1
|
Rao BD, Gomez-Gil E, Peter M, Balogh G, Nunes V, MacRae JI, Chen Q, Rosenthal PB, Oliferenko S. Horizontal acquisition of prokaryotic hopanoid biosynthesis reorganizes membrane physiology driving lifestyle innovation in a eukaryote. Nat Commun 2025; 16:3291. [PMID: 40195311 PMCID: PMC11976957 DOI: 10.1038/s41467-025-58515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Horizontal gene transfer is a source of metabolic innovation and adaptation to new environments. How new metabolic functionalities are integrated into host cell biology is largely unknown. Here, we probe this fundamental question using the fission yeast Schizosaccharomyces japonicus, which has acquired a squalene-hopene cyclase Shc1 through horizontal gene transfer. We show that Shc1-dependent production of hopanoids, mimics of eukaryotic sterols, allows S. japonicus to thrive in anoxia, where sterol biosynthesis is not possible. We demonstrate that glycerophospholipid fatty acyl asymmetry, prevalent in S. japonicus, is crucial for accommodating both sterols and hopanoids in membranes and explain how Shc1 functions alongside the sterol biosynthetic pathway to support membrane properties. Reengineering experiments in the sister species S. pombe show that hopanoids entail new traits in a naïve organism, but the acquisition of a new enzyme may trigger profound reorganization of the host metabolism and physiology.
Collapse
Affiliation(s)
- Bhagyashree Dasari Rao
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Elisa Gomez-Gil
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Maria Peter
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | | | - Qu Chen
- The Francis Crick Institute, London, UK
| | | | - Snezhana Oliferenko
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Carravilla P, Andronico L, Schlegel J, Urem YB, Sjule E, Ragaller F, Weber F, Gurdap CO, Ascioglu Y, Sych T, Lorent J, Sezgin E. Measuring plasma membrane fluidity using confocal microscopy. Nat Protoc 2025:10.1038/s41596-024-01122-8. [PMID: 39972239 DOI: 10.1038/s41596-024-01122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/29/2024] [Indexed: 02/21/2025]
Abstract
Membrane fluidity is a crucial parameter for cellular physiology. Recent evidence suggests that fluidity varies between cell types and states and in diseases. As membrane fluidity has gradually become an important consideration in cell biology and biomedicine, it is essential to have reliable and quantitative ways to measure it in cells. In the past decade, there has been substantial progress both in chemical probes and in imaging tools to make membrane fluidity measurements easier and more reliable. We have recently established a robust pipeline, using confocal imaging and new environment-sensitive probes, that has been successfully used for several studies. Here we present our detailed protocol for membrane fluidity measurement, from labeling to imaging and image analysis. The protocol takes ~4 h and requires basic expertise in cell culture, wet lab and microscopy.
Collapse
Affiliation(s)
- Pablo Carravilla
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Luca Andronico
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yagmur B Urem
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ellen Sjule
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Franziska Ragaller
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Florian Weber
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Upper Austria University of Applied Sciences, Department Medical Engineering, Linz, Austria
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yavuz Ascioglu
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Joseph Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
- Cellular and Molecular Pharmacology, Translational Research from Experimental and Clinical Pharmacology to Treatment Optimization, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
3
|
Biscaia-Caleiras M, Fonseca N, Lourenço AS, Nunes A, Ferreira A, Moreira JN, Simões S. Bridging membrane fluidity studies with a predictive model of drug encapsulation to address industrial challenges of liposomal injectables manufacturing. Drug Deliv Transl Res 2025:10.1007/s13346-025-01807-x. [PMID: 39955407 DOI: 10.1007/s13346-025-01807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
Industrial manufacturing of liposomal drugs, often involves high-temperature processes, resulting in increased energy consumption, prolonged process times, and elevated costs, while posing risks of phospholipid and drug degradation. The current study addresses these challenges by exploring remote loading of doxorubicin into liposomes, at temperatures below the phase transition temperature (PTT) of the primary phospholipid (DSPC, 55 °C). Drug loading efficiencies exceeding 90% at 45 °C were achieved, while efficiencies dropped significantly (6-fold and 23-fold) at 37 °C and 25 °C, respectively. This prompted the hypothesis that efficient drug loading might be attained below the PTT, when a minimal threshold for liposomal membrane fluidity is overcome. Using design of experiments (DoE), key factors influencing fluidity were identified: temperature, cholesterol content and surface tension (dependent on the isotonic agent). A full factorial DoE confirmed that membrane fluidity increased with lower surface tension, and high cholesterol content. A predictive model was also generated establishing a correlation between drug loading efficiency, membrane fluidity, and drug partitioning coefficient (logP). This model revealed that doxorubicin (logP = 1.5) requires a fluidity threshold of 4.41 for efficient loading (≥ 90%), whereas daunorubicin (logP = 2.32) needs a lower threshold of 3.85, suggesting that drugs with higher logP values demand lower fluidity thresholds for effective loading. The model's applicability was validated across various lipid formulations, enabling effective drug loading at temperatures as low as 25 °C, potentially reducing degradation risks and energy costs. Overall, these findings highlight the relevance of liposomal membrane fluidity studies as a potential tool for enabling more effective industrial processes.
Collapse
Affiliation(s)
- Mariana Biscaia-Caleiras
- CNC-UC, Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal
- Bluepharma - Indústria Farmacêutica, S.A, São Martinho do Bispo, Coimbra, 3045-016, Portugal
- Faculty of Pharmacy, Pólo das Ciências da Saúde, Univ Coimbra - University of Coimbra, CIBB, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Nuno Fonseca
- Bluepharma - Indústria Farmacêutica, S.A, São Martinho do Bispo, Coimbra, 3045-016, Portugal
| | - Ana Sofia Lourenço
- Bluepharma - Indústria Farmacêutica, S.A, São Martinho do Bispo, Coimbra, 3045-016, Portugal
| | - António Nunes
- Bluepharma - Indústria Farmacêutica, S.A, São Martinho do Bispo, Coimbra, 3045-016, Portugal
| | - Abel Ferreira
- Department of Chemical Engineering, University of Coimbra, CERES, Polo II, Rua Silvio Lima, Coimbra, 3030-970, Portugal
| | - João Nuno Moreira
- CNC-UC, Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, Pólo das Ciências da Saúde, Univ Coimbra - University of Coimbra, CIBB, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Sérgio Simões
- CNC-UC, Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.
- Bluepharma - Indústria Farmacêutica, S.A, São Martinho do Bispo, Coimbra, 3045-016, Portugal.
