory Distress Syndrome/Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 68:161-175. [PMID: 36287629 DOI: 10.1165/rcmb.2021-0331oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) involves acute respiratory failure characterized by vascular endothelial and lung alveolar epithelial injury. Endothelial progenitor cells (EPCs) can mediate vasculogenesis. However, the limitations of EPCs, such as low survival and differentiation, are believed to inhibit the effectiveness of autologous cell therapies. This study demonstrated that lysophosphatidic acid (LPA), a bioactive small molecule without immunogenicity, is involved in the survival and antiapoptotic effects in human umbilical cord mesenchymal stem cells. This study aimed to explore whether LPA improves the survival of EPCs, enhancing the cellular therapeutic efficacy in ARDS, and these results will expand the application of LPA in stem cells and regenerative medicine. LPA promoted the colony formation, proliferation, and migration of EPCs and upregulated the expression of vascular endothelial-derived growth factor (VEGF) in EPCs. LPA pretreatment of transplanted EPCs improved the therapeutic effect by increasing EPC numbers in the rat lungs. LPA enhanced EPC proliferation and migration through Lpar1 coupled to Gi/o and Gq/11, respectively. Activation of extracellular signal-related kinase 1/2, or ERK1/2, was related to LPA-induced EPC proliferation but not migration. LPA/Lpar1-mediated Gi/o protein was also shown to be involved in promoting VEGF expression and inhibiting IL-1α expression in EPCs. Low LPA concentrations are present after lung injury; thus, the restoration of LPA may promote endothelial cell homeostasis and lung repair in ARDS. Inhalation of LPA significantly promoted the homing of endogenous EPCs to the lung and reduced lung injury in both rats with LPS-induced ALI and Streptococcus pneumoniae-infected mice. Taken together, these data indicated that LPA/Lpar1-mediated effects in EPCs are involved in maintaining endothelial cell homeostasis and lung tissue repair under physiological conditions.
Collapse
Affiliation(s)
- Narengerile Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China; and.,The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Xiyuan Xu
- The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Zhimin Qi
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Chanchan Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Pengfei Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jingping Yang
- The Third Affiliated Hospital, Inner Mongolia Medical University, Baotou, Inner Mongolia, China
| | - Alatangaole Damirin
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
13
|
Chen S, Li X, Liu S, Zhao L, Zhang W, Xiong Z, Luan H. Rapid, sensitive, and high-throughput quantification of broad serological ceramides by using isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry. Anal Bioanal Chem 2023; 415:801-808. [PMID: 36482083 DOI: 10.1007/s00216-022-04473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Ceramides are important intermediates in the metabolism of sphingolipids. High-throughput liquid chromatography-mass spectrometry has been used extensively for monitoring the levels of serological ceramides, but is still limited by inadequate coverage or lack of sensitivity. Herein, a rapid, sensitive, and high-throughput isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry (IDLC-nESI-MS/MS) method was developed and verified for accurate quantification of 41 ceramides, involving ceramides with C16-20 sphingosine, dihydro-ceramide, and dehydro-ceramide. This method was validated with excellent linearity (R2 > 0.99) and good recovery in the range of 90-110%. Intra- and inter-day imprecision were below 5.57% and 7.83% respectively. The improved high-throughput quantitative method developed in this study may aid in the accurate characterization of ceramides for understanding ceramide biology and application in disease diagnosis.
Collapse
Affiliation(s)
- Shuailong Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Xuan Li
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Wenyong Zhang
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Hemi Luan
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China.
| |
Collapse
|
14
|
Development and validation of a simple and rapid HILIC-MS/MS method for the quantification of low-abundant lysoglycerophospholipids in human plasma. Anal Bioanal Chem 2023; 415:411-425. [PMID: 36370204 DOI: 10.1007/s00216-022-04421-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022]
Abstract
Lysoglycerophospholipids (Lyso-GPLs) are an essential class of signaling lipids with potential roles in human diseases, such as cancer, central nervous system diseases, and atherosclerosis. Current methods for the quantification of Lyso-GPLs involve complex sample pretreatment, long analysis times, and insufficient validation, which hinder the research of Lyso-GPLs in human studies, especially for Lyso-GPLs with low abundance in human plasma such as lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI), lysophosphatidylglycerol (LPG), lysophosphatidylserine (LysoPS), lyso-platelet-activating factor (LysoPAF), and cyclic phosphatidic acid (cPA). Herein, we report the development and validation of a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of Lyso-GPLs with low abundance in plasma. Protein precipitation using MeOH for Lyso-GPL extraction, quick separation (within 18 min) based on hydrophilic interaction liquid chromatography (HILIC), and sensitive MS detection under dynamic multiple reaction monitoring (dMRM) mode enabled efficient quantification of 22 Lyso-GPLs including 2 cPA, 4 LPG, 11 LPA, 2 LysoPS, and 3 LysoPAF in 50 μL of human plasma. The present method showed good linearity (goodness of fit, 0.99823-0.99995), sensitivity (lower limit of quantification, 0.03-14.06 ng/mL), accuracy (73-117%), precision (coefficient of variation ≤ 28%), carryover (≤ 17%), recovery (80-110%), and stability (83-123%). We applied the method in an epidemiological study and report concentrations of 18 Lyso-GPLs in 567 human plasma samples comparable to those of previous studies. Significant negative associations of LysoPAF C18, LysoPAF C18:1, and LysoPAF C16 with homeostatic model assessment for insulin resistance (HOMA-IR) level were observed; this indicates possible roles of LysoPAF in glucose homeostasis. The application of the present method will improve understanding of the roles of circulating low-abundant Lyso-GPLs in health and diseases.
Collapse
|
15
|
Yang S, Xue J, Ye C. Protocol for rapid and accurate quantification of phospholipids in yeast and mammalian systems using LC-MS. STAR Protoc 2022; 3:101769. [PMID: 36240059 PMCID: PMC9579711 DOI: 10.1016/j.xpro.2022.101769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
We describe a protocol for measuring phospholipid class and fatty acid composition in the budding yeast Saccharomyces cerevisiae using a liquid chromatography-mass spectrometry (LC-MS)-based approach. We compile a mass spectral-retention time library verified for major phospholipids in the budding yeast and showcase the profiling process of phospholipid compositions in mutants with defective syntheses of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). We further provide methods for extracting and quantifying phospholipids in mammalian systems. For complete details on the use and execution of this protocol, please refer to Fang et al. (2022).
