1
|
Oh J, Muralidharan S, Zhao Q, Scholz J, Zelnik ID, Blumenreich S, Joseph T, Dingjan T, Narayanaswamy P, Choi H, Hayen H, Torta F, Futerman AH. Deep sphingolipidomic and metabolomic analyses of ceramide synthase 2 null mice reveal complex pathway-specific effects. J Lipid Res 2025:100832. [PMID: 40449731 DOI: 10.1016/j.jlr.2025.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/25/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025] Open
Abstract
The sphingolipidome contains thousands of structurally distinct sphingolipid (SL) species. This enormous diversity is generated by the combination of different long-chain-bases (LCBs), N-acyl chains and head groups. In mammals, LCBs are N-acylated with different fatty acids (from C14 to C32, with different degrees of saturation) by six ceramide synthases (CerS1-6) to generate dihydroceramides (DHCer), with each CerS exhibiting specificity towards acyl-Coenzyme As of defined chain length. CerS2 synthesizes very-long-chain (VLC) DHCer, and mice in which CerS2 has been deleted display a number of pathologies. We now expand previous analyses of the mouse sphingolipidome by examining 264 individual SL species in 18 different tissues, building an extensive SL tissue atlas of wild type and CerS2 null mice. While many of the changes in SL levels were similar to those reported earlier, a number of unexpected findings in CerS2 null mouse tissues were observed, such as the decrease in ceramide 1-phosphate levels in the brain, the increase in C26-SL levels in the lung and no changes in levels of ceramides containing t18:0-LCBs (phytosphinganine). Furthermore, analysis of levels of other metabolites revealed changes in at least six major metabolic pathways, including some that impinge upon the SL metabolism. Together, these data highlight the complex changes that occur in the lipidome and metabolome upon depletion of CerS2, indicating how sphingolipids are connected to many other pathways and that care must be taken when assigning a relationship between tissue pathology and one or other specific SL species.
Collapse
Affiliation(s)
- Jeongah Oh
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sneha Muralidharan
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qing Zhao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Johannes Scholz
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tammar Joseph
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Heiko Hayen
- Department of Analytical Chemistry, Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Federico Torta
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Hamouche R, Summers SA, Holland WL, Navankasattusas S, Drakos SG, Tseliou E. The role of sphingolipids in heart failure. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf035. [PMID: 40322641 PMCID: PMC12046129 DOI: 10.1093/ehjopen/oeaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Advanced heart failure (HF) is characterized by changes in the structure, function, and metabolism of cardiac muscle. As the disease progresses, cardiomyocytes shift their ATP production from fatty acid oxidation to glycolysis. This shift results in an accumulation of lipid metabolites, particularly sphingolipids, which can disrupt normal cellular function and contribute to cardiac dysfunction. In animal models of obesity, accumulation of toxic sphingolipid metabolites in the heart has been described as cardiac lipotoxicity. In humans, HF is classified into two groups based on ejection fraction (EF): HF with reduced EF of less than 40% (HFrEF) and HF with preserved EF of greater than 50% (HFpEF). Despite shared risk factors and comorbidities, the structural and cellular differences between HFrEF and HFpEF distinguish them as separate conditions. Ceramides (Cer), a type of sphingolipid, have gained significant attention for their involvement in the development and prognosis of atherosclerotic disease and myocardial infarction, while sphingosine-1-phosphate, a downstream product of Cer, has shown cardioprotective properties. The aim of this review is to describe the role of sphingolipids in HF with reduced and preserved EF. By understanding the role of sphingolipids through animal and human studies, this review aims to pave the way for developing strategies that target abnormal signalling pathways in the failing heart, ultimately bridging the gap between scientific research and clinical applications.
Collapse
Affiliation(s)
- Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Diabetes and Metabolism Research Center, Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - William L Holland
- Diabetes and Metabolism Research Center, Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA
| | - Eleni Tseliou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
3
|
Peters F, Höfs W, Lee H, Brodesser S, Kruse K, Drexler HC, Hu J, Raker VK, Lukas D, von Stebut E, Krönke M, Niessen CM, Wickström SA. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J Cell Biol 2025; 224:e202403083. [PMID: 39879198 PMCID: PMC11778283 DOI: 10.1083/jcb.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically, HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis. This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.
Collapse
Affiliation(s)
- Franziska Peters
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Windie Höfs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hunki Lee
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Brodesser
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jiali Hu
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Verena K. Raker
- Department of Dermatology, University of Münster, Münster, Germany
| | - Dominika Lukas
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Ntshangase S, Khan S, Bezuidenhout L, Gazárková T, Kaczynski J, Sellers S, Rattray NJ, Newby DE, Hadoke PW, Andrew R. Spatial lipidomic profiles of atherosclerotic plaques: A mass spectrometry imaging study. Talanta 2025; 282:126954. [PMID: 39423636 DOI: 10.1016/j.talanta.2024.126954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Lipids contribute to atherosclerotic cardiovascular disease but their roles are not fully understood. Spatial lipid composition of atherosclerotic plaques was compared between species focusing on aortic plaques from New Zealand White rabbits and carotid plaques from humans (n = 3), using matrix-assisted laser desorption/ionization mass spectrometry imaging. Histologically discriminant lipids within plaque features (neointima and media in rabbits, and lipid-necrotic core and fibrous cap/tissue in humans) included sphingomyelins, phosphatidylcholines, and cholesteryl esters. There were 67 differential lipids between rabbit plaque features and 199 differential lipids in human, each with variable importance in projection score ≥1.0 and p < 0.05. The lipid profile of plaques in the rabbit model closely mimicked that of human plaques and two key pathways (impact value ≥ 0.1), sphingolipid and glycerophospholipid metabolism, were disrupted by atherosclerosis in both species. Thus, mass spectrometry imaging of spatial biomarkers offers valuable insights into atherosclerosis.
Collapse
Affiliation(s)
- Sphamandla Ntshangase
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Shazia Khan
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Louise Bezuidenhout
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Taťána Gazárková
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Jakub Kaczynski
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Stephanie Sellers
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - Nicholas Jw Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Patrick Wf Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
5
|
Reese L, Niepmann ST, Düsing P, Hänschke L, Beiert T, Zimmer S, Nickenig G, Bauer R, Jansen F, Zietzer A. Loss of ceramide synthase 5 inhibits the development of experimentally induced aortic valve stenosis. Acta Physiol (Oxf) 2024; 240:e14140. [PMID: 38546351 DOI: 10.1111/apha.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/24/2024]
Abstract
AIM Inflammation and calcification are hallmarks in the development of aortic valve stenosis (AVS). Ceramides mediate inflammation and calcification in the vascular tissue. The highly abundant d18:1,16:0 ceramide (C16) has been linked to increased cardiovascular mortality and obesity. In this study, we investigate the role of ceramide synthase 5 (CerS5), a critical enzyme for C16 ceramide synthesis, in the development of AVS, particularly in conjunction with a high-fat/high-cholesterol diet (Western diet, WD). METHODS We used wild-type (WT) and CerS5-/- mice on WD or normal chow in a wire injury model. We measured the peak velocity to determine AVS development and performed histological analysis of the aortic valve area, immune cell infiltration (CD68 staining), and calcification (von Kossa). In vitro experiments involved measuring the calcification of human aortic valvular interstitial cells (VICs) and evaluating cytokine release from THP-1 cells, a human leukemia monocytic-like cell line, following CerS5 knockdown. RESULTS CerS5-/- mice showed a reduced peak velocity compared to WT only in the experiment with WD. Likewise, we observed reduced immune cell infiltration and calcification in the aortic valve of CerS5-/- mice, but only on WD. In vitro, calcification was reduced after knockdown of CerS5 in VICs, while THP-1 cells exhibited a decreased inflammatory response following CerS5 knockdown. CONCLUSION We conclude that CerS5 is an important mediator for the development of AVS in mice on WD and regulates critical pathophysiological hallmarks of AVS formation. CerS5 is therefore an interesting target for pharmacological therapy and merits further investigation.
