1
|
Lee YN, Wu YJ, Su CH, Wang BJ, Yang SH, Lee HI, Chou YH, Tien TY, Lin CF, Chan WH, Chung CH, Wang SW, Yeh HI. Fluorescent gold nanoclusters possess multiple actions against atherosclerosis. Redox Biol 2024; 78:103427. [PMID: 39566163 PMCID: PMC11612375 DOI: 10.1016/j.redox.2024.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Atherosclerosis caused major morbidity and mortality worldwide. Molecules possessing lipid-lowering and/or anti-inflammatory properties are potential druggable targets against atherosclerosis. We examined the anti-atherosclerotic effects of fluorescent gold nanoclusters (FANC), which were dihydrolipoic acid (DHLA)-capped 2-nm gold nanoparticles. We evaluated the 8-week effects of FANC in Western-type diet-fed ApoE-deficient mice by either continuous intraperitoneal delivery (20 μM, 50 μl weekly) or via drinking water (300 nM). FANC reduced aortic atheroma burden, serum total cholesterol, and oxidative stress markers malondialdehyde and 4-hydroxynonenal levels. FANC attenuated hepatic lipid deposit, with changed expression of lipid homeostasis-related genes HMGCR, SREBP, PCSK9, and LDLR in a pattern similar to mice treated with ezetimibe. FANC also inhibited intestinal cholesterol absorption, resembling the action of ezetimibe. The lipid-lowering and anti-atherosclerotic effects of FANC reappeared in Western-type diet-fed LDLr-deficient mice. FANC bound insulin receptor β (IRβ) via DHLA, leading to AKT activation. However, unlike insulin, which also bound IRβ to activate AKT to induce HO-1, activation of AKT by FANC was independent of HO-1 expression in human aortic endothelial cells (HAECs). Alternatively, FANC up-regulated NRF2, interfered the binding of KEAP1 to NRF2, and promoted KEAP1 degradation to free NRF2 for nuclear entry to induce HO-1 that suppressed the expression of ICAM-1 and VCAM-1. Consistently, FANC suppressed ox-LDL-induced enhanced attachment of THP-derived macrophages onto HAECs. In macrophages, FANC up-regulated ABCA1, and reversed ox-LDL-induced suppression of cholesterol efflux. FANC effected in vitro at nano moles. In conclusion, our findings showed novel actions and multiple mechanisms of FANC worked coherently against atherosclerosis.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Yih-Jer Wu
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Cheng-Huang Su
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Bo-Jeng Wang
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Sheng-Hsun Yang
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Hsin-I Lee
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Yen-Hung Chou
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Ting-Yi Tien
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Chao-Feng Lin
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City, 32023, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Shin-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Hung-I Yeh
- Cardiovascular Center, Department of Internal Medicine, and Department of Medical Research, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
| |
Collapse
|
2
|
Králová J, Král V. Fluorescent Probes for Monitoring Cholesterol Trafficking in Cells. Folia Biol (Praha) 2019; 65:1-10. [PMID: 31171077 DOI: 10.14712/fb2019065010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cellular cholesterol plays fundamental and diverse roles in many biological processes and affects the pathology of various diseases. Comprehensive and detailed understanding of the cellular functions and characteristics of cholesterol requires visualization of its subcellular distribution, which can be achieved by fluorescence microscopy. Many attempts have been made to develop fluorescent cholesterol reporters, but so far, none of them seems to be ideal for studying all aspects of cholesterol management. To meet the requirements for the right probe remains a great challenge, and progress in this field continues. The main objective of this review is to not only present the current state of the art, but also critically evaluate the applicability of individual probes and for what purpose they can be used to obtain relevant data. Hence, the data obtained with different probes might provide complementary information to build an integrated picture about the cellular cholesterol.
Collapse
Affiliation(s)
- J Králová
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - V Král
- University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
3
|
Quantitative Measurement of Cholesterol in Cell Populations Using Flow Cytometry and Fluorescent Perfringolysin O. Methods Mol Biol 2018; 1583:85-95. [PMID: 28205169 DOI: 10.1007/978-1-4939-6875-6_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Methods to quantify intracellular cholesterol are valuable for the study of its trafficking and storage in normal cells and in lysosomal storage disorders. Traditionally, cholesterol has been tracked using the small molecule, filipin. Filipin can be difficult to visualize and visualization can be cytotoxic as it requires UV illumination. Here we describe a method to measure cholesterol using a fluorescently labeled, mutant form of Perfringolysin O, a soluble protein toxin that binds cholesterol specifically. This approach has been used to measure the impact of NPC1 deficiency on lysosomal cholesterol levels and monitor the rescue of cholesterol export under conditions that reduce the thickness of the lysosomal glycocalyx.
Collapse
|
4
|
Mechanistic Insights into the Cholesterol-dependent Binding of Perfringolysin O-based Probes and Cell Membranes. Sci Rep 2017; 7:13793. [PMID: 29061991 PMCID: PMC5653841 DOI: 10.1038/s41598-017-14002-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022] Open
Abstract
Cholesterol distribution in the cell is maintained by both vesicular and non-vesicular sterol transport. Non-vesicular transport is mediated by the interaction of membrane-embedded cholesterol and water-soluble proteins. Small changes to the lipid composition of the membrane that do not change the total cholesterol content, can significantly affect how cholesterol interacts with other molecules at the surface of the membrane. The cholesterol-dependent cytolysin Perfringolysin O (PFO) constitutes a powerful tool to detect cholesterol in membranes, and the use of PFO-based probes has flourished in recent years. By using a non-lytic PFO derivative, we showed that the sensitivity of the probes for cholesterol can be tuned by modifications introduced directly in the membrane-interacting loops and/or by modifying residues away from the membrane-interacting domain. Through the use of these biosensors on live RAW 264.7 cells, we found that changes in the overall cholesterol content have a limited effect on the average cholesterol accessibility at the surface of the membrane. We showed that these exquisite biosensors report on changes in cholesterol reactivity at the membrane surface independently of the overall cholesterol content in the membrane.