Collapse
Affiliation(s)
- Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China,Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Corresponding author
| |
Collapse
|
16
|
Fu X, Calderón C, Harm T, Gawaz M, Lämmerhofer M. Advanced unified monophasic lipid extraction protocol with wide coverage on the polarity scale optimized for large-scale untargeted clinical lipidomics analysis of platelets. Anal Chim Acta 2022; 1221:340155. [DOI: 10.1016/j.aca.2022.340155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
|
17
|
Dong W, Zhang X, Kong Y, Zhao Z, Mahmoud A, Wu L, Moussian B, Zhang J. CYP311A1 in the anterior midgut is involved in lipid distribution and microvillus integrity in Drosophila melanogaster. Cell Mol Life Sci 2022; 79:261. [PMID: 35478270 PMCID: PMC11072108 DOI: 10.1007/s00018-022-04283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Lipids are either taken up from food sources or produced internally in specialized tissues such as the liver. Among others, both routes of lipid metabolism involve cytochrome P450 monooxygenases (CYPs). We sought to analyze the function of Cyp311a1 that has been shown to be expressed in the midgut of the fruit fly Drosophila melanogaster. Using a GFP-tagged version of CYP311A1 that is expressed under the control of its endogenous promoter, we show that Cyp311a1 localizes to the endoplasmic reticulum in epithelial cells of the anterior midgut. In larvae with reduced Cyp311a1 expression in the anterior midgut, compared to control larvae, the apical plasma membrane of the respective epithelial cells contains less and shorter microvilli. In addition, we observed reduction of neutral lipids in the fat body, the insect liver, and decreased phosphatidylethanolamine (PE) and triacylglycerols (TAG) amounts in the whole body of these larvae. Probably as a consequence, they cease to grow and eventually die. The microvillus defects in larvae with reduced Cyp311a1 expression are restored by supplying PE, a major phospholipid of plasma membranes, to the food. Moreover, the growth arrest phenotype of these larvae is partially rescued. Together, these results suggest that the anterior midgut is an import hub in lipid distribution and that the midgut-specific CYP311A1 contributes to this function by participating in shaping microvilli in a PE-dependent manner.
Collapse
Affiliation(s)
- Wei Dong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xubo Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Kong
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ali Mahmoud
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, 01307, Dresden, Germany
| | - Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Bernard Moussian
- Université Côte d'Azur, Parc Valrose, 06108, Nice Cedex 2, France.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
18
|
Bitar L, Uphaus T, Thalman C, Muthuraman M, Gyr L, Ji H, Domingues M, Endle H, Groppa S, Steffen F, Koirala N, Fan W, Ibanez L, Heitsch L, Cruchaga C, Lee JM, Kloss F, Bittner S, Nitsch R, Zipp F, Vogt J. Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Sci Transl Med 2022; 14:eabk0135. [PMID: 35442704 DOI: 10.1126/scitranslmed.abk0135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke penumbra injury caused by excess glutamate is an important factor in determining stroke outcome; however, several therapeutic approaches aiming to rescue the penumbra have failed, likely due to unspecific targeting and persistent excitotoxicity, which continued far beyond the primary stroke event. Synaptic lipid signaling can modulate glutamatergic transmission via presynaptic lysophosphatidic acid (LPA) 2 receptors modulated by the LPA-synthesizing molecule autotaxin (ATX) present in astrocytic perisynaptic processes. Here, we detected long-lasting increases in brain ATX concentrations after experimental stroke. In humans, cerebrospinal fluid ATX concentration was increased up to 14 days after stroke. Using astrocyte-specific deletion and pharmacological inhibition of ATX at different time points after experimental stroke, we showed that inhibition of LPA-related cortical excitability improved stroke outcome. In transgenic mice and in individuals expressing a single-nucleotide polymorphism that increased LPA-related glutamatergic transmission, we found dysregulated synaptic LPA signaling and subsequent negative stroke outcome. Moreover, ATX inhibition in the animal model ameliorated stroke outcome, suggesting that this approach might have translational potential for improving the outcome after stroke.
Collapse
Affiliation(s)
- Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Luzia Gyr
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Haichao Ji
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heiko Endle
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nabin Koirala
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Wei Fan
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Laura Ibanez
- Department of Psychiatry, Department of Neurology, NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Heitsch
- Department of Emergency Medicine, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Department of Neurology, NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Radiology, and Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Robert Nitsch
- Institute of Translational Neuroscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Department of Molecular and Translational Neuroscience, Cologne Excellence Cluster for Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
19
|
A simple and rapid method for extraction and measurement of circulating sphingolipids using LC-MS/MS: a targeted lipidomic analysis. Anal Bioanal Chem 2022; 414:2041-2054. [PMID: 35066602 DOI: 10.1007/s00216-021-03853-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 01/28/2023]
Abstract
Sphingolipids are a class of lipids with high structural diversity and biological pleiotropy. Mounting evidence supports a role for sphingolipids in regulating pathophysiology of cardiometabolic diseases, and they have been proposed as potential cardiometabolic biomarkers. Current methods for quantifying sphingolipids require laborious pretreatment and relatively large sample volumes, and cover limited species, hindering their application in epidemiological studies. Herein, we applied a time-, labor-, and sample-saving protocol simply using methanol for plasma sphingolipid extraction. It was compared with classical liquid-liquid extraction methods and showed significant advantages in terms of simplicity, sphingolipid coverage, and sample volume. By coupling the protocol with liquid chromatography using a wide-span mobile phase polarity parameter and tandem mass spectrometry operated in dynamic multiple reaction monitoring mode, 37 sphingolipids from 8 classes (sphingoid base, sphingoid base phosphate, ceramide-1-phosphate, lactosylceramide, hexosylceramide, sphingomyelin, ceramide, and dihydroceramide) were quantified within 16 min, using only 10 μL of human plasma. The current method showed good performance in terms of linearity (R2 > 0.99), intra- and interbatch accuracy (70-123%) and precision (RSD < 12%), matrix effect (91-121%), recovery (96-101%), analyte chemical stability (deviation < 19%), and carryover (< 16%). We successfully applied this method to quantify 33 detectable sphingolipids from 579 plasma samples of an epidemiological study within 10 days. The quantified sphingolipid concentrations were comparable with previous studies. Positive associations of ceramide C22:0/C24:0 and their precursors with homeostasis model assessment of insulin resistance suggested that the synthesis of the ceramides might be involved in insulin resistance. This novel method constitutes a simple and rapid approach to quantify circulating sphingolipids for epidemiological studies using targeted lipidomic analysis, which will help elucidate the sphingolipid-regulated pathways underlying cardiometabolic diseases.
Collapse
|
20
|
Zotov VA, Bessonov VV, Risnik DV. Methodological Aspects of the Analysis of Fatty Acids in Biological Samples. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Nishikimi M, Shoaib M, Choudhary RC, Aoki T, Miyara SJ, Yagi T, Hayashida K, Takegawa R, Yin T, Becker LB, Kim J. Preserving brain
LPC‐DHA
by plasma supplementation attenuates brain injury after cardiac arrest. Ann Neurol 2022; 91:389-403. [DOI: 10.1002/ana.26296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| | - Rishabh C. Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Santiago J. Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tsukasa Yagi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| |
Collapse
|
22
|
G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. Nat Commun 2021; 12:6798. [PMID: 34815397 PMCID: PMC8611058 DOI: 10.1038/s41467-021-26882-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
G-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.
