1
|
Teng Y, Luo C, Qiu X, Mu J, Sriwastva MK, Xu Q, Liu M, Hu X, Xu F, Zhang L, Park JW, Hwang JY, Kong M, Liu Z, Zhang X, Xu R, Yan J, Merchant ML, McClain CJ, Zhang HG. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat Commun 2025; 16:1295. [PMID: 39900923 PMCID: PMC11790884 DOI: 10.1038/s41467-025-56498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Diet has emerged as a key impact factor for gut microbiota function. However, the complexity of dietary components makes it difficult to predict specific outcomes. Here we investigate the impact of plant-derived nanoparticles (PNP) on gut microbiota and metabolites in context of cancer immunotherapy with the humanized gnotobiotic mouse model. Specifically, we show that ginger-derived exosome-like nanoparticle (GELN) preferentially taken up by Lachnospiraceae and Lactobacillaceae mediated by digalactosyldiacylglycerol (DGDG) and glycine, respectively. We further demonstrate that GELN aly-miR159a-3p enhances anti-PD-L1 therapy in melanoma by inhibiting the expression of recipient bacterial phospholipase C (PLC) and increases the accumulation of docosahexaenoic acid (DHA). An increased level of circulating DHA inhibits PD-L1 expression in tumor cells by binding the PD-L1 promoter and subsequently prevents c-myc-initiated transcription of PD-L1. Colonization of germ-free male mice with gut bacteria from anti-PD-L1 non-responding patients supplemented with DHA enhances the efficacy of anti-PD-L1 therapy compared to controls. Our findings reveal a previously unknown mechanistic impact of PNP on human tumor immunotherapy by modulating gut bacterial metabolic pathways.
Collapse
Affiliation(s)
- Yun Teng
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
| | - Chao Luo
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Central Laboratory, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaolan Qiu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jingyao Mu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Mukesh K Sriwastva
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Qingbo Xu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Minmin Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangyi Xu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Lifeng Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Juw Won Park
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Jae Yeon Hwang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Maiying Kong
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Zhanxu Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Raobo Xu
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huang-Ge Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA.
| |
Collapse
|
2
|
Kalia S, Magnuson AD, Sun T, Sun Z, Lei XG. Potential and Metabolic Impacts of Double Enrichments of Docosahexaenoic Acid and 25-Hydroxy Vitamin D 3 in Tissues of Broiler Chickens. J Nutr 2024; 154:3312-3322. [PMID: 39332774 PMCID: PMC11600121 DOI: 10.1016/j.tjnut.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Chicken may be enriched with 25-hydroxy D3 [25(OH)D3] and docosahexaenoic acid (DHA) to enhance the dietary intake of the public. OBJECTIVES Two experiments (Expt.) were conducted to determine the potential and metabolic impacts of enriching both DHA and 25(OH)D3 in the tissues of broiler chickens. METHODS In Expt. 1, 144 chicks (6 cages/treatment and 6 birds/cage) were fed a corn-soybean meal basal diet (BD), BD + 10,000 IU 25(OH)D3/kg [BD + 25(OH)D3], BD + 1% DHA-rich Aurantiochytrium (1.2 g DHA/kg; BD + DHA), or BD + 25(OH)D3+DHA for 6 wk. In Expt. 2, 180 chicks were fed the BD, BD + DHA-rich microalgal oil (1.5-3.0 g DHA/kg, BD + DHA), BD + DHA + eicosapentaenoic acid (EPA)-rich microalgae (0.3-0.6 g EPA/kg, BD + DHA + EPA), BD + DHA + 25(OH)D3 [6000 to 12,000 IU/kg diet; BD + DHA + 25(OH)D3], and BD + DHA + EPA + 25(OH)D3 for 6 wk. RESULTS Supranutrition of these 2 nutrients resulted in 57-62 mg DHA and 1.9-3.3 μg of 25(OH)D3/100 g of breast or thigh muscles. The DHA enrichment was independent of dietary EPA or 25(OH)D3, but that of 25(OH)D3 in the liver was decreased (68%, P < 0.05) by dietary DHA in Expt. 1. Compared with BD, BD + 25(OH)D3 enhanced (P < 0.05) gene expression related to D3 absorption (scavenger receptor class B type 1 and Niemann-pick c1 like 1) in the liver and D3 degradation (cytochrome P450 24A1) in the breast, and decreased mRNA or protein concentrations of vitamin D binding protein in the adipose tissue or thigh muscle. Supranutrition of DHA decreased mRNA concentrations of lipid metabolism-related genes (fatty acid desaturase 1,2, ELOVL fatty acid elongase 5, fatty acid desaturase 2, fatty acid synthase, and sterol regulatory element-binding protein 1). CONCLUSIONS Both DHA and 25(OH)D3 were enriched in the muscles up to meeting 50%-100% of the suggested intakes of these nutrients by consuming 2 servings of 100 g of fortified chicken. The enrichments altered gene expression related to lipid biosynthesis and vitamin D transport or storage.
Collapse
Affiliation(s)
- Sahil Kalia
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Andrew D Magnuson
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Ziqiao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
3
|
Amoakon JP, Lee J, Liyanage P, Arora K, Karlstaedt A, Mylavarapu G, Amin R, Naren AP. Defective CFTR modulates mechanosensitive channels TRPV4 and PIEZO1 and drives endothelial barrier failure. iScience 2024; 27:110703. [PMID: 39252977 PMCID: PMC11382128 DOI: 10.1016/j.isci.2024.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear-stress-dependent mechanism of endothelial barrier failure in CF involving TRPV4, a mechanosensitive channel. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another mechanosensitive channel involved in angiogenesis and wound repair, and exacerbates loss of small pulmonary blood vessel. We also show that CFTR directly interacts with PIEZO1 and enhances its function. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.