Collapse
|
5
|
Eden ER, Sanchez-Heras E, Tsapara A, Sobota A, Levine TP, Futter CE. Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport. Dev Cell 2017; 37:473-83. [PMID: 27270042 PMCID: PMC4906250 DOI: 10.1016/j.devcel.2016.05.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 11/27/2022]
Abstract
Membrane contact sites between the ER and multivesicular endosomes/bodies (MVBs) play important roles in endosome positioning and fission and in neurite outgrowth. ER-MVB contacts additionally function in epidermal growth factor receptor (EGFR) tyrosine kinase downregulation by providing sites where the ER-localized phosphatase, PTP1B, interacts with endocytosed EGFR before the receptor is sorted onto intraluminal vesicles (ILVs). Here we show that these contacts are tethered by annexin A1 and its Ca(2+)-dependent ligand, S100A11, and form a subpopulation of differentially regulated contact sites between the ER and endocytic organelles. Annexin A1-regulated contacts function in the transfer of ER-derived cholesterol to the MVB when low-density lipoprotein-cholesterol in endosomes is low. This sterol traffic depends on interaction between ER-localized VAP and endosomal oxysterol-binding protein ORP1L, and is required for the formation of ILVs within the MVB and thus for the spatial regulation of EGFR signaling.
Collapse
Affiliation(s)
- Emily R Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Anna Tsapara
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Technical University of Crete, 73100 Chania, Greece
| | - Andrzej Sobota
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Tim P Levine
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | |
Collapse
|
6
|
Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:812-829. [PMID: 26993577 DOI: 10.1016/j.bbalip.2016.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, Université Lyon 1, Villeurbanne 69621, France.
| |
Collapse
|
7
|
Majhi RK, Kumar A, Yadav M, Kumar P, Maity A, Giri SC, Goswami C. Light and electron microscopic study of mature spermatozoa from White Pekin duck (Anas platyrhynchos): an ultrastructural and molecular analysis. Andrology 2016; 4:232-44. [DOI: 10.1111/andr.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Rakesh Kumar Majhi
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | - Ashutosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | - Manoj Yadav
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | | | - Apratim Maity
- Department of Biochemistry; OVC; Orissa University of Agriculture and Technology; Bhubaneswar India
| | | | - Chandan Goswami
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| |
Collapse
|
8
|
Kwiatkowska K, Marszałek–Sadowska E, Traczyk G, Koprowski P, Musielak M, Ługowska A, Kulma M, Grzelczyk A, Sobota A. Visualization of cholesterol deposits in lysosomes of Niemann-Pick type C fibroblasts using recombinant perfringolysin O. Orphanet J Rare Dis 2014; 9:64. [PMID: 24775609 PMCID: PMC4005833 DOI: 10.1186/1750-1172-9-64] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/16/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is caused by defects in cholesterol efflux from lysosomes due to mutations of genes coding for NPC1 and NPC2 proteins. As a result, massive accumulation of unesterified cholesterol in late endosomes/lysosomes is observed. At the level of the organism these cholesterol metabolism disorders are manifested by progressive neurodegeneration and hepatosplenomegaly. Until now filipin staining of cholesterol deposits in cells has been widely used for NPC diagnostics. In this report we present an alternative method for cholesterol visualization and estimation using a cholesterol-binding bacterial toxin, perfringolysin O. METHODS To detect cholesterol deposits, a recombinant probe, perfringolysin O fused with glutathione S-transferase (GST-PFO) was prepared. GST-PFO followed by labeled antibodies or streptavidin was applied for immunofluorescence and immunoelectron microscopy to analyze cholesterol distribution in cells derived from NPC patients. The identity of GST-PFO-positive structures was revealed by a quantitative analysis of their colocalization with several organelle markers. Cellular ELISA using GST-PFO was developed to estimate the level of unesterified cholesterol in NPC cells. RESULTS GST-PFO recognized cholesterol with high sensitivity and selectivity, as demonstrated by a protein/lipid overlay assay and surface plasmon resonance analysis. When applied to stain NPC cells, GST-PFO decorated abundant deposits of cholesterol in intracellular vesicles that colocalized with filipin-positive structures. These cholesterol deposits were resistant to 0.05%-0.2% Triton X-100 used for cells permeabilization in the staining procedure. GST-PFO-stained organelles were identified as late endosomes/lysosomes based on their colocalization with LAMP-1 and lysobisphosphatidic acid. On the other hand, GST-PFO did not colocalize with markers of the Golgi apparatus, endoplasmic reticulum, peroxisomes or with actin filaments. Only negligible GST-PFO staining was seen in fibroblasts of healthy individuals. When applied to cellular ELISA, GST-PFO followed by anti-GST-peroxidase allowed a semiquantitative analysis of cholesterol level in cells of NPC patients. Binding of GST-PFO to NPC cells was nearly abolished after extraction of cholesterol with methyl-β-cyclodextrin. CONCLUSIONS Our data indicate that a recombinant protein GST-PFO can be used to detect cholesterol accumulated in NPC cells by immunofluorescence and cellular ELISA. GST-PFO can be a convenient and reliable probe for revealing cholesterol deposits in cells and can be useful in diagnostics of NPC disease.