Collapse
|
23
|
Validation and application of a protocol for the extraction and quantitative analysis of sphingomyelin in erythrocyte membranes of patients with non-alcoholic fatty liver disease. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00127-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
25
|
Yingbo Z, Ximan K, Yajuan W, Huajun S, Shujuan J. Comprehensive analysis of phospholipids and glycerol glycolipids in green pepper by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9146. [PMID: 34131978 DOI: 10.1002/rcm.9146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE As important components of plant cells, lipids are involved in various biological functions. However, the composition and content of lipids in cell membranes changes at low temperature resulting in chilling injury and affecting the commercial value of green peppers. Detecting the changes in lipids helps to understand the mechanism of low-temperature stress in green peppers; however, a comprehensive study of lipid profiles in green pepper has not been well documented. METHODS Herein, we report an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOF MS) method to determine phospholipids and glycolipids in green peppers and compare five extraction methods among which the isopropanol/chloroform/water (ICW) method demonstrated the best extraction efficiency. The established method was used to determine the membrane lipids of fresh samples, chilled samples(4°C-20d), and control samples (10°C-20d). RESULTS A total of 98 lipids, including 77 phospholipids and 21 glycolipids, were extracted from green peppers using ICW extraction. The content and profile of phosphatidylcholine (PC) among phospholipids were found to be the highest, accounting for 58.58% of all the phospholipids. The monogalactosyldiacylglycerol (MGDG) content among the glycolipids was the highest, accounting for 1.43%. The samples stored at low temperature (4°C, 20d) had a significantly higher PC content and a higher content of lipids containing unsaturated fatty acid residues as compared with the control samples (10°C, 20d). The recovery ranged from 75.55% to 96.64% while the limit of quantification ranged from 10 to 1000 ng mL-1 . CONCLUSIONS The results indicated that the established method provided a reliable platform to study the changes in membrane lipids of a green pepper under low-temperature conditions.
Collapse
Affiliation(s)
- Zhao Yingbo
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Kong Ximan
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Wang Yajuan
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Sun Huajun
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| | - Ji Shujuan
- Post-harvest Biology and Storage of Fruits and Vegetables Laboratory, Department of Food Science, Shenyang Agriculture University, Shenyang City, China
| |
Collapse
|
26
|
Bai X, Liao Y, Sun F, Xiao X, Fu S. Diurnal regulation of oxidative phosphorylation restricts hepatocyte proliferation and inflammation. Cell Rep 2021; 36:109659. [PMID: 34496251 DOI: 10.1016/j.celrep.2021.109659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The principles guiding the diurnal organization of biological pathways remain to be fully elucidated. Here, we perturb the hepatic transcriptome through nutrient regulators (high-fat diet and mTOR signaling components) to identify enduring properties of pathway organization. Temporal separation and counter-regulation between pathways of energy metabolism and inflammation/proliferation emerge as persistent transcriptome features across animal models, and network analysis identifies the G0s2 and Rgs16 genes as potential mediators at the metabolism-inflammation interface. Mechanistically, G0s2 and Rgs16 are sequentially induced during the light phase, promoting amino acid oxidation and suppressing overall mitochondrial respiration. In their absence, sphingolipids and diacylglycerides accumulate, accompanied by hepatic inflammation and hepatocyte proliferation. Notably, the expression of G0s2 and Rgs16 is further induced in obese mouse livers, and silencing of their expression accentuates hepatic fibrosis. Therefore, diurnal regulation of energy metabolism alleviates inflammatory and proliferative stresses under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaojie Bai
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Yilie Liao
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Fangfang Sun
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Xia Xiao
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Suneng Fu
- School of Life Sciences, Tsinghua University, Beijing, China 100084; Department of Basic Research, Guangzhou Laboratory, Guangdong, China 510005.
| |
Collapse
|
27
|
Zhang Y, Wu W, Zhang J, Li Z, Ma H, Zhao Z. Facile Method for Specifically Sensing Sphingomyelinase in Cells and Human Urine Based on a Ratiometric Fluorescent Nanoliposome Probe. Anal Chem 2021; 93:11775-11784. [PMID: 34412477 DOI: 10.1021/acs.analchem.1c02197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingomyelinase (SMase) is closely related to diseases like Niemann-Pick disease and atherosclerosis, and the development of a simple method for the assay of SMase activity is very useful to screen new potential inhibitors or stimulators of SMase or biomarkers of disease. Fluorophore-encapsulated nanoliposomes (FENs) are emerging as a new fluorescent probe for sensing the enzymatic activity. In this work, two fluorochromes (cy7 and IR780) were encapsulated into the liposome of sphingomyelin, and therefore, a sphingomyelin-based ratiometric FEN probe for the SMase activity assay was constructed. The probe shows high selectivity and sensitivity to acid SMase with a detection limit of 4.8 × 10-4 U/mL. Sphingomyelin is the natural substrate of SMase; therefore, the probe has native ability for all kinds of SMase activity assays. Moreover, the probe has been successfully applied to the analysis of acid SMase activity in cells and urine samples. As far as we know, this is the first example of a nanoliposome fluorescence method for assaying acid SMase, and the method is biocompatible and much simpler than the existing ones, which might provide a new strategy for developing new methods for other important esterases.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Zhang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Hata S, Kano K, Kikuchi K, Kinoshita S, Sobu Y, Saito H, Saito T, Saido TC, Sano Y, Taru H, Aoki J, Komano H, Tomita T, Natori S, Suzuki T. Suppression of amyloid-β secretion from neurons by cis-9, trans-11-octadecadienoic acid, an isomer of conjugated linoleic acid. J Neurochem 2021; 159:603-617. [PMID: 34379812 DOI: 10.1111/jnc.15490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Two common conjugated linoleic acids (LAs), cis-9, trans-11 CLA (c9,t11 CLA) and trans-10, cis-12 CLA (t10,c12 CLA), exert various biological activities. However, the effect of CLA on the generation of neurotoxic amyloid-β (Aβ) protein remains unclear. We found that c9,t11 CLA significantly suppressed the generation of Aβ in mouse neurons. CLA treatment did not affect the level of β-site APP-cleaving enzyme 1 (BACE1), a component of active γ-secretase complex presenilin 1 amino-terminal fragment, or Aβ protein precursor (APP) in cultured neurons. BACE1 and γ-secretase activities were not directly affected by c9,t11 CLA. Localization of BACE1 and APP in early endosomes increased in neurons treated with c9,t11 CLA; concomitantly, the localization of both proteins was reduced in late endosomes, the predominant site of APP cleavage by BACE1. The level of CLA-containing phosphatidylcholine (CLA-PC) increased dramatically in neurons incubated with CLA. Incorporation of phospholipids containing c9,t11 CLA, but not t10,c12 CLA, into the membrane may affect the localization of some membrane-associated proteins in intracellular membrane compartments. Thus, in neurons treated with c9,t11 CLA, reduced colocalization of APP with BACE1 in late endosomes may decrease APP cleavage by BACE1 and subsequent Aβ generation. Our findings suggest that accumulation of c9,t11 CLA-PC/LPC in neuronal membranes suppresses production of neurotoxic Aβ in neurons.