- Faculty of Pharmacy, Pólo das Ciências da Saúde, Univ Coimbra - University of Coimbra, CIBB, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal.
| |
Collapse
|
4
|
Anselmo S, Bonaccorso E, Gangemi C, Sancataldo G, Conti Nibali V, D’Angelo G. Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques? MEMBRANES 2025; 15:6. [PMID: 39852247 PMCID: PMC11766618 DOI: 10.3390/membranes15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025]
Abstract
Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes. Moreover, these non-invasive approaches allow for the study of live cells, facilitating the collection of quantitative data under physiologically relevant conditions. This review synthesizes the latest insights into the role of lipid rafts in biological and pathological processes and underscores how fluorescence techniques have advanced our understanding of these critical microdomains. The findings emphasize the pivotal role of lipid rafts in health and disease, providing a foundation for future research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara Anselmo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Elisa Bonaccorso
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Chiara Gangemi
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Valeria Conti Nibali
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giovanna D’Angelo
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| |
Collapse
|
5
|
Lata K, Anderluh G, Chattopadhyay K. Entangling roles of cholesterol-dependent interaction and cholesterol-mediated lipid phase heterogeneity in regulating listeriolysin O pore-formation. Biochem J 2024; 481:1349-1377. [PMID: 39268843 DOI: 10.1042/bcj20240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Cholesterol-dependent cytolysins (CDCs) are the distinct class of β-barrel pore-forming toxins (β-PFTs) that attack eukaryotic cell membranes, and form large, oligomeric, transmembrane β-barrel pores. Listeriolysin O (LLO) is a prominent member in the CDC family. As documented for the other CDCs, membrane cholesterol is essential for the pore-forming functionality of LLO. However, it remains obscure how exactly cholesterol facilitates its pore formation. Here, we show that cholesterol promotes both membrane-binding and oligomerization of LLO. We demonstrate cholesterol not only facilitates membrane-binding, it also enhances the saturation threshold of LLO-membrane association, and alteration of the cholesterol-recognition motif in the LLO mutant (LLOT515G-L516G) compromises its pore-forming efficacy. Interestingly, such defect of LLOT515G-L516G could be rescued in the presence of higher membrane cholesterol levels, suggesting cholesterol can augment the pore-forming efficacy of LLO even in the absence of a direct toxin-cholesterol interaction. Furthermore, we find the membrane-binding and pore-forming abilities of LLOT515G-L516G, but not those of LLO, correlate with the cholesterol-dependent rigidity/ordering of the membrane lipid bilayer. Our data further suggest that the line tension derived from the lipid phase heterogeneity of the cholesterol-containing membranes could play a pivotal role in LLO function, particularly in the absence of cholesterol binding. Therefore, in addition to its receptor-like role, we conclude cholesterol can further facilitate the pore-forming, membrane-damaging functionality of LLO by asserting the optimal physicochemical environment in membranes. To the best of our knowledge, this aspect of the cholesterol-mediated regulation of the CDC mode of action has not been appreciated thus far.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19 1000 Ljubljana, Slovenia
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
6
|
Wong AM, Budin I. Organelle-Targeted Laurdans Measure Heterogeneity in Subcellular Membranes and Their Responses to Saturated Lipid Stress. ACS Chem Biol 2024; 19:1773-1785. [PMID: 39069657 PMCID: PMC11670155 DOI: 10.1021/acschembio.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Organelles feature characteristic lipid compositions that lead to differences in membrane properties. In cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to lipid packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells; therefore, it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out the membrane packing of individual cellular organelles. The set of organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes, and Golgi compartments with high specificity while retaining the spectral resolution needed to detect biological changes in membrane ordering. We show that ratiometric imaging with OTLs can resolve membrane heterogeneity within organelles as well as changes in lipid packing resulting from inhibition of trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While the ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application in interrogating lipid dysregulation.
Collapse
Affiliation(s)
- Adrian M. Wong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Schaefer KG, Russell CM, Pyron RJ, Conley EA, Barrera FN, King GM. Polymerization mechanism of the Candida albicans virulence factor candidalysin. J Biol Chem 2024; 300:107370. [PMID: 38750794 PMCID: PMC11193009 DOI: 10.1016/j.jbc.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Candida albicans is a commensal fungus that can cause epithelial infections and life-threatening invasive candidiasis. The fungus secretes candidalysin (CL), a peptide that causes cell damage and immune activation by permeation of epithelial membranes. The mechanism of CL action involves strong peptide assembly into polymers in solution. The free ends of linear CL polymers can join, forming loops that become pores upon binding to membranes. CL polymers constitute a therapeutic target for candidiasis, but little is known about CL self-assembly in solution. Here, we examine the assembly mechanism of CL in the absence of membranes using complementary biophysical tools, including a new fluorescence polymerization assay, mass photometry, and atomic force microscopy. We observed that CL assembly is slow, as tracked with the fluorescent marker C-laurdan. Single-molecule methods showed that CL polymerization involves a convolution of four processes. Self-assembly begins with the formation of a basic subunit, thought to be a CL octamer that is the polymer seed. Polymerization proceeds via the addition of octamers, and as polymers grow they can curve and form loops. Alternatively, secondary polymerization can occur and cause branching. Interplay between the different rates determines the distribution of CL particle types, indicating a kinetic control mechanism. This work elucidates key physical attributes underlying CL self-assembly which may eventually evoke pharmaceutical development.
Collapse
Affiliation(s)
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, Tennessee
| | - Elizabeth A Conley
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri; Department of Biochemistry, University of Missouri, Columbia, Missouri.
| |
Collapse
|
8
|
Gu Y, Reinhard BM. Membrane fluidity properties of lipid-coated polylactic acid nanoparticles. NANOSCALE 2024; 16:8533-8545. [PMID: 38595322 PMCID: PMC11064779 DOI: 10.1039/d3nr06464f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
Collapse
Affiliation(s)
- Yuanqing Gu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Wong AM, Budin I. Organelle-targeted Laurdans measure heterogeneity in subcellular membranes and their responses to saturated lipid stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589828. [PMID: 38659784 PMCID: PMC11042318 DOI: 10.1101/2024.04.16.589828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cell organelles feature characteristic lipid compositions that lead to differences in membrane properties. In living cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to membrane packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells, so it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out membrane packing of individual cellular organelles. The set of Organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes and Golgi compartments with high specificity, while retaining the spectral resolution needed to detect biological changes in membrane packing. We show that ratiometric imaging with OTL can resolve membrane heterogeneity within organelles, as well as changes in membrane packing resulting from inhibition of lipid trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application to interrogating lipid dysregulation.
Collapse
Affiliation(s)
- Adrian M. Wong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Neukam M, Sala P, Brunner AD, Ganß K, Palladini A, Grzybek M, Topcheva O, Vasiljević J, Broichhagen J, Johnsson K, Kurth T, Mann M, Coskun Ü, Solimena M. Purification of time-resolved insulin granules reveals proteomic and lipidomic changes during granule aging. Cell Rep 2024; 43:113836. [PMID: 38421874 DOI: 10.1016/j.celrep.2024.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.
Collapse
Affiliation(s)
- Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Pia Sala
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | | | - Katharina Ganß
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michal Grzybek
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Oleksandra Topcheva
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jovana Vasiljević
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Thomas Kurth
- TU Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, 01307 Dresden, Saxony, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
11
|
Kim H, Juarez-Contreras I, Budin I. Using the yeast vacuole as a system to test the lipidic drivers of membrane heterogeneity in living cells. Methods Enzymol 2024; 700:77-104. [PMID: 38971613 PMCID: PMC12083250 DOI: 10.1016/bs.mie.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The biophysical drivers of membrane lateral heterogeneity, often termed lipid rafts, have been largely explored using synthetic liposomes or mammalian plasma membrane-derived giant vesicles. Yeast vacuoles, an organelle comparable to mammalian lysosomes, is the only in vivo system that shows stable micrometer scale phase separation in unperturbed cells. The ease of manipulating lipid metabolism in yeast makes this a powerful system for identifying lipids involved in the onset of vacuole membrane heterogeneity. Vacuole domains are induced by stationary stage growth and nutritional starvation, during which they serve as a docking and internalization site for lipid droplet energy stores. Here we describe methods for characterizing vacuole phase separation, its physiological function, and its lipidic drivers. First, we detail methodologies for robustly inducing vacuole domain formation and quantitatively characterizing during live cell imaging experiments. Second, we detail a new protocol for biochemical isolation of stationary stage vacuoles, which allows for lipidomic dissection of membrane phase separation. Third, we describe biochemical techniques for analyzing lipid droplet internalization in vacuole domains. When combined with genetic or chemical perturbations to lipid metabolism, these methods allow for systematic dissection of lipid composition in the structure and function of ordered membrane domains in living cells.