Collapse
Affiliation(s)
- Jean-Pierre Amoakon
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jesun Lee
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pramodha Liyanage
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anjaparavanda P Naren
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
4
|
D’Orazio S, Mattoscio D. Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals (Basel) 2024; 17:1185. [PMID: 39338347 PMCID: PMC11434829 DOI: 10.3390/ph17091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cystic fibrosis (CF) is the most common fatal genetic disease among Caucasian people, with over 2000 mutations in the CFTR gene. Although highly effective modulators have been developed to rescue the mutant CFTR protein, unresolved inflammation and persistent infections still threaten the lives of patients. While the central role of arachidonic acid (AA) and its metabolites in the inflammatory response is widely recognized, less is known about their impact on immunomodulation and metabolic implications in CF. To this end, here we provided a comprehensive analysis of the AA metabolism in CF. In this context, CFTR dysfunction appeared to complexly disrupt normal lipid processing, worsening the chronic airway inflammation, and compromising the immune responses to bacterial infections. As such, potential strategies targeting AA and its inflammatory mediators are being investigated as a promising approach to balance the inflammatory response while mitigating disease progression. Thus, a deeper understanding of the AA pathway dysfunction in CF may open innovative avenues for designing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Simona D’Orazio
- Department of Medical, Oral and Biotechnology Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Hossain MB, Islam R, Hossain MK, Parvin A, Saha B, Ujjaman Nur AA, Islam MM, Paray BA, Arai T. Minerals and fatty acid profile of small indigenous fish species from homestead ponds within a Sub-tropical coastal region. Heliyon 2024; 10:e24445. [PMID: 38288022 PMCID: PMC10823076 DOI: 10.1016/j.heliyon.2024.e24445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Malnutrition has emerged as a noticeable obstruction to the socio-economic advancement of rural areas along the coastal regions of Bangladesh. Small indigenous fish species (SIS) have the potential to alleviate the malnutrition issue because of having higher nutritional compositions. However, prior research has overlooked the detailed nutritional value of SIS originating from coastal regions. Consequently, the current investigation sought to analyze the mineral and fatty acid composition of twelve SIS obtained from coastal homestead ponds. The findings indicated that the mineral composition in SIS exhibited the following descending order: calcium (Ca) > phosphorus (P) > potassium (K) > magnesium (Mg) > iron (Fe) > zinc (Zn). Furthermore, when considering the overall mineral content in SIS, it ranked in the following decreasing order: A. testudineus, M. tengara, C. punctatus, N. nandus, P. sophore, C. fasciatus, A. mola, C. batrachus, H. fossilis, P. sarana, M. aculeatus, and O. pabda. The analysis of the fatty acid profile further revealed that SIS is a rich source of palmitic acid, linoleic acid, oleic acid, stearic acid, myristic acid, palmitoleic acid, and linolenic acid. The saturated fatty acid content of the SIS varied between 42.66 % and 63.37 %, and the highest content was found in A. mola whereas the lowest was in A. testudineus. On the other hand, the total monounsaturated fatty acid content of the SIS ranged from 26.49 % (A. mola) to 46.12 % (P. sarana), and the total PUFAs contents among the fish species ranged from 5.7 % (A. mola) to 16.54 % (H. fossilis). Therefore, SIS could be a key source of minerals and essential fatty acids for human well-being. This can help fulfill nutrient requirements and reduce malnutrition among coastal populations. It can be said that, if these fishes are introduced in the culture systems, it will be used for consumption as well as support the livelihood of coastal people.
Collapse
Affiliation(s)
- M. Belal Hossain
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rafikul Islam
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Kamal Hossain
- Laboratory of Soil, Water and Environment, Bangladesh Council of Scientific & Industrial Research, Dhaka, Bangladesh
| | - Afroza Parvin
- Laboratory of Soil, Water and Environment, Bangladesh Council of Scientific & Industrial Research, Dhaka, Bangladesh
| | - Badhan Saha
- Laboratory of Soil, Water and Environment, Bangladesh Council of Scientific & Industrial Research, Dhaka, Bangladesh
| | - As-Ad Ujjaman Nur
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Monirul Islam
- Nutrition Unit, Bangladesh Agricultural Research Council, Dhaka, Bangladesh
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei Darussalam
| |
Collapse
|
6
|
Schnitker F, Liu Y, Keitsch S, Soddemann M, Verhasselt HL, Kehrmann J, Grassmé H, Kamler M, Gulbins E, Wu Y. Reduced Sphingosine in Cystic Fibrosis Increases Susceptibility to Mycobacterium abscessus Infections. Int J Mol Sci 2023; 24:14004. [PMID: 37762308 PMCID: PMC10530875 DOI: 10.3390/ijms241814004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.
Collapse
Affiliation(s)
- Fabian Schnitker
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Yongjie Liu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Simone Keitsch
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Matthias Soddemann
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Heike Grassmé
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Markus Kamler
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yuqing Wu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| |
Collapse
|
7
|
Shrestha N, Rout-Pitt N, McCarron A, Jackson CA, Bulmer AC, McAinch AJ, Donnelley M, Parsons DW, Hryciw DH. Changes in Essential Fatty Acids and Ileal Genes Associated with Metabolizing Enzymes and Fatty Acid Transporters in Rodent Models of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24087194. [PMID: 37108362 PMCID: PMC10138779 DOI: 10.3390/ijms24087194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cystic fibrosis (CF), the result of mutations in the CF transmembrane conductance regulator (CFTR), causes essential fatty acid deficiency. The aim of this study was to characterize fatty acid handling in two rodent models of CF; one strain which harbors the loss of phenylalanine at position 508 (Phe508del) in CFTR and the other lacks functional CFTR (510X). Fatty acid concentrations were determined using gas chromatography in serum from Phe508del and 510X rats. The relative expression of genes responsible for fatty acid transport and metabolism were quantified using real-time PCR. Ileal tissue morphology was assessed histologically. There was an age-dependent decrease in eicosapentaenoic acid and the linoleic acid:α-linolenic acid ratio, a genotype-dependent decrease in docosapentaenoic acid (n-3) and an increase in the arachidonic acid:docosahexaenoic acid ratio in Phe508del rat serum, which was not observed in 510X rats. In the ileum, Cftr mRNA was increased in Phe508del rats but decreased in 510X rats. Further, Elvol2, Slc27a1, Slc27a2 and Got2 mRNA were increased in Phe508del rats only. As assessed by Sirius Red staining, collagen was increased in Phe508del and 510X ileum. Thus, CF rat models exhibit alterations in the concentration of circulating fatty acids, which may be due to altered transport and metabolism, in addition to fibrosis and microscopic structural changes in the ileum.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Courtney A Jackson
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - David W Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
8
|
Uc A, Strandvik B, Yao J, Liu X, Yi Y, Sun X, Welti R, Engelhardt J, Norris A. The fatty acid imbalance of cystic fibrosis exists at birth independent of feeding in pig and ferret models. Clin Sci (Lond) 2022; 136:1773-1791. [PMID: 36416119 PMCID: PMC9747517 DOI: 10.1042/cs20220450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.
Collapse
Affiliation(s)
- Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm 14183, Sweden
| | - Jianrong Yao
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Ruth Welti
- Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, U.S.A
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
9
|
Kocherlakota C, Nagaraju B, Arjun N, Srinath A, Kothapalli KSD, Brenna JT. Inhalation of nebulized omega-3 fatty acids mitigate LPS-induced acute lung inflammation in rats: Implications for treatment of COPD and COVID-19. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102426. [PMID: 35381532 PMCID: PMC8964507 DOI: 10.1016/j.plefa.2022.102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-β, and IL-10 were attenuated in all O3FA groups. IL-1β was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.
Collapse
Affiliation(s)
| | - Banda Nagaraju
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Narala Arjun
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Akula Srinath
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| |
Collapse
|
10
|
Goswami S, Manna K. Organochlorine pesticide residues and other toxic substances in salted Tenualosa ilisha L.: Northeastern part of India. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-201-206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Fish can sometimes be contaminated with several highly toxic substances at once, e.g. heavy metals, pesticides, and preservatives. In this regard, it is essential to determine the presence of these harmful chemicals in fish products. The research objective was to analyze the level of organochlorine pesticide residues and other toxic substances in Tenualosa ilisha L.
Study objects and methods. The study featured organochlorine pesticide residues and other toxic substances in raw and cooked samples of fresh and salted T. ilisha, which is a popular dish in Northeast India, especially in the state of Tripura. The analysis involved tests for formaldehyde, pesticides, and heavy metals. Formaldehyde content was estimated using high-performance liquid chromatography, pesticides content – by low-pressure gas chromatography/tandem mass spectrometry, and heavy metals – by inductively coupled plasma/mass spectrometry.
Results and discussion. The salted samples had a high content of formaldehyde, though it remained within the normal range. Both fresh and salted samples demonstrated high concentrations of heavy metals such as zinc, copper, and selenium. The salted sample appeared to have a high content of toxic organochlorine pesticide residues. Frying and boiling of fresh and salted fish decreased formaldehyde and organochlorine pesticide residue contents but did not reduce heavy metal content.
Conclusion. T. ilisha was found to be quite safe for human health.
Collapse
|
11
|
Schulpis KH, Molou E, Manta-Vogli P, Dotsikas Y, Thodi G, Chatzidaki M, Loukas YL. Perinatal Reduced Blood Concentrations of Free Carnitine and Acylcarnitines in Infants with Cystic Fibrosis. Am J Perinatol 2021; 38:828-833. [PMID: 31891954 DOI: 10.1055/s-0039-3402723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Cystic fibrosis (CF) is a multisystemic inherited disease. The aim of this study was to determine free carnitine (FC) and acylcarnitine concentrations in CF newborns with various mutations of the CFTR gene perinatally. STUDY DESIGN FC/acylcarnitines were determined in dried blood spots via liquid chromatography-tandem mass spectrometry (LC-MS/MS) on the third day of life of full-term normal (n = 50) and CF (n = 28) newborns. For infants with elevated immunoreactive trypsinogen values, FC/acylcarnitines were quantified again 48 hours later, followed by mutational analysis of CFTR gene via Sanger sequencing. RESULTS Initial FC and sums of acylcarnitine concentrations were statistically significantly lower in CF patients than in controls and even lower 48 hours later. The mutations F508del and 621 + 1G > T were predominantly identified among CF patients. CONCLUSION Low FC and acylcarnitine concentrations were measured perinatally in CF patients, for all CFTR mutations detected. Carnitine supplementation of breastfeeding mothers could be beneficial.
Collapse
Affiliation(s)
| | - Elina Molou
- Laboratory of Prenatal and Neonatal Screening, Neoscreen Ltd., Athens, Greece
| | - Penelope Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Aghia Sofia Children's Hospital, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Thodi
- Laboratory of Prenatal and Neonatal Screening, Neoscreen Ltd., Athens, Greece
| | - Maria Chatzidaki
- Laboratory of Prenatal and Neonatal Screening, Neoscreen Ltd., Athens, Greece
| | - Yannis L Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Goswami S, Manna K. Comparison of the effects of cooking methods on nutritional composition of fresh and salted Tenualosa ilisha. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Garić D, Dumut DC, Shah J, De Sanctis JB, Radzioch D. The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide. Cell Mol Life Sci 2020; 77:4255-4267. [PMID: 32394023 PMCID: PMC11105061 DOI: 10.1007/s00018-020-03530-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is the most common autosomal-recessive disease in Caucasians caused by mutations in the CF transmembrane regulator (CFTR) gene. Patients are usually diagnosed in infancy and are burdened with extensive medical treatments throughout their lives. One of the first documented biochemical defects in CF, which predates the cloning of CFTR gene for almost three decades, is an imbalance in the levels of polyunsaturated fatty acids (PUFAs). The principal hallmarks of this imbalance are increased levels of arachidonic acid and decreased levels of docosahexaenoic acids (DHA) in CF. This pro-inflammatory profile of PUFAs is an important component of sterile inflammation in CF, which is known to be detrimental, rather than protective for the patients. Despite decades of intensive research, the mechanistic basis of this phenomenon remains unclear. In this review we summarized the current knowledge on the biochemistry of PUFAs, with a focus on the metabolism of AA and DHA in CF. Finally, a synthetic retinoid called fenretinide (N-(4-hydroxy-phenyl) retinamide) was shown to be able to correct the pro-inflammatory imbalance of PUFAs in CF. Therefore, its pharmacological actions and clinical potential are briefly discussed as well.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, 1001 Decarie Boulevard, Room EM3-3211, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
14
|
Vandebrouck C, Ferreira T. Glued in lipids: Lipointoxication in cystic fibrosis. EBioMedicine 2020; 61:103038. [PMID: 33038767 PMCID: PMC7648119 DOI: 10.1016/j.ebiom.2020.103038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 01/14/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the CF transmembrane regulator (CFTR) gene, which encodes a chloride channel located at the apical surface of epithelial cells. Unsaturated Fatty Acid (UFA) deficiency has been a persistent observation in tissues from patients with CF. However, the impacts of such deficiencies on the etiology of the disease have been the object of intense debates. The aim of the present review is first to highlight the general consensus on fatty acid dysregulations that emerges from, sometimes apparently contradictory, studies. In a second step, a unifying mechanism for the potential impacts of these fatty acid dysregulations in CF cells, based on alterations of membrane biophysical properties (known as lipointoxication), is proposed. Finally, the contribution of lipointoxication to the progression of the CF disease and how it could affect the efficacy of current treatments is also discussed.
Collapse
Affiliation(s)
- Clarisse Vandebrouck
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France; Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire "Lipointoxication and Channelopathies (LiTch) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
15
|
Hanssens L, Duchateau J, Namane SA, Malfroot A, Knoop C, Casimir G. Influence of lung transplantation on the essential fatty acid profile in cystic fibrosis. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102060. [PMID: 32044180 DOI: 10.1016/j.plefa.2020.102060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022]
Abstract
Lung transplantation is assumed to normalize essential fatty acid (EFA) profile in the plasma, described as abnormal in patients with cystic fibrosis (CF). This study sought to evaluate the EFA profile in both the plasma and erythrocyte membrane according to lung status by comparing CF patients with or without a lung transplant. A total of 50 homozygous F508del patients (33 CF patients [CF group] and 17 CF patients with a lung transplant [TX CF group]) were included. In comparison with the CF group, in the plasma, the levels of total n-3, α-linolenic, eicosapentaenoic, and docosahexaenoic acids were higher and the n-6/n-3 ratio was lower in the TX CF group. Yet, these differences were not observed in the erythrocyte membrane. This study supports that lung transplantation improves the EFA profile in the plasma but not in the erythrocyte membrane by means of the different mechanisms suggested in this article.
Collapse
Affiliation(s)
- Laurence Hanssens
- Hôpital Universitaire des Enfants Reine Fabiola, Avenue J.J. Crocq, 15,1020 Brussels, Belgium.
| | - J Duchateau
- Hôpital Universitaire des Enfants Reine Fabiola - Institut de mucoviscidose de l'ULB -Université Libre de Bruxelles, Brussels, Belgium
| | - S A Namane
- Universitair Ziekenhuis Brussel (UZ Brussel) - Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - A Malfroot
- Hôpital Universitaire Erasme - Institut de mucoviscidose de l'ULB - Université Libre de Bruxelles, Brussels, Belgium
| | - C Knoop
- Laboratoire de pédiatrie de l'Hôpital Universitaire des Enfants Reine Fabiola - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - G Casimir
- Hôpital Universitaire des Enfants Reine Fabiola, Avenue J.J. Crocq, 15,1020 Brussels, Belgium
| |
Collapse
|
16
|
Cottrill KA, Farinha CM, McCarty NA. The bidirectional relationship between CFTR and lipids. Commun Biol 2020; 3:179. [PMID: 32313074 PMCID: PMC7170930 DOI: 10.1038/s42003-020-0909-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cystic Fibrosis (CF) is the most common life-shortening genetic disease among Caucasians, resulting from mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). While work to understand this protein has resulted in new treatment strategies, it is important to emphasize that CFTR exists within a complex lipid bilayer - a concept largely overlooked when performing structural and functional studies. In this review we discuss cellular lipid imbalances in CF, mechanisms by which lipids affect membrane protein activity, and the specific impact of detergents and lipids on CFTR function.
Collapse
Affiliation(s)
- Kirsten A Cottrill
- Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, GA, USA
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nael A McCarty
- Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, GA, USA.
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Simon MISDS, Dalle Molle R, Silva FM, Rodrigues TW, Feldmann M, Forte GC, Marostica PJC. Antioxidant Micronutrients and Essential Fatty Acids Supplementation on Cystic Fibrosis Outcomes: A Systematic Review. J Acad Nutr Diet 2020; 120:1016-1033.e1. [PMID: 32249071 DOI: 10.1016/j.jand.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Antioxidant micronutrients and essential fatty acids supplementation intake appears to have a protective effect in some diseases such as cardiovascular disease, cancer, and asthma. OBJECTIVE The aim of this study was to perform a systematic review to evaluate the effects of these nutrients on nutritional and clinical outcomes of patients with cystic fibrosis (CF). METHODS This is a systematic review of randomized clinical trials (RCTs) in CF. MEDLINE (via PubMed), Embase, and Scopus databases were searched for RCTs published from 1948 through February 2019. Two investigators independently reviewed the titles and abstracts and then extracted the data from the included studies using a standardized predesigned form. Two reviewers independently performed the quality assessment of the RCTs according to the Cochrane risk of bias tools. RESULTS A total of 4,792 studies were identified, and 23 were eligible (8 antioxidant micronutrient and 15 essential fatty acids). The interventions found were beta-carotene, zinc, magnesium, multivitamin, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), linoleic acid and lipid matrix with choline supplementation. A significant improvement was observed in: (a) pulmonary function with magnesium (n=1) and essential fatty acids (n=2) supplementation; (b) less pulmonary exacerbations with beta-carotene (n=1), zinc (n=1), antioxidant-enriched multivitamin (n=1) and essential fatty acids (n=2) supplementation. One study with antioxidant-enriched multivitamin and four studies with EPA/DHA supplementation reported significant reductions in inflammatory markers. Nutritional status was not modified by antioxidants supplementation in any of the studies, while in five studies there was an improvement with fatty acids supplementation. The risk of bias of the majority of the parallel studies was high. CONCLUSIONS The benefits of antioxidants or DHA/EPA supplementation for CF, although observed in some studies, are not consistent enough to recommend routine use of these supplements. The mechanisms of action of these nutrients, dose levels and timing should be further explored in future studies.
Collapse
|
18
|
Léveillé P, Knoth IS, Denis MH, Morin G, Barlaam F, Nyalendo C, Daneault C, Marcotte JE, Rosiers CD, Ferland G, Lippé S, Mailhot G. Association between fat-soluble nutrient status and auditory and visual related potentials in newly diagnosed non-screened infants with cystic fibrosis: A case-control study. Prostaglandins Leukot Essent Fatty Acids 2019; 150:21-30. [PMID: 31568924 DOI: 10.1016/j.plefa.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Abstract
Nutritional deficiencies often precede the diagnosis of cystic fibrosis (CF) in infants, and occur at a stage where the rapidly developing brain is more vulnerable to insult. We aim to compare fat-soluble nutrient status of newly diagnosed non-screened infants with CF to that of healthy infants, and explore the association with neurodevelopment evaluated by electroencephalography (EEG). Our results show that CF infants had lower levels of all fat-soluble vitamins and docosahexaenoic acid (DHA) compared to controls. The auditory evoked potential responses were higher in CF compared to controls whereas the visual components did not differ between groups. DHA levels were correlated with auditory evoked potential responses. Although resting state frequency power was similar between groups, we observed a negative correlation between DHA levels and low frequencies. This study emphasizes the need for long-term neurodevelopmental follow-up of CF infants and pursuing intervention strategies in the future.
Collapse
Affiliation(s)
- Pauline Léveillé
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada; Department of Psychology, Université de Montréal, Montréal, Quebec, H3T 1C5, Canada
| | - Inga-Sophia Knoth
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada; Department of Psychology, Université de Montréal, Montréal, Quebec, H3T 1C5, Canada
| | - Marie-Hélène Denis
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada
| | - Geneviève Morin
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada
| | - Fanny Barlaam
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada; Department of Psychology, Université de Montréal, Montréal, Quebec, H3T 1C5, Canada
| | - Carine Nyalendo
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada; Department of Clinical Biochemistry, Université de Montréal, Montréal, Quebec, H3T 1C5, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Centre, Montréal, Quebec H1T 1C8, Canada
| | | | - Christine Des Rosiers
- Montreal Heart Institute Research Centre, Montréal, Quebec H1T 1C8, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada
| | - Guylaine Ferland
- Montreal Heart Institute Research Centre, Montréal, Quebec H1T 1C8, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada
| | - Sarah Lippé
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada; Department of Psychology, Université de Montréal, Montréal, Quebec, H3T 1C5, Canada
| | - Geneviève Mailhot
- Research Centre of Sainte-Justine University Health Center, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, H3T 1C5, Canada.
| |
Collapse
|
19
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Nowak JK, Szczepanik M, Wojsyk-Banaszak I, Mądry E, Wykrętowicz A, Krzyżanowska-Jankowska P, Drzymała-Czyż S, Nowicka A, Pogorzelski A, Sapiejka E, Skorupa W, Miśkiewicz-Chotnicka A, Lisowska A, Walkowiak J. Cystic fibrosis dyslipidaemia: A cross-sectional study. J Cyst Fibros 2019; 18:566-571. [PMID: 30979683 DOI: 10.1016/j.jcf.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND The interest in cystic fibrosis (CF) dyslipidaemia as a potential risk factor for cardiovascular disease is increasing with patients' survival. This study aimed to investigate CF dyslipidaemia, its clinical correlates and links to oxidized low-density lipoprotein (oxLDL), adiponectin, and apolipoprotein E (APOE). METHODS This cross-sectional study assessed clinical characteristics of CF, as well as the serum lipid profile, oxLDL, adiponectin, and APOE. RESULTS In total, 108 CF subjects were enrolled in this study, with a median age of 22 years, BMI of 20.5 kg/m2, FEV1% of 61%, of which 81% were pancreatic insufficient (PI). Healthy subjects (HS; n = 51) were in similar age. Hypocholesterolaemia occurred in 31% of CF subjects and in no HS. Hypertriglyceridaemia concerned 21% of patients (HS: 8%, p = .04), and low HDL-C 45% (HS: 6%, p < .0001). At least one of these three CF dyslipidaemia disturbances was present in 62% of CF subjects, but there were no significant differences in oxLDL, oxLDL/LDL-C ratio, adiponectin, and APOE between CF and HS groups. PI was independently associated with low total cholesterol, LDL-C, and non-high density lipoprotein cholesterol, with age and sex also modifying lipid levels. In CF (n = 42), triglycerides did not correlate with serum tumour necrosis factor α (TNF-α). CONCLUSIONS CF dyslipidaemia is highly prevalent and heterogenous. The lipid profile weakly associates with the clinical characteristics of CF as well as oxLDL, adiponectin, and APOE. Further research is needed, especially regarding HDL function in CF, the causes of hypertriglyceridaemia, and the value of essential fatty acid supplementation for CF dyslipidaemia.
Collapse
Affiliation(s)
- Jan Krzysztof Nowak
- Poznan University of Medical Sciences, Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan, Poland
| | - Mariusz Szczepanik
- Poznan University of Medical Sciences, Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan, Poland
| | - Irena Wojsyk-Banaszak
- Poznan University of Medical Sciences, Department of Pediatric Pneumonology, Allergology and Clinical Immunology, Poznan, Poland
| | - Edyta Mądry
- Poznan University of Medical Sciences, Department of Physiology, Poznan, Poland
| | - Andrzej Wykrętowicz
- Poznan University of Medical Sciences, Department of Cardiology-Intensive Therapy, Poznan, Poland
| | | | - Sławomira Drzymała-Czyż
- Poznan University of Medical Sciences, Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan, Poland
| | - Agata Nowicka
- Poznan University of Medical Sciences, Department of Pulmonology, Allergology and Respiratory Oncology, Poznan, Poland
| | - Andrzej Pogorzelski
- Institute of Tuberculosis and Lung Diseases, Department of Pneumology and Cystic Fibrosis, Rabka, Poland
| | - Ewa Sapiejka
- Outpatient Clinic for CF Patients, CF Clinic, Gdansk, Poland
| | - Wojciech Skorupa
- Institute for Tuberculosis and Lung Diseases, I Department of Lung Diseases, Warsaw, Poland
| | - Anna Miśkiewicz-Chotnicka
- Poznan University of Medical Sciences, Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan, Poland
| | - Aleksandra Lisowska
- Poznan University of Medical Sciences, Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan, Poland
| | - Jarosław Walkowiak
- Poznan University of Medical Sciences, Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan, Poland.
| |
Collapse
|
21
|
Walter KR, Lin X, Jacobi SK, Käser T, Esposito D, Odle J. Dietary arachidonate in milk replacer triggers dual benefits of PGE 2 signaling in LPS-challenged piglet alveolar macrophages. J Anim Sci Biotechnol 2019; 10:13. [PMID: 30815256 PMCID: PMC6376662 DOI: 10.1186/s40104-019-0321-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background Respiratory infections challenge the swine industry, despite common medicinal practices. The dual signaling nature of PGE2 (supporting both inflammation and resolution) makes it a potent regulator of immune cell function. Therefore, the use of dietary long chain n-6 PUFA to enhance PGE2 effects merits investigation. Methods Day-old pigs (n = 60) were allotted to one of three dietary groups for 21 d (n = 20/diet), and received either a control diet (CON, arachidonate = 0.5% of total fatty acids), an arachidonate (ARA)-enriched diet (LC n-6, ARA = 2.2%), or an eicosapentaenoic (EPA)-enriched diet (LC n-3, EPA = 3.0%). Alveolar macrophages and lung parenchymal tissue were collected for fatty acid analysis. Isolated alveolar macrophages were stimulated with LPS in situ for 24 h, and mRNA was isolated to assess markers associated with inflammation and eicosanoid production. Culture media were collected to assess PGE2 secretion. Oxidative burst in macrophages was measured by: 1) oxygen consumption and extracellular acidification (via Seahorse), 2) cytoplasmic oxidation and 3) nitric oxide production following 4, 18, and 24 h of LPS stimulation. Results Concentration of ARA (% of fatty acids, w/w) in macrophages from pigs fed LC n-6 was 86% higher than CON and 18% lower in pigs fed LC n-3 (P < 0.01). Following LPS stimulation, abundance of COX-2 and TNF-α mRNA (P < 0.0001), and PGE2 secretion (P < 0. 01) were higher in LC n-6 PAM vs. CON. However, ALOX5 abundance was 1.6-fold lower than CON. Macrophages from CON and LC n-6 groups were 4-fold higher in ALOX12/15 abundance (P < 0.0001) compared to LC n-3. Oxygen consumption and extracellular acidification rates increased over 4 h following LPS stimulation (P < 0.05) regardless of treatment. Similarly, increases in cytoplasmic oxidation (P < 0.001) and nitric oxide production (P < 0.002) were observed after 18 h of LPS stimulation but were unaffected by diet. Conclusions We infer that enriching diets with arachidonic acid may be an effective means to enhance a stronger innate immunologic response to respiratory challenges in neonatal pigs. However, further work is needed to examine long-term safety, clinical efficacy and economic viability. Electronic supplementary material The online version of this article (10.1186/s40104-019-0321-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathleen R Walter
- 1Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina USA.,2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Xi Lin
- 2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Sheila K Jacobi
- 3Department of Animal Science, Ohio State University, Columbus, Ohio USA
| | - Tobias Käser
- 4Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina USA
| | - Debora Esposito
- 1Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina USA.,2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Jack Odle
- 2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| |
Collapse
|
22
|
McCarty MF, DiNicolantonio JJ. Minimizing Membrane Arachidonic Acid Content as a Strategy for Controlling Cancer: A Review. Nutr Cancer 2018; 70:840-850. [DOI: 10.1080/01635581.2018.1470657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - James J. DiNicolantonio
- Preventive Cardiology Department, St. Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
23
|
CFTR Deletion Confers Mitochondrial Dysfunction and Disrupts Lipid Homeostasis in Intestinal Epithelial Cells. Nutrients 2018; 10:nu10070836. [PMID: 29954133 PMCID: PMC6073936 DOI: 10.3390/nu10070836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Cystic Fibrosis (CF) is a genetic disease in which the intestine exhibits oxidative and inflammatory markers. As mitochondria are the central source and the main target of reactive oxygen species, we hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) defect leads to the disruption of cellular lipid homeostasis, which contributes to mitochondrial dysfunction. Methods. Mitochondrial functions and lipid metabolism were investigated in Caco-2/15 cells with CFTR knockout (CFTR-/-) engineered by the zinc finger nuclease technique. Experiments were performed under basal conditions and after the addition of the pro-oxidant iron-ascorbate (Fe/Asc) complex. Results. Mitochondria of intestinal cells with CFTR-/-, spontaneously showed an altered redox homeostasis characterised by a significant decrease in the expression of PPARα and nuclear factor like 2. Consistent with these observations, 8-oxoguanine-DNA glycosylase, responsible for repair of ROS-induced DNA lesion, was weakly expressed in CFTR-/- cells. Moreover, disturbed fatty acid β-oxidation process was evidenced by the reduced expression of CPT1 and acyl-CoA dehydrogenase long-chain in CFTR-/- cells. The decline of mitochondrial cytochrome c and B-cell lymphoma 2 expression pointing to magnified apoptosis. Mitochondrial respiration was also affected as demonstrated by the low expression of respiratory oxidative phosphorylation (OXPHOS) complexes and a high adenosine diphosphate/adenosine triphosphate ratio. In contrast, the FAS and ACC enzymes were markedly increased, thereby indicating lipogenesis stimulation. This was associated with an augmented secretion of lipids, lipoproteins and apolipoproteins in CFTR-/- cells. The addition of Fe/Asc worsened while butylated hydroxy toluene partially improved these processes. Conclusions: CFTR silencing results in lipid homeostasis disruption and mitochondrial dysfunction in intestinal epithelial cells. Further investigation is needed to elucidate the mechanisms underlying the marked abnormalities in response to CFTR deletion.
Collapse
|
24
|
Morin C, Cantin AM, Vézina FA, Fortin S. The Efficacy of MAG-DHA for Correcting AA/DHA Imbalance of Cystic Fibrosis Patients. Mar Drugs 2018; 16:md16060184. [PMID: 29861448 PMCID: PMC6025526 DOI: 10.3390/md16060184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022] Open
Abstract
Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementations are thought to improve essential fatty acid deficiency (EFAD) as well as reduce inflammation in Cystic Fibrosis (CF), but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the medical food containing docosahexaenoic acid monoglyceride (MAG-DHA) influenced erythrocyte fatty acid profiles and the expression levels of inflammatory circulating mediators. We conducted a randomized, double blind, pilot trial including fifteen outpatients with Cystic Fibrosis, ages 18–48. The patients were divided into 2 groups and received MAG-DHA or a placebo (sunflower oil) for 60 days. Patients took 8 × 625 mg MAG-DHA softgels or 8 × 625 mg placebo softgels every day at bedtime for 60 days. Lipid analyses revealed that MAG-DHA increased docosahexaenoic acid (DHA) levels and decrease arachidonic acid (AA) ratio (AA/DHA) in erythrocytes of CF patients following 1 month of daily supplementation. Data also revealed a reduction in plasma human leukocyte elastase (pHLE) complexes and interleukin-6 (IL-6) expression levels in blood samples of MAG-DHA supplemented CF patients. This pilot study indicates that MAG-DHA supplementation corrects erythrocyte AA/DHA imbalance and may exert anti-inflammatory properties through the reduction of pHLE complexes and IL6 in blood samples of CF patients. Trial registration: Pro-resolving Effect of MAG-DHA in Cystic Fibrosis (PREMDIC), NCT02518672.
Collapse
Affiliation(s)
- Caroline Morin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC G0K 1P0, Canada.
| | - André M Cantin
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Félix-Antoine Vézina
- Department of Medicine, Respiratory Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Samuel Fortin
- SCF Pharma, 235, route du Fleuve Ouest, Ste-Luce, QC G0K 1P0, Canada.
| |
Collapse
|
25
|
Gaisl T, Bregy L, Stebler N, Gaugg MT, Bruderer T, García-Gómez D, Moeller A, Singer F, Schwarz EI, Benden C, M-L Sinues P, Zenobi R, Kohler M. Real-time exhaled breath analysis in patients with cystic fibrosis and controls. J Breath Res 2018; 12:036013. [DOI: 10.1088/1752-7163/aab7fd] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
De novo transcriptomic and metabolomic analysis of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii during fed-batch fermentation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Duchesneau P, Besla R, Derouet MF, Guo L, Karoubi G, Silberberg A, Wong AP, Waddell TK. Partial Restoration of CFTR Function in cftr-Null Mice following Targeted Cell Replacement Therapy. Mol Ther 2017; 25:654-665. [PMID: 28187947 DOI: 10.1016/j.ymthe.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is a fatal recessive genetic disorder caused by a mutation in the gene encoding CF transmembrane conductance regulator (CFTR) protein. Alteration in CFTR leads to thick airway mucus and bacterial infection. Cell therapy has been proposed for CFTR restoration, but efficacy has been limited by low engraftment levels. In our previous studies, we have shown that using a pre-conditioning regimen in combination with optimization of cell number and time of delivery, we could obtain greater bone marrow cell (BMC) retention in the lung. Here, we found that optimized delivery of wild-type (WT) BMC contributed to apical CFTR expression in airway epithelium and restoration of select ceramide species and fatty acids in CFTR-/- mice. Importantly, WT BMC delivery delayed Pseudomonas aeruginosa lung infection and increased survival of CFTR-/- recipients. Only WT BMCs had a beneficial effect beyond 6 months, suggesting a dual mechanism of BMC benefit: a non-specific effect early after cell delivery, possibly due to the recruitment of macrophages and neutrophils, and a late beneficial effect dependent on long-term CFTR expression. Taken together, our results suggest that BMC can improve overall lung function and may have potential therapeutic benefit for the treatment of CF.
Collapse
Affiliation(s)
- Pascal Duchesneau
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Rickvinder Besla
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Mathieu F Derouet
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Li Guo
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Amanda Silberberg
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
28
|
O'Connor MG, Seegmiller A. The effects of ivacaftor on CF fatty acid metabolism: An analysis from the GOAL study. J Cyst Fibros 2017; 16:132-138. [PMID: 27473897 PMCID: PMC5241173 DOI: 10.1016/j.jcf.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/17/2016] [Accepted: 07/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ivacaftor has produced significant improvement in certain individuals with cystic fibrosis (CF), though the full metabolic effects of treatment remain unknown. Abnormalities in fatty acid metabolism have previously been shown to be a characteristic of CFTR dysfunction. We hypothesized that as a reflection of this clinical improvement, ivacaftor would improve plasma fatty acid levels and decrease urine prostaglandin E metabolite levels. METHODS This study analyzed plasma fatty acid levels and urine prostaglandin E metabolites (PGE-M) in 40 subjects with CF participating in the G551D observational (GOAL) study who demonstrated response to the medication by a significant decrease in sweat Cl levels. Paired samples were analyzed before and after 6months of ivacaftor treatment. RESULTS Linoleic acid and docosahexaenoic acid levels, which are typically low in individuals with CF, did not significantly increase with ivacaftor treatment. However, arachidonic acid levels did decrease with ivacaftor treatment and there was a significant decrease in the arachidonic acid metabolite PGE-M as measured in the urine [median: before treatment 17.03ng/mg Cr; after treatment 9.06ng/mg Cr; p<0.001]. Furthermore, there were fatty acid age differences observed, including pediatric participants having significantly greater linoleic acid levels at baseline. CONCLUSION Ivacaftor reduces inflammatory PGE without fully correcting the plasma fatty acid abnormalities of CF. Age-related differences in fatty acid levels were observed, that may be a result of other clinical factors, such as diet, clinical care, or drug response.
Collapse
Affiliation(s)
- Michael Glenn O'Connor
- Department of Pediatrics, Division Pediatric Pulmonary, Allergy, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| | - Adam Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
29
|
Véricel E, Mazur S, Colas R, Delaup V, Calzada C, Reix P, Durieu I, Lagarde M, Bellon G. Moderate intake of docosahexaenoic acid raises plasma and platelet vitamin E levels in cystic fibrosis patients. Prostaglandins Leukot Essent Fatty Acids 2016; 115:41-47. [PMID: 27914512 DOI: 10.1016/j.plefa.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
Patients with cystic fibrosis have increased oxidative stress and impaired antioxidant systems. Moderate intake of docosahexaenoic acid (DHA) may favor the lowering of oxidative stress. In this randomized, double-blind, cross-over study, DHA or placebo capsules, were given daily to 10 patients, 5mg/kg for 2 weeks then 10mg/kg DHA for the next 2 weeks (or placebo). After 9 weeks of wash-out, patients took placebo or DHA capsules. Biomarkers of lipid peroxidation and vitamin E were measured at baseline, and after 2 and 4 weeks of treatment in each phase. The proportions of DHA increased both in plasma and platelet lipids after DHA supplementations. The lipid peroxidation markers did not significantly decrease, in spite of a trend, after the first and/or the second dose of DHA but plasma and platelet vitamin E amounts increased significantly after DHA supplementation. Our findings reinforce the antioxidant potential of moderate DHA intake in subjects displaying increased oxidative stress.
Collapse
Affiliation(s)
- Evelyne Véricel
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France.
| | - Stéphane Mazur
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| | - Romain Colas
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Véronique Delaup
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| | - Catherine Calzada
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Philippe Reix
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| | - Isabelle Durieu
- Centre de Référence adulte Mucoviscidose de Lyon, Centre Hospitalier Lyon-Sud, F-69310 Pierre-Bénite, France
| | - Michel Lagarde
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Gabriel Bellon
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| |
Collapse
|
30
|
O'Connor MG, Thomsen K, Brown RF, Laposata M, Seegmiller A. Elevated prostaglandin E metabolites and abnormal plasma fatty acids at baseline in pediatric cystic fibrosis patients: a pilot study. Prostaglandins Leukot Essent Fatty Acids 2016; 113:46-49. [PMID: 27720040 PMCID: PMC5088712 DOI: 10.1016/j.plefa.2016.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Airway inflammation is a significant contributor to the morbidity of cystic fibrosis (CF) disease. One feature of this inflammation is the production of oxygenated metabolites, such as prostaglandins. Individuals with CF are known to have abnormal metabolism of fatty acids, typically resulting in reduced levels of linoleic acid (LA) and docosahexaenoic acid (DHA). METHODS This is a randomized, double-blind, cross-over clinical trial of DHA supplementation with endpoints of plasma fatty acid levels and prostaglandin E metabolite (PGE-M) levels. Patients with CF age 6-18 years with pancreatic insufficiency were recruited. Each participant completed 3 four-week study periods: DHA at two different doses (high dose and low dose) and placebo with a minimum 4 week wash-out between each period. Blood, urine, and exhaled breath condensate (EBC) were collected at baseline and after each study period for measurement of plasma fatty acids as well as prostaglandin E metabolites. RESULTS Seventeen participants were enrolled, and 12 participants completed all 3 study periods. Overall, DHA supplementation was well tolerated without significant adverse events. There was a significant increase in plasma DHA levels with supplementation, but no significant change in arachidonic acid (AA) or LA levels. However, at baseline, AA levels were lower and LA levels were higher than previously reported for individuals with CF. Urine PGE-M levels were elevated in the majority of participants at baseline, and while levels decreased with DHA supplementation, they also decreased with placebo. CONCLUSIONS Urine PGE-M levels are elevated at baseline in this cohort of pediatric CF patients, but there was no significant change in these levels with DHA supplementation compared to placebo. In addition, baseline plasma fatty acid levels for this cohort showed some difference to prior reports, including higher levels of LA and lower levels of AA, which may reflect changes in clinical care, and consequently warrants further investigation.
Collapse
Affiliation(s)
- Michael Glenn O'Connor
- Department of Pediatrics, Division of Pediatric Pulmonary, Allergy, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| | - Kelly Thomsen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rebekah F Brown
- Department of Pediatrics, Division of Pediatric Pulmonary, Allergy, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Michael Laposata
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TN, United States
| | - Adam Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
31
|
Park HG, Lawrence P, Engel MG, Kothapalli K, Brenna JT. Metabolic fate of docosahexaenoic acid (DHA; 22:6n-3) in human cells: direct retroconversion of DHA to eicosapentaenoic acid (20:5n-3) dominates over elongation to tetracosahexaenoic acid (24:6n-3). FEBS Lett 2016; 590:3188-94. [PMID: 27543786 DOI: 10.1002/1873-3468.12368] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 11/05/2022]
Abstract
Docosahexaenoic acid (22:6n-3) supplementation in humans causes eicosapentaenoic acid (20:5n-3) levels to rise in plasma, but not in neural tissue where 22:6n-3 is the major omega-3 in phospholipids. We determined whether neuronal cells (Y79 and SK-N-SH) metabolize 22:6n-3 differently from non-neuronal cells (MCF7 and HepG2). We observed that (13) C-labeled 22:6n-3 was primarily esterified into cell lipids. We also observed that retroconversion of 22:6n-3 to 20:5n-3 was 5- to 6-fold greater in non-neural compared to neural cells and that retroconversion predominated over elongation to tetracosahexaenoic acid (24:6n-3) by 2-5-fold. The putative metabolic intermediates, (13) C-labeled 22:5n-3 and (13) C-labeled 24:5n-3, were not detected in our assays. Analysis of the expression of enzymes involved in fatty acid beta-oxidation revealed that MCF7 cells abundantly expressed the mitochondrial enzymes CPT1A, ECI1, and DECR1, whereas the peroxisomal enzyme ACOX1 was abundant in HepG2 cells, thus suggesting that the initial site of 22:6n-3 oxidation depends on the cell type. Our data reveal that non-neural cells more actively metabolize 22:6n-3 to 20:5n-3 via channeled retroconversion, while neural cells retain 22:6n-3.
Collapse
Affiliation(