Collapse
Affiliation(s)
- Saori Hata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.,Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kuniyuki Kano
- Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kazunori Kikuchi
- Department of Neuropathology and Neurosciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shoichi Kinoshita
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Haruka Saito
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, 278-8510, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Junken Aoki
- Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hiroto Komano
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Division of Neuroscience, School of Pharmacy, Iwate Medical University, Yahaba-cho, 028-3694, Japan
| | - Taisuke Tomita
- Department of Neuropathology and Neurosciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shunji Natori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.,Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
29
|
Jiang S, Pan J, Li Y, Ju M, Zhang W, Lu J, Lv J, Li K. Comprehensive Human Milk Patterns Are Related to Infant Growth and Allergy in the CHMP Study. Mol Nutr Food Res 2021; 65:e2100011. [PMID: 34227225 DOI: 10.1002/mnfr.202100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/10/2021] [Indexed: 12/26/2022]
Abstract
SCOPE The aim of the present study is to identify human milk pattern using multi-omics datasets and to explore association between patterns, infant growth, and allergy using data from the Chinese Human Milk Project (CHMP) study. METHODS AND RESULTS Three patterns are identified from integrative analysis of proteome, lipidome, and glycome profiles of 143 mature human milk samples. Factor 1 is positively associated with 128 proteins, phospholipids, and human milk oligosaccharides (HMOs) including lacto N-neohexaose (LNnH) and lacto-N-difucohexaose II (LNDFH II); factor 2 is negatively associated with as1 -casein, phospholipids while positively associates with HMOs including LNnH, lactosialyl tetrasaccharide c (LSTc), and 2'-fucosyllactose (2'FL); factor 3 is positively associated with lysophospholipids while negatively associates with 27 proteins, triglycerides with two saturated fatty acids, 6'-sialyllactose (6'SL) and 2'FL. In general, factor 1 and factor 2 are associated with slower while factor 3 is associated with faster growth rate (p < 0.044). One unit higher in loadings of factor 2 is associated with 34% lower risk of allergies (p ≤ 0.017). Associations are not significant after adjustment for city except for factor 1. CONCLUSIONS Three possible human milk patterns with varying degree of stability are identified. Future work is needed to understand these patterns in terms of generalization, biologic mechanisms, and genotype influences.
Collapse
Affiliation(s)
- Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Jiancun Pan
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yuanyuan Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Mengnan Ju
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Wei Zhang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Jing Lu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Fucheng Road 11, Haidian, Beijing, 100048, China
| | - Jiaping Lv
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaifeng Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| |
Collapse
|
30
|
Wang X, Cai J, Lin B, Ma M, Tao Y, Zhou Y, Bai L, Jiang W, Zhou R. GPR34-mediated sensing of lysophosphatidylserine released by apoptotic neutrophils activates type 3 innate lymphoid cells to mediate tissue repair. Immunity 2021; 54:1123-1136.e8. [PMID: 34107271 DOI: 10.1016/j.immuni.2021.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Neutrophils migrate rapidly to damaged tissue and play critical roles in host defense and tissue homeostasis. Here we investigated the mechanisms whereby neutrophils participate in tissue repair. In an intestinal epithelia injury model, neutrophil depletion exacerbated colitis and associated with reduced interleukin (IL)-22 and limited activation of type 3 innate lymphoid cells (ILC3s). Co-culture with neutrophils activated ILC3s in a manner dependent on neutrophil apoptosis. Metabolomic analyses revealed that lysophosphatidylserine (LysoPS) from apoptotic neutrophils directly stimulated ILC3 activation. ILC3-specific deletion of Gpr34, encoding the LysoPS receptor GPR34, or inhibition of downstream PI3K-AKT or ERK suppressed IL-22 production in response to apoptotic neutrophils. Gpr34-/- mice exhibited compromised ILC3 activation and tissue repair during colon injury, and neutrophil depletion abrogated these defects. GPR34 deficiency in ILC3s limited IL-22 production and tissue repair in vivo in settings of colon and skin injury. Thus, GPR34 is an ILC3-expressed damage-sensing receptor that triggers tissue repair upon recognition of dying neutrophils.
Collapse
Affiliation(s)
- Xiaqiong Wang
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Juan Cai
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bolong Lin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ming Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ye Tao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yubo Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Li Bai
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Rongbin Zhou
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
31
|
González-García LD, Martínez-Castillo M, Vargas-Pavía TA, Ulloa-Aguilar JM, Arévalo-Romero H, Léon-Reyes G, Helguera-Repetto AC, García-Cordero J, León-Juárez M. Inhibition of AMP-activated protein kinase in respiratory syncytial virus infection activates lipid metabolism. Arch Virol 2021; 166:1177-1182. [PMID: 33580381 DOI: 10.1007/s00705-021-04974-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022]
Abstract
Respiratory syncytial virus (RSV) is most commonly associated with upper respiratory tract infections during childhood. The lipid composition of cells and lipogenic enzymes play an important role in RSV infection. There are controversial data about whether lipid biosynthesis regulators such as AMP-activated protein kinase (AMPK) are deregulated by RSV. Hence, we examined whether the activation state of AMPK is altered in RSV-infected HEp-2 cells. Our data show that RSV infection inhibits AMPK activity, favoring the activation of downstream lipogenic effectors and cellular lipid anabolism in HEp-2 cells.