Collapse
Affiliation(s)
- Hyesoo Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - Israel Juarez-Contreras
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
12
|
Chen J, Brea RJ, Fracassi A, Cho CJ, Wong AM, Salvador-Castell M, Sinha SK, Budin I, Devaraj NK. Rapid Formation of Non-canonical Phospholipid Membranes by Chemoselective Amide-Forming Ligations with Hydroxylamines. Angew Chem Int Ed Engl 2024; 63:e202311635. [PMID: 37919232 PMCID: PMC11179435 DOI: 10.1002/anie.202311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.
Collapse
Affiliation(s)
- Jiyue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Christy J Cho
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Adrian M Wong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Marta Salvador-Castell
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Sunil K Sinha
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Meehan SD, Neag E, Bhattacharya SK. Glycerophospholipid Analysis of Optic Nerve Regeneration Models Indicate Potential Membrane Order Changes Associated with the Lipidomic Shifts. J Ocul Pharmacol Ther 2023; 39:519-529. [PMID: 37192491 PMCID: PMC10616943 DOI: 10.1089/jop.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/19/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose: Optic nerve (ON) injury causes irreversible degeneration, leading to vision loss that cannot be restored with available therapeutics. Current therapies slow further degeneration but do not promote regeneration. New regenerative factors have been discovered that are successful in vivo. However, the mechanisms of efficient long-distance regeneration are still unknown. Membrane expansion by lipid insertion is an essential regenerative process, so lipid profiles for regenerating axons can provide insight into growth mechanisms. This article's analysis aims to add to the increasingly available ON regeneration lipid profiles and relate it to membrane order/properties. Methods: In this study, we present an analysis of glycerophospholipids, one of the largest axonal lipid groups, from three mammalian ON regeneration lipid profiles: Wnt3a, Zymosan + CPT-cAMP, and Phosphatase/Tensin homolog knockout (PTENKO) at 7 and 14 days post crush (dpc). Significant lipid classes, species, and ontological properties were crossreferenced between treatments and analyzed using Metaboanalyst 5.0 and Lipid Ontology (LION). Membrane order changes associated with significant lipid classes were evaluated by C-Laurdan dye and exogenous lipids provided to a neuroblastoma cell line. Results and Conclusions: At 7 dpc, ONs show increased lysoglycerophospholipids and decreased phosphatidylethanolamines (PEs)/negative intrinsic curvature lipids. At 14 dpc, regenerative treatments show divergence: Wnt3a displays higher lysoglycerophospholipid content, while Zymosan and PTENKO decrease lysoglycerophospholipids and increase phosphatidylcholine (PC)-related species. Membrane order imaging indicates lysoglycerophospholipids decreases membrane order while PE and PC had no significant membrane order effects. Understanding these changes will allow therapeutic development targeting lipid metabolic pathways that can be used for vision loss treatments.
Collapse
Affiliation(s)
- Sean D. Meehan
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
| | - Emily Neag
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sanjoy K. Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
| |
Collapse
|
14
|
Kesner LA, Piskulich ZA, Cui Q, Rosenzweig Z. Untangling the Interactions between Anionic Polystyrene Nanoparticles and Lipid Membranes Using Laurdan Fluorescence Spectroscopy and Molecular Simulations. J Am Chem Soc 2023; 145:7962-7973. [PMID: 37011179 DOI: 10.1021/jacs.2c13403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Several classes of synthetic nanoparticles (NPs) induce rearrangements of cell membranes that can affect membrane function. This paper describes the investigation of the interactions between polystyrene nanoparticles and liposomes, which serve as model cell membranes, using a combination of laurdan fluorescence spectroscopy and coarse-grained molecular dynamics (MD) simulations. The relative intensities of the gel-like and fluid fluorescent peaks of laurdan, which is embedded in the liposome membranes, are quantified from the areas of deconvoluted lognormal laurdan fluorescence peaks. This provides significant advantages in understanding polymer-membrane interactions. Our study reveals that anionic polystyrene NPs, which are not cross-linked, induce significant membrane rearrangement compared to other cationic or anionic NPs. Coarse-grained MD simulations demonstrate that polymer chains from the anionic polystyrene NP penetrate the liposome membrane. The inner leaflet remains intact throughout this process, though both leaflets show a decrease in lipid packing that is indicative of significant local rearrangement of the liposome membrane. These results are attributed to the formation of a hybrid gel made up of a combination of polystyrene (PS) and lipids that forces water molecules away from laurdan. Our study concludes that a combination of negative surface charge to interact electrostatically with positive charges on the membrane, a hydrophobic core to provide a thermodynamic preference for membrane association, and the ability to extend non-cross linked polymer chains into the liposome membrane are necessary for NPs to cause a significant rearrangement in the liposomes.
Collapse
Affiliation(s)
- Laura A Kesner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Zeke A Piskulich
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zeev Rosenzweig
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
15
|
C-Laurdan: Membrane Order Visualization of HEK293t Cells by Confocal Microscopy. Methods Mol Biol 2023; 2625:353-364. [PMID: 36653657 DOI: 10.1007/978-1-0716-2966-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Membrane order is a biophysical characteristic dependent on cellular lipid makeup. Cells regulate the membrane structure as it affects membrane-bound protein activity levels and membrane stability. Spatial organization of membrane lipids, such as lipid rafts, is a proposed theory that has been indirectly measured through polarity-sensitive fluorescent dyes. C-Laurdan is one such dye that penetrates plasma and internal membranes. C-Laurdan is excited by a single 405 nm photon and emits in two distinct ranges depending on membrane order. Herein, we present a protocol for staining HEK293t cells with C-Laurdan and acquiring ratiometric images using a revised ImageJ macro and confocal microscopy. An example figure is provided depicting the effects of methyl-β-cyclodextrin, known to remove lipid rafts through cholesterol sequestration, on HEK293t cells. Further image analysis can be performed through region of interest (ROI) selection tools.
Collapse
|
16
|
Baccile N, Lorthioir C, Ba AA, Le Griel P, Pérez J, Hermida-Merino D, Soetaert W, Roelants SLKW. Topological Connection between Vesicles and Nanotubes in Single-Molecule Lipid Membranes Driven by Head-Tail Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14574-14587. [PMID: 36410028 DOI: 10.1021/acs.langmuir.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid nanotube-vesicle networks are important channels for intercellular communication and transport of matter. Experimentally observed in neighboring mammalian cells but also reproduced in model membrane systems, a broad consensus exists on their formation and stability. Lipid membranes must be composed of at least two molecular components, each stabilizing low (generally a phospholipid) and high curvatures. Strong anisotropy or enhanced conical shape of the second amphiphile is crucial for the formation of nanotunnels. Anisotropic driving forces generally favor nanotube protrusions from vesicles. In this work, we report the unique case of topologically connected nanotubes-vesicles obtained in the absence of directional forces, in single-molecule membranes, composed of an anisotropic bolaform glucolipid, above its melting temperature, Tm. Cryo-TEM and fluorescence confocal microscopy show the interconnection between vesicles and nanotubes in a single-phase region, between 60 and 90 °C under diluted conditions. Solid-state NMR demonstrates that the glucolipid can assume two distinct configurations, head-head and head-tail. These arrangements, seemingly of comparable energy above the Tm, could explain the existence and stability of the topologically connected vesicles and nanotubes, which are generally not observed for classical single-molecule phospholipid-based membranes above their Tm.