Collapse
Affiliation(s)
- Katarzyna Kwiatkowska
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Ewelina Marszałek–Sadowska
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Gabriela Traczyk
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Małgorzata Musielak
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego St., 02-957 Warsaw, Poland
| | - Magdalena Kulma
- Institute of Biochemistry and Biophysics, 5a Pawinskiego St., 02-106 Warsaw, Poland
| | - Anna Grzelczyk
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Andrzej Sobota
- Department of Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| |
Collapse
|
9
|
Xie 谢畅 C, Zhou 周章森 ZS, Li 李钠 N, Bian 卞艳 Y, Wang 王永建 YJ, Wang 王丽娟 LJ, Li 李伯良 BL, Song 宋保亮 BL. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J Lipid Res 2012; 53:2092-2101. [PMID: 22811412 PMCID: PMC3435542 DOI: 10.1194/jlr.m027359] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
The multiple transmembrane protein Niemann-Pick C1 like1 (NPC1L1) is essential for intestinal cholesterol absorption. Ezetimibe binds to NPC1L1 and is a clinically used cholesterol absorption inhibitor. Recent studies in cultured cells have shown that NPC1L1 mediates cholesterol uptake through vesicular endocytosis that can be blocked by ezetimibe. However, how NPC1L1 and ezetimibe work in the small intestine is unknown. In this study, we found that NPC1L1 distributed in enterocytes of villi and transit-amplifying cells of crypts. Acyl-CoA cholesterol acyltransferase 2 (ACAT2), another important protein for cholesterol absorption by providing cholesteryl esters to chylomicrons, was mainly presented in the apical cytoplasm of enterocytes. NPC1L1 and ACAT2 were highly expressed in jejunum and ileum. ACAT1 presented in the Paneth cells of crypts and mesenchymal cells of villi. In the absence of cholesterol, NPC1L1 was localized on the brush border of enterocytes. Dietary cholesterol induced the internalization of NPC1L1 to the subapical layer beneath the brush border and became partially colocalized with the endosome marker Rab11. Ezetimibe blocked the internalization of NPC1L1 and cholesterol and caused their retention in the plasma membrane. This study demonstrates that NPC1L1 mediates cholesterol entering enterocytes through vesicular endocytosis and that ezetimibe blocks this step in vivo.
Collapse
Affiliation(s)
- Chang Xie 谢畅
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhang-Sen Zhou 周章森
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Li 李钠
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Bian 卞艳
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Jian Wang 王永建
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Juan Wang 王丽娟
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo-Liang Li 李伯良
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Bao-Liang Song 宋保亮
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids 2011; 76:216-31. [PMID: 21074546 DOI: 10.1016/j.steroids.2010.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/20/2022]
Abstract
Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol probes available today.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany.
| | | |
Collapse
|
11
|
Mizuno H, Abe M, Dedecker P, Makino A, Rocha S, Ohno-Iwashita Y, Hofkens J, Kobayashi T, Miyawaki A. Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem Sci 2011. [DOI: 10.1039/c1sc00169h] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Wu T, Fujihara M, Tian J, Jovanovic M, Grayson C, Cano M, Gehlbach P, Margaron P, Handa JT. Apolipoprotein B100 secretion by cultured ARPE-19 cells is modulated by alteration of cholesterol levels. J Neurochem 2010; 114:1734-44. [PMID: 20598021 DOI: 10.1111/j.1471-4159.2010.06884.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesteryl ester rich apolipoprotein B100 (apoB100) lipoproteins accumulate in Bruch's membrane before the development of age-related macular degeneration. It is not known if these lipoproteins come from the circulation or local ocular tissue. Emerging, but incomplete evidence suggests that the retinal pigmented epithelium (RPE) can secrete lipoproteins. The purpose of this investigation was to determine (i) whether human RPE cells synthesize and secrete apoB100, and (ii) whether this secretion is driven by cellular cholesterol, and if so, (iii) whether statins inhibit this response. The established, human derived ARPE-19 cells challenged with 0-0.8 mM oleic acid accumulated cellular cholesterol, but not triglycerides. Oleic acid increased the amount of apoB100 protein recovered from the medium by both western blot analysis and (35) S-radiolabeled immunoprecipitation while negative stain electron microscopy showed lipoprotein-like particles. Of nine statins evaluated, lipophilic statins induced HMG-CoA reductase mRNA expression the most. The lipophilic Cerivastatin (5 μM) reduced cellular cholesterol by 39% and abrogated apoB100 secretion by 3-fold. In contrast, the hydrophilic statin Pravastatin had minimal effect on apoB100 secretion. These data suggest that ARPE-19 cells synthesize and secrete apoB100 lipoproteins, that this secretion is driven by cellular cholesterol, and that statins can inhibit apoB100 secretion by reducing cellular cholesterol.