Collapse
Affiliation(s)
- Laurine Reese
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven Thomas Niepmann
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Lea Hänschke
- Life & Medical Sciences Institute (LIMES), Genetics & Molecular Physiology, University of Bonn, Bonn, Germany
| | - Thomas Beiert
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sebastian Zimmer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Reinhard Bauer
- Life & Medical Sciences Institute (LIMES), Genetics & Molecular Physiology, University of Bonn, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Chen Z, Pan Z, Huang C, Zhu X, Li N, Huynh H, Xu J, Huang L, Vaz FM, Liu J, Han Z, Ouyang K. Cardiac lipidomic profiles in mice undergo changes from fetus to adult. Life Sci 2024; 341:122484. [PMID: 38311219 DOI: 10.1016/j.lfs.2024.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
AIMS Lipids are essential cellular components with many important biological functions. Disturbed lipid biosynthesis and metabolism has been shown to cause cardiac developmental abnormality and cardiovascular diseases. In this study, we aimed to investigate the composition and the molecular profiles of lipids in mammalian hearts between embryonic and adult stages and uncover the underlying links between lipid and cardiac development and maturation. MATERIALS AND METHODS We collected mouse hearts at the embryonic day 11.5 (E11.5), E15.5, and the age of 2 months, 4 months and 10 months, and performed lipidomic analysis to determine the changes of the composition, molecular species, and relative abundance of cardiac lipids between embryonic and adult stages. Additionally, we also performed the electronic microscopy and RNA sequencing in both embryonic and adult mouse hearts. KEY FINDINGS The relative abundances of certain phospholipids and sphingolipids including cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, and ceramide, are different between embryonic and adult hearts. Such lipidomic changes are accompanied with increased densities of mitochondrial membranes and elevated expression of genes related to mitochondrial formation in adult mouse hearts. We also analyzed individual molecular species of phospholipids and sphingolipids, and revealed that the composition and distribution of lipid molecular species in hearts also change with development. SIGNIFICANCE Our study provides not only a lipidomic view of mammalian hearts when developing from the embryonic to the adult stage, but also a potential pool of lipid indicators for cardiac cell development and maturation.
Collapse
Affiliation(s)
- Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Zhixiang Pan
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Helen Huynh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, the Netherlands
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, China.
| |
Collapse
|
7
|
Lassallette E, Collén PN, Guerre P. Targeted sphingolipidomics indicates increased C22-C24:16 ratios of virtually all assayed classes in liver, kidney, and plasma of fumonisin-fed chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115697. [PMID: 37979349 DOI: 10.1016/j.ecoenv.2023.115697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The biological properties of sphinganine-(d18:0)-, sphingosine-(d18:1)-, deoxysphinganine-(m18: 0)-, deoxysphingosine-(m18:1)-, deoxymethylsphinganine-(m17:0)-, deoxymethylsphingosine-(m17:1)-, sphingadienine-(d18:2)-, and phytosphingosine-(t18:0)-sphingolipids have been reported to vary, but little is known about the effects of fumonisins, which are mycotoxins that inhibit ceramide synthase, on sphingolipids other than those containing d18:0 and d18:1. Thirty chickens divided into three groups received a control diet or a diet containing 14.6 mg FB1 + FB2/kg for 14 and 21 days. No effects on health or performance were observed, while the effects on sphingoid bases, ceramides, sphingomyelins, and glycosylceramides in liver, kidney, and plasma varied. The t18:0 forms were generally unaffected by fumonisins, while numerous effects were found for m18:0, m18:1, d18:2, and the corresponding ceramides, and these effects appeared to be similar to those observed for d18:0-, and d18:1-ceramides. Partial least square discriminant analysis showed that d18:1- and d18:0-sphingolipids are important variables for explaining the partitioning of chickens into different groups according to fumonisins feeding, while m17:1-, m18:0-, m18:1-, d18:2-, and t18:0-sphingolipids are not. Interestingly, the C22-C24:C16 ratios measured for each class of sphingolipid increased in fumonisin-fed chickens in the three assayed matrices, whereas the total amounts of the sphingolipid classes varied. The potential use of C22-C24:C16 ratios as biomarkers requires further study.
Collapse
Affiliation(s)
| | | | - Philippe Guerre
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
8
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
9
|
Wei T, Cao N, Han T, Chen Y, Zhou X, Niu L, Liu W, Li C. Lipidomics Analysis Explores the Mechanism of Renal Injury in Rat Induced by 3-MCPD. TOXICS 2023; 11:479. [PMID: 37368578 DOI: 10.3390/toxics11060479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
3-monochloropropane-1,2-diol (3-MCPD) is a food-process toxic substance, and its main target organ is the kidney. The present study examined and characterized the nephrotoxicity and the lipidomic mechanisms in a model of kidney injury in Sprague Dawley (SD) rats treated with high (45 mg/kg) and low (30 mg/kg) doses of 3-MCPD. The results showed that the ingestion of 3-MCPD led to a dose-dependent increase in serum creatinine and urea nitrogen levels and histological renal impairment. The oxidative stress indicators (MDA, GSH, T-AOC) in the rat kidney altered in a dose-dependent manner in 3-MCPD groups. The lipidomics analysis revealed that 3-MCPD caused kidney injury by interfering with glycerophospholipid metabolism and sphingolipid metabolism. In addition, 38 lipids were screened as potential biomarkers. This study not only revealed the mechanism of 3-MCPD renal toxicity from the perspective of lipidomics but also provided a new approach to the study of 3-MCPD nephrotoxicity.
Collapse
Affiliation(s)
- Tao Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Na Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Tiantian Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Liyang Niu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Wenting Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
11
|
Corsetto PA, Zava S, Rizzo AM, Colombo I. The Critical Impact of Sphingolipid Metabolism in Breast Cancer Progression and Drug Response. Int J Mol Sci 2023; 24:ijms24032107. [PMID: 36768427 PMCID: PMC9916652 DOI: 10.3390/ijms24032107] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.
Collapse
|
12
|
Cao B, Yang S, Yan L, Li N. Comprehensive serum lipidomic analyses reveal potential biomarkers for malignant breast cancer: A case-control study. Cancer Biomark 2023; 37:289-297. [PMID: 37302027 DOI: 10.3233/cbm-220462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Breast cancer is the most worldwide commonly found malignancy among women. The evidence for lipidomic studies of breast cancer in the Chinese population is relatively limited. OBJECTIVE Our current study aimed to identify peripheral lipids capable of distinguishing adults with and without malignant breast cancer in a Chinese population and to explore the potential lipid metabolism pathways implicated in breast cancer. METHODS Lipidomics was performed with an Ultimate 3000 UHPLC system coupled with a Q-Exactive HF MS platform by using the serum of 71 female patients with malignant breast cancer and 92 age-matched (± 2 years) healthy women. The data were uploaded to and processed by the specialized online software Metaboanalyst 5.0. Both univariate and multivariate analyses were carried out for potential biomarker screening. Areas under the receiver-operating characteristic (ROC) curves (AUCs) of identified differential lipids were obtained for evaluating their classification capacity. RESULTS A total of 47 significantly different lipids were identified by applying the following criteria: false discovery rate-adjusted P < 0.05, variable importance in projection ⩾ 1.0, and fold change ⩾ 2.0 or ⩽ 0.5. Among them, 13 lipids were identified as diagnostic biomarkers with the area under curve (AUC) greater than 0.7. Multivariate ROC curves indicated that AUCs greater than 0.8 could be achieved with 2-47 lipids. CONCLUSIONS Using an untargeted LC-MS-based metabolic profiling approach, our study provides preliminary evidence that extensive dysregulations of OxPCs, PCs, SMs and TAGs were involved in the pathological processes of breast cancer. We provided clues for furtherly investigating the role of lipid alterations in the pathoetiology of breast cancer.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality (SWU), Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, China
| | - Siyu Yang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Zietzer A, Düsing P, Reese L, Nickenig G, Jansen F. Ceramide Metabolism in Cardiovascular Disease: A Network With High Therapeutic Potential. Arterioscler Thromb Vasc Biol 2022; 42:1220-1228. [PMID: 36004640 DOI: 10.1161/atvbaha.122.318048] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that ceramides play an important role in the development of atherosclerotic and valvular heart disease. Ceramides are biologically active sphingolipids that are produced by a complex network of enzymes. Lowering cellular and tissue levels of ceramide by inhibiting the ceramide-producing enzymes counteracts atherosclerotic and valvular heart disease development in animal models. In vascular tissues, ceramides are produced in response to hyperglycemia and TNF (tumor necrosis factor)-α signaling and are involved in NO-signaling and inflammation. In humans, elevated blood ceramide levels are associated with cardiovascular events. Furthermore, important cardiovascular risk factors, such as obesity and diabetes, have been linked to ceramide accumulation. This review summarizes the basic mechanisms of how ceramides drive cardiovascular disease locally and links these findings to the intriguing results of human studies on ceramides as biomarkers for cardiovascular events. Moreover, we discuss the current state of interventions to therapeutically influence vascular ceramide metabolism, both locally and systemically.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Laurine Reese
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| |
Collapse
|
14
|
Nicholson RJ, Norris MK, Poss AM, Holland WL, Summers SA. The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease. Annu Rev Nutr 2022; 42:115-144. [PMID: 35584813 PMCID: PMC9399075 DOI: 10.1146/annurev-nutr-062220-112920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diet influences onset, progression, and severity of several chronic diseases, including heart failure, diabetes, steatohepatitis, and a subset of cancers. The prevalence and clinical burden of these obesity-linked diseases has risen over the past two decades. These metabolic disorders are driven by ectopic lipid deposition in tissues not suited for fat storage, leading to lipotoxic disruption of cell function and survival. Sphingolipids such as ceramides are among the most deleterious and bioactive metabolites that accrue, as they participate in selective insulin resistance, dyslipidemia, oxidative stress and apoptosis. This review discusses our current understanding of biochemical pathways controlling ceramide synthesis, production and action; influences of diet on ceramide levels; application of circulating ceramides as clinical biomarkers of metabolic disease; and molecular mechanisms linking ceramides to altered metabolism and survival of cells. Development of nutritional or pharmacological strategies to lower ceramides could have therapeutic value in a wide range of prevalent diseases.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Annelise M. Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Guerre P, Travel A, Tardieu D. Targeted Analysis of Sphingolipids in Turkeys Fed Fusariotoxins: First Evidence of Key Changes That Could Help Explain Their Relative Resistance to Fumonisin Toxicity. Int J Mol Sci 2022; 23:2512. [PMID: 35269655 PMCID: PMC8910753 DOI: 10.3390/ijms23052512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of fumonisins on sphingolipids in turkeys are unknown, except for the increased sphinganine to sphingosine ratio (Sa:So) used as a biomarker. Fumonisins fed at 20.2 mg/kg for 14 days were responsible for a 4.4 fold increase in the Sa:So ratio and a decrease of 33% and 36% in C14-C16 ceramides and C14-C16 sphingomyelins, respectively, whereas C18-C26 ceramides and C18-C26 sphingomyelins remained unaffected or were increased. Glucosyl- and lactosyl-ceramides paralleled the concentrations of ceramides. Fumonisins also increased dihydroceramides but had no effect on deoxysphinganine. A partial least squfares discriminant analysis revealed that all changes in sphingolipids were important in explaining the effect of fumonisins. Because deoxynivalenol and zearalenone are often found in feed, their effects on sphingolipids alone and in combination with fumonisins were investigated. Feeding 5.12 mg deoxynivalenol/kg reduced dihydroceramides in the liver. Zearalenone fed at 0.47 mg/kg had no effect on sphingolipids. When fusariotoxins were fed simultaneously, the effects on sphingolipids were similar to those observed in turkeys fed fumonisins alone. The concentration of fumonisin B1 in the liver of turkeys fed fumonisins was 0.06 µmol/kg. Changes in sphingolipid concentrations differed but were consistent with the IC50 of fumonisin B1 measured in mammals; these changes could explain the relative resistance of turkeys to fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| | | | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| |
Collapse
|
16
|
Shu H, Peng Y, Hang W, Li N, Zhou N, Wang DW. Emerging Roles of Ceramide in Cardiovascular Diseases. Aging Dis 2022; 13:232-245. [PMID: 35111371 PMCID: PMC8782558 DOI: 10.14336/ad.2021.0710] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Ceramide is a core molecule of sphingolipid metabolism that causes selective insulin resistance and dyslipidemia. Research on its involvement in cardiovascular diseases has grown rapidly. In resting cells, ceramide levels are extremely low, while they rapidly accumulate upon encountering external stimuli. Recently, the regulation of ceramide levels under pathological conditions, including myocardial infarction, hypertension, and atherosclerosis, has drawn great attention. Increased ceramide levels are strongly associated with adverse cardiovascular risks and events while inhibiting the synthesis of ceramide or accelerating its degradation improves a variety of cardiovascular diseases. In this article, we summarize the role of ceramide in cardiovascular disease, investigate the possible application of ceramide as a new diagnostic biomarker and a therapeutic target for cardiovascular disorders, and highlight the remaining problems.
Collapse
Affiliation(s)
- Hongyang Shu
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- 3Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Na Li
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
17
|
Liu H, Chen T, Xie X, Wang X, Luo Y, Xu N, Sa Z, Zhang M, Chen Z, Hu X, Li J. Hepatic Lipidomics Analysis Reveals the Ameliorative Effects of Highland Barley β-Glucan on Western Diet-Induced Nonalcoholic Fatty Liver Disease Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9287-9298. [PMID: 34347479 DOI: 10.1021/acs.jafc.1c03379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by marked imbalances in lipid storage and metabolism. Because the beneficial health effects of cereal β-glucan (BG) include lowering cholesterol and regulating lipid metabolism, BG may alleviate the imbalances in lipid metabolism observed during NAFLD. The aim of our study was to investigate whether BG from highland barley has an effect on western diet-induced NAFLD in mice. Using lipidomics, we investigated the underlying mechanisms of BG intervention, and identified potential lipid biomarkers. The results reveal that BG (300 mg/kg body weight) significantly alleviated liver steatosis. Lipidomics analysis demonstrated that BG also altered lipid metabolic patterns. We were able to identify 13 differentially regulated lipid species that may be useful as lipid biomarkers. Several genes in the hepatic lipid and cholesterol metabolism pathways were also modulated. These findings provide evidence that BG ameliorates NAFLD by altering liver lipid metabolites and regulating lipid metabolism-related genes.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Tao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Xiaoqing Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Yiwen Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Nan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Zhen Sa
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, People's Republic of China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, Shaanxi Province 712100, People's Republic of China
| |
Collapse
|
18
|
Barron K, Ogretmen B, Krupenko N. Ceramide synthase 6 mediates sex-specific metabolic response to dietary folic acid in mice. J Nutr Biochem 2021; 98:108832. [PMID: 34358645 DOI: 10.1016/j.jnutbio.2021.108832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Abstract
Folic acid-fortified foods and multi-vitamin supplements containing folic acid (FA) are widely used around the world, but the exact mechanisms/metabolic effects of FA are not precisely identified. We have demonstrated that Ceramide Synthase 6 (CerS6) and C16:0-ceramide mediate response to folate stress in cultured cells. Here we investigated the dietary FA effects on mouse liver metabolome, with a specific focus on sphingolipids, CerS6 and C16:0-ceramide. Wild-type and CerS6-/- mice were fed FA-deficient, control, or FA over-supplemented diets for 4 weeks. After dietary treatment, liver concentrations of ceramides, sphingomyelins and hexosylceramides were measured by LC-MS/MS and complemented by untargeted metabolomic characterization of mouse livers. Our study shows that alterations in dietary FA elicit multiple sphingolipid responses mediated by CerS6 in mouse livers. Folic acid-deficient diet elevated C14:0-, C18:0- and C20:0- but not C16:0-ceramide in WT male and female mice. Additionally, FA over-supplementation increased multiple sphingomyelin species, including total sphingomyelins, in both sexes. Of note, concentrations of C14:0- and C16:0-ceramides and hexosylceramides were significantly higher in female livers than in male. The latter were increased by FD diet, with no difference between sexes in total pools of these sphingolipid classes. Untargeted liver metabolomic analysis concurred with the targeted measurements and showed broad effects of dietary FA and CerS6 status on multiple lipid classes including sex-specific effects on phosphatidylethanolamines and diacylglycerols. Our study demonstrates that both dietary FA and CerS6 status exhibit pleiotropic and sex-dependent effects on liver metabolism, including hepatic sphingolipids, diacylglycerols, long chain fatty acids, and phospholipids.
Collapse
Affiliation(s)
- Keri Barron
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Hollings Cancer center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina
| | - Natalia Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina,; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,.
| |
Collapse
|
19
|
Restoration of ceramide de novo synthesis by the synthetic retinoid ST1926 as it induces adult T-cell leukemia cell death. Biosci Rep 2021; 40:226649. [PMID: 33048123 PMCID: PMC7593536 DOI: 10.1042/bsr20200050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023] Open
Abstract
Ceramide (Cer) is a bioactive cellular lipid with compartmentalized and tightly regulated levels. Distinct metabolic pathways lead to the generation of Cer species with distinguishable roles in oncogenesis. Deregulation of Cer pathways has emerged as an important mechanism for acquired chemotherapeutic resistance. Adult T-cell leukemia (ATL) cells are defective in Cer synthesis. ATL is an aggressive neoplasm that develops following infection with human T-cell lymphotropic virus-1 (HTLV-1) where the viral oncogene Tax contributes to the pathogenesis of the disease. ATL cells, resistant to all-trans-retinoic acid, are sensitive to pharmacologically achievable concentrations of the synthetic retinoid ST1926. We studied the effects of ST1926 on Cer pathways in ATL cells. ST1926 treatment resulted in early Tax oncoprotein degradation in HTLV-1-treated cells. ST1926 induced cell death and a dose- and time-dependent accumulation of Cer in malignant T cells. The kinetics and degree of Cer production showed an early response upon ST1926 treatment. ST1926 enhanced de novo Cer synthesis via activation of ceramide synthase CerS(s) without inhibiting dihydroceramide desaturase, thereby accumulating Cer rather than the less bioactive dihydroceramide. Using labeling experiments with the unnatural 17-carbon sphinganine and measuring the generated Cer species, we showed that ST1926 preferentially induces the activities of a distinct set of CerS(s). We detected a delay in cell death response and interruption of Cer generation in response to ST1926 in Molt-4 cells overexpressing Bcl-2. These results highlight the potential role of ST1926 in inducing Cer levels, thus lowering the threshold for cell death in ATL cells.
Collapse
|
20
|
Kim JL, Mestre B, Shin SH, Futerman AH. Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cell Signal 2021; 82:109958. [PMID: 33607256 DOI: 10.1016/j.cellsig.2021.109958] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the 'many-worlds' view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid's prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.
Collapse
Affiliation(s)
- Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sun-Hye Shin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
21
|
Bai A, Bielawski J, Bielawska A, Hannun YA. Synthesis of erythro- B13 enantiomers and stereospecific action of full set of B13-isomers in MCF7 breast carcinoma cells: Cellular metabolism and effects on sphingolipids. Bioorg Med Chem 2021; 32:116011. [PMID: 33461145 DOI: 10.1016/j.bmc.2021.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
B13 is an acid ceramidase (ACDase) inhibitor. The two chiral centers of this aromatic amido alcohol lead to four stereoisomers, yet we have little knowledge about its erythro- enantiomers, (1R, 2S) and (1S, 2R). In this paper, for the first time, the synthesis of two erythro- enantiomers is described, and the compounds are evaluated along with two threo- enantiomers, (1R, 2R) and (1S, 2S). The key metabolites and sphingolipid (SL) profile of the full set of B13 stereoisomers in MCF7 breast carcinoma cells are presented. The results demonstrated that the erythro- enantiomers were more effective than the threo- enantiomers on growth inhibition in MCF7 cells, although there were no statistically significant differences within the threo- and erythro- series. Measurement of intracellular levels of the compounds indicated that the erythro- seemed a little more cell permeable than the threo- enantiomers; also, the (1R, 2S) isomer with the same stereo structure as natural ceramide (Cer) could be hydrolyzed and phosphorylated in MCF7 cells. Furthermore, we also observed the formation of C16 homologs from the full set of B13 isomers within the cells, indicating the occurrence of de-acylation and re-acylation of the amino group of the aromatic alcohol. Moreover, the decrease in the Cer/Sph ratio suggests that the growth inhibition from (1R, 2S) isomer is not because of the inhibition of ceramidases. Taken together, (1R, 2S) could be developed as a substitute of natural Cer.
Collapse
Affiliation(s)
- Aiping Bai
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Shared Resources, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Shared Resources, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Alicja Bielawska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Shared Resources, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Yusuf A Hannun
- Departments of Medicine and Biochemistry & the Stony Brook Cancer Center at Stony, Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
22
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
23
|
Medatwal N, Ansari MN, Kumar S, Pal S, Jha SK, Verma P, Rana K, Dasgupta U, Bajaj A. Hydrogel-mediated delivery of celastrol and doxorubicin induces a synergistic effect on tumor regression via upregulation of ceramides. NANOSCALE 2020; 12:18463-18475. [PMID: 32941570 DOI: 10.1039/d0nr01066a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The release of anticancer drugs in systemic circulation and their associated toxicity are responsible for the poor efficacy of chemotherapy. Therefore, the identification of new chemotherapeutic combinations designed to be released near the tumor site in a sustained manner has the potential to enhance the efficacy and reduce the toxicity associated with chemotherapy. Here, we present the identification of a combination of doxorubicin, a DNA-binding topoisomerase inhibitor, with a naturally occurring triterpenoid, celastrol, that induces a synergistic effect on the apoptosis of colon cancer cells. Hydrogel-mediated sustained release of a combination of doxorubicin and celastrol in a murine tumor model abrogates tumor proliferation, and increases the median survival with enhanced apoptosis and concurrent reduction in proliferation. Sphingolipid profiling (LC-MS/MS) of treated tumors showed that the combination of celastrol and doxorubicin induces global changes in the expression of sphingolipids with an increase in levels of ceramides. We further demonstrate that this dual drug combination induces a significant increase in the expression of ceramide synthase 1, 4, and 6, thereby increasing the level of ceramides that contribute to the synergistic apoptotic effect. Therefore, hydrogel-mediated localized delivery of a combination of celastrol and doxorubicin provides a new therapeutic combination that induces a sphingolipid-mediated synergistic effect against colon cancer.
Collapse
Affiliation(s)
- Nihal Medatwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad-121001, Haryana, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Suzuki M, Cao K, Kato S, Mizutani N, Tanaka K, Arima C, Tai MC, Nakatani N, Yanagisawa K, Takeuchi T, Shi H, Mizutani Y, Niimi A, Taniguchi T, Fukui T, Yokoi K, Wakahara K, Hasegawa Y, Mizutani Y, Iwaki S, Fujii S, Satou A, Tamiya-Koizumi K, Murate T, Kyogashima M, Tomida S, Takahashi T. CERS6 required for cell migration and metastasis in lung cancer. J Cell Mol Med 2020; 24:11949-11959. [PMID: 32902157 PMCID: PMC7579715 DOI: 10.1111/jcmm.15817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids constitute a class of bio‐reactive molecules that transmit signals and exhibit a variety of physical properties in various cell types, though their functions in cancer pathogenesis have yet to be elucidated. Analyses of gene expression profiles of clinical specimens and a panel of cell lines revealed that the ceramide synthase gene CERS6 was overexpressed in non–small‐cell lung cancer (NSCLC) tissues, while elevated expression was shown to be associated with poor prognosis and lymph node metastasis. NSCLC profile and in vitro luciferase analysis results suggested that CERS6 overexpression is promoted, at least in part, by reduced miR‐101 expression. Under a reduced CERS6 expression condition, the ceramide profile became altered, which was determined to be associated with decreased cell migration and invasion activities in vitro. Furthermore, CERS6 knockdown suppressed RAC1‐positive lamellipodia/ruffling formation and attenuated lung metastasis efficiency in mice, while forced expression of CERS6 resulted in an opposite phenotype in examined cell lines. Based on these findings, we consider that ceramide synthesis by CERS6 has important roles in lung cancer migration and metastasis.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Ke Cao
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Naoki Mizutani
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Kouji Tanaka
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Chinatsu Arima
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mei Chee Tai
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norie Nakatani
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Yanagisawa
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Hanxiao Shi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Yasuyoshi Mizutani
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Atsuko Niimi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Tetsuo Taniguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Wakahara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko Mizutani
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Soichiro Iwaki
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoshi Fujii
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akira Satou
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Keiko Tamiya-Koizumi
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Murate
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Mamoru Kyogashima
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Shuta Tomida
- Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Markowski AR, Błachnio-Zabielska AU, Guzińska-Ustymowicz K, Markowska A, Pogodzińska K, Roszczyc K, Zińczuk J, Zabielski P. Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules 2020; 10:E632. [PMID: 32325909 PMCID: PMC7225954 DOI: 10.3390/biom10040632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Much attention is paid to different sphingolipid pathways because of their possible use in diagnostics and treatment. However, the activity status and significance of ceramide pathways in colorectal cancer are still unclear. We analyzed colorectal cancer patients to evaluate sphingolipid profiles in the blood, colorectal cancer (CRC) tissues, and healthy surrounding colorectal tissues of the same patient, simultaneously, using liquid chromatography coupled with triple quadrupole mass spectrometry. Furthermore, we measured protein expression of de novo ceramide synthesis enzymes and mitochondrial markers in tissues using western blot. We confirmed the different sphingolipid contents in colorectal cancer tissue compared to healthy surrounding tissues. Furthermore, we showed changed amounts of several ceramides in more advanced colorectal cancer tissue and found a prominently higher circulating level of several of them. Moreover, we observed a relationship between the amounts of some ceramide species in colorectal cancer tissue and plasma depending on the stage of colorectal cancer according to TNM (tumors, nodes, metastasis) classification. We think that the combined measurement of several ceramide concentrations in plasma can help distinguish early-stage lesions from advanced colorectal cancer and can help produce a screening test to detect early colorectal cancer.
Collapse
Affiliation(s)
- Adam R. Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland
| | - Agnieszka U. Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, 13 Jerzy Waszyngton Street, 15-269 Bialystok, Poland
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, 2A Adam Mickiewicz Street, 15-222 Bialystok, Poland;
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (A.U.B.-Z.); (K.P.)
| | - Kamila Roszczyc
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15A Jerzy Waszyngton Street, 15-269 Bialystok, Poland;
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland; (K.R.); (P.Z.)
| |
Collapse
|
26
|
Ceramide synthase 2 knockdown suppresses trophozoite growth, migration, in vitro encystment and excystment of Entamoeba invadens. Biochem Biophys Res Commun 2020; 524:135-141. [DOI: 10.1016/j.bbrc.2020.01.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
|
27
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
28
|
Abstract
Long chain base (LCB) is a unique building block found in sphingolipids. The initial step of LCB biosynthesis stems from serine:palmitoyl-CoA transferase enzyme, producing 3-ketodihydrosphingosine with multiple regulatory proteins including small subunit SPT a/b and orosomucoid-like protein1-3. 3-Ketodihydrosphingosine reductase and sphingolipid Δ4-desaturase, both of them poorly characterized mammalian enzymes, play key roles for neurological homeostasis based on their pathogenic mutation in humans. Ceramide synthase in mammals has six isoforms with distinct phenotype in each knockout mouse. In plants and fungi, sphingolipids also contain phytosphingosine due to sphingolipid C4-hydroxylase. In contrast to previous notion that dietary intake might be its major route in animals, emerging evidences suggested that phytosphingosine biosynthesis does occur in some tissues such as the skin by mammalian C4-hydroxylase activity of the DEGS2 gene. This short review summarizes LCB biosynthesis with their associating metabolic pathways in animals, plants and fungi. Sphingolipid is a group of lipids that contains a unique building block known as long chain base (LCB). LCB is susceptible to various biosynthetic reactions such as unsaturation, hydroxylation and methylation. A failure of these enzymatic reactions leads to the pathogenesis in humans with an elevation of LCB-derived specific biomarkers. Herein, we summarized emerging evidences in mammalian LCB biosynthesis in sphingolipids. Some unique metabolic pathways in plants and fungi were also discussed.
Collapse
|
29
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
30
|
Pujol-Lereis LM. Alteration of Sphingolipids in Biofluids: Implications for Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20143564. [PMID: 31330872 PMCID: PMC6678458 DOI: 10.3390/ijms20143564] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SL) modulate several cellular processes including cell death, proliferation and autophagy. The conversion of sphingomyelin (SM) to ceramide and the balance between ceramide and sphingosine-1-phosphate (S1P), also known as the SL rheostat, have been associated with oxidative stress and neurodegeneration. Research in the last decade has focused on the possibility of targeting the SL metabolism as a therapeutic option; and SL levels in biofluids, including serum, plasma, and cerebrospinal fluid (CSF), have been measured in several neurodegenerative diseases with the aim of finding a diagnostic or prognostic marker. Previous reviews focused on results from diseases such as Alzheimer's Disease (AD), evaluated total SL or species levels in human biofluids, post-mortem tissues and/or animal models. However, a comprehensive review of SL alterations comparing results from several neurodegenerative diseases is lacking. The present work compiles data from circulating sphingolipidomic studies and attempts to elucidate a possible connection between certain SL species and neurodegeneration processes. Furthermore, the effects of ceramide species according to their acyl-chain length in cellular pathways such as apoptosis and proliferation are discussed in order to understand the impact of the level alteration in specific species. Finally, enzymatic regulations and the possible influence of insulin resistance in the level alteration of SL are evaluated.
Collapse
Affiliation(s)
- Luciana M Pujol-Lereis
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE-CONICET), X5016DHK Córdoba, Argentina.
| |
Collapse
|
31
|
Riley RT, Merrill AH. Ceramide synthase inhibition by fumonisins: a perfect storm of perturbed sphingolipid metabolism, signaling, and disease. J Lipid Res 2019; 60:1183-1189. [PMID: 31048407 PMCID: PMC6602133 DOI: 10.1194/jlr.s093815] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/25/2019] [Indexed: 01/18/2023] Open
Abstract
Fumonisins are mycotoxins that cause diseases of plants and, when consumed by animals, can damage liver, kidney, lung, brain, and other organs, alter immune function, and cause developmental defects and cancer. They structurally resemble sphingolipids (SLs), and studies nearly 30 years ago discovered that the most prevalent fumonisin [fumonisin B1 (FB1)] potently inhibits ceramide synthases (CerSs), enzymes that use fatty acyl-CoAs to N-acylate sphinganine (Sa), sphingosine (So), and other sphingoid bases. CerS inhibition by FB1 triggers a "perfect storm" of perturbations in structural and signaling SLs that include: reduced formation of dihydroceramides, ceramides, and complex SLs; elevated Sa and So and their 1-phosphates, novel 1-deoxy-sphingoid bases; and alteration of additional lipid metabolites from interrelated pathways. Moreover, because the initial enzyme of sphingoid base biosynthesis remains active (sometimes with increased activity), the impact is multiplied by the continued production of damaging metabolites. Evidence from many studies, including characterization of knockout mice for specific CerSs and analyses of human blood (which found that FB1 intake is associated with elevated Sa 1-phosphate), has consistently pointed to CerS as the proximate target of FB1 It is also apparent that the changes in multiple bioactive lipids and related biologic processes account for the ensuing spectrum of animal and plant disease. Thus, the diseases caused by fumonisins can be categorized as "sphingolipidoses" (in these cases, due to defective SL biosynthesis), and the lessons learned about the consequences of CerS inhibition should be borne in mind when contemplating other naturally occurring and synthetic compounds (and genetic manipulations) that interfere with SL metabolism.
Collapse
Affiliation(s)
- Ronald T Riley
- College of Public Health, Department of Environmental Health Science, University of Georgia, Athens, GA 30602
| | - Alfred H Merrill
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
32
|
Snider JM, Trayssac M, Clarke CJ, Schwartz N, Snider AJ, Obeid LM, Luberto C, Hannun YA. Multiple actions of doxorubicin on the sphingolipid network revealed by flux analysis. J Lipid Res 2019; 60:819-831. [PMID: 30573560 PMCID: PMC6446699 DOI: 10.1194/jlr.m089714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids (SLs) have been implicated in numerous important cellular biologies; however, their study has been hindered by the complexities of SL metabolism. Furthermore, enzymes of SL metabolism represent a dynamic and interconnected network in which one metabolite can be transformed into other bioactive SLs through further metabolism, resulting in diverse cellular responses. Here we explore the effects of both lethal and sublethal doses of doxorubicin (Dox) in MCF-7 cells. The two concentrations of Dox resulted in the regulation of SLs, including accumulations in sphingosine, sphingosine-1-phosphate, dihydroceramide, and ceramide, as well as reduced levels of hexosylceramide. To further define the effects of Dox on SLs, metabolic flux experiments utilizing a d17 dihydrosphingosine probe were conducted. Results indicated the regulation of ceramidases and sphingomyelin synthase components specifically in response to the cytostatic dose. The results also unexpectedly demonstrated dose-dependent inhibition of dihydroceramide desaturase and glucosylceramide synthase in response to Dox. Taken together, this study uncovers novel targets in the SL network for the action of Dox, and the results reveal the significant complexity of SL response to even a single agent. This approach helps to define the role of specific SL enzymes, their metabolic products, and the resulting biologies in response to chemotherapeutics and other stimuli.
Collapse
Affiliation(s)
- Justin M Snider
- Molecular and Cellular Biology and Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY; Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Magali Trayssac
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Christopher J Clarke
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Nicholas Schwartz
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Ashley J Snider
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Lina M Obeid
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Physiology and Biophysics, Stony Brook University, Stony Brook, NY.
| | - Yusuf A Hannun
- Departments of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Departments of Biochemistry, Stony Brook University, Stony Brook, NY; Departments of Pharmacology, Stony Brook University, Stony Brook, NY; Departments of Pathology, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
33
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
34
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
35
|
Ceramide Suppresses Influenza A Virus Replication In Vitro. J Virol 2019; 93:JVI.00053-19. [PMID: 30700605 DOI: 10.1128/jvi.00053-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Annual influenza outbreaks are associated with significant morbidity and mortality worldwide despite the availability of seasonal vaccines. Influenza pathogenesis depends on the manipulation of host cell signaling to promote virus replication. Ceramide is a sphingosine-derived lipid that regulates diverse cellular processes. Studies highlighted the differential role of ceramide de novo biosynthesis on the propagation of various viruses. Whether ceramide plays, a role in influenza virus replication is not known. In this study, we assessed the potential interplay between the influenza A (IAV) and ceramide biosynthesis pathways. The accumulation of ceramide in human lung epithelial cells infected with influenza A/H1N1 virus strains was evaluated using thin-layer chromatography and/or confocal microscopy. Virus replication was assessed upon the regulation of the de novo ceramide biosynthesis pathway. A significant increase in ceramide accumulation was observed in cells infected with IAV in a dose- and time-dependent manner. Inoculating the cells with UV-inactivated IAV did not result in ceramide accumulation in the cells, suggesting that the induction of ceramide required an active virus replication. Inhibiting de novo ceramide significantly decreased ceramide accumulation and enhanced virus replication. The addition of exogenous C6-ceramide prior to infection mediated an increase in cellular ceramide levels and significantly attenuated IAV replication and reduced viral titers (≈1 log10 PFU/ml unit). Therefore, our data demonstrate that ceramide accumulation through de novo biosynthesis pathway plays a protective and antiviral role against IAV infection. These findings propose new avenues for development of antiviral molecules and strategies.IMPORTANCE Understanding the effect of sphingolipid metabolism on viral pathogenesis provide important insights into the development of therapeutic strategies against microbial infections. In this study, we demonstrate a critical role of ceramide during influenza A virus infection. We demonstrate that ceramide produced through de novo biosynthesis possess an antiviral role. These observations unlock new opportunities for the development of novel antiviral therapies against influenza.
Collapse
|
36
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
37
|
3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 2019; 9:1138. [PMID: 30718751 PMCID: PMC6361991 DOI: 10.1038/s41598-018-37946-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
3-ketodihydrosphingosine reductase (KDSR) is the key enzyme in the de novo sphingolipid synthesis. We identified a novel missense kdsrI105R mutation in zebrafish that led to a loss of function, and resulted in progression of hepatomegaly to steatosis, then hepatic injury phenotype. Lipidomics analysis of the kdsrI105R mutant revealed compensatory activation of the sphingolipid salvage pathway, resulting in significant accumulation of sphingolipids including ceramides, sphingosine and sphingosine 1-phosphate (S1P). Ultrastructural analysis revealed swollen mitochondria with cristae damage in the kdsrI105R mutant hepatocytes, which can be a cause of hepatic injury in the mutant. We found elevated sphingosine kinase 2 (sphk2) expression in the kdsrI105R mutant. Genetic interaction analysis with the kdsrI105R and the sphk2wc1 mutants showed that sphk2 depletion suppressed liver defects observed in the kdsrI105R mutant, suggesting that liver defects were mediated by S1P accumulation. Further, both oxidative stress and ER stress were completely suppressed by deletion of sphk2 in kdsrI105R mutants, linking these two processes mechanistically to hepatic injury in the kdsrI105R mutants. Importantly, we found that the heterozygous mutation in kdsr induced predisposed liver injury in adult zebrafish. These data point to kdsr as a novel genetic risk factor for hepatic injury.
Collapse
|
38
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance: controversies and challenges. J Mol Endocrinol 2019; 62:R65-R82. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells - lipids - play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects on insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, New South Wales, Australia
| | - Greg C Smith
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, New South Wales, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Goins L, Spassieva S. Sphingoid bases and their involvement in neurodegenerative diseases. Adv Biol Regul 2018; 70:65-73. [PMID: 30377075 DOI: 10.1016/j.jbior.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Sphingoid bases (also known as long-chain bases) form the backbone of sphingolipids. Sphingolipids comprise a large group of lipid molecules, which function as the building blocks of biological membranes and play important signaling and regulatory roles within cells. The roles of sphingoid bases in neurotoxicity and neurodegeneration have yet to be fully elucidated, as they are complex and multi-faceted. This comprises a new frontier of research that may provide us with important clues regarding their involvement in neurological health and disease. This paper explores various neurological diseases and conditions which result when the metabolism of sphingoid bases and some of their derivatives, such as sphingosine-1-phosphate and psychosine, becomes compromised due to the inhibition or mutation of key enzymes. Dysregulation of sphingoid base metabolism very often manifests with neurological symptoms, as sphingolipids are highly enriched in the nervous system, where they play important signaling and regulatory roles.
Collapse
Affiliation(s)
- Laura Goins
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Stefka Spassieva
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
40
|
Wang G, Bieberich E. Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 2018; 70:51-64. [PMID: 30287225 PMCID: PMC6251739 DOI: 10.1016/j.jbior.2018.09.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 04/14/2023]
Abstract
For many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids. Ceramide and S1P are invoked in a plethora of cell biological processes participating in neurodegeneration such as ER stress, autophagy, dysregulation of protein and lipid transport, exosome secretion and neurotoxic protein spreading, neuroinflammation, and mitochondrial dysfunction. Hence, it is timely to discuss various functions of ceramide and S1P in neurodegenerative disease and to define sphingolipid metabolism and cell signaling pathways as potential targets for therapy.
Collapse
Affiliation(s)
- Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
41
|
A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat Commun 2018; 9:3165. [PMID: 30131496 PMCID: PMC6104039 DOI: 10.1038/s41467-018-05613-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, synthesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high-fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resistance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity. Ceramides are signalling molecules that regulate several physiological functions including insulin sensitivity. Here the authors report a selective ceramide synthase 1 inhibitor that counteracts lipid accumulation within the muscle and adiposity by increasing fatty acid oxidation but without affecting insulin sensitivity in mice fed with an obesogenic diet.
Collapse
|
42
|
Traceless synthesis of ceramides in living cells reveals saturation-dependent apoptotic effects. Proc Natl Acad Sci U S A 2018; 115:7485-7490. [PMID: 29967152 DOI: 10.1073/pnas.1804266115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian cells synthesize thousands of distinct lipids, yet the function of many of these lipid species is unknown. Ceramides, a class of sphingolipid, are implicated in several cell-signaling pathways but poor cell permeability and lack of selectivity in endogenous synthesis pathways have hampered direct study of their effects. Here we report a strategy that overcomes the inherent biological limitations of ceramide delivery by chemoselectively ligating lipid precursors in vivo to yield natural ceramides in a traceless manner. Using this method, we uncovered the apoptotic effects of several ceramide species and observed differences in their apoptotic activity based on acyl-chain saturation. Additionally, we demonstrate spatiotemporally controlled ceramide synthesis in live cells through photoinitiated lipid ligation. Our in situ lipid ligation approach addresses the long-standing problem of lipid-specific delivery and enables the direct study of unique ceramide species in live cells.
Collapse
|
43
|
|
44
|
Law BA, Hancock WD, Cowart LA. Getting to the heart of the sphingolipid riddle. CURRENT OPINION IN PHYSIOLOGY 2018; 1:111-122. [PMID: 33195889 PMCID: PMC7665081 DOI: 10.1016/j.cophys.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Obesity, Type 2 Diabetes, and Metabolic Syndrome induce dyslipidemia resulting in inundation of peripheral organs with fatty acids. These not only serve as substrates for energy production, but also contribute to aberrant production of bioactive lipids. Moreover, lipid metabolism is affected in many cardiac disorders including heart failure, ischemia reperfusion injury, and others. While lipids serve crucial homeostatic roles, perturbing biosynthesis of lipid mediators leads to aberrant cell signaling, which contributes to maladaptive cardiovascular programs. Bioactive sphingolipids, in particular, have been implicated in pathophysiology in the heart and vasculature by a variety of studies in cells, animal models, and humans. Because of the burgeoning interest in sphingolipid-driven biology in the cardiovascular system, it is necessary to discuss the experimental considerations for studying sphingolipid metabolism and signaling, emphasizing the caveats to some widely available experimental tools and approaches. Additionally, there is a growing appreciation for the diversity of ceramide structures generated via specific enzymes and bearing disparate cellular functions. While targeting these individual species and enzymes constitutes a major advance, studies show that sphingolipid synthesis readily adapts to compensate for experimental targeting of any individual pathway, thereby convoluting data interpretation. Furthermore, though some molecular mechanisms of sphingolipid action are known, signaling pathways impacted by sphingolipids remain incompletely understood. In this review, we discuss these issues and highlight recent studies as well as future directions that may extend our understanding of the metabolism and signaling actions of these enigmatic lipids in the cardiovascular context.
Collapse
Affiliation(s)
- Britany A Law
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Present Address: Department of Medicine-Cardiology, Duke University, Durham NC
| | - William D Hancock
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veteran's Affairs Medical Center, Charleston, SC
| |
Collapse
|
45
|
Abstract
Gangliosides are sialic acid containing glycosphingolipids, which are abundant in mammalian brain tissue. Several fatal human diseases are caused by defects in glycolipid metabolism. Defects in their degradation lead to an accumulation of metabolites upstream of the defective reactions, whereas defects in their biosynthesis lead to diverse problems in a large number of organs.Gangliosides are primarily positioned with their ceramide anchor in the neuronal plasma membrane and the glycan head group exposed on the cell surface. Their biosynthesis starts in the endoplasmic reticulum with the formation of the ceramide anchor, followed by sequential glycosylation reactions, mainly at the luminal surface of Golgi and TGN membranes, a combinatorial process, which is catalyzed by often promiscuous membrane-bound glycosyltransferases.Thereafter, the gangliosides are transported to the plasma membrane by exocytotic membrane flow. After endocytosis, they are degraded within the endolysosomal compartments by a complex machinery of degrading enzymes, lipid-binding activator proteins, and negatively charged lipids.
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
| |
Collapse
|
46
|
Wimalachandra D, Yang JX, Zhu L, Tan E, Asada H, Chan JY, Lee YH. Long-chain glucosylceramides crosstalk with LYN mediates endometrial cell migration. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:71-80. [DOI: 10.1016/j.bbalip.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023]
|
47
|
Gabriel TL, Mirzaian M, Hooibrink B, Ottenhoff R, van Roomen C, Aerts JMFG, van Eijk M. Induction of Sphk1 activity in obese adipose tissue macrophages promotes survival. PLoS One 2017; 12:e0182075. [PMID: 28753653 PMCID: PMC5533446 DOI: 10.1371/journal.pone.0182075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
During obesity, adipose tissue macrophages (ATM) are increased in concert with local inflammation and insulin resistance. Since the levels of sphingolipid (SLs) in adipose tissue (AT) are altered during obesity we investigated the potential impact of SLs on ATMs. For this, we first analyzed expression of SL metabolizing genes in ATMs isolated from obese mice. A marked induction of sphingosine kinase 1 (Sphk1) expression was observed in obese ATM when compared to lean ATM. This induction was observed in both MGL-ve (M1) and MGL1+ve (M2) macrophages from obese WAT. Next, RAW264.7 cells were exposed to excessive palmitate, resulting in a similar induction of Sphk1. This Sphk1 induction was also observed when cells were treated with chloroquine, a lysosomotropic amine impacting lysosome function. Simultaneous incubation of RAW cells with palmitate and the Sphk1 inhibitor SK1-I promoted cell death, suggesting a protective role of Sphk1 during lipotoxic conditions. Interestingly, a reduction of endoplasmic reticulum (ER) stress related genes was detected in obese ATM and was found to be associated with elevated Sphk1 expression. Altogether, our data suggest that lipid overload in ATM induces Sphk1, which promotes cell viability.
Collapse
Affiliation(s)
- Tanit L. Gabriel
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Mina Mirzaian
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Berend Hooibrink
- Department of Cell Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
48
|
Lecommandeur E, Baker D, Cox TM, Nicholls AW, Griffin JL. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease. J Lipid Res 2017; 58:1306-1314. [PMID: 28377426 DOI: 10.1194/jlr.m073395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Drug-induced phospholipidosis (DIPL) is characterized by an increase in the phospholipid content of the cell and the accumulation of drugs and lipids inside the lysosomes of affected tissues, including in the liver. Although of uncertain pathological significance for patients, the condition remains a major impediment for the clinical development of new drugs. Human Sandhoff disease (SD) is caused by inherited defects of the β subunit of lysosomal β-hexosaminidases (Hex) A and B, leading to a large array of symptoms, including neurodegeneration and ultimately death by the age of 4 in its most common form. The substrates of Hex A and B, gangliosides GM2 and GA2, accumulate inside the lysosomes of the CNS and in peripheral organs. Given that both DIPL and SD are associated with lysosomes and lipid metabolism in general, we measured the hepatic lipid profiles in rodent models of these two conditions using untargeted LC/MS to examine potential commonalities. Both model systems shared a number of perturbed lipid pathways, notably those involving metabolism of cholesteryl esters, lysophosphatidylcholines, bis(monoacylglycero)phosphates, and ceramides. We report here profound alterations in lipid metabolism in the SD liver. In addition, DIPL induced a wide range of lipid changes not previously observed in the liver, highlighting similarities with those detected in the model of SD and raising concerns that these lipid changes may be associated with underlying pathology associated with lysosomal storage disorders.
Collapse
Affiliation(s)
- Emmanuelle Lecommandeur
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Timothy M Cox
- Department of Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Julian L Griffin
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
49
|
Go S, Go S, Veillon L, Ciampa MG, Mauri L, Sato C, Kitajima K, Prinetti A, Sonnino S, Inokuchi JI. Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem 2017; 292:7040-7051. [PMID: 28275055 DOI: 10.1074/jbc.m116.771253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process.
Collapse
Affiliation(s)
- Shinji Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shiori Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Lucas Veillon
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Jin-Ichi Inokuchi
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan,
| |
Collapse
|
50
|
Mechanistic interplay between ceramide and insulin resistance. Sci Rep 2017; 7:41231. [PMID: 28112248 PMCID: PMC5253739 DOI: 10.1038/srep41231] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Recent research adds to a growing body of literature on the essential role of ceramides in glucose homeostasis and insulin signaling, while the mechanistic interplay between various components of ceramide metabolism remains to be quantified. We present an extended model of C16:0 ceramide production through both the de novo synthesis and the salvage pathways. We verify our model with a combination of published models and independent experimental data. In silico experiments of the behavior of ceramide and related bioactive lipids in accordance with the observed transcriptomic changes in obese/diabetic murine macrophages at 5 and 16 weeks support the observation of insulin resistance only at the later phase. Our analysis suggests the pivotal role of ceramide synthase, serine palmitoyltransferase and dihydroceramide desaturase involved in the de novo synthesis and the salvage pathways in influencing insulin resistance versus its regulation.
Collapse
|