Collapse
Affiliation(s)
- Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Cédric Lorthioir
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Abdoul Aziz Ba
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Patrick Le Griel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, Gif-sur-Yvette Cedex91192, France
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF BP CS40220, Grenoble38043, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo36310, Spain
| | - Wim Soetaert
- InBio, Department of Biotechnology, Ghent University, Ghent9000, Belgium
| | | |
Collapse
|
17
|
Otaiza-González S, Cabadas M, Robert G, Stock R, Malacrida L, Lascano R, Bagatolli L. The innards of the cell: studies of water dipolar relaxation using the ACDAN fluorescent probe. Methods Appl Fluoresc 2022; 10. [PMID: 36027875 DOI: 10.1088/2050-6120/ac8d4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/26/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the use of the 6-acetyl-2-(dimethylamino)naphthalene (ACDAN) fluorophore to study dipolar relaxation in cells, tissues, and biomimetic systems. As the most hydrophilic member of the 6-acyl-2-(dimethylamino)naphthalene series, ACDAN markedly partitions to aqueous environments. In contrast to 6-lauroyl-2-(dimethylamino)naphthalene (LAURDAN), the hydrophobic and best-known member of the series used to explore relaxation phenomena in biological (or biomimetic) membranes, ACDAN allows mapping of spatial and temporal water dipolar relaxation in cytosolic and intra-organelle environments of the cell. This is also true for the 6-propionyl-2-(dimethylamino)naphthalene (PRODAN) derivative which, unlike LAURDAN, partitions to both hydrophobic and aqueous environments. We will i) summarize the mechanism which underlies the solvatochromic properties of the DAN probes, ii) expound on the importance of water relaxation to understand the intracellular environment, iii) discuss technical aspects of the use of ACDAN in eukaryotic cells and some specialized structures, including liquid condensates arising from processes leading to liquid immiscibility and, iv) present some novel studies in plant cells and tissues which demonstrate the kinds of information that can be uncovered using this approach to study dipolar relaxation in living systems.
Collapse
Affiliation(s)
- Santiago Otaiza-González
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, Córdoba, 5016, ARGENTINA
| | - Manuel Cabadas
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, 5016, ARGENTINA
| | - Germán Robert
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre 4755, Córdoba, X5020ICA, ARGENTINA
| | - Roberto Stock
- MEMPHYS - International and Interdisciplinary research network, Friuli 2434, Córdoba, 5016, ARGENTINA
| | - Leonel Malacrida
- Fisiopatología, Hospital del Clinicas, Av Italia sn, Piso 15, sala 1, Montevideo, Select One, 10400, URUGUAY
| | - Ramiro Lascano
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre 4755, Córdoba, X5020ICA, ARGENTINA
| | - Luis Bagatolli
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, 5016, ARGENTINA
| |
Collapse
|
18
|
Niko Y, Klymchenko AS. Emerging Solvatochromic Push-Pull Dyes for Monitoring the Lipid Order of Biomembranes in Live Cells. J Biochem 2021; 170:163-174. [PMID: 34213537 DOI: 10.1093/jb/mvab078] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Solvatochromic dyes have emerged as a new class of fluorescent probes in the field of lipid membranes due to their ability to identify the lipid organization of biomembranes in live cells by changing the color of their fluorescence. This type of solvatochromic function is useful for studying the heterogeneous features of biomembranes caused by the uneven distribution of lipids and cholesterols in live cells and related cellular processes. Therefore, a variety of advanced solvatochromic dyes have been rapidly developed over the last decade. To provide an overview of the works recently developed solvatochromic dyes have enabled, we herein present some solvatochromic dyes, with a particular focus on those based on pyrene and Nile red. As these dyes exhibit preferable photophysical properties in terms of fluorescence microscopy applications and unique distribution/localization in cellular compartments, some have already found applications in cell biological and biophysical studies. The goal of this review is to provide information to researchers who have never used solvatochromic dyes or who have not discovered applications of such dyes in biological studies.
Collapse
Affiliation(s)
- Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
19
|
Jafari Sojahrood A, de Leon AC, Lee R, Cooley M, Abenojar EC, Kolios MC, Exner AA. Toward Precisely Controllable Acoustic Response of Shell-Stabilized Nanobubbles: High Yield and Narrow Dispersity. ACS NANO 2021; 15:4901-4915. [PMID: 33683878 PMCID: PMC7992193 DOI: 10.1021/acsnano.0c09701] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding the pressure dependence of the nonlinear behavior of ultrasonically excited phospholipid-stabilized nanobubbles (NBs) is important for optimizing ultrasound exposure parameters for implementations of contrast enhanced ultrasound, critical to molecular imaging. The viscoelastic properties of the shell can be controlled by the introduction of membrane additives, such as propylene glycol as a membrane softener or glycerol as a membrane stiffener. We report on the production of high-yield NBs with narrow dispersity and different shell properties. Through precise control over size and shell structure, we show how these shell components interact with the phospholipid membrane, change their structure, affect their viscoelastic properties, and consequently change their acoustic response. A two-photon microscopy technique through a polarity-sensitive fluorescent dye, C-laurdan, was utilized to gain insights on the effect of membrane additives to the membrane structure. We report how the shell stiffness of NBs affects the pressure threshold (Pt) for the sudden amplification in the scattered acoustic signal from NBs. For narrow size NBs with 200 nm mean size, we find Pt to be between 123 and 245 kPa for the NBs with the most flexible membrane as assessed using C-Laurdan, 465-588 kPa for the NBs with intermediate stiffness, and 588-710 kPa for the NBs with stiff membranes. Numerical simulations of the NB dynamics are in good agreement with the experimental observations, confirming the dependence of acoustic response to shell properties, thereby substantiating further the development in engineering the shell of ultrasound contrast agents. The viscoelastic-dependent threshold behavior can be utilized for significantly and selectively enhancing the diagnostic and therapeutic ultrasound applications of potent narrow size NBs.
Collapse
Affiliation(s)
- Amin Jafari Sojahrood
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Al C. de Leon
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Richard Lee
- Light
Microscopy Imaging Core, Case Western Reserve
University, Cleveland, Ohio 44106, United
States
| | - Michaela Cooley
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eric C. Abenojar
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C. Kolios
- Department
of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering and Science Technology, A Partnership between Ryerson University and St. Michael’s
Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Agata A. Exner
- Department
of Radiology Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
20
|
Cezanne A, Lauer J, Solomatina A, Sbalzarini IF, Zerial M. A non-linear system patterns Rab5 GTPase on the membrane. eLife 2020; 9:e54434. [PMID: 32510320 PMCID: PMC7279886 DOI: 10.7554/elife.54434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins can self-organize into spatial patterns via non-linear dynamic interactions on cellular membranes. Modelling and simulations have shown that small GTPases can generate patterns by coupling guanine nucleotide exchange factors (GEF) to effectors, generating a positive feedback of GTPase activation and membrane recruitment. Here, we reconstituted the patterning of the small GTPase Rab5 and its GEF/effector complex Rabex5/Rabaptin5 on supported lipid bilayers. We demonstrate a 'handover' of Rab5 from Rabex5 to Rabaptin5 upon nucleotide exchange. A minimal system consisting of Rab5, RabGDI and a complex of full length Rabex5/Rabaptin5 was necessary to pattern Rab5 into membrane domains. Rab5 patterning required a lipid membrane composition mimicking that of early endosomes, with PI(3)P enhancing membrane recruitment of Rab5 and acyl chain packing being critical for domain formation. The prevalence of GEF/effector coupling in nature suggests a possible universal system for small GTPase patterning involving both protein and lipid interactions.