Collapse
Affiliation(s)
- Tinghuai Wu
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ohno-Iwashita Y, Shimada Y, Hayashi M, Inomata M. Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int 2010; 10 Suppl 1:S41-52. [DOI: 10.1111/j.1447-0594.2010.00600.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Imaging lipid membrane domains with lipid-specific probes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2010; 580:203-20. [PMID: 19784601 DOI: 10.1007/978-1-60761-325-1_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Imaging membrane lipid domains to characterize their organization and function has been hindered by the lack of reliable lipid-specific probes. In this paper, we provide detailed methods to investigate, mainly by confocal microscopy, the distribution and dynamics of two components of the "lipid rafts," sphingomyelin (SM) and cholesterol, using two specific lipid probes that have been extensively studied in the laboratory: lysenin, a SM-binding toxin and the fluorescent esters of poly(ethylene glycol) cholesteryl ether (PEG-Chol) that label cholesterol-rich domains. The production of nontoxic forms of lysenin as well as its specific binding behavior have allowed monitoring the distribution and the dynamics of SM-rich domains in living cell membranes. Because of its water-solubility and low toxicity, the fluorescent PEG-Chol can be used to follow the reorganization of cell surface cholesterol-rich domains as well as intracellular cholesterol dynamics in living cells. These probes can thus provide important informations on lipid distribution and traffic in living cell membranes.
Collapse
|
15
|
Abstract
Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates the physical state of the phospholipid bilayer and is crucially involved in the formation of membrane microdomains. Cholesterol also affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Here, methods are described that are used to explore the binding and/or interaction of proteins to cholesterol. For this purpose, a variety of cholesterol probes bearing radio-, spin-, photoaffinity- or fluorescent labels are currently available. Examples of proven cholesterol binding molecules are polyene compounds, cholesterol-dependent cytolysins, enzymes accepting cholesterol as substrate, and proteins with cholesterol binding motifs. Main topics of this report are the localization of candidate membrane proteins in cholesterol-rich microdomains, the issue of specificity of cholesterol- protein interactions, and applications of the various cholesterol probes for these studies.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becherweg 30, Mainz, Germany.
| |
Collapse
|
16
|
Schroeder F, Huang H, McIntosh AL, Atshaves BP, Martin GG, Kier AB. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking. Subcell Biochem 2010; 51:279-318. [PMID: 20213548 DOI: 10.1007/978-90-481-8622-8_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While the existence of membrane lateral microdomains has been known for over 30 years, interest in these structures accelerated in the past decade due to the discovery that cholesterol-rich microdomains serve important biological functions. It is increasingly appreciated that cholesterol-rich microdomains in the plasma membranes of eukaryotic cells represent an organizing nexus for multiple cellular proteins involved in transmembrane nutrient uptake (cholesterol, fatty acid, glucose, etc.), cell-signaling, immune recognition, pathogen entry, and many other roles. Despite these advances, however, relatively little is known regarding the organization of cholesterol itself in these plasma membrane microdomains. Although a variety of non-sterol markers indicate the presence of microdomains in the plasma membranes of living cells, none of these studies have demonstrated that cholesterol is enriched in these microdomains in living cells. Further, the role of cholesterol-rich membrane microdomains as targets for intracellular cholesterol trafficking proteins such as sterol carrier protein-2 (SCP-2) that facilitate cholesterol uptake and transcellular transport for targeting storage (cholesterol esters) or efflux is only beginning to be understood. Herein, we summarize the background as well as recent progress in this field that has advanced our understanding of these issues.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX, 77843-4466, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell Biochem 2010; 51:597-621. [PMID: 20213560 DOI: 10.1007/978-90-481-8622-8_22] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cholesterol is one of the major constituents of mammalian cell membranes. It plays an indispensable role in regulating the structure and function of cell membranes and affects the pathology of various diseases. In recent decades much attention has been paid to the existence of membrane microdomains, generally termed lipid "rafts", and cholesterol, along with sphingolipids, is thought to play a critical role in raft structural organization and function. Cholesterol-binding probes are likely to provide useful tools for analyzing the distribution and dynamics of membrane cholesterol, as a structural element of raft microdomains, and elsewhere within the cell. Among the probes, non-toxic derivatives of perfringolysin O, a cholesterol-binding cytolysin, bind cholesterol in a concentration-dependent fashion with a strict threshold. They selectively recognize cholesterol in cholesterol-enriched membranes, and have been used in many studies to detect microdomains in plasma and intracellular membranes. Anti-cholesterol antibodies that recognize cholesterol in domain structures have been developed in recent years. In this chapter, we describe the characteristics of these cholesterol-binding proteins and their applications to studies on membrane cholesterol localization.
Collapse
Affiliation(s)
- Yoshiko Ohno-Iwashita
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki City, Fukushima, 970-8551, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Schweitzer JK, Pietrini SD, D'Souza-Schorey C. ARF6-mediated endosome recycling reverses lipid accumulation defects in Niemann-Pick Type C disease. PLoS One 2009; 4:e5193. [PMID: 19365558 PMCID: PMC2664925 DOI: 10.1371/journal.pone.0005193] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 03/13/2009] [Indexed: 11/18/2022] Open
Abstract
In human Niemann-Pick Type C (NPC) disease, endosomal trafficking defects lead to an accumulation of free cholesterol and other lipids in late endosome/lysosome (LE/LY) compartments, a subsequent block in cholesterol esterification and significantly reduced cholesterol efflux out of the cell. Here we report that nucleotide cycling or cellular knockdown of the small GTP-binding protein, ARF6, markedly impacts cholesterol homeostasis. Unregulated ARF6 activation attenuates the NPC phenotype at least in part by decreasing cholesterol accumulation and restoring normal sphingolipid trafficking. These effects depend on ARF6-stimulated cholesterol efflux out of the endosomal recycling compartment, a major cell repository for free cholesterol. We also show that fibroblasts derived from different NPC patients displayed varying levels of ARF6 that is GTP-bound, which correlate with their response to sustained ARF6 activation. These studies support emerging evidence that early endocytic defects impact NPC disease and suggest that such heterogeneity in NPC disease could result in diverse responses to therapeutic interventions aimed at modulating the trafficking of lipids.
Collapse
Affiliation(s)
- Jill Kuglin Schweitzer
- Department of Biological Sciences and the Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sean D. Pietrini
- Department of Biological Sciences and the Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Crislyn D'Souza-Schorey
- Department of Biological Sciences and the Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
19
|
Abstract
Cholesterol is a major constituent of the membranes in most eukaryotic cells where it fulfills multiple functions. Cholesterol regulates the physical state of the phospholipid bilayer, affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Cholesterol plays a crucial role in the formation of membrane microdomains such as "lipid rafts" and caveolae. However, our current understanding on the membrane organization, intracellular distribution and trafficking of cholesterol is rather poor. This is mainly due to inherent difficulties to label and track this small lipid. In this review, we describe different approaches to detect cholesterol in vitro and in vivo. Cholesterol reporter molecules can be classified in two groups: cholesterol binding molecules and cholesterol analogues. The enzyme cholesterol oxidase is used for the determination of cholesterol in serum and food. Susceptibility to cholesterol oxidase can provide information about localization, transfer kinetics, or transbilayer distribution of cholesterol in membranes and cells. The polyene filipin forms a fluorescent complex with cholesterol and is commonly used to visualize the cellular distribution of free cholesterol. Perfringolysin O, a cholesterol binding cytolysin, selectively recognizes cholesterol-rich structures. Photoreactive cholesterol probes are appropriate tools to analyze or to identify cholesterol binding proteins. Among the fluorescent cholesterol analogues one can distinguish probes with intrinsic fluorescence (e.g., dehydroergosterol) from those possessing an attached fluorophore group. We summarize and critically discuss the features of the different cholesterol reporter molecules with a special focus on recent imaging approaches.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-University of Mainz, Becherweg 30, 55099, Mainz, Germany.
| | | |
Collapse
|
20
|
|
21
|
Ohno-Iwashita Y, Shimada Y, Waheed AA, Hayashi M, Inomata M, Nakamura M, Maruya M, Iwashita S. Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 2007; 10:125-34. [PMID: 16701509 DOI: 10.1016/j.anaerobe.2003.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2003] [Revised: 06/29/2003] [Accepted: 09/19/2003] [Indexed: 12/20/2022]
Abstract
Gaining an understanding of the structural and functional roles of cholesterol in membrane lipid rafts is a critical issue in studies on cellular signaling and because of the possible involvement of lipid rafts in various diseases. We have focused on the potential of perfringolysin O (theta-toxin), a cholesterol-binding cytolysin produced by Clostridium perfringens, as a probe for studies on membrane cholesterol. We prepared a protease-nicked and biotinylated derivative of perfringolysin O (BCtheta) that binds selectively to cholesterol in cholesterol-rich microdomains of cell membranes without causing membrane lesions. Since the domains fulfill the criteria of lipid rafts, BCtheta can be used to detect cholesterol-rich lipid rafts. This is in marked contrast to filipin, another cholesterol-binding reagent, which binds indiscriminately to cell cholesterol. Using BCtheta, we are now searching for molecules that localize specifically in cholesterol-rich lipid rafts. Recently, we demonstrated that the C-terminal domain of perfringolysin O, domain 4 (D4), possesses the same binding characteristics as BCtheta. BIAcore analysis showed that D4 binds specifically to cholesterol with the same binding affinity as the full-size toxin. Cell-bound D4 is recovered predominantly from detergent-insoluble, low-density membrane fractions where raft markers, such as cholesterol, flotillin and Src family kinases, are enriched, indicating that D4 also binds selectively to lipid rafts. Furthermore, a green fluorescent protein-D4 fusion protein (GFP-D4) was revealed to be useful for real-time monitoring of cholesterol in lipid rafts in the plasma membrane. In addition, the expression of GFP-D4 in the cytoplasm might allow the investigations of intracellular trafficking of lipid rafts. The simultaneous visualization of lipid rafts in plasma membranes and inside cells might help in gaining a total understanding of the dynamic behavior of lipid rafts.
Collapse
Affiliation(s)
- Yoshiko Ohno-Iwashita
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nagata Y, Partridge TA, Matsuda R, Zammit PS. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. ACTA ACUST UNITED AC 2006; 174:245-53. [PMID: 16847102 PMCID: PMC2064184 DOI: 10.1083/jcb.200605028] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration.
Collapse
Affiliation(s)
- Yosuke Nagata
- Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
23
|
Ganley IG, Pfeffer SR. Cholesterol accumulation sequesters Rab9 and disrupts late endosome function in NPC1-deficient cells. J Biol Chem 2006; 281:17890-9. [PMID: 16644737 PMCID: PMC3650718 DOI: 10.1074/jbc.m601679200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C disease is an autosomal recessive disorder that leads to massive accumulation of cholesterol and glycosphingolipids in late endosomes and lysosomes. To understand how cholesterol accumulation influences late endosome function, we investigated the effect of elevated cholesterol on Rab9-dependent export of mannose 6-phosphate receptors from this compartment. Endogenous Rab9 levels were elevated 1.8-fold in Niemann-Pick type C cells relative to wild type cells, and its half-life increased 1.6-fold, suggesting that Rab9 accumulation is caused by impaired protein turnover. Reduced Rab9 degradation was accompanied by stabilization on endosome membranes, as shown by a reduction in the capacity of Rab9 for guanine nucleotide dissociation inhibitor-mediated extraction from Niemann-Pick type C membranes. Cholesterol appeared to stabilize Rab9 directly, as liposomes loaded with prenylated Rab9 showed decreased extractability with increasing cholesterol content. Rab9 is likely sequestered in an inactive form on Niemann-Pick type C membranes, as cation-dependent mannose 6-phosphate receptors were missorted to the lysosome for degradation, a process that was reversed by overexpression of GFP-tagged Rab9. In addition to using primary fibroblasts isolated from Niemann-Pick type C patients, RNA interference was utilized to recapitulate the disease phenotype in cultured cells, greatly facilitating the analysis of cholesterol accumulation and late endosome function. We conclude that cholesterol contributes directly to the sequestration of Rab9 on Niemann-Pick type C cell membranes, which in turn, disrupts mannose 6-phosphate receptor trafficking.
Collapse
Affiliation(s)
- Ian G. Ganley
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| | - Suzanne R. Pfeffer
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307
| |
Collapse
|
24
|
Sugii S, Lin S, Ohgami N, Ohashi M, Chang CCY, Chang TY. Roles of endogenously synthesized sterols in the endocytic pathway. J Biol Chem 2006; 281:23191-206. [PMID: 16737966 DOI: 10.1074/jbc.m603215200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect(s) of endogenously synthesized cholesterol (endo-CHOL) on the endosomal system in mammalian cells has not been examined. Here we treated Chinese hamster ovary cell lines with lovastatin (a hydroxymethylglutaryl-CoA reductase inhibitor) and mevalonate (a precursor for isoprenoids) to block endo-CHOL synthesis and then examined its effects on the fate of cholesterol liberated from low density lipoprotein (LDL-CHOL). The results showed that blocking endo-CHOL synthesis for 2 h or longer does not impair the hydrolysis of cholesteryl esters but partially impairs the transport of LDL-CHOL to the plasma membrane. Blocking endo-CHOL synthesis for 2 h or longer also alters the localization patterns of the late endosomes/lysosomes and retards their motility, as monitored by time-lapse microscopy. LDL-CHOL overcomes the effect of blocking endo-CHOL synthesis on endosomal localization patterns and on endosomal motility. Overexpressing Rab9, a key late endosomal small GTPase, relieves the endosomal cholesterol accumulation in Niemann-Pick type C1 cells but does not revert the reduced endosomal motility caused by blocking endo-CHOL synthesis. Our results suggested that endo-CHOL contributes to the cholesterol content of late endosomes and controls its motility, in a manner independent of NPC1. These results also supported the concept that endosomal motility plays an important role in controlling cholesterol trafficking activities.
Collapse
Affiliation(s)
- Shigeki Sugii
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| |
Collapse
|
26
|
Abstract
Current models for cellular plasma membranes focus on spatial heterogeneity and how this heterogeneity relates to cell function. In particular, putative lipid raft membrane domains have been postulated to exist based in large part on the results that a significant fraction of the membrane is detergent insoluble and that molecules facilitating key membrane processes like signal transduction are often found in the detergent-resistant membrane fraction. Yet, the in vivo existence of lipid rafts remains extremely controversial because, despite being sought for more than a decade, evidence for their presence in intact cell membranes is inconclusive. In this review, a variety of experimental techniques that have been or might be used to look for lipid microdomains in intact cell membranes are described. Experimental results are highlighted and the strengths and limitations of different techniques for microdomain identification and characterization are assessed.
Collapse
Affiliation(s)
- B Christoffer Lagerholm
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
27
|
Tashiro Y, Yamazaki T, Shimada Y, Ohno-Iwashita Y, Okamoto K. Axon-dominant localization of cell-surface cholesterol in cultured hippocampal neurons and its disappearance in Niemann-Pick type C model cells. Eur J Neurosci 2004; 20:2015-21. [PMID: 15450080 DOI: 10.1111/j.1460-9568.2004.03677.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is growing evidence showing the important role of cholesterol in maintaining neuronal function. In particular, much attention has been paid to the role of the cholesterol-rich microdomains called lipid rafts. However, the cholesterol distribution on neurons is not clear. Here, we investigated localization of cholesterol in cultured rat hippocampal neurons, using filipin and a novel cholesterol-binding reagent BCtheta. In our culture system, BCtheta detects only cell-surface cholesterol, whereas filipin stains both intracellular and cell-surface cholesterol. BCtheta staining appeared visible in a maturation-dependent manner and showed axon-dominant distribution of cell-surface cholesterol in fully matured neurons. A part of this cholesterol on axons was resistant to detergents at 4 degrees C, and thus might be involved in lipid rafts. Interestingly, Niemann-Pick type C model neurons induced by class 2 amphiphiles lost the cell-surface but not the intracellular cholesterol staining. Niemann-Pick type C disease is caused by the disruption of intracellular cholesterol transport and is known to induce neurodegeneration in brains accompanied by formation of neurofibrillary tangles. Our observations suggest the important role of cell-surface cholesterol in maintaining a functional axonal membrane and indicate that the observed defect in axonal surface cholesterol might lead to neurodegeneration.
Collapse
Affiliation(s)
- Yuichi Tashiro
- Department of Neurology, Gunma University, Graduate School of Medicine, 3-39-15 Schowa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | |
Collapse
|
28
|
Stockinger W, Castoreno AB, Wang Y, Pagnon JC, Nohturfft A. Real-time analysis of endosomal lipid transport by live cell scintillation proximity assay. J Lipid Res 2004; 45:2151-8. [PMID: 15314094 PMCID: PMC2041838 DOI: 10.1194/jlr.d400011-jlr200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A scintillation proximity assay has been developed to study the endosomal trafficking of radiolabeled cholesterol in living cells. Mouse macrophages were cultured in the presence of tritiated cholesterol and scintillant microspheres. Microspheres were taken up by phagocytosis and stored in phagolysosomes. Absorption of tritium beta particles by the scintillant produces light signals that can be measured in standard scintillation counters. Because of the short range of tritium beta particles and for geometric reasons, scintillant microspheres detect only that fraction of tritiated cholesterol localized inside phagolysosomes or within a distance of approximately 600 nm. By incubating cultures in a temperature-controlled microplate reader, the kinetics of phagocytosis and cholesterol transport could be analyzed in near-real time. Scintillation signals were significantly increased in response to inhibitors of lysosomal cholesterol export. This method should prove a useful new tool for the study of endosomal trafficking of lipids and other molecules.
Collapse
|
29
|
Sato SB, Ishii K, Makino A, Iwabuchi K, Yamaji-Hasegawa A, Senoh Y, Nagaoka I, Sakuraba H, Kobayashi T. Distribution and Transport of Cholesterol-rich Membrane Domains Monitored by a Membrane-impermeant Fluorescent Polyethylene Glycol-derivatized Cholesterol. J Biol Chem 2004; 279:23790-6. [PMID: 15026415 DOI: 10.1074/jbc.m313568200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol-rich membrane domains function in various membrane events as diverse as signal transduction and membrane traffic. We studied the interaction of a fluorescein ester of polyethylene glycol-derivatized cholesterol (fPEG-Chol) with cholesterol-rich membranes both in cells and in model membranes. Unlike filipin and other cholesterol probes, this molecule could be applied as an aqueous dispersion to various samples. When added to live cells, fPEG-Chol distributed exclusively in the outer plasma membrane leaflet and was enriched in microdomains that dynamically clustered by the activation of receptor signaling. The surface-bound fPEG-Chol was slowly internalized via clathrin-independent pathway into endosomes together with lipid raft markers. Noteworthy, fPEG-Chol could be microinjected in the living cells in which we found Golgi apparatus as the sole major organelle to be labeled. PEG-Chol, thus, provides a novel, sensitive probe for unraveling the dynamics of cholesterol-rich microdomains in living cells.
Collapse
|
30
|
Cheung NS, Koh CHV, Bay BH, Qi RZ, Choy MS, Li QT, Wong KP, Whiteman M. Chronic exposure to U18666A induces apoptosis in cultured murine cortical neurons. Biochem Biophys Res Commun 2004; 315:408-17. [PMID: 14766223 DOI: 10.1016/j.bbrc.2004.01.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 12/01/2022]
Abstract
Niemann-Pick disease type C (NPC) is a juvenile neurodegenerative disorder characterized by premature neuronal loss and altered cholesterol metabolism. Previous reports applying an 8-h exposure of U18666A, a cholesterol transport-inhibiting agent, demonstrated a dose-dependent reduction in beta-amyloid (Abeta) deposition and secretion in cortical neurons, with no significant cell injury. In the current study, we examined the chronic effect of 24-72h of U18666A treatment on primary cortical neurons and several cell lines. Our results showed caspase-3 activation and cellular injury in U18666A-treated cortical neurons but not in the cell lines, suggesting cell death by apoptosis only occurred in cortical neurons after chronic exposure to U18666A. We also demonstrated through filipin staining the accumulation of intracellular cholesterol in cortical neurons treated with U18666A, indicating the phenotypic mimic of NPC by U18666A. However, additions of 10 and 25microM pravastatin with 0.5microg/ml U18666A significantly attenuated toxicity. Taken together, these data showed for the first time that U18666A induces cell death by apoptosis and suggested an important in vitro model system to study NPC.
Collapse
Affiliation(s)
- Nam Sang Cheung
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohsaki Y, Sugimoto Y, Suzuki M, Kaidoh T, Shimada Y, Ohno-Iwashita Y, Davies JP, Ioannou YA, Ohno K, Ninomiya H. Reduced sensitivity of Niemann-Pick C1-deficient cells to theta-toxin (perfringolysin O): sequestration of toxin to raft-enriched membrane vesicles. Histochem Cell Biol 2004; 121:263-72. [PMID: 15069562 DOI: 10.1007/s00418-004-0643-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2004] [Indexed: 01/04/2023]
Abstract
Theta-toxin (perfringolysin O) binds to cell surface cholesterol and forms oligomeric pores that cause membrane damage. Both in cytotoxicity and cell survival assays, a mutant Chinese hamster ovary cell line NPC1(-) that lacked Niemann-Pick C1 showed reduced sensitivity to theta-toxin, compared with wild-type (wt) cells. BCtheta is a derivative of theta-toxin that retains cholesterol-binding activity but lacks cytotoxicity. Confocal and electron microscopy revealed the presence of multiple vesicles which bound BCtheta, both on the cell surface and in the extracellular space of these cells. BCtheta binding to raft microdomains was verified by its resistance to 1% Triton X-100 at 4 degrees C and recovery of bound BCtheta in floating low-density fractions on sucrose density gradient fractionation. BCtheta-labeled vesicles were abolished when NPC1(-) cells were depleted of lipoproteins and also when treated with a Rho-associated kinase inhibitor Y-27632. In addition, similar vesicles were observed in wt cells treated with progesterone. In parallel with these results, theta-toxin sensitivity of NPC1(-) cells was increased when cells were depleted of lipoproteins or treated with Y-27632, whereas that of wt cells was decreased by progesterone. Our findings suggest that sequestration of toxin to raft-enriched cell surface vesicles may underlie reduced sensitivity of NPC1-deficient cells to theta-toxin.
Collapse
Affiliation(s)
- Yuki Ohsaki
- Department of Neurobiology, Tottori University Faculty of Medicine, 683-8503, Yonago, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reid PC, Sakashita N, Sugii S, Ohno-Iwashita Y, Shimada Y, Hickey WF, Chang TY. A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain. J Lipid Res 2004; 45:582-91. [PMID: 14703504 DOI: 10.1194/jlr.d300032-jlr200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick type C (NPC) is a neurodegenerative disorder characterized by progressive accumulation of cholesterol, gangliosides, and other lipids in the central nervous system and visceral organs. In the NPC1 mouse model, neurodegeneration and neuronal cell loss occur before postnatal day 21. Whether neuronal cholesterol accumulation occurs in vivo before the first signs of neuronal cell loss has not been demonstrated. In this report, we used the NPC1 mouse model and employed a novel cholesterol binding reagent, BC theta, that enabled us to visualize cellular cholesterol accumulation at a level previously unattainable. The results demonstrate the superiority of BC theta staining over conventional filipin staining in confocal microscopy and highlight several new findings. We show that at postnatal day 9, although only mild signs of neurodegeneration are detectable, significant neuronal cholesterol accumulation has already occurred throughout the NPC1 brain. In addition, although NPC1 Purkinje neurons exhibit a normal morphology at day 9, significant cholesterol accumulation within their extensive dendritic trees has occurred. We also show that in the thalamus and cortex of NPC1 mice, activated glial cells first appear at postnatal day 9 and heavily populate by day 22, suggesting that in NPC1 mice, neuronal cholesterol accumulation precedes neuronal injury and neuronal cell loss.
Collapse
Affiliation(s)
- Patrick C Reid
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ohashi M, Mizushima N, Kabeya Y, Yoshimori T. Localization of mammalian NAD(P)H steroid dehydrogenase-like protein on lipid droplets. J Biol Chem 2003; 278:36819-29. [PMID: 12837764 DOI: 10.1074/jbc.m301408200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian enzymes in late cholesterol biosynthesis have been localized uniformly over the endoplasmic reticulum by enzymatic methods. We report here the first mammalian cholesterol biosynthetic enzyme unequivocally localized at the surface of intracellular lipid storage droplets. NAD(P)H steroid dehydrogenase-like protein (Nsdhl), a mammalian C-3 sterol dehydrogenase involved in the conversion of lanosterol into cholesterol, was localized on lipid droplets by immunofluorescence microscopy and subcellular fractionation. Nsdhl was localized on lipid droplets even when cell growth exclusively depended on cholesterol biosynthesis mediated by this enzyme. Depletion of fatty acids in culture medium reduced the development of lipid droplets and caused Nsdhl redistribution to the endoplasmic reticulum. Elevating oleic acid in medium induced well developed, Nsdhl-positive lipid droplets, and simultaneously caused a reduction in cellular conversion of lanosterol into cholesterol. Manipulated human NSDHL with a missense mutation (G205S) causing a human embryonic developmental disorder, congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome, could no longer be localized on lipid droplets. Although the expression of wild-type NSDHL could restore the defective growth of a CHO cholesterol auxotroph, LEX2 in cholesterol-deficient medium, the expression of NSDHL(G205S) failed to do so. These results point to functional significance of the localization of Nsdhl on lipid droplets. Functional significance was also suggested by the colocalization of Nsdhl on lipid droplets with TIP47, a cargo selection protein for mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. These results add to the growing notion that the lipid droplet is an organelle endowed with more complex roles in various biological phenomena.
Collapse
Affiliation(s)
- Masato Ohashi
- Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
34
|
Reid PC, Sugii S, Chang TY. Trafficking defects in endogenously synthesized cholesterol in fibroblasts, macrophages, hepatocytes, and glial cells from Niemann-Pick type C1 mice. J Lipid Res 2003; 44:1010-9. [PMID: 12611909 DOI: 10.1194/jlr.m300009-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick type C1 disease (NPC1) is an inherited neurovisceral lipid storage disorder, hallmarked by the intracellular accumulation of unesterified cholesterol and glycolipids in endocytic organelles. Cells acquire cholesterol through exogenous uptake and endogenous biosynthesis. NPC1 participation in the trafficking of LDL-derived cholesterol has been well studied; however, its role in the trafficking of endogenously synthesized cholesterol (endoCHOL) has received much less attention. Previously, using mutant Chinese hamster ovary cells, we showed that endoCHOL moves from the endoplasmic reticulum (ER) to the plasma membrane (PM) independent of NPC1. After arriving at the PM, it moves between the PM and internal compartments. The movement of endoCHOL from internal membranes back to the PM and the ER for esterification was shown to be defective in NPC1 cells. To test the generality of these findings, we have examined the trafficking of endoCHOL in four different physiologically relevant cell types isolated from wild-type, heterozygous, and homozygous BALB/c NPC1NIH mice. The results show that all NPC1 homozygous cell types (embryonic fibroblasts, peritoneal macrophages, hepatocytes, and cerebellar glial cells) exhibit partial trafficking defects, with macrophages and glial cells most prominently affected. Our findings suggest that endoCHOL may contribute significantly to the overall cholesterol accumulation observed in selective tissues affected by Niemann-Pick type C disease.
Collapse
Affiliation(s)
- Patrick C Reid
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|