Collapse
Affiliation(s)
- Luis Didier González-García
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Casco de Santo Tomas, 11340, Ciudad de México, México
| | - Tania Allin Vargas-Pavía
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - José Manuel Ulloa-Aguilar
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Haruki Arévalo-Romero
- Laboratorio de Inmunología y Microbiología Molecular, División Académica multidisciplinaria de Jalpa de Méndez, Departamento de Genómica, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, México
| | - Guadalupe Léon-Reyes
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, México
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Montes Urales 800, Col. Lomas Virreyes, CP 11000, Ciudad de México, México.
| |
Collapse
|
32
|
Kano K, Matsumoto H, Kono N, Kurano M, Yatomi Y, Aoki J. Suppressing postcollection lysophosphatidic acid metabolism improves the precision of plasma LPA quantification. J Lipid Res 2021; 62:100029. [PMID: 33524376 PMCID: PMC7937979 DOI: 10.1016/j.jlr.2021.100029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potent signaling lipid, and state-dependent alterations in plasma LPA make it a promising diagnostic marker for various diseases. However, plasma LPA concentrations vary widely among reports, even under normal conditions. These variations can be attributed, at least in part, to the artificial metabolism of LPA after blood collection. Here, we aimed to develop an optimized plasma preparation method that reflects the concentration of LPA in the circulating blood. The main features of the devised method were suppression of both LPA production and degradation after blood collection by keeping whole blood samples at low temperature followed by the addition of an autotaxin inhibitor to plasma samples. Using this devised method, the LPA level did not change for 30 min after blood collection. Also, human and mouse LPA levels were found to be much lower than those previously reported, ranging from 40 to 50 nM with minimal variation across the individual. Finally, the increased accuracy made it possible to detect circadian rhythms in the levels of certain LPA species in mouse plasma. These results demonstrate the usefulness of the devised plasma preparation method to determine accurate plasma LPA concentrations.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan; AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Hirotaka Matsumoto
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kurano
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Clinical Laboratory, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Yatomi
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Clinical Laboratory, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan; AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan.
| |
Collapse
|
33
|
Erythrocyte sphingosine kinase regulates intraerythrocytic development of Plasmodium falciparum. Sci Rep 2021; 11:1257. [PMID: 33441957 PMCID: PMC7806667 DOI: 10.1038/s41598-020-80658-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
The sphingolipid pool is key regulator of vital cellular functions in Plasmodium falciparum a causative agent for deadly malaria. Erythrocytes, the host for asexual stage of Plasmodium, are major reservoir for Sphingosine-1-phosphate (S1P). Erythrocyte possesses Sphingosine kinase (SphK) that catalyzed its biosynthesis from sphingosine (Sph). Since, Plasmodium lacks SphK homologous protein it can be envisaged that it co-opts sphingolipids from both intraerythrocytic as well as extracellular pools for its growth and development. Herein, by sphingosine-NBD probing, we report that infected erythrocytes imports Sph from extracellular pool, which is converted to S1P and thereby taken by P. falciparum. Next, by targeting of the SphK through specific inhibitor N,N-Dimethylsphingosine DMS, we show a reduction in erythrocyte endogenous S1P pool and SphK-phosphorylation that led to inhibition in growth and development of ring stage P. falciparum. Owing to the role of S1P in erythrocyte glycolysis we analyzed uptake of NBD-Glucose and production of lactate in DMS treated and untreated plasmodium. DMS treatment led to decreased glycolysis in Plasmodium. Interestingly the host free Plasmodium did not show any effect on glycolysis with DMS treatment indicating its host-mediated effect. Further to understand the in-vivo anti-plasmodial effects of exogenous and endogenous erythrocyte S1P level, Sphingosine-1-phosphate lyase (S1PL) inhibitor (THI), S1P and SphK-1 inhibitor (DMS), were used in Plasmodium berghei ANKA (PbA) mice model. DMS treatment led to reduction of endogenous S1P conferred significant decrease in parasite load, whereas the plasma level S1P modulated by (THI) and exogenous S1P have no effect on growth of Plasmodium. This suggested erythrocyte endogenous S1P pool is important for Plasmodium growth whereas the plasma level S1P has no effect. Altogether, this study provides insight on cellular processes regulated by S1P in P. falciparum and highlights the novel mechanistically distinct molecular target i.e. SphK-1.
Collapse
|
34
|
Tokuoka SM, Kita Y, Sato M, Shimizu T, Yatomi Y, Oda Y. Development of Tandem Mass Tag Labeling Method for Lipid Molecules Containing Carboxy and Phosphate Groups, and Their Stability in Human Serum. Metabolites 2020; 11:metabo11010019. [PMID: 33396791 PMCID: PMC7824108 DOI: 10.3390/metabo11010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
In clinical lipidomics, it is a challenge to measure a large number of samples and to reproduce the quantitative results. We expanded the range of application of the tandem mass tag (TMT) method, which is widely used in proteomics, to lipidomic fields. There are various types of lipid molecule, for example, eicosanoids have a carboxyl group and phosphatidic acid has a phosphate group. We modified these functional groups simultaneously with TMT. This approach allows for a single analysis by mixing six samples and using one of the six samples as a bridging sample; the quantitative data can be easily normalized even if the number of measurements increases. To accommodate a large number of samples, we utilize a pooled serum sample of 300 individuals as a bridging sample. The stability of these lipid molecules in serum was examined as an analytical validation for the simultaneous TMT labeling. It was found that the stability of these lipid molecules in serum differs greatly depending on the lipid species. These findings reaffirmed the importance of proper sample preparation and storage to obtain reliable data. The TMT labeling method is expected to be a useful method for lipidomics with high-throughput and reliable reproducibility.
Collapse
Affiliation(s)
- Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
| | - Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- Department of Lipid Signaling, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (M.S.); (Y.Y.)
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; (S.M.T.); (Y.K.); (T.S.)
- Correspondence: ; Tel.: +81-3-5841-3540
| |
Collapse
|
35
|
Reichl B, Eichelberg N, Freytag M, Gojo J, Peyrl A, Buchberger W. Evaluation and optimization of common lipid extraction methods in cerebrospinal fluid samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122271. [DOI: 10.1016/j.jchromb.2020.122271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
|
36
|
Cheema AK, Kaur P, Fadel A, Younes N, Zirie M, Rizk NM. Integrated Datasets of Proteomic and Metabolomic Biomarkers to Predict Its Impacts on Comorbidities of Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:2409-2431. [PMID: 32753925 PMCID: PMC7354282 DOI: 10.2147/dmso.s244432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The objective of the current study is to accomplish a relative exploration of the biological roles of differentially dysregulated genes (DRGs) in type 2 diabetes mellitus (T2DM). The study aimed to determine the impact of these DRGs on the biological pathways and networks that are related to the associated disorders and complications in T2DM and to predict its role as prospective biomarkers. METHODS Datasets obtained from metabolomic and proteomic profiling were used for investigation of the differential expression of the genes. A subset of DRGs was integrated into IPA software to explore its biological pathways, related diseases, and their regulation in T2DM. Upon entry into the IPA, only 94 of the DRGs were recognizable, mapped, and matched within the database. RESULTS The study identified networks that explore the dysregulation of several functions; cell components such as degranulation of cells; molecular transport process and metabolism of cellular proteins; and inflammatory responses. Top disorders associated with DRGs in T2DM are related to organ injuries such as renal damage, connective tissue disorders, and acute inflammatory disorders. Upstream regulator analysis predicted the role of several transcription factors of interest, such as STAT3 and HIF alpha, as well as many kinases such as JAK kinases, which affects the gene expression of the dataset in T2DM. Interleukin 6 (IL6) is the top regulator of the DRGs, followed by leptin (LEP). Monitoring the dysregulation of the coupled expression of the following biomarkers (TNF, IL6, LEP, AGT, APOE, F2, SPP1, and INS) highlights that they could be used as potential prognostic biomarkers. CONCLUSION The integration of data obtained by advanced metabolomic and proteomic technologies has made it probable to advantage in understanding the role of these biomarkers in the identification of significant biological processes, pathways, and regulators that are associated with T2DM and its comorbidities.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, DC, USA
| | - Prabhjit Kaur
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, DC, USA
| | - Amina Fadel
- Biomedical Sciences Department, College of Health Sciences and Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Noura Younes
- Clinical Chemistry Lab, Hamad Medical Corporation, Doha, Qatar
| | - Mahmoud Zirie
- Endocrine Department, Hammad Medical Corporation, Doha, Qatar
| | - Nasser M Rizk
- Biomedical Sciences Department, College of Health Sciences and Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Physiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
37
|
Ultrasound-assisted one-phase solvent extraction coupled with liquid chromatography-quadrupole time-of-flight mass spectrometry for efficient profiling of egg yolk lipids. Food Chem 2020; 319:126547. [DOI: 10.1016/j.foodchem.2020.126547] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 11/23/2022]
|
38
|
Abdul Rahman M, Mohamad Haron DE, Hollows RJ, Abdul Ghani ZDF, Ali Mohd M, Chai WL, Ng CC, Lye MS, Karsani SA, Yap LF, Paterson IC. Profiling lysophosphatidic acid levels in plasma from head and neck cancer patients. PeerJ 2020; 8:e9304. [PMID: 32547888 PMCID: PMC7278886 DOI: 10.7717/peerj.9304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a significant world health problem, with approximately 600,000 new cases being diagnosed annually. The prognosis for patients with HNSCC is poor and, therefore, the identification of biomarkers for screening, diagnosis and prognostication would be clinically beneficial. A limited number of studies have used lipidomics to profile lipid species in the plasma of cancer patients. However, the profile and levels of lysophosphatidic acid (LPA) species have not been examined in HNSCC. In this study, a targeted lipidomics approach using liquid chromatography triple quadrupole mass spectrometry (LCMS/MS) was used to analyse the concentration of LPA (16:0 LPA, 18:0 LPA, 18:1 LPA, 18:2 LPA and 20:4 LPA) in the plasma of patients with oral squamous cell carcinoma (OSCC) and nasopharyngeal carcinoma (NPC), together with healthy controls. The levels of three LPA species (18:1 LPA, 18:2 LPA and 20:4 LPA) were significantly lower in the plasma of OSCC patients, whilst the concentrations of all five LPA species tested were significantly lower in plasma from NPC patients. Furthermore, the order of abundance of LPA species in plasma was different between the control and cancer groups, with 16:0 LPA, 18:0 LPA levels being more abundant in OSCC and NPC patients. Medium to strong correlations were observed using all pairs of LPA species and a clear separation of the normal and tumour groups was observed using PCA analysis. In summary, the results of this study showed that the levels of several LPA species in the plasma of patients with OSCC and NPC were lower than those from healthy individuals. Understanding these variations may provide novel insights into the role of LPA in these cancers.
Collapse
Affiliation(s)
- Mariati Abdul Rahman
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Department of Craniofacial Diagnostics and Biosciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Robert J Hollows
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Mustafa Ali Mohd
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ching Ching Ng
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Munn Sann Lye
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Sah RK, Pati S, Saini M, Boopathi PA, Kochar SK, Kochar DK, Das A, Singh S. Reduction of Sphingosine Kinase 1 Phosphorylation and Activity in Plasmodium-Infected Erythrocytes. Front Cell Dev Biol 2020; 8:80. [PMID: 32195246 PMCID: PMC7062701 DOI: 10.3389/fcell.2020.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 01/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid mediator is involved in an array of biological processes and linked to pathological manifestations. Erythrocyte is known as the major reservoir for S1P as they lack S1P-degrading enzymes (S1P lyase and S1P phosphohydrolase) and harbor sphingosine kinase-1 (SphK-1) essential for sphingosine conversion to S1P. Reduced S1P concentration in serum was correlated with disease severity in patients with Plasmodium falciparum and Plasmodium vivax infections. Herein, we aimed to identify the underlying mechanism and contribution of host erythrocytes toward depleted S1P levels in Plasmodium-infected patients vs. healthy individuals. The level and activity of SphK-1 were measured in vitro in both uninfected and cultured P. falciparum-infected erythrocytes. Infected erythrocytes demonstrated a significant decrease in SphK-1 level in a time-dependent manner. We found that 10–42 h post invasion (hpi), SphK1 level was predominantly reduced to ∼50% in rings, trophozoites, and schizonts compared to uninfected erythrocytes. We next analyzed the phosphorylation status of SphK-1, a modification responsible for its activity and S1P production, in both uninfected control and Plasmodium-infected erythrocytes. Almost ∼50% decrease in phosphorylation of SphK-1 was observed that could be corroborated with significant reduction in the production and release of S1P in infected erythrocytes. Serum S1P levels were studied in parallel in P. falciparum (N = 15), P. vivax (N = 36)-infected patients, and healthy controls (N = 6). The findings revealed that S1P concentration was significantly depleted in uncomplicated malaria cases and was found to be lowest in complicated malaria and thrombocytopenia in both P. falciparum and P. vivax-infected groups (∗∗p < 0.01). The lower serum S1P level could be correlated with the reduced platelet count defining the role of S1P level in platelet formation. In conclusion, erythrocyte SphK-1 and S1P levels were studied in Plasmodium-infected individuals and erythrocytes that helped in characterizing the complications associated with malaria and thrombocytopenia, providing insights into the contribution of host erythrocyte biology in malaria pathogenesis. Finally, this study proposes the use of S1P and its analog as a novel adjunct therapy for malaria complications.
Collapse
Affiliation(s)
- Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | | | | | | | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
40
|
Teclemariam ET, Pergande MR, Cologna SM. Considerations for mass spectrometry-based multi-omic analysis of clinical samples. Expert Rev Proteomics 2020; 17:99-107. [PMID: 31996049 DOI: 10.1080/14789450.2020.1724540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The role of mass spectrometry in biomolecule analysis has become paramount over the last several decades ranging in the analysis across model systems and human specimens. Accordingly, the presence of mass spectrometers in clinical laboratories has also expanded alongside the number of researchers investigating the protein, lipid, and metabolite composition of an array of biospecimens. With this increase in the number of omic investigations, it is important to consider the entire experimental strategy from sample collection and storage, data collection and analysis.Areas covered: In this short review, we outline considerations for working with clinical (e.g. human) specimens including blood, urine, and cerebrospinal fluid, with emphasis on sample handling, profiling composition, targeted measurements and relevance to disease. Discussions of integrated genomic or transcriptomic datasets are not included. A brief commentary is also provided regarding new technologies with clinical relevance.Expert opinion: The role of mass spectrometry to investigate clinically related specimens is on the rise and the ability to integrate multiple omics datasets from mass spectrometry measurements will be crucial to further understanding human health and disease.
Collapse
Affiliation(s)
- Esei T Teclemariam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.,Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Relative Ratios Enhance the Diagnostic Power of Phospholipids in Distinguishing Benign and Cancerous Ovarian Masses. Cancers (Basel) 2019; 12:cancers12010072. [PMID: 31888002 PMCID: PMC7016589 DOI: 10.3390/cancers12010072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer remains a highly lethal disease due to its late clinical presentation and lack of reliable early biomarkers. Protein-based diagnostic markers have presented limitations in identifying ovarian cancer. We tested the potential of phospholipids as markers of ovarian cancer by utilizing inter-related regulation of phospholipids, a unique property that allows the use of ratios between phospholipid species for quantitation. High-performance liquid chromatography mass spectrometry was used to measure phospholipid, lysophospholipid, and sphingophospholipid content in plasma from patients with benign ovarian masses, patients with ovarian cancer, and controls. We applied both absolute and relative phospholipid ratios for quantitation. Receiver operating characteristic analysis was performed to test the sensitivity and specificity. We found that utilization of ratios between phospholipid species greatly outperformed absolute quantitation in the identification of ovarian cancer. Of the phospholipids analyzed, species in phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) were found to have great biomarker potential. LPC(20:4)/LPC(18:0) carried the greatest capacity to differentiate cancer from control, SM(d18:1/24:1)/SM(d18:1/22:0) to differentiate benign from cancer, and PC(18:0/20:4)/PC(18:0/18:1) to differentiate benign from control. These results demonstrate the potential of plasma phospholipids as a novel marker of ovarian cancer by utilizing the unique characteristics of phospholipids to further enhance the diagnostic power.
Collapse
|
42
|
Li N, Wang P, Liu X, Han C, Ren W, Li T, Li X, Tao F, Zhao Z. Developing IR-780 as a Novel Matrix for Enhanced MALDI MS Imaging of Endogenous High-Molecular-Weight Lipids in Brain Tissues. Anal Chem 2019; 91:15873-15882. [PMID: 31718156 DOI: 10.1021/acs.analchem.9b04315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The matrix plays a prominent role in expanding the ability of matrix assisted laser desorption/ionization mass spectrometry (MALDI MS). However, on account of the unclarity of necessary properties of the matrix in MALDI MS, development of a new matrix is still in the exploratory stage and lacks systematic theoretical guidance. Meanwhile, most of the existing matrices are unable to simultaneously detect various high-molecular-weight (high-MW) lipids including (poly-)phosphoinositides, cardiolipins, and gangliosides. In this study, we have successfully screened and optimized the application of commercially available IR-780 as a novel matrix for simultaneously profiling and imaging high-MW lipids in brain tissues by MALDI MS for the first time. The properties of IR-780 related to the matrix of MALDI MS, mainly including the optical properties (UV absorption, fluorescence emission, and photothermal efficiency), proton affinity, collision cross-sections (CCSs), salt-tolerance ability, and homogeneity, were comprehensively characterized, which demonstrated that high photothermal ability and large CCSs might guarantee the superior performance of IR-780 as matrix for the analysis of high-MW lipids in biological samples. This work provided some references for the development of a novel matrix, and especially, the concept of CCS was first introduced as a parameter for the development of a matrix. In addition, the simultaneous identification and imaging of endogenous high-MW lipids in rat brain tissues subjected to traumatic brain injury were successfully performed.
Collapse
Affiliation(s)
- Na Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Peng Wang
- College of Biochemistry Engineering , Beijing Union University , Beijing 100023 , China
| | - Xiaolong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Chao Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Ren
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fengyun Tao
- College of Biochemistry Engineering , Beijing Union University , Beijing 100023 , China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing Mass Spectrum Center, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- Graduate School , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
43
|
Gong D, Zhang L, Zhang Y, Wang F, Zhao Z, Zhou X. Gut Microbial Metabolite Trimethylamine N-Oxide Is Related to Thrombus Formation in Atrial Fibrillation Patients. Am J Med Sci 2019; 358:422-428. [DOI: 10.1016/j.amjms.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/28/2019] [Accepted: 09/13/2019] [Indexed: 01/22/2023]
|
44
|
Lipidomics Profile Changes of Type 2 Diabetes Mellitus with Acute Myocardial Infarction. DISEASE MARKERS 2019. [DOI: 10.1155/2019/7614715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The morbidity and mortality of cardiovascular disease (CVD)/acute myocardial infarction (AMI) of type 2 diabetes mellitus (T2DM) patients are extremely higher than those without T2DM. Biomarkers can be used to predict the occurrence of acute myocardial infarction, thus effectively reducing the incidence of CVD events, particularly in T2DM patients. Lipids have been shown to be biomarkers and potential therapeutic targets for human diseases. The aim of our study was to investigate the prognostic value of lipid biomarkers for predicting AMI in T2DM patients. A total of 420 subjects were recruited in this research. Liquid Chromatography-Electrospray Ionization-Quadrupole Time of Flight-Mass Spectrometer- (LC-ESI-QTOF-MS-) and Liquid Chromatography/Mass Spectrometer- (LC/MS-) based metabolomic methods were applied to characterize metabolic profiles in each plasma sample. In the first untargeted set, 40 T2DM patients with AMI, 40 T2DM patients without AMI, and 40 control subjects were gender- and age-matched. Eight lipid metabolites showed a significant difference among three groups. Then, in the second set, targeted metabolic profiling assays for these 8 lipid biomarker concentrations in plasma were performed; another 100 T2DM patients with AMI, 100 T2DM patients without AMI, and 100 control subjects were selected independently. Receiver operating characteristic (ROC) curves were constructed, and the area under the ROC curves (AUC) was calculated to determine the potential biomarkers. ROC curve analysis showed that the AUC value of lysophosphatidylcholine (LysoPC) 18:0 is more than 0.7, indicating that LysoPC 18:0 may be a potential sensitive and specific biomarker for T2DM with AMI. The changed plasma concentrations of lipids were significantly associated with T2DM with AMI, which showed great value to be biomarkers, though it requires a prospective cohort study for further validation.
Collapse
|
45
|
Vvedenskaya O, Wang Y, Ackerman JM, Knittelfelder O, Shevchenko A. Analytical challenges in human plasma lipidomics: A winding path towards the truth. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Torkhovskaya TI, Zakharova TS, Korotkevich EI, Ipatova OM, Markin SS. Human Blood Plasma Lipidome: Opportunities and Prospects of Its Analysis in Medical Chemistry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201905011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
48
|
Morse N, Jamaspishvili T, Simon D, Patel PG, Ren KYM, Wang J, Oleschuk R, Kaufmann M, Gooding RJ, Berman DM. Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies. J Transl Med 2019; 99:1561-1571. [PMID: 31160688 DOI: 10.1038/s41374-019-0265-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/06/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Metabolomic profiling can aid in understanding crucial biological processes in cancer development and progression and can also yield diagnostic biomarkers. Desorption electrospray ionization coupled to mass spectrometry imaging (DESI-MSI) has been proposed as a potential adjunct to diagnostic surgical pathology, particularly for prostate cancer. However, due to low resolution sampling, small numbers of mass spectra, and little validation, published studies have yet to test whether this method is sufficiently robust to merit clinical translation. We used over 900 spatially resolved DESI-MSI spectra to establish an accurate, high-resolution metabolic profile of prostate cancer. We identified 25 differentially abundant metabolites, with cancer tissue showing increased fatty acids (FAs) and phospholipids, along with utilization of the Krebs cycle, and benign tissue showing increased levels of lyso-phosphatidylethanolamine (PE). Additionally, we identified, for the first time, two lyso-PEs with abundance that decreased with cancer grade and two phosphatidylcholines (PChs) with increased abundance with increasing cancer grade. Importantly, we developed and internally validated a multivariate metabolomic classifier for prostate cancer using 534 spatial regions of interest (ROIs) in the training cohort and 430 ROIs in the test cohort. With excellent statistical power, the training cohort achieved a balanced accuracy of 97% and validation on testing data set demonstrated 85% balanced accuracy. Given the validated accuracy of this classifier and the correlation of differentially abundant metabolites with established patterns of prostate cancer cell metabolism, we conclude that DESI-MSI is an effective tool for characterizing prostate cancer metabolism with the potential for clinical translation.
Collapse
Affiliation(s)
- Nicole Morse
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Tamara Jamaspishvili
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - David Simon
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Palak G Patel
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kevin Yi Mi Ren
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jenny Wang
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Martin Kaufmann
- Department of Surgery, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Robert J Gooding
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - David M Berman
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada. .,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
49
|
Abbott KA, Burrows TL, Thota RN, Alex A, Acharya S, Attia J, McEvoy M, Garg ML. Association between plasma phospholipid omega-3 polyunsaturated fatty acids and type 2 diabetes is sex dependent: The Hunter Community Study. Clin Nutr 2019; 39:1059-1066. [PMID: 31023487 DOI: 10.1016/j.clnu.2019.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Accepted: 04/08/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS Chronic inflammation drives the development of insulin resistance and type 2 diabetes. Long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) eicosapentaenoic acid (EPA, c20:5n-3) and docosahexaenoic acid (DHA, c22:6n-3) may protect against type 2 diabetes development. The aim of this current study is to determine whether LCn-3PUFA status is associated with type 2 diabetes in the Hunter Community Study. METHODS Men and women aged 55-85 years were randomly selected from the electoral roll and invited to participate. Participants were included in the current study if they had plasma phospholipid fatty acid composition data available and diabetes status could be determined. LCn-3PUFA status was determined by fatty acid composition of plasma phospholipids (EPA + DHA, %,w/w). Diabetes was determined according to World Health Organisation criteria. Insulin was measured in n = 251 participants and HOMA-IR calculated. RESULTS In total, n = 2092 (diabetes: n = 249) participants were included. After adjusting for confounders of diabetes, LCn-3PUFA status was inversely associated with diabetes in overweight/obese females (OR [95%CI]: 0.90 [0.80, 1.00], p = 0.045) but not males (p-interactionsex = 0.041). Overweight/obese females with diabetes had significantly lower levels of DHA than those without diabetes (mean difference [95%CI]: -0.53 [-0.87, -0.20], p = 0.002), with no difference in EPA. LCn-3PUFA was inversely associated with HOMA-IR (r = -0.175, p = 0.005). CONCLUSIONS This study provides further evidence of a sex-dependent association between LCn-3PUFA and type 2 diabetes. Causal pathways between LCn-3PUFA and type 2 diabetes merits delineation.
Collapse
Affiliation(s)
- Kylie A Abbott
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Tracy L Burrows
- School of Health Sciences, University of Newcastle, NSW, Australia
| | - Rohith N Thota
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Anu Alex
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Shamasunder Acharya
- Department of Diabetes and Endocrinology, John Hunter Hospital, Hunter New England Local Health District, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, NSW, Australia
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mark McEvoy
- School of Medicine and Public Health, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia.
| |
Collapse
|
50
|
Yagi T, Shoaib M, Kuschner C, Nishikimi M, Becker LB, Lee AT, Kim J. Challenges and Inconsistencies in Using Lysophosphatidic Acid as a Biomarker for Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11040520. [PMID: 30979045 PMCID: PMC6521627 DOI: 10.3390/cancers11040520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Increased detection of plasma lysophosphatidic acid (LPA) has been proposed as a potential diagnostic biomarker in ovarian cancer, but inconsistency exists in these reports. It has been shown that LPA can undergo an artificial increase during sample processing and analysis, which has not been accounted for in ovarian cancer research. The aim of this study is to provide a potential explanation about how the artificial increase in LPA may have interfered with previous LPA analysis in ovarian cancer research. Using an established LC-MS method, we measured LPA and other lysophospholipid levels in plasma obtained from three cohorts of patients: non-cancer controls, patients with benign ovarian tumors, and those with ovarian cancer. We did not find the LPA level to be higher in cancer samples. To understand this inconsistency, we observed that LPA content changed more significantly than other lysophospholipids as a function of plasma storage time while frozen. Additionally, only LPA was found to be adversely impacted by incubation time depending on the Ethylenediaminetetraacetic acid (EDTA) concentration used during blood drawing. We also show that the inhibition of autotaxin effectively prevented artificial LPA generation during incubation at room temperature. Our data suggests that the artificial changes in LPA content may contribute to the discrepancies reported in literature. Any future studies planning to measure plasma LPA should carefully design the study protocol to consider these confounding factors.
Collapse
Affiliation(s)
- Tsukasa Yagi
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Muhammad Shoaib
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Cyrus Kuschner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Mitsuaki Nishikimi
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Lance B Becker
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Annette T Lee
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
- Robert S. Boas Center for Genomics & Human Genetics, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Junhwan Kim
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| |
Collapse
|