Collapse
Affiliation(s)
- Alice Cezanne
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Janelle Lauer
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Anastasia Solomatina
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer ScienceDresdenGermany
- MOSAIC Group, Center for Systems Biology DresdenDresdenGermany
| | - Ivo F Sbalzarini
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer ScienceDresdenGermany
- MOSAIC Group, Center for Systems Biology DresdenDresdenGermany
| | - Marino Zerial
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
21
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
22
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
23
|
Salinas ML, Fuentes NR, Choate R, Wright RC, McMurray DN, Chapkin RS. AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity. Biophys J 2020; 118:885-897. [PMID: 31630812 PMCID: PMC7036725 DOI: 10.1016/j.bpj.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of adult and adolescent obesity and its associated risk of colorectal cancer reinforces the urgent need to elucidate the underlying mechanisms contributing to the promotion of colon cancer in obese individuals. Adiponectin is an adipose tissue-derived adipokine, whose levels are reduced during obesity. Both epidemiological and preclinical data indicate that adiponectin suppresses colon tumorigenesis. We have previously demonstrated that both adiponectin and AdipoRon, a small-molecule adiponectin receptor agonist, suppress colon cancer risk in part by reducing the number of Lgr5+ stem cells in mouse colonic organoids. However, the mechanism by which the adiponectin signaling pathway attenuates colon cancer risk remains to be addressed. Here, we have hypothesized that adiponectin signaling supports colonic stem cell maintenance through modulation of the biophysical properties of the plasma membrane (PM). Specifically, we investigated the effects of adiponectin receptor activation by AdipoRon on the biophysical perturbations linked to the attenuation of Wnt-driven signaling and cell proliferation as determined by LEF luciferase reporter assay and colonic organoid proliferation, respectively. Using physicochemical sensitive dyes, Di-4-ANEPPDHQ and C-laurdan, we demonstrated that AdipoRon decreased the rigidity of the colonic cell PM. The decrease in membrane rigidity was associated with a reduction in PM free cholesterol levels and the intracellular accumulation of free cholesterol in lysosomes. These results suggest that adiponectin signaling plays a role in modulating cellular cholesterol homeostasis, PM biophysical properties, and Wnt-driven signaling. These findings are noteworthy because they may in part explain how obesity drives colon cancer progression.
Collapse
Affiliation(s)
- Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas
| | - Rachel Choate
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - David N McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas; Center for Environmental Health Research, Texas A&M University, College Station, Texas.
| |
Collapse
|
24
|
Browning RJ, Aron M, Booth A, Rademeyer P, Wing S, Brans V, Shrivastava S, Carugo D, Stride E. Spectral Imaging for Microbubble Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:609-617. [PMID: 31855435 DOI: 10.1021/acs.langmuir.9b03828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbubbles stabilized by an outer lipid shell have been studied extensively for both diagnostic and therapeutic applications. The shell composition can significantly influence microbubble behavior, but performing quantitative measurements of shell properties is challenging. The aim of this study is to investigate the use of spectral imaging to characterize the surface properties of a range of microbubble formulations representing both commercial and research agents. A lipophilic dye, C-laurdan, whose fluorescence emission varies according to the properties of the local environment, was used to compare the degree and uniformity of the lipid order in the microbubble shell, and these measurements were compared with the acoustic response and stability of the different formulations. Spectral imaging was found to be suitable for performing rapid and hence relatively high throughput measurements of microbubble surface properties. Interestingly, despite significant differences in lipid molecule size and charge, all of the different formulations exhibited highly ordered lipid shells. Measurements of liposomes with the same composition and the debris generated by destroying lipid microbubbles with ultrasound (US) showed that these exhibited a lower and more varied lipid order than intact microbubbles. This suggests that the high lipid order of microbubbles is due primarily to compression of the shell as a result of surface tension and is only minimally affected by composition. This also explains the similarity in acoustic response observed between the formulations, because microbubble dynamics are determined by the diameter and shell viscoelastic properties that are themselves a function of the lipid order. Within each population, there was considerable variability in the lipid order and response between individual microbubbles, suggesting the need for improved manufacturing techniques. In addition, the difference in the lipid order between the shell and lipid debris may be important for therapeutic applications in which shedding of the shell material is exploited, for example, drug delivery.
Collapse
Affiliation(s)
- Richard J Browning
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Miles Aron
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Anna Booth
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
- Department of Chemistry , University of Oxford , Oxford OX1 3QR , U.K
| | - Paul Rademeyer
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Sarah Wing
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Veerle Brans
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Shamit Shrivastava
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Dario Carugo
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
- Faculty of Engineering and Physical Sciences , University of Southampton , Highfield, Southampton SO17 1BJ , U.K
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| |
Collapse
|
25
|
Tamura F, Tanimoto Y, Nagai R, Hayashi F, Morigaki K. Self-Spreading of Phospholipid Bilayer in a Patterned Framework of Polymeric Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14696-14703. [PMID: 31613105 DOI: 10.1021/acs.langmuir.9b02685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipid bilayers spontaneously spread on a hydrophilic substrate such as glass in aqueous solution due to the energetic gain of surface wetting. This process (self-spreading) was utilized to form a patterned model biological membrane containing reconstituted membrane proteins. A mechanically stable framework of a polymerized lipid bilayer was first generated by the lithographic polymerization of a diacetylene phospholipid. Then, natural lipid membranes (fluid bilayers) were introduced into the channels between polymeric bilayers by the self-spreading from a phospholipid reservoir. The spreading velocity could be fitted into a slope of -0.5 in a double logarithmic plot versus time due to the balance between the spreading force and resistive drag. The preformed polymeric bilayer accelerated the spreading by the energetic gain of covering hydrophobic edges with a lipid bilayer. At the same time, the domains of the polymeric bilayer obstructed spreading, and the spreading velocity linearly decreased with their fractional coverage. Above the critical coverage of ca. 50%, self-spreading was completely blocked (percolation threshold) and the fluid bilayer was confined in the polymer-free regions. Nonspecific adsorption of lipids onto the surface of polymeric bilayers was negligible, which enabled a heightened signal-to-background ratio in the reconstitution and observation of membrane proteins. Self-spread bilayers had a higher density of lipids than those formed by the spontaneous rupture of vesicles (vesicle fusion), presumably due to the continual supply of lipid molecules from the reservoir. These features give the self-spreading important advantages for preparing patterned model membranes with reconstituted membrane proteins.
Collapse
|
26
|
Kadri L, Ferru-Clément R, Bacle A, Payet LA, Cantereau A, Hélye R, Becq F, Jayle C, Vandebrouck C, Ferreira T. Modulation of cellular membrane properties as a potential therapeutic strategy to counter lipointoxication in obstructive pulmonary diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3069-3084. [PMID: 29960042 DOI: 10.1016/j.bbadis.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs.
Collapse
Affiliation(s)
- Linette Kadri
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Romain Ferru-Clément
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Laurie-Anne Payet
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Anne Cantereau
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Reynald Hélye
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Frédéric Becq
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
27
|
Feizpour A, Stelter D, Wong C, Akiyama H, Gummuluru S, Keyes T, Reinhard BM. Membrane Fluidity Sensing on the Single Virus Particle Level with Plasmonic Nanoparticle Transducers. ACS Sens 2017; 2:1415-1423. [PMID: 28933537 DOI: 10.1021/acssensors.7b00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viral membranes are nanomaterials whose fluidity depends on their composition, in particular, the cholesterol (chol) content. As differences in the membrane composition of individual virus particles can lead to different intracellular fates, biophysical tools capable of sensing the membrane fluidity on the single-virus level are required. In this manuscript, we demonstrate that fluctuations in the polarization of light scattered off gold or silver nanoparticle (NP)-labeled virus-like-particles (VLPs) encode information about the membrane fluidity of individual VLPs. We developed plasmonic polarization fluctuation tracking microscopy (PFTM) which facilitated the investigation of the effect of chol content on the membrane fluidity and its dependence on temperature, for the first time on the single-VLP level. Chol extraction studies with different methyl-β-cyclodextrin (MβCD) concentrations yielded a gradual decrease in polarization fluctuations as a function of time. The rate of chol extraction for individual VLPs showed a broad spread, presumably due to differences in the membrane composition for the individual VLPs, and this heterogeneity increased with decreasing MβCD concentration.
