1
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
2
|
Chandramouli A, Kamat SS. A Facile LC-MS Method for Profiling Cholesterol and Cholesteryl Esters in Mammalian Cells and Tissues. Biochemistry 2024; 63:2300-2309. [PMID: 38986142 DOI: 10.1021/acs.biochem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cholesterol is central to mammalian lipid metabolism and serves many critical functions in the regulation of diverse physiological processes. Dysregulation in cholesterol metabolism is causally linked to numerous human diseases, and therefore, in vivo, the concentrations and flux of cholesterol and cholesteryl esters (fatty acid esters of cholesterol) are tightly regulated. While mass spectrometry has been an analytical method of choice for detecting cholesterol and cholesteryl esters in biological samples, the hydrophobicity, chemically inert nature, and poor ionization of these neutral lipids have often proved a challenge in developing lipidomics compatible liquid chromatography-mass spectrometry (LC-MS) methods to study them. To overcome this problem, here, we report a reverse-phase LC-MS method that is compatible with existing high-throughput lipidomics strategies and capable of identifying and quantifying cholesterol and cholesteryl esters from mammalian cells and tissues. Using this sensitive yet robust LC-MS method, we profiled different mammalian cell lines and tissues and provide a comprehensive picture of cholesterol and cholesteryl esters content in them. Specifically, among cholesteryl esters, we find that mammalian cells and tissues largely possess monounsaturated and polyunsaturated variants. Taken together, our lipidomics compatible LC-MS method to study this lipid class opens new avenues in understanding systemic and tissue-level cholesterol metabolism under various physiological conditions.
Collapse
Affiliation(s)
- Aakash Chandramouli
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
3
|
Phillips ME, Adekanye O, Borazjani A, Crow JA, Ross MK. CES1 Releases Oxylipins from Oxidized Triacylglycerol (oxTAG) and Regulates Macrophage oxTAG/TAG Accumulation and PGE 2/IL-1β Production. ACS Chem Biol 2023; 18:1564-1581. [PMID: 37348046 PMCID: PMC11131412 DOI: 10.1021/acschembio.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Triacylglycerols (TAGs) are storage forms of fat, primarily found in cytoplasmic lipid droplets in cells. TAGs are broken down to their component free fatty acids by lipolytic enzymes when fuel reserves are required. However, polyunsaturated fatty acid (PUFA)-containing TAGs are susceptible to nonenzymatic oxidation reactions, leading to the formation of oxylipins that are esterified to the glycerol backbone (termed oxTAGs). Human carboxylesterase 1 (CES1) is a member of the serine hydrolase superfamily and defined by its ability to catalyze the hydrolysis of carboxyl ester bonds in both toxicants and lipids. CES1 is a bona fide TAG hydrolase, but it is unclear which specific fatty acids are preferentially released during lipolysis. To better understand the biochemical function of CES1 in immune cells, such as macrophages, its substrate selectivity when it encounters oxidized PUFAs in TAG lipid droplets requires study. We sought to identify those esterified oxidized fatty acids liberated from oxTAGs by CES1 because their release can activate signaling pathways that enforce the development of lipid-driven inflammation. Gaining this knowledge will help fill data gaps that exist between CES1 and the lipid-sensing nuclear receptors, PPARγ and LXRα, which are important drivers of lipid metabolism and inflammation in macrophages. Oxidized forms of triarachidonoylglycerol (oxTAG20:4) or trilinoleoylglycerol (oxTAG18:2), which contain physiologically relevant levels of oxidized PUFAs (<5 mol %), were incubated with recombinant CES1 to release oxylipins and nonoxidized arachidonic acid (AA) or linoleic acid (LA). CES1 hydrolyzed each oxTAG, yielding regioisomers of hydroxyeicosatetraenoic acids (5-, 11-, 12-, and 15-HETE) and hydroxyoctadecadienoic acids (9- and 13-HODE). Furthermore, human THP-1 macrophages with deficient CES1 levels exhibited a differential response to extracellular stimuli (oxTAGs, lipopolysaccharide, and 15-HETE) as compared to those with normal CES1 levels, including enhanced oxTAG/TAG lipid accumulation and altered cytokine and prostaglandin E2 profiles. This study suggests that CES1 can metabolize oxTAG lipids to release oxylipins and PUFAs, and it further specifies the substrate selectivity of CES1 in the metabolism of bioactive lipid mediators. We suggest that the accumulation of oxTAGs/TAGs within lipid droplets that arise due to CES1 deficiency enforces an inflammatory phenotype in macrophages.
Collapse
Affiliation(s)
- Maggie E Phillips
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Oluwabori Adekanye
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - J Allen Crow
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
4
|
Activity-Based Protein Profiling of Human and Plasmodium Serine Hydrolases and Interrogation of Potential Antimalarial Targets. iScience 2022; 25:104996. [PMID: 36105595 PMCID: PMC9464883 DOI: 10.1016/j.isci.2022.104996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria remains a global health issue requiring the identification of novel therapeutic targets to combat drug resistance. Metabolic serine hydrolases are druggable enzymes playing essential roles in lipid metabolism. However, very few have been investigated in malaria-causing parasites. Here, we used fluorophosphonate broad-spectrum activity-based probes and quantitative chemical proteomics to annotate and profile the activity of more than half of predicted serine hydrolases in P. falciparum across the erythrocytic cycle. Using conditional genetics, we demonstrate that the activities of four serine hydrolases, previously annotated as essential (or important) in genetic screens, are actually dispensable for parasite replication. Of importance, we also identified eight human serine hydrolases that are specifically activated at different developmental stages. Chemical inhibition of two of them blocks parasite replication. This strongly suggests that parasites co-opt the activity of host enzymes and that this opens a new drug development strategy against which the parasites are less likely to develop resistance. P. falciparum has 48 predicted metabolic SHs. Many react with the ABP, FP-N3 The activity of 25 PfSHs and 8 HsSHs was profiled throughout the asexual life cycle Catalytic mutants of 4 PfSHs (formerly held essential) had no parasite growth effect Selective inhibitors for 2 HsSHs (APEH and LPLA2) affected parasite growth
Collapse
|
5
|
Wagner C, Hois V, Taschler U, Schupp M, Lass A. KIAA1363-A Multifunctional Enzyme in Xenobiotic Detoxification and Lipid Ester Hydrolysis. Metabolites 2022; 12:516. [PMID: 35736449 PMCID: PMC9229287 DOI: 10.3390/metabo12060516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
KIAA1363, annotated as neutral cholesterol ester hydrolase 1 (NCEH1), is a member of the arylacetamide deacetylase (AADAC) protein family. The name-giving enzyme, AADAC, is known to hydrolyze amide and ester bonds of a number of xenobiotic substances, as well as clinical drugs and of endogenous lipid substrates such as diglycerides, respectively. Similarly, KIAA1363, annotated as the first AADAC-like protein, exhibits enzymatic activities for a diverse substrate range including the xenobiotic insecticide chlorpyrifos oxon and endogenous substrates, acetyl monoalkylglycerol ether, cholesterol ester, and retinyl ester. Two independent knockout mouse models have been generated and characterized. However, apart from reduced acetyl monoalkylglycerol ether and cholesterol ester hydrolase activity in specific tissues and cell types, no gross-phenotype has been reported. This raises the question of its physiological role and whether it functions as drug detoxifying enzyme and/or as hydrolase/lipase of endogenous substrates. This review delineates the current knowledge about the structure, function and of the physiological role of KIAA1363, as evident from the phenotypical changes inflicted by pharmacological inhibition or by silencing as well as knockout of KIAA1363 gene expression in cells, as well as mouse models, respectively.
Collapse
Affiliation(s)
- Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
| | - Victoria Hois
- Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
| | - Michael Schupp
- Cardiovascular Metabolic Renal (CMR)—Research Center, Institute of Pharmacology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| |
Collapse
|
6
|
Raftopulos NL, Washaya TC, Niederprüm A, Egert A, Hakeem-Sanni MF, Varney B, Aishah A, Georgieva ML, Olsson E, Dos Santos DZ, Nassar ZD, Cochran BJ, Nagarajan SR, Kakani MS, Hastings JF, Croucher DR, Rye KA, Butler LM, Grewal T, Hoy AJ. Prostate cancer cell proliferation is influenced by LDL-cholesterol availability and cholesteryl ester turnover. Cancer Metab 2022; 10:1. [PMID: 35033184 PMCID: PMC8760736 DOI: 10.1186/s40170-021-00278-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prostate cancer growth is driven by androgen receptor signaling, and advanced disease is initially treatable by depleting circulating androgens. However, prostate cancer cells inevitably adapt, resulting in disease relapse with incurable castrate-resistant prostate cancer. Androgen deprivation therapy has many side effects, including hypercholesterolemia, and more aggressive and castrate-resistant prostate cancers typically feature cellular accumulation of cholesterol stored in the form of cholesteryl esters. As cholesterol is a key substrate for de novo steroidogenesis in prostate cells, this study hypothesized that castrate-resistant/advanced prostate cancer cell growth is influenced by the availability of extracellular, low-density lipoprotein (LDL)-derived, cholesterol, which is coupled to intracellular cholesteryl ester homeostasis. METHODS C4-2B and PC3 prostate cancer cells were cultured in media supplemented with fetal calf serum (FCS), charcoal-stripped FCS (CS-FCS), lipoprotein-deficient FCS (LPDS), or charcoal-stripped LPDS (CS-LPDS) and analyzed by a variety of biochemical techniques. Cell viability and proliferation were measured by MTT assay and Incucyte, respectively. RESULTS Reducing lipoprotein availability led to a reduction in cholesteryl ester levels and cell growth in C4-2B and PC3 cells, with concomitant reductions in PI3K/mTOR and p38MAPK signaling. This reduced growth in LPDS-containing media was fully recovered by supplementation of exogenous low-density lipoprotein (LDL), but LDL only partially rescued growth of cells cultured with CS-LPDS. This growth pattern was not associated with changes in androgen receptor signaling but rather increased p38MAPK and MEK1/ERK/MSK1 activation. The ability of LDL supplementation to rescue cell growth required cholesterol esterification as well as cholesteryl ester hydrolysis activity. Further, growth of cells cultured in low androgen levels (CS-FCS) was suppressed when cholesteryl ester hydrolysis was inhibited. CONCLUSIONS Overall, these studies demonstrate that androgen-independent prostate cancer cell growth can be influenced by extracellular lipid levels and LDL-cholesterol availability and that uptake of extracellular cholesterol, through endocytosis of LDL-derived cholesterol and subsequent delivery and storage in the lipid droplet as cholesteryl esters, is required to support prostate cancer cell growth. This provides new insights into the relationship between extracellular cholesterol, intracellular cholesterol metabolism, and prostate cancer cell growth and the potential mechanisms linking hypercholesterolemia and more aggressive prostate cancer.
Collapse
Affiliation(s)
- Nikki L Raftopulos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tinashe C Washaya
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andreas Niederprüm
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Ruprecht Karl University of Heidelberg, Baden-Wuerttemberg, Heidelberg, Germany
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bianca Varney
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Atqiya Aishah
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariya L Georgieva
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellinor Olsson
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Diandra Z Dos Santos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Zeyad D Nassar
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Meghna S Kakani
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Wagner C, Hois V, Eggeling A, Pusch LM, Pajed L, Starlinger P, Claudel T, Trauner M, Zimmermann R, Taschler U, Lass A. KIAA1363 affects retinyl ester turnover in cultured murine and human hepatic stellate cells. J Lipid Res 2022; 63:100173. [PMID: 35101424 PMCID: PMC8953624 DOI: 10.1016/j.jlr.2022.100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.
Collapse
Affiliation(s)
- Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Victoria Hois
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Annalena Eggeling
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Patrick Starlinger
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Lian J, van der Veen JN, Watts R, Jacobs RL, Lehner R. Carboxylesterase 1d (Ces1d) does not contribute to cholesteryl ester hydrolysis in the liver. J Lipid Res 2021; 62:100093. [PMID: 34153284 PMCID: PMC8287225 DOI: 10.1016/j.jlr.2021.100093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
The liver is the central organ regulating cholesterol synthesis, storage, transport, and elimination. Mouse carboxylesterase 1d (Ces1d) and its human ortholog CES1 have been described to possess lipase activity and play roles in hepatic triacylglycerol metabolism and VLDL assembly. It has been proposed that Ces1d/CES1 might also catalyze cholesteryl ester (CE) hydrolysis in the liver and thus be responsible for the hydrolysis of HDL-derived CE; this could contribute to the final step in the reverse cholesterol transport (RCT) pathway, wherein cholesterol is secreted from the liver into bile and feces, either directly or after conversion to water-soluble bile salts. However, the proposed function of Ces1d/CES1 as a CE hydrolase is controversial. In this study, we interrogated the role hepatic Ces1d plays in cholesterol homeostasis using liver-specific Ces1d-deficient mice. We rationalized that if Ces1d is a major hepatic CE hydrolase, its absence would (1) reduce in vivo RCT flux and (2) provoke liver CE accumulation after a high-cholesterol diet challenge. We found that liver-specific Ces1d-deficient mice did not show any difference in the flux of in vivo HDL-to-feces RCT nor did it cause additional liver CE accumulation after high-fat, high-cholesterol Western-type diet feeding. These findings challenge the importance of Ces1d as a major hepatic CE hydrolase.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Jelske N van der Veen
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
10
|
Yvan-Charvet L, Bonacina F, Guinamard RR, Norata GD. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 2020; 115:1393-1407. [PMID: 31095280 DOI: 10.1093/cvr/cvz127] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation represents the driving feature of many diseases, including atherosclerosis, cancer, autoimmunity and infections. It is now established that metabolic processes shape a proper immune response and within this context the alteration in cellular cholesterol homeostasis has emerged as a culprit of many metabolic abnormalities observed in chronic inflammatory diseases. Cholesterol accumulation supports the inflammatory response of myeloid cells (i.e. augmentation of toll-like receptor signalling, inflammasome activation, and production of monocytes and neutrophils) which is beneficial in the response to infections, but worsens diseases associated with chronic metabolic inflammation including atherosclerosis. In addition to the innate immune system, cells of adaptive immunity, upon activation, have also been shown to undergo a reprogramming of cellular cholesterol metabolism, which results in the amplification of inflammatory responses. Aim of this review is to discuss (i) the molecular mechanisms linking cellular cholesterol metabolism to specific immune functions; (ii) how cellular cholesterol accumulation sustains chronic inflammatory diseases such as atherosclerosis; (iii) the immunometabolic profile of patients with defects of genes affecting cholesterol metabolism including familial hypercholesterolaemia, cholesteryl ester storage disease, Niemann-Pick type C, and immunoglobulin D syndrome/mevalonate kinase deficiency. Available data indicate that cholesterol immunometabolism plays a key role in directing immune cells function and set the stage for investigating the repurposing of existing 'metabolic' drugs to modulate the immune response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodolphe Renè Guinamard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Giuseppe Danilo Norata
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.,Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| |
Collapse
|
11
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
12
|
Deng JN, Li Q, Sun K, Pan CS, Li H, Fan JY, Li G, Hu BH, Chang X, Han JY. Cardiotonic Pills Plus Recombinant Human Prourokinase Ameliorates Atherosclerotic Lesions in LDLR -/- Mice. Front Physiol 2019; 10:1128. [PMID: 31551808 PMCID: PMC6747059 DOI: 10.3389/fphys.2019.01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/15/2019] [Indexed: 11/24/2022] Open
Abstract
Aim This study was to explore the protective effects of cardiotonic pills (CP) or/and recombinant human prourokinase (proUK)on the atherosclerosis and the potential underlying mechanism. Methods and Results Atherosclerosis was induced in LDLR–/– mice by high fat diet contained 20% lard and 0.5% cholesterol. Daily oral administration of CP (130 mg/kg) or/and intravenous injection of proUK (2.5 mg/kg, twice a week) began at 8 weeks after feeding with high fat diet and continued for 4 weeks. CP alone treatment markedly decreased plasma triglyceride, but did not ameliorate atherosclerosis plaque. No effect was observed for proUK alone on any endpoints tested. CP plus proUK induced a significantly reduction in the atherosclerotic lesions, along with decreased levels of total cholesterol, triglyceride in the plasma. CP plus proUK inhibited the elevated hepatic total cholesterol and triglyceride in high fat diet-fed LDLR–/– mice, up-regulating the expressions of ATP-binding cassette gene 5 and 8, and adipose triglyceride lipase. In the aorta, CP plus proUK inhibited the expression of scavenger receptor A and CD36 in LDLR–/– mice. In addition, we observed that systemic inflammation was inhibited, manifested downregulation of plasma macrophage inflammatory protein-1α and intercellular cell adhesion molecule-1. Conclusion CP plus proUK effectively attenuated atherosclerosis plaque in LDLR–/– mice, which is associated with normalizing the lipid metabolism in the liver and aorta, reducing phagocytosis of receptor-mediated modified-LDL uptake and inhibiting systemic inflammation.
Collapse
Affiliation(s)
- Jing-Na Deng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Huan Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Gao Li
- Department of Oncology, Guizhou University of Chinese Medicine, Guiyang, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Shiau MY, Chuang PH, Yang CP, Hsiao CW, Chang SW, Chang KY, Liu TM, Chen HW, Chuang CC, Yuan SY, Chang YH. Mechanism of Interleukin-4 Reducing Lipid Deposit by Regulating Hormone-Sensitive Lipase. Sci Rep 2019; 9:11974. [PMID: 31427606 PMCID: PMC6700157 DOI: 10.1038/s41598-019-47908-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/22/2019] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence indicates that inflammation participates in the pathophysiological progress from insulin resistance, obesity, metabolic abnormalities, and type 2 diabetes mellitus. Our previous study reveals that interleukin-4 (IL-4) inhibits adipogenesis and promotes lipolysis to decrease lipid deposits by enhancing the activity of hormone sensitive lipase (HSL). The present study further dissects and characterizes the molecular mechanism of IL-4 in regulating HSL expression and lipolytic activity in the terminal differentiated 3T3-L1 mature adipocytes. Our results showed that IL-4 increased cAMP which then enhanced PKA activity and subsequent phosphorylation of HSL and perilipin. The phosphorylated HSL (p-HSL) translocated from cytoplasm to the surface of lipid droplets and exhibited lipolytic function. After being phosphorylated, p-perilipin also facilitated lipolysis through interacting with p-HSL. The in vitro findings were further verified by in vivo study in which IL-4 exhibited pro-lipolytic activity and enhanced HSL activity. In summary, the net outcome of IL-4 treatment is to reduce lipid storage by promoting lipolysis through enhancing HSL activity via cAMP/PKA pathway, the major route leading to lipolysis.
Collapse
Affiliation(s)
- Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Pei-Hua Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kai-Yun Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Ming Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huan-Wen Chen
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sheau-Yun Yuan
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
14
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Ueda K, Okado Y, Shigetomi K, Ubukata M. Novel autophagy modulators: Design and synthesis of (+)-epogymnolactam analogues and structure-activity relationship. Bioorg Med Chem 2018; 26:5159-5168. [DOI: 10.1016/j.bmc.2018.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/05/2023]
|
16
|
Silencing carboxylesterase 1 in human THP-1 macrophages perturbs genes regulated by PPARγ/RXR and RAR/RXR: down-regulation of CYP27A1-LXRα signaling. Biochem J 2018; 475:621-642. [PMID: 29321244 DOI: 10.1042/bcj20180008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Macrophage foam cells store excess cholesterol as cholesteryl esters, which need to be hydrolyzed for cholesterol efflux. We recently reported that silencing expression of carboxylesterase 1 (CES1) in human THP-1 macrophages [CES1KD (THP-1 cells with CES1 expression knocked down) macrophages] reduced cholesterol uptake and decreased expression of CD36 and scavenger receptor-A in cells loaded with acetylated low-density lipoprotein (acLDL). Here, we report that CES1KD macrophages exhibit reduced transcription of cytochrome P45027A1 (CYP27A1) in nonloaded and acLDL-loaded cells. Moreover, levels of CYP27A1 protein and its enzymatic product, 27-hydroxycholesterol, were markedly reduced in CES1KD macrophages. Transcription of LXRα (liver X receptor α) and ABCA1 (ATP-binding cassette transporter A1) was also decreased in acLDL-loaded CES1KD macrophages, suggesting reduced signaling through PPARγ-CYP27A1-LXRα. Consistent with this, treatment of CES1KD macrophages with agonists for PPARγ, RAR, and/or RAR/RXR partially restored transcription of CYP27A1 and LXRα, and repaired cholesterol influx. Conversely, treatment of control macrophages with antagonists for PPARγ and/or RXR decreased transcription of CYP27A1 and LXRα Pharmacologic inhibition of CES1 in both wild-type THP-1 cells and primary human macrophages also decreased CYP27A1 transcription. CES1 silencing did not affect transcript levels of PPARγ and RXR in acLDL-loaded macrophages, whereas it did reduce the catabolism of the endocannabinoid 2-arachidonoylglycerol. Finally, the gene expression profile of CES1KD macrophages was similar to that of PPARγ knockdown cells following acLDL exposures, further suggesting a mechanistic link between CES1 and PPARγ. These results are consistent with a model in which abrogation of CES1 function attenuates the CYP27A1-LXRα-ABCA1 signaling axis by depleting endogenous ligands for the nuclear receptors PPARγ, RAR, and/or RXR that regulate cholesterol homeostasis.
Collapse
|
17
|
Xu J, Xu Y, Xu Y, Yin L, Zhang Y. Global inactivation of carboxylesterase 1 (Ces1/Ces1g) protects against atherosclerosis in Ldlr -/- mice. Sci Rep 2017; 7:17845. [PMID: 29259301 PMCID: PMC5736751 DOI: 10.1038/s41598-017-18232-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death in the western world. Increased plasma triglyceride and cholesterol levels are major risk factors for this disease. Carboxylesterase 1 (Ces1/Ces1g) has been shown to play a role in metabolic control. So far, the role of mouse Ces1/Ces1g deficiency in atherosclerosis is not elucidated. We generated Ces1/Ces1g−/− mice. Compared to wild-type mice, Ces1/Ces1g−/− mice had reduced plasma cholesterol levels. We then generated Ces1g−/−Ldlr−/− double knockout (DKO) mice, which were fed a Western diet for 16 weeks. Compared to Ldlr−/− mice, DKO mice displayed decreased plasma cholesterol and TG levels and reduced atherosclerotic lesions. Interestingly, knockdown of hepatic Ces1/Ces1g in Apoe−/− mice resulted in hyperlipidemia and exacerbated Western diet-induced atherogenesis. Mechanistically, global inactivation of Ces1/Ces1g inhibited intestinal cholesterol and fat absorption and Niemann-Pick C1 like 1 expression, and increased macrophage cholesterol efflux by inducing ATP-binding cassette subfamily A member 1 (ABCA1) and ABCG1. Ces1/Ces1g ablation also promoted M2 macrophage polarization and induced hepatic cholesterol 7α-hydroxylase and sterol 12α-hydroxylase expression. In conclusion, global loss of Ces1/Ces1g protects against the development of atherosclerosis by inhibiting intestinal cholesterol and triglyceride absorption and promoting macrophage cholesterol efflux.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
18
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
19
|
An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells. Nat Commun 2017; 8:1775. [PMID: 29176560 PMCID: PMC5701173 DOI: 10.1038/s41467-017-01854-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Integration of chemical probes into proteomic workflows enables the interrogation of protein activity, rather than abundance. Current methods limit the biological contexts that can be addressed due to sample homogenization, signal-averaging, and bias toward abundant proteins. Here we report a platform that integrates family-wide chemical probes with proximity-dependent oligonucleotide amplification and imaging to quantify enzyme activity in native contexts with high spatial resolution. Application of this method, activity-dependent proximity ligation (ADPL), to serine hydrolase and cysteine protease enzymes enables quantification of differential enzyme activity resulting from endogenous changes in localization and expression. In a competitive format, small-molecule target engagement with endogenous proteins in live cells can be quantified. Finally, retention of sample architecture enables interrogation of complex environments such as cellular co-culture and patient samples. ADPL should be amenable to diverse probe and protein families to detect active enzymes at scale and resolution out of reach with current methods. The interrogation of enzyme activity involves the ensemble averaging of many cells, loss of spatial relationships and is often biased to abundant proteins. Here the authors develop activity-dependent proximity ligation to quantify enzyme activity at the cellular and sub-cellular level in relevant biological contexts.
Collapse
|
20
|
Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2017; 9:178-195. [PMID: 28677105 PMCID: PMC5818367 DOI: 10.1007/s13238-017-0437-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Schlager S, Vujic N, Korbelius M, Duta-Mare M, Dorow J, Leopold C, Rainer S, Wegscheider M, Reicher H, Ceglarek U, Sattler W, Radovic B, Kratky D. Lysosomal lipid hydrolysis provides substrates for lipid mediator synthesis in murine macrophages. Oncotarget 2017; 8:40037-40051. [PMID: 28402950 PMCID: PMC5522325 DOI: 10.18632/oncotarget.16673] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/19/2017] [Indexed: 11/25/2022] Open
Abstract
Degradation of lysosomal lipids requires lysosomal acid lipase (LAL), the only intracellular lipase known to be active at acidic pH. We found LAL to be expressed in murine immune cells with highest mRNA expression in macrophages and neutrophils. Furthermore, we observed that loss of LAL in mice caused lipid accumulation in white blood cells in the peripheral circulation, which increased in response to an acute inflammatory stimulus. Lal-deficient (-/-) macrophages accumulate neutral lipids, mainly cholesteryl esters, within lysosomes. The cholesteryl ester fraction is particularly enriched in the PUFAs 18:2 and 20:4, important precursor molecules for lipid mediator synthesis. To investigate whether loss of LAL activity affects the generation of lipid mediators and to eliminate potential systemic effects from other cells and tissues involved in the pronounced phenotype of Lal-/- mice, we treated macrophages from Wt mice with the LAL-specific inhibitor LAListat-2. Acute inhibition of LAL resulted in reduced release of 18:2- and 20:4-derived mediators from macrophages, indicating that lipid hydrolysis by LAL is an important source for lipid mediator synthesis in macrophages. We conclude that lysosomes should be considered as organelles that provide precursor molecules for lipid mediators such as eicosanoids.
Collapse
Affiliation(s)
- Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Boehringer Ingelheim, Vienna, Austria
| | - Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Madalina Duta-Mare
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Christina Leopold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Martin Wegscheider
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
22
|
Kory N, Grond S, Kamat SS, Li Z, Krahmer N, Chitraju C, Zhou P, Fröhlich F, Semova I, Ejsing C, Zechner R, Cravatt BF, Farese RV, Walther TC. Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism. J Lipid Res 2016; 58:226-235. [PMID: 27836991 DOI: 10.1194/jlr.m072538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids, such as triacylglycerols and sterol esters, as precursors for membrane components and as reservoirs of metabolic energy. LDAH is reported to hydrolyze cholesterol esters and to be important in macrophage cholesterol ester metabolism. Here, we confirm that LDAH is localized to LDs in several model systems. We generated a murine model in which Ldah is disrupted but found no evidence for a major function of LDAH in cholesterol ester or triacylglycerol metabolism in vivo, nor a role in energy or glucose metabolism. Our data suggest that LDAH is not a major cholesterol ester hydrolase, and an alternative metabolic function may be responsible for its possible effect on development of prostate cancer.
Collapse
Affiliation(s)
- Nora Kory
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Siddhesh S Kamat
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA.,Skaggs Institute for Chemical Biology Scripps Research Institute, La Jolla, CA
| | - Zhihuan Li
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Natalie Krahmer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Ping Zhou
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA
| | - Florian Fröhlich
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Ivana Semova
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Christer Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Benjamin F Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA.,Skaggs Institute for Chemical Biology Scripps Research Institute, La Jolla, CA
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA .,Department of Cell Biology, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA .,Department of Cell Biology, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA.,Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
23
|
Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 2016; 13:4527-34. [PMID: 27082419 PMCID: PMC4878557 DOI: 10.3892/mmr.2016.5099] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low‑density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL‑derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD‑associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell‑targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed.
Collapse
|
24
|
Ross MK, Pluta K, Bittles V, Borazjani A, Allen Crow J. Interaction of the serine hydrolase KIAA1363 with organophosphorus agents: Evaluation of potency and kinetics. Arch Biochem Biophys 2015; 590:72-81. [PMID: 26617293 DOI: 10.1016/j.abb.2015.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/03/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022]
Abstract
Oxons are bioactive metabolites of organophosphorus insecticides (OPs) that covalently inactivate serine hydrolases. KIAA1363 is one of the most abundant serine hydrolases in mouse brain. Although the physiological consequences related to the inhibition of KIAA1363 due to environmental exposures to OPs are poorly understood, the enzyme was previously shown to have a role in the detoxification of oxons. Here, we overexpressed human KIAA1363 and CES1 in COS7 cells and compared the potency of inhibition (IC50s, 15 min) of KIAA1363 and CES1 by chlorpyrifos oxon (CPO), paraoxon (PO), and methyl paraoxon (MPO). The order of potency was CPO > PO >> MPO for both enzymes. We also determined the bimolecular rate constants (kinact/Ki) for reactions of CPO and PO with KIAA1363 and CES1. KIAA1363 and CES1 were inactivated by CPO at comparable rates (4.4 × 10(6) s(-1) M(-1) and 6.7 × 10(6) s(-1) M(-1), respectively), whereas PO inactivated both enzymes at slower rates (0.4 × 10(6) s(-1) M(-1) and 1.5 × 10(6) s(-1) M(-1), respectively). Finally, the reactivation rate of KIAA1363 following inhibition by CPO was evaluated. Together, the results define the kinetics of inhibition of KIAA1363 by active metabolites of agrochemicals and indicate that KIAA1363 is highly sensitive to inhibition by these compounds.
Collapse
Affiliation(s)
- Matthew K Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States; Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Kim Pluta
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States
| | - Victoria Bittles
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States
| | - Abdolsamad Borazjani
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States; Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States
| | - J Allen Crow
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States; Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
25
|
Goeritzer M, Vujic N, Schlager S, Chandak PG, Korbelius M, Gottschalk B, Leopold C, Obrowsky S, Rainer S, Doddapattar P, Aflaki E, Wegscheider M, Sachdev V, Graier WF, Kolb D, Radovic B, Kratky D. Active autophagy but not lipophagy in macrophages with defective lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1304-1316. [PMID: 26143381 PMCID: PMC4562370 DOI: 10.1016/j.bbalip.2015.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/29/2015] [Accepted: 06/20/2015] [Indexed: 11/30/2022]
Abstract
During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase. Adipose triglyceride lipase (ATGL) is the major enzyme catalyzing the initial step of lipolysis by hydrolyzing triglycerides (TGs) in cytosolic LDs. Consequently, most organs and cells, including macrophages, lacking ATGL accumulate TGs, resulting in reduced intracellular free fatty acid concentrations. Macrophages deficient in hormone-sensitive lipase (H0) lack TG accumulation albeit reduced in vitro TG hydrolase activity. We hypothesized that autophagy is activated in lipase-deficient macrophages to counteract their energy deficit. We therefore generated mice lacking both ATGL and HSL (A0H0). Macrophages from A0H0 mice showed 73% reduced neutral TG hydrolase activity, resulting in TG-rich LD accumulation. Increased expression of cathepsin B, accumulation of LC3-II, reduced expression of p62 and increased DQ-BSA dequenching suggest intact autophagy and functional lysosomes in A0H0 macrophages. Markedly decreased acid TG hydrolase activity and lipid flux independent of bafilomycin A1 treatment, however, argue against effective lysosomal degradation of LDs in A0H0 macrophages. We conclude that autophagy of proteins and cell organelles but not of LDs is active as a compensatory mechanism to circumvent and balance the reduced availability of energy substrates in A0H0 macrophages.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Nemanja Vujic
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Prakash G Chandak
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Melanie Korbelius
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Christina Leopold
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Sascha Obrowsky
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Prakash Doddapattar
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Elma Aflaki
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Martin Wegscheider
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Vinay Sachdev
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research/Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| |
Collapse
|
26
|
Das SK, Stadelmeyer E, Schauer S, Schwarz A, Strohmaier H, Claudel T, Zechner R, Hoefler G, Vesely PW. Micro RNA-124a regulates lipolysis via adipose triglyceride lipase and comparative gene identification 58. Int J Mol Sci 2015; 16:8555-68. [PMID: 25894224 PMCID: PMC4425096 DOI: 10.3390/ijms16048555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 01/14/2023] Open
Abstract
Lipolysis is the biochemical pathway responsible for the catabolism of cellular triacylglycerol (TG). Lipolytic TG breakdown is a central metabolic process leading to the generation of free fatty acids (FA) and glycerol, thereby regulating lipid, as well as energy homeostasis. The precise tuning of lipolysis is imperative to prevent lipotoxicity, obesity, diabetes and other related metabolic disorders. Here, we present our finding that miR-124a attenuates RNA and protein expression of the major TG hydrolase, adipose triglyceride lipase (ATGL/PNPLA2) and its co-activator comparative gene identification 58 (CGI-58/ABHD5). Ectopic expression of miR-124a in adipocytes leads to reduced lipolysis and increased cellular TG accumulation. This phenotype, however, can be rescued by overexpression of truncated Atgl lacking its 3'UTR, which harbors the identified miR-124a target site. In addition, we observe a strong negative correlation between miR-124a and Atgl expression in various murine tissues. Moreover, miR-124a regulates the expression of Atgl and Cgi-58 in murine white adipose tissue during fasting as well as the expression of Atgl in murine liver, during fasting and re-feeding. Together, these results point to an instrumental role of miR-124a in the regulation of TG catabolism. Therefore, we suggest that miR-124a may be involved in the regulation of several cellular and organismal metabolic parameters, including lipid storage and plasma FA concentration.
Collapse
Affiliation(s)
- Suman K Das
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
| | - Elke Stadelmeyer
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
| | - Anna Schwarz
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
| | - Heimo Strohmaier
- Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria.
| | - Thiery Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, Karl Franzens University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
| | - Paul W Vesely
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria.
- Institute of Molecular Biosciences, Karl Franzens University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| |
Collapse
|
27
|
Zhao X, Gao M, He J, Zou L, Lyu Y, Zhang L, Geng B, Liu G, Xu G. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice. PLoS One 2015; 10:e0123738. [PMID: 25855981 PMCID: PMC4391836 DOI: 10.1371/journal.pone.0123738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
Aims The objective of this study is to determine the role of perilipin 1 (Plin1) in whole body or bone marrow-derived cells on atherogenesis. Methods and Results Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/-) females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/-) were transplanted into LDL receptor deficient mice (LDLR-/-). Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1. Conclusion Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cholesterol Esters/genetics
- Cholesterol Esters/metabolism
- Female
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Perilipin-1
- Perilipin-2
- Perilipin-3
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Mingming Gao
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liangqiang Zou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ling Zhang
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- * E-mail: (GL); (BG)
| | - George Liu
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
- * E-mail: (GL); (BG)
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
| |
Collapse
|
28
|
Ross MK, Borazjani A, Mangum LC, Wang R, Crow JA. Effects of toxicologically relevant xenobiotics and the lipid-derived electrophile 4-hydroxynonenal on macrophage cholesterol efflux: silencing carboxylesterase 1 has paradoxical effects on cholesterol uptake and efflux. Chem Res Toxicol 2014; 27:1743-56. [PMID: 25250848 PMCID: PMC4203386 DOI: 10.1021/tx500221a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Cholesterol
cycles between free cholesterol (unesterified) found
predominantly in membranes and cholesteryl esters (CEs) stored in
cytoplasmic lipid droplets. Only free cholesterol is effluxed from
macrophages via ATP-binding cassette (ABC) transporters to extracellular
acceptors. Carboxylesterase 1 (CES1), proposed to hydrolyze CEs, is
inactivated by oxon metabolites of organophosphorus pesticides and
by the lipid electrophile 4-hydroxynonenal (HNE). We assessed the
ability of these compounds to reduce cholesterol efflux from foam
cells. Human THP-1 macrophages were loaded with [3H]-cholesterol/acetylated
LDL and then allowed to equilibrate to enable [3H]-cholesterol
to distribute into its various cellular pools. The cholesterol-engorged
cells were then treated with toxicants in the absence of cholesterol
acceptors for 24 h, followed by a 24 h efflux period in the presence
of toxicant. A concentration-dependent reduction in [3H]-cholesterol
efflux via ABCA1 (up to 50%) was found for paraoxon (0.1–10
μM), whereas treatment with HNE had no effect. A modest reduction
in [3H]-cholesterol efflux via ABCG1 (25%) was found after
treatment with either paraoxon or chlorpyrifos oxon (10 μM each)
but not HNE. No difference in efflux rates was found after treatments
with either paraoxon or HNE when the universal cholesterol acceptor
10% (v/v) fetal bovine serum was used. When the re-esterification
arm of the CE cycle was disabled in foam cells, paraoxon treatment
increased CE levels, suggesting the neutral CE hydrolysis arm of the
cycle had been inhibited by the toxicant. However, paraoxon also partially
inhibited lysosomal acid lipase, which generates cholesterol for efflux,
and reduced the expression of ABCA1 protein. Paradoxically, silencing CES1 expression in macrophages did not affect the percent
of [3H]-cholesterol efflux. However, CES1 mRNA knockdown markedly reduced cholesterol uptake by macrophages,
with SR-A and CD36 mRNA reduced
3- and 4-fold, respectively. Immunoblots confirmed SR-A and CD36 protein
downregulation. Together, these results suggest that toxicants, e.g.,
oxons, may interfere with macrophage cholesterol homeostasis/metabolism.
Collapse
Affiliation(s)
- Matthew K Ross
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University , P.O. Box 6100, Mississippi State, Mississippi 39762, United States
| | | | | | | | | |
Collapse
|
29
|
Sakai K, Igarashi M, Yamamuro D, Ohshiro T, Nagashima S, Takahashi M, Enkhtuvshin B, Sekiya M, Okazaki H, Osuga JI, Ishibashi S. Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis in murine macrophages. J Lipid Res 2014; 55:2033-40. [PMID: 24868095 DOI: 10.1194/jlr.m047787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrolysis of intracellular cholesteryl ester (CE) is the rate-limiting step in the efflux of cholesterol from macrophage foam cells. In mouse peritoneal macrophages (MPMs), this process is thought to involve several enzymes: hormone-sensitive lipase (Lipe), carboxylesterase 3 (Ces3), neutral CE hydrolase 1 (Nceh1). However, there is some disagreement over the relative contributions of these enzymes. To solve this problem, we first compared the abilities of several compounds to inhibit the hydrolysis of CE in cells overexpressing Lipe, Ces3, or Nceh1. Cells overexpressing Ces3 had negligible neutral CE hydrolase activity. We next examined the effects of these inhibitors on the hydrolysis of CE and subsequent cholesterol trafficking in MPMs. CE accumulation was increased by a selective inhibitor of Nceh1, paraoxon, and two nonselective inhibitors of Nceh1, (+)-AS115 and (-)-AS115, but not by two Lipe-selective inhibitors, orlistat and 76-0079. Paraoxon inhibited cholesterol efflux to apoA-I or HDL, while 76-0079 did not. These results suggest that Nceh1 plays a dominant role over Lipe in the hydrolysis of CE and subsequent cholesterol efflux in MPMs.
Collapse
Affiliation(s)
- Kent Sakai
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masaki Igarashi
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655 Japan
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taichi Ohshiro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Bolormaa Enkhtuvshin
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Motohiro Sekiya
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655 Japan
| | - Hiroaki Okazaki
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655 Japan
| | - Jun-ichi Osuga
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
30
|
Goo YH, Son SH, Kreienberg PB, Paul A. Novel lipid droplet-associated serine hydrolase regulates macrophage cholesterol mobilization. Arterioscler Thromb Vasc Biol 2013; 34:386-96. [PMID: 24357060 DOI: 10.1161/atvbaha.113.302448] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Lipid-laden macrophages or foam cells are characterized by massive cytosolic lipid droplet (LD) deposition containing mostly cholesterol ester (CE) derived from the lipoproteins cleared from the arterial wall. Cholesterol efflux from foam cells is considered to be atheroprotective. Because cholesterol is effluxed as free cholesterol, CE accumulation in LDs may limit free cholesterol efflux. Our objective was to identify proteins that regulate cholesterol trafficking through LDs. APPROACH AND RESULTS In a proteomic analysis of the LD fraction of RAW 264.7 macrophages, we identified an evolutionarily conserved protein with a canonical GXSXG lipase catalytic motif and a predicted α/β-hydrolase fold, the RIKEN cDNA 1110057K04 gene, which we named LD-associated hydrolase (LDAH). LDAH association with LDs was confirmed by immunoblotting and immunocytochemistry. LDAH was labeled with a probe specific for active serine hydrolases. LDAH showed relatively weak in vitro CE hydrolase activity. However, cholesterol measurements in intact cells supported a significant role of LDAH in CE homeostasis because LDAH upregulation and downregulation decreased and increased, respectively, intracellular cholesterol and CE in human embryonic kidney-293 cells and RAW 264.7 macrophages. Mutation of the putative nucleophilic serine impaired active hydrolase probe binding, in vitro CE hydrolase activity, and cholesterol-lowering effect in cells, whereas this mutant still localized to the LD. LDAH upregulation increased CE hydrolysis and cholesterol efflux from macrophages, and, interestingly, LDAH is highly expressed in macrophage-rich areas within mouse and human atherosclerotic lesions. CONCLUSIONS The data identify a candidate target to promote reverse cholesterol transport from atherosclerotic lesions.
Collapse
Affiliation(s)
- Young-Hwa Goo
- From the Center for Cardiovascular Sciences, Albany Medical College, NY (Y.-H.G., S.-H.S., A.P.); and the Institute for Vascular Health and Disease, Albany, NY (P.B.K.)
| | | | | | | |
Collapse
|
31
|
Holly SP, Chang JW, Li W, Niessen S, Phillips RM, Piatt R, Black JL, Smith MC, Boulaftali Y, Weyrich AS, Bergmeier W, Cravatt BF, Parise LV. Chemoproteomic discovery of AADACL1 as a regulator of human platelet activation. ACTA ACUST UNITED AC 2013; 20:1125-34. [PMID: 23993462 DOI: 10.1016/j.chembiol.2013.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 12/27/2022]
Abstract
A comprehensive knowledge of the platelet proteome is necessary for understanding thrombosis and for envisioning antiplatelet therapies. To discover other biochemical pathways in human platelets, we screened platelets with a carbamate library designed to interrogate the serine hydrolase subproteome and used competitive activity-based protein profiling to map the targets of active carbamates. We identified an inhibitor that targets arylacetamide deacetylase-like 1 (AADACL1), a lipid deacetylase originally identified in invasive cancers. Using this compound, along with highly selective second-generation inhibitors of AADACL1, metabolomics, and RNA interference, we show that AADACL1 regulates platelet aggregation, thrombus growth, RAP1 and PKC activation, lipid metabolism, and fibrinogen binding to platelets and megakaryocytes. These data provide evidence that AADACL1 regulates platelet and megakaryocyte activation and highlight the value of this chemoproteomic strategy for target discovery in platelets.
Collapse
Affiliation(s)
- Stephen P Holly
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Obrowsky S, Chandak PG, Patankar JV, Pfeifer T, Povoden S, Schreiber R, Haemmerle G, Levak-Frank S, Kratky D. Cholesteryl ester accumulation and accelerated cholesterol absorption in intestine-specific hormone sensitive lipase-null mice. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:1406-14. [PMID: 22842588 PMCID: PMC3459056 DOI: 10.1016/j.bbalip.2012.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/21/2022]
Abstract
Hormone sensitive lipase (HSL) regulates the hydrolysis of acylglycerols and cholesteryl esters (CE) in various cells and organs, including enterocytes of the small intestine. The physiological role of this enzyme in enterocytes, however, stayed elusive. In the present study we generated mice lacking HSL exclusively in the small intestine (HSLiKO) to investigate the impact of HSL deficiency on intestinal lipid metabolism and the consequences on whole body lipid homeostasis. Chow diet-fed HSLiKO mice showed unchanged plasma lipid concentrations. In addition, feeding with high fat/high cholesterol (HF/HC) diet led to unaltered triglyceride but increased plasma cholesterol concentrations and CE accumulation in the small intestine. The same effect was observed after an acute cholesterol load. Gavaging of radioactively labeled cholesterol resulted in increased abundance of radioactivity in plasma, liver and small intestine of HSLiKO mice 4h post-gavaging. However, cholesterol absorption determined by the fecal dual-isotope ratio method revealed no significant difference, suggesting that HSLiKO mice take up the same amount of cholesterol but in an accelerated manner. mRNA expression levels of genes involved in intestinal cholesterol transport and esterification were unchanged but we observed downregulation of HMG-CoA reductase and synthase and consequently less intestinal cholesterol biosynthesis. Taken together our study demonstrates that the lack of intestinal HSL leads to CE accumulation in the small intestine, accelerated cholesterol absorption and decreased cholesterol biosynthesis, indicating that HSL plays an important role in intestinal cholesterol homeostasis.
Collapse
Affiliation(s)
- Sascha Obrowsky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Prakash G. Chandak
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Jay V. Patankar
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Thomas Pfeifer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Silvia Povoden
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Sanja Levak-Frank
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| |
Collapse
|
33
|
Iatan I, Palmyre A, Alrasheed S, Ruel I, Genest J. Genetics of cholesterol efflux. Curr Atheroscler Rep 2012; 14:235-46. [PMID: 22528521 DOI: 10.1007/s11883-012-0247-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Plasma levels of high-density lipoprotein cholesterol (HDL-C) show an inverse association with coronary heart disease (CHD). As a biological trait, HDL-C is strongly genetically determined, with a heritability index ranging from 40 % to 60 %. HDL represents an appealing therapeutic target due to its beneficial pleiotropic effects in preventing CHD. This review focuses on the genetic basis of cellular cholesterol efflux, the rate-limiting step in HDL biogenesis. There are several monogenic disorders (e.g., Tangier disease, caused by mutations within ABCA1) affecting HDL biogenesis. Importantly, many disorders of cellular cholesterol homeostasis cause a reduced HDL-C. We integrate information from family studies and linkage analyses with that derived from genome-wide association studies (GWAS) and review the recent identification of micro-RNAs (miRNA) involved in cellular cholesterol metabolism. The identification of genomic pathways related to HDL may help pave the way for novel therapeutic approaches to promote cellular cholesterol efflux as a therapeutic modality to prevent atherosclerosis.
Collapse
Affiliation(s)
- Iulia Iatan
- Cardiovascular Research Laboratories, Division of Cardiology, Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
34
|
Zhao B, Bie J, Wang J, Marqueen SA, Ghosh S. Identification of a novel intracellular cholesteryl ester hydrolase (carboxylesterase 3) in human macrophages: compensatory increase in its expression after carboxylesterase 1 silencing. Am J Physiol Cell Physiol 2012; 303:C427-35. [PMID: 22700792 DOI: 10.1152/ajpcell.00103.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesteryl ester (CE) hydrolysis is the rate-limiting step in the removal of free cholesterol (FC) from macrophage foam cells, and several enzymes have been identified as intracellular CE hydrolases in human macrophages. We have previously reported the antiatherogenic role of a carboxylesterase [carboxylesterase 1 (CES1)], and the objective of the present study was to determine the contribution of CES1 to total CE hydrolytic activity in human macrophages. Two approaches, namely, immune depletion and short hairpin (sh)RNA-mediated knockdown, were used. Immuneprecipitation by a CES1-specific antibody resulted in a 70-80% decrease in enzyme activity, indicating that CES1 is responsible for >70% of the total CE hydrolytic activity. THP1-shRNA cells were generated by stably transfecting human THP1 cells with four different CES1-specific shRNA vectors. Despite a significant (>90%) reduction in CES1 expression both at the mRNA and protein levels, CES1 knockdown neither decreased intracellular CE hydrolysis nor decreased FC efflux. Examination of the underlying mechanisms for the observed lack of effects of CES1 knockdown revealed a compensatory increase in the expression of a novel CES, CES3, which is only expressed at <30% of the level of CES1 in human macrophages. Transient overexpression of CES3 led to an increase in CE hydrolytic activity, mobilization of intracellular lipid droplets, and a reduction in cellular CE content, establishing CES3 as a bona fide CE hydrolase. This study provides the first evidence of functional compensation whereby increased expression of CES3 restores intracellular CE hydrolytic activity and FC efflux in CES1-deficient cells. Furthermore, these data support the concept that intracellular CE hydrolysis is a multienzyme process.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, USA
| | | | | | | | | |
Collapse
|
35
|
Ghosh S. Early steps in reverse cholesterol transport: cholesteryl ester hydrolase and other hydrolases. Curr Opin Endocrinol Diabetes Obes 2012; 19:136-41. [PMID: 22262001 DOI: 10.1097/med.0b013e3283507836] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Several controversies exist related to the molecular identity and subcellular localization of the enzyme catalyzing macrophage cholesteryl ester hydrolysis. Some of these issues have been reviewed earlier and this review summarizes new developments that describe effects of overexpression or gene ablation. The main objective is to highlight the disagreement between lack of gene expression and incomplete abolition of macrophage cholesteryl ester hydrolytic activity and to emphasize the importance of redundancy. RECENT FINDINGS New information resulting from the continuing characterization of the various cholesteryl ester hydrolases (hormone-sensitive lipase, HSL; cholesteryl ester hydrolase, CEH; and KIAA1363/NCEH1) is reviewed. Whereas CEH overexpression leads to beneficial effects such as decreased inflammation, improved glucose tolerance/insulin sensitivity, and attenuation of atherosclerotic lesion progression, deficiency/ablation of HSL or KIAA1363/NCEH1 results in incomplete loss of macrophage cholesteryl ester hydrolysis/turnover. New paradigms challenging the classical view of cytoplasmic cholesteryl ester hydrolysis and reverse cholesterol transport are also presented. SUMMARY The observed beneficial effects of CEH overexpression identify macrophage cholesteryl ester hydrolysis as an important therapeutic target and future studies will determine whether similar effects are obtained with overexpression of HSL or KIAA1363/NCEH1. It is imperative that, for clinical benefit, mechanisms to enhance endogenous cholesteryl ester hydrolase(s) are established.
Collapse
Affiliation(s)
- Shobha Ghosh
- Division of Pulmonary and Critical Care, Department of Internal Medicine, VCU Medical Center, Richmond, Virginia 23298-0050, USA.
| |
Collapse
|
36
|
Ouimet M, Marcel YL. Regulation of Lipid Droplet Cholesterol Efflux From Macrophage Foam Cells. Arterioscler Thromb Vasc Biol 2012; 32:575-81. [DOI: 10.1161/atvbaha.111.240705] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol efflux from macrophages is the first and potentially most important step in reverse cholesterol transport, a process especially relevant to atherosclerosis and to the regression of atherosclerotic plaques. Increasingly, lipid droplet (LD) cholesteryl ester (CE) hydrolysis is being recognized as a rate-limiting step in cholesterol efflux. The traditional view on macrophage CE hydrolysis is that this pathway is entirely dependent on the action of neutral hydrolases, and numerous candidate CE hydrolases have been proposed to play a role in lipid hydrolysis in macrophages and atherogenesis. Although the exact identity of macrophage-specific CE hydrolases remains to be clarified, a common point to all of these studies is that enhancing LD-associated CE hydrolysis increases cholesterol efflux and is antiatherogenic. Understanding how cholesterol is mobilized from LDs offers new steps for modulating cholesterol efflux, and recently a role for autophagy and lysosomal acid lipase in macrophage lipolysis has emerged. Autophagy and lysosomal acid lipase thus represent novel therapeutic targets to enhance macrophage reverse cholesterol transport. This review discusses our current understanding of the relationship between macrophage LDs and atherosclerosis and presents recent insights into the mechanisms for LD CE hydrolysis in macrophage foam cells.
Collapse
Affiliation(s)
- Mireille Ouimet
- From the Department of Biochemistry, Microbiology, and Immunology (M.O., Y.L.M.), Department of Pathology and Laboratory Medicine (Y.L.M.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Yves L. Marcel
- From the Department of Biochemistry, Microbiology, and Immunology (M.O., Y.L.M.), Department of Pathology and Laboratory Medicine (Y.L.M.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 PMCID: PMC3192302 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z. Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, CA 92037
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, CA 92037
| |
Collapse
|
38
|
Cytoskeleton disruption in J774 macrophages: consequences for lipid droplet formation and cholesterol flux. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:464-72. [PMID: 22015387 DOI: 10.1016/j.bbalip.2011.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/22/2011] [Accepted: 09/23/2011] [Indexed: 01/28/2023]
Abstract
Macrophages store excess unesterified cholesterol (free, FC) in the form of cholesteryl ester (CE) in cytoplasmic lipid droplets. The hydrolysis of droplet-CE in peripheral foam cells is critical to HDL-promoted reverse cholesterol transport because it represents the first step in cellular cholesterol clearance, as only FC is effluxed from cells to HDL. Cytoplasmic lipid droplets move within the cell utilizing the cytoskeletal network, but, little is known about the influence of the cytoskeleton on lipid droplet formation. To understand this role we employed cytochalasin D (cyt.D) to promote actin depolymerization in J774 macrophages. Incubating J774 with acetylated LDL creates foam cells having a 4-fold increase in cellular cholesterol content (30-40% cholesterol present as cholesteryl ester (CE)) in cytoplasmic droplets. Lipid droplets formed in the presence of cyt.D are smaller in diameter. CE-deposition and -hydrolysis are decreased when cells are cholesterol-enriched in the presence of cyt.D or latrunculin A, another cytoskeleton disrupting agent. However, when lipid droplets formed in the presence of cyt.D are isolated and incubated with an exogenous CE hydrolase, the CE is more rapidly metabolized compared to droplets from control cells. This is apparently due to the smaller size and altered lipid composition of the droplets formed in the presence of cyt.D. Cytoskeletal proteins found on CE droplets influence droplet lipid composition and maturation in model foam cells. In J774 macrophages, cytoskeletal proteins are apparently involved in facilitating the interaction of lipid droplets and a cytosolic neutral CE hydrolase and may play a role in foam cell formation. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
|
39
|
|
40
|
Quiroga AD, Lehner R. Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab 2011; 22:218-25. [PMID: 21531146 DOI: 10.1016/j.tem.2011.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/12/2011] [Accepted: 03/16/2011] [Indexed: 01/19/2023]
Abstract
Lipid droplets are universal intracellular organelles composed of a triglyceride, cholesteryl ester and retinyl ester core, surrounded by a monolayer of phospholipids and free (unesterified) cholesterol and lipid droplet-associated proteins. Core lipids are hydrolyzed by lipases to provide fatty acids, cholesterol and retinol for various cellular functions. In addition to cytosolic adipose triglyceride lipase and hormone-sensitive lipase, recent studies show the existence of other neutral lipid hydrolases that reside in the endoplasmic reticulum. In this review we highlight the role of these novel lipases including several members of the carboxylesterase family and enzymes termed arylacetamide deacetylase and KIAA1363/neutral cholesteryl ester hydrolase1/arylacetamide deacetylase-like 1. Some of these enzymes might be attractive targets for the treatment of dyslipidemias, viral infection and atherosclerosis.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
41
|
|
42
|
Chang JW, Nomura DK, Cravatt BF. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. CHEMISTRY & BIOLOGY 2011; 18:476-84. [PMID: 21513884 PMCID: PMC3119342 DOI: 10.1016/j.chembiol.2011.02.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 01/17/2023]
Abstract
Cancer cells show alterations in metabolism that support malignancy and disease progression. Prominent among these metabolic changes is elevations in neutral ether lipids (NELs). We have previously shown that the hydrolytic enzyme KIAA1363 (or AADACL1) is highly elevated in aggressive cancer cells, where it plays a key role in generating the monoalkylglycerol ether (MAGE) class of NELs. Here, we use activity-based protein profiling-guided medicinal chemistry to discover a highly potent and selective inhibitor of KIAA1363, the carbamate JW480. We show that JW480, and an shRNA probe that targets KIAA1363, reduce MAGEs and impair the migration, invasion, survival, and in vivo tumor growth of human prostate cancer cell lines. These findings indicate that the KIAA1363-MAGE pathway is important for prostate cancer pathogenesis and designate JW480 as a versatile pharmacological probe for disrupting this pro-tumorigenic metabolic pathway.
Collapse
Affiliation(s)
- Jae Won Chang
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Daniel K. Nomura
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
43
|
Affiliation(s)
| | - Masaki Igarashi
- University of Tokyo Tokyo, Japan (Igarashi, Sekiya, Okazaki)
| | - Motohiro Sekiya
- University of Tokyo Tokyo, Japan (Igarashi, Sekiya, Okazaki)
| | - Hiroaki Okazaki
- University of Tokyo Tokyo, Japan (Igarashi, Sekiya, Okazaki)
| | | |
Collapse
|
44
|
Abstract
The lipid droplet (LD), an organelle that exists ubiquitously in various organisms, from bacteria to mammals, has attracted much attention from both medical and cell biology fields. The LD in white adipocytes is often treated as the prototype LD, but is rather a special example, considering that its size, intracellular localization and molecular composition are vastly different from those of non-adipocyte LDs. These differences confer distinct properties on adipocyte and non-adipocyte LDs. In this article, we address the current understanding of LDs by discussing the differences between adipocyte and non-adipocyte LDs.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
45
|
Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 2011; 50:14-27. [PMID: 21087632 PMCID: PMC3031774 DOI: 10.1016/j.plipres.2010.10.004] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022]
Abstract
Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic "lipolytic machinery". Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the "lipolysome". This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function.
Collapse
Key Words
- 2-ag, 2-arachidonoyl glycerol
- abhd1-15, α/β hydrolase domain containing protein 1–15
- arf1, adp-ribosylation factor 1
- atgl, adipose triglyceride lipase
- bat, brown adipose tissue
- bifc, bimolecular fluorescence complementation
- cds, chanarin-dorfman syndrome
- ce, cholesterylester
- cgi-58, comparative-gene-identification 58
- copi, coat protein complex-i
- cpla2, cytosolic phospholipase a2
- dag, diacylglycerol
- er, endoplasmic reticulum
- foxo1, forkhead box o1
- g0s2, g0/g1 switch protein 2
- gs2, gene sequence 2
- hsl, hormone-sensitive lipase
- ld, lipid droplet
- lpaat, lysophosphatidic acid acyltransferase
- mag, monoacylglycerol
- mgl, monoglyceride lipase
- mtor, mammalian target of rapamycin
- nefa, non-esterified fatty acid
- nlsd, neutral lipid storage disease
- nlsdi, nlsd with ichthyosis
- nlsdm, nlsd with myopathy
- pka, protein kinase a
- pnpla1-5, patatin-like phospholipase domain containing protein 1–5
- pparα/γ, peroxisome proliferator-activated receptor-alpha/gamma
- ppre, ppar-response element
- rbp4, retinol-binding protein 4
- re, retinylester
- sts, steroid sulfatase
- tag, triacylglycerol
- tgh, triglyceride hydrolase
- tnf-α, tumor necrosis factor alpha
- wat, white adipose tissue
- lipolysis
- fat stores
- triacylglycerol
- lipase
- neutral lipid storage disease
Collapse
Affiliation(s)
| | | | | | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|