Collapse
Affiliation(s)
| | | | | | - Hisashi Akiyama
- Department
of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Suryaram Gummuluru
- Department
of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
28
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
29
|
De Rossi MC, Wetzler DE, Benseñor L, De Rossi ME, Sued M, Rodríguez D, Gelfand V, Bruno L, Levi V. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells. Biochim Biophys Acta Gen Subj 2017; 1861:3178-3189. [PMID: 28935608 DOI: 10.1016/j.bbagen.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/04/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. METHODS We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. RESULTS AND CONCLUSIONS The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. GENERAL SIGNIFICANCE Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport.
Collapse
Affiliation(s)
- María Cecilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Dinámica Intracelular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Diana E Wetzler
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Dinámica Intracelular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Benseñor
- Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - María Emilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales y Ciclo Básico Común, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires, Argentina
| | - Mariela Sued
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Buenos Aires, Argentina
| | - Daniela Rodríguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Buenos Aires, Argentina
| | - Vladimir Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luciana Bruno
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Valeria Levi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Dinámica Intracelular, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
30
|
Mazeres S, Fereidouni F, Joly E. Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000Res 2017; 6:763. [PMID: 28663788 PMCID: PMC5473435 DOI: 10.12688/f1000research.11577.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2017] [Indexed: 01/22/2023] Open
Abstract
Background: We wanted to investigate the physical state of biological membranes in live cells under the most physiological conditions possible. Methods: For this we have been using laurdan, C-laurdan or M-laurdan to label a variety of cells, and a biphoton microscope equipped with both a thermostatic chamber and a spectral analyser. We also used a flow cytometer to quantify the 450/530 nm ratio of fluorescence emissions by whole cells. Results: We find that using all the information provided by spectral analysis to perform spectral decomposition dramatically improves the imaging resolution compared to using just two channels, as commonly used to calculate generalized polarisation (GP). Coupled to a new plugin called Fraction Mapper, developed to represent the fraction of light intensity in the first component in a stack of two images, we obtain very clear pictures of both the intra-cellular distribution of the probes, and the polarity of the cellular environments where the lipid probes are localised. Our results lead us to conclude that, in live cells kept at 37°C, laurdan, and M-laurdan to a lesser extent, have a strong tendency to accumulate in the very apolar environment of intra-cytoplasmic lipid droplets, but label the plasma membrane (PM) of mammalian cells ineffectively. On the other hand, C-laurdan labels the PM very quickly and effectively, and does not detectably accumulate in lipid droplets. Conclusions: From using these probes on a variety of mammalian cell lines, as well as on cells from
Drosophila and
Dictyostelium discoideum, we conclude that, apart from the lipid droplets, which are very apolar, probes in intracellular membranes reveal a relatively polar and hydrated environment, suggesting a very marked dominance of liquid disordered states. PMs, on the other hand, are much more apolar, suggesting a strong dominance of liquid ordered state, which fits with their high sterol contents.
Collapse
Affiliation(s)
- Serge Mazeres
- Membrane and DNA Dynamics Team, Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, Toulouse, F-31077, France
| | - Farzad Fereidouni
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, CA 95817, CA, 4400, USA
| | - Etienne Joly
- Membrane and DNA Dynamics Team, Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, Toulouse, F-31077, France
| |
Collapse
|
31
|
Mazeres S, Fereidouni F, Joly E. Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000Res 2017; 6:763. [PMID: 28663788 DOI: 10.12688/f1000research.11577.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background: We wanted to investigate the physical state of biological membranes in live cells under the most physiological conditions possible. Methods: For this we have been using laurdan, C-laurdan or M-laurdan to label a variety of cells, and a biphoton microscope equipped with both a thermostatic chamber and a spectral analyser. We also used a flow cytometer to quantify the 450/530 nm ratio of fluorescence emissions by whole cells. Results: We find that using all the information provided by spectral analysis to perform spectral decomposition dramatically improves the imaging resolution compared to using just two channels, as commonly used to calculate generalized polarisation (GP). Coupled to a new plugin called Fraction Mapper, developed to represent the fraction of light intensity in the first component in a stack of two images, we obtain very clear pictures of both the intra-cellular distribution of the probes, and the polarity of the cellular environments where the lipid probes are localised. Our results lead us to conclude that, in live cells kept at 37°C, laurdan, and M-laurdan to a lesser extent, have a strong tendency to accumulate in the very apolar environment of intra-cytoplasmic lipid droplets, but label the plasma membrane (PM) of mammalian cells ineffectively. On the other hand, C-laurdan labels the PM very quickly and effectively, and does not detectably accumulate in lipid droplets. Conclusions: From using these probes on a variety of mammalian cell lines, as well as on cells from Drosophila and Dictyostelium discoideum, we conclude that, apart from the lipid droplets, which are very apolar, probes in intracellular membranes reveal a relatively polar and hydrated environment, suggesting a very marked dominance of liquid disordered states. PMs, on the other hand, are much more apolar, suggesting a strong dominance of liquid ordered state, which fits with their high sterol contents.
Collapse
Affiliation(s)
- Serge Mazeres
- Membrane and DNA Dynamics Team, Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, Toulouse, F-31077, France
| | - Farzad Fereidouni
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, CA 95817, CA, 4400, USA
| | - Etienne Joly
- Membrane and DNA Dynamics Team, Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, Toulouse, F-31077, France
| |
Collapse
|
32
|
Aron M, Browning R, Carugo D, Sezgin E, Bernardino de la Serna J, Eggeling C, Stride E. Spectral imaging toolbox: segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order. BMC Bioinformatics 2017; 18:254. [PMID: 28494801 PMCID: PMC5427590 DOI: 10.1186/s12859-017-1656-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. RESULTS Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. CONCLUSIONS The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-spectral-imaging-toolbox .
Collapse
Affiliation(s)
- Miles Aron
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ UK
| | - Richard Browning
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ UK
| | - Dario Carugo
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ UK
- Faculty of Engineering and The Environment, University of Southampton, Southampton, SO17 1BJ UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Research Complex at Harwell, Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell-Oxford, OX11 0FA UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ UK
| |
Collapse
|
33
|
Jay AG, Hamilton JA. Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms. J Fluoresc 2016; 27:243-249. [DOI: 10.1007/s10895-016-1951-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/03/2016] [Indexed: 12/01/2022]
|
34
|
Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity. PLoS One 2016; 11:e0158313. [PMID: 27362860 PMCID: PMC4928918 DOI: 10.1371/journal.pone.0158313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/14/2016] [Indexed: 01/11/2023] Open
Abstract
Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.
Collapse
|
35
|
Abstract
The cell nucleus is becoming increasingly recognized as a mechanosensitive organelle. Most research on nuclear mechanosignaling focuses on the nuclear lamina and coupled actin structures. In this commentary, we discuss the possibility that the nuclear membrane senses and transduces mechanical signals similar to the plasma membrane. We briefly summarize possible (i) pathophysiological sources of nuclear membrane tension, (ii) features that render nuclear membranes particularly suited for mechanotransduction, and (iii) molecular sensing mechanisms.
Collapse
Affiliation(s)
- Balázs Enyedi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
36
|
Cheniour M, Gueyrard D, Goekjian PG, Granjon T, Marcillat O. A convenient and versatile synthesis of Laurdan-like fluorescent membrane probes: characterization of their fluorescence properties. RSC Adv 2016. [DOI: 10.1039/c5ra20369d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and versatile synthetic scheme leading to Laurdan-derived fluorescent probes for biological membranes. Libraries of Laurdan derivatives will allow addressing the effect of the polar group on probes capacity to monitor lipids physical state.
Collapse
Affiliation(s)
- M. Cheniour
- Université Claude Bernard Lyon 1
- F-69622 Villeurbanne
- France
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- ICBMS
| | - D. Gueyrard
- Université Claude Bernard Lyon 1
- F-69622 Villeurbanne
- France
- Université de Lyon
- Laboratoire Chimie Organique 2 – Glyco
| | - P. G. Goekjian
- Université Claude Bernard Lyon 1
- F-69622 Villeurbanne
- France
- Université de Lyon
- Laboratoire Chimie Organique 2 – Glyco
| | - T. Granjon
- Université Claude Bernard Lyon 1
- F-69622 Villeurbanne
- France
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- ICBMS
| | - O. Marcillat
- Université Claude Bernard Lyon 1
- F-69622 Villeurbanne
- France
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- ICBMS
| |
Collapse
|
37
|
Brummond KM, Kocsis LS. Intramolecular didehydro-Diels-Alder reaction and its impact on the structure-function properties of environmentally sensitive fluorophores. Acc Chem Res 2015. [PMID: 26207414 DOI: 10.1021/acs.accounts.5b00126] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reaction discovery plays a vital role in accessing new chemical entities and materials possessing important function.1 In this Account, we delineate our reaction discovery program regarding the [4 + 2] cycloaddition reaction of styrene-ynes. In particular, we highlight our studies that lead to the realization of the diverging reaction mechanisms of the intramolecular didehydro-Diels-Alder (IMDDA) reaction to afford dihydronaphthalene and naphthalene products. Formation of the former involves an intermolecular hydrogen atom abstraction and isomerization, whereas the latter is formed via an unexpected elimination of H2. Forming aromatic compounds by a unimolecular elimination of H2 offers an environmentally benign alternative to typical oxidation protocols. We also include in this Account ongoing work focused on expanding the scope of this reaction, mainly its application to the preparation of cyclopenta[b]naphthalenes. Finally, we showcase the synthetic utility of the IMDDA reaction by preparing novel environmentally sensitive fluorophores. The choice to follow this path was largely influenced by the impact this reaction could have on our understanding of the structure-function relationships of these molecular sensors by taking advantage of a de novo construction and functionalization of the aromatic portion of these compounds. We were also inspired by the fact that, despite the advances that have been made in the construction of small molecule fluorophores, access to rationally designed fluorescent probes or sensors possessing varied and tuned photophysical, spectral, and chemical properties are still needed. To this end, we report our studies to correlate fluorophore structure with photophysical property relationships for a series of solvatochromic PRODAN analogs and viscosity-sensitive cyanoacrylate analogs. The versatility of this de novo strategy for fluorophore synthesis was demonstrated by showing that a number of functional groups could be installed at various locations, including handles for eventual biomolecule attachment or water-solubilizing groups. Further, biothiol sensors were designed, and we expect these to be of general utility for the study of lipid dynamics in cellular membranes and for the detection of protein-binding interactions, ideal applications for these relatively hydrophobic fluorophores. Future studies will be directed toward expanding this chemistry-driven approach to the rational preparation of fluorophores with enhanced photophysical and chemical properties for application in biological systems.
Collapse
Affiliation(s)
- Kay M. Brummond
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
| | | |
Collapse
|
38
|
Sezgin E, Waithe D, Bernardino de la Serna J, Eggeling C. Spectral imaging to measure heterogeneity in membrane lipid packing. Chemphyschem 2015; 16:1387-94. [PMID: 25755090 PMCID: PMC4539592 DOI: 10.1002/cphc.201402794] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/18/2015] [Indexed: 12/03/2022]
Abstract
Physicochemical properties of the plasma membrane have been shown to play an important role in cellular functionality. Among those properties, the molecular order of the lipids, or the lipid packing, is of high importance. Changes in lipid packing are believed to compartmentalize cellular signaling by initiating coalescence and conformational changes of proteins. A common way to infer membrane lipid packing is by using membrane-embedded polarity-sensitive dyes, whose emission spectrum is dependent on the molecular order of the immediate membrane environment. Here, we report on an improved determination of such spectral shifts in the emission spectrum of the polarity-sensitive dyes. This improvement is based on the use of spectral imaging on a scanning confocal fluorescence microscope in combination with an improved analysis, which considers the whole emission spectrum instead of just single wavelength ranges. Using this approach and the polarity-sensitive dyes C-Laurdan or Di-4-ANEPPDHQ, we were able to image-with high accuracy-minute differences in the lipid packing of model and cellular membranes.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of OxfordHeadley Way, Oxford, OX3 9DS (United Kingdom) E-mail:
| | - Dominic Waithe
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of OxfordHeadley Way, Oxford, OX3 9DS (United Kingdom) E-mail:
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of OxfordHeadley Way, Oxford, OX3 9DS (United Kingdom) E-mail:
| | - Christian Eggeling
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of OxfordHeadley Way, Oxford, OX3 9DS (United Kingdom) E-mail:
| |
Collapse
|
39
|
Bagatolli LA. Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes. Subcell Biochem 2015; 71:105-125. [PMID: 26438263 DOI: 10.1007/978-3-319-19060-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A family of polarity sensitive fluorescent probes (2-(dimethylamino)-6-acylnaphtalenes, i.e. LAURDAN, PRODAN, ACDAN) was introduced by Gregorio Weber in 1979, with the aim to monitor solvent relaxation phenomena on protein matrices. In the following years, however, PRODAN and particularly LAURDAN, were used to study membrane lateral structure and associated dynamics. Once incorporated into membranes, the (nanosecond) fluorescent decay of these probes is strongly affected by changes in the local polarity and relaxation dynamics of restricted water molecules existing at the membrane/water interface. For instance, when glycerophospholipid containing membranes undertake a solid ordered (gel) to liquid disordered phase transition the fluorescence emission maximum of these probes shift ~ 50 nm with a significant change in their fluorescence lifetime. Furthermore, the fluorescence parameters of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes.
Collapse
Affiliation(s)
- Luis A Bagatolli
- Membrane Biophysics and Biophotonics Group/MEMPHYS-Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
40
|
Bonaventura G, Barcellona ML, Golfetto O, Nourse JL, Flanagan LA, Gratton E. Laurdan monitors different lipids content in eukaryotic membrane during embryonic neural development. Cell Biochem Biophys 2014; 70:785-94. [PMID: 24839062 PMCID: PMC4228983 DOI: 10.1007/s12013-014-9982-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe a method based on fluorescence-lifetime imaging microscopy (FLIM) to assess the fluidity of various membranes in neuronal cells at different stages of development [day 12 (E12) and day 16 (E16) of gestation]. For the FLIM measurements, we use the Laurdan probe which is commonly used to assess membrane water penetration in model and in biological membranes using spectral information. Using the FLIM approach, we build a fluidity scale based on calibration with model systems of different lipid compositions. In neuronal cells, we found a marked difference in fluidity between the internal membranes and the plasma membrane, being the plasma membrane the less fluid. However, we found no significant differences between the two cell groups, E12 and E16. Comparison with NIH3T3 cells shows that the plasma membranes of E12 and E16 cells are significantly more fluid than the plasma membrane of the cancer cells.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania, Italy,
| | | | | | | | | | | |
Collapse
|
41
|
Lorent J, Lins L, Domenech Ò, Quetin-Leclercq J, Brasseur R, Mingeot-Leclercq MP. Domain formation and permeabilization induced by the saponin α-hederin and its aglycone hederagenin in a cholesterol-containing bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4556-4569. [PMID: 24690040 DOI: 10.1021/la4049902] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Saponins and triterpenic acids have been shown to be able to interact with lipid membranes and domains enriched with cholesterol (rafts). How saponins are able to modulate lipid phase separation in membranes and the role of the sugar chains for this activity is unknown. We demonstrate in a binary membrane model composed of DMPC/Chol (3:1 mol/mol) that the saponin α-hederin and its aglycone presenting no sugar chain, the triterpenic acid hederagenin, are able to induce the formation of lipid domains. We show on multilamellar vesicles (MLV), giant unilamellar vesicles (GUV), and supported planar bilayers (SPB) that the presence of sugar units on the sapogenin accelerates domain formation and increases the proportion of sterols within these domains. The domain shape is also influenced by the presence of sugars because α-hederin and hederagenin induce the formation of tubular and spherical domains, respectively. These highly curved structures should result from the induction of membrane curvature by both compounds. In addition to the formation of domains, α-hederin and hederagenin permeabilize GUV. The formation of membrane holes by α-hederin comes along with the accumulation of lipids into nonbilayer structures in SPB. This process might be responsible for the permeabilizing activity of both compounds. In LUV, permeabilization by α-hederin was sterol-dependent. The biological implications of our results and the mechanisms involved are discussed in relation to the activity of saponins and triterpenic acids on membrane rafts, cancer cells, and hemolysis.
Collapse
Affiliation(s)
- Joseph Lorent
- Université Catholique de Louvain , Louvain Drug Research Institute, Cellular and Molecular Pharmacology, B1.73.05, Avenue E. Mounier 73, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Klymchenko AS, Kreder R. Fluorescent probes for lipid rafts: from model membranes to living cells. ACTA ACUST UNITED AC 2013; 21:97-113. [PMID: 24361047 DOI: 10.1016/j.chembiol.2013.11.009] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 01/10/2023]
Abstract
Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France.
| | - Rémy Kreder
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| |
Collapse
|
43
|
Delage E, Zurzolo C. Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline. FRONTIERS IN PLANT SCIENCE 2013; 4:504. [PMID: 24368909 PMCID: PMC3857720 DOI: 10.3389/fpls.2013.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/25/2013] [Indexed: 05/08/2023]
Abstract
It has been known for more than a century that most of the plant cells are connected to their neighbors through membranous pores perforating the cell wall, namely plasmodesmata (PDs). The recent discovery of tunneling nanotubes (TNTs), thin membrane bridges established between distant mammalian cells, suggests that intercellular communication mediated through cytoplasmic continuity could be a conserved feature of eukaryotic organisms. Although TNTs differ from PDs in their formation and architecture, both are characterized by a continuity of the plasma membrane between two cells, delimiting a nanotubular channel supported by actin-based cytoskeleton. Due to this unusual membrane organization, lipids are likely to play critical roles in the formation and stability of intercellular conduits like TNTs and PDs, but also in regulating the transfer through these structures. While it is crucial for a better understanding of those fascinating communication highways, the study of TNT lipid composition and dynamics turned out to be extremely challenging. The present review aims to give an overview of the recent findings in this context. We will also discuss some of the promising imaging approaches, which might be the key for future breakthroughs in the field and could also benefit the research on PDs.
Collapse
Affiliation(s)
- Elise Delage
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| | - Chiara Zurzolo
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| |
Collapse
|
44
|
When size does matter: organelle size influences the properties of transport mediated by molecular motors. Biochim Biophys Acta Gen Subj 2013; 1830:5095-103. [DOI: 10.1016/j.bbagen.2013.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/07/2013] [Accepted: 06/29/2013] [Indexed: 12/18/2022]
|
45
|
Abstract
Two-photon microscopy (TPM), which uses two photons of lower energy as the excitation source, is a vital tool in biology and clinical science, due to its capacity to image deep inside intact tissues for a long period of time. To make TPM a more versatile tool in biomedical research, we have developed a variety of two-photon probes for specific applications. In this mini review, we will briefly discuss two-photon probes for lipid rafts, lysosomes, mitochondria, and pH, and their biomedical applications. [BMB Reports 2013; 46(4): 188-194]
Collapse
Affiliation(s)
- Chang Su Lim
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | | |
Collapse
|
46
|
Benedetti E, Veliz ABE, Charpenay M, Kocsis LS, Brummond KM. Attachable solvatochromic fluorophores and bioconjugation studies. Org Lett 2013; 15:2578-81. [PMID: 23668292 DOI: 10.1021/ol400292q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The synthesis and utility of attachable cyclopenta[b]naphthalene solvatochromic fluorophores related to Prodan are described. Two fluorophores were selected for functionalization and bioconjugation studies. The skeletons were chemically modified to include reactive functional groups and showed minimal alteration of the optical properties when compared to the parent dyes. The functionalized fluorophores were covalently attached to the carboxyl group of a fatty acid, and azido- and thiol-containing amino acids, demonstrating their potential for labeling biomolecules.
Collapse
Affiliation(s)
- Erica Benedetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
47
|
Barucha-Kraszewska J, Kraszewski S, Ramseyer C. Will C-Laurdan dethrone Laurdan in fluorescent solvent relaxation techniques for lipid membrane studies? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1174-82. [PMID: 23311388 DOI: 10.1021/la304235r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Development of fluorescence methods involves the necessity of understanding the fluorescent probes behavior in their ground and excited states. In the case of biological membranes, the position of the dyes in the lipid bilayer and their response after excitation are necessary parameters to correctly analyze the experiments. In the present work, we focus on two fluorescent markers, Laurdan (6-lauroyl-2-(N,N-dimethylamino)naphthalene) and its derivative C-Laurdan (6-dodecanoyl-2-[N-methyl-N-(carboxymethyl)amino]naphthalene), recently proposed for lipid raft visualization [Kim, H. M.; et al. ChemBioChem 2007, 8, 553]. C-Laurdan, by the presence of an additional carboxyl group, has an advantage over Laurdan since it has a higher sensitivity to the membrane polarity at the lipid headgroup region and a higher water solubility. This theoretical study, based on quantum mechanical (QM) and molecular dynamics (MD) simulations in a fully hydrated lipid membrane model, compare the equilibrium and dynamic properties of both probes taking into account their fluorescence lifetimes. C-Laurdan is found to be more stable than Laurdan in the headgroup region of the membrane and also much more aligned with the lipids. This study suggests that, besides the lipid raft imaging, the C-Laurdan marker can considerably extend the capabilities of fluorescent solvent relaxation method.
Collapse
Affiliation(s)
- Justyna Barucha-Kraszewska
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université de Franche-Comté, Centre Hospitalier Universitaire de Besançon, 16 Route de Gray, 25000 Besançon, France.
| | | | | |
Collapse
|
48
|
Bagatolli LA. LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. SPRINGER SERIES ON FLUORESCENCE 2012. [DOI: 10.1007/4243_2012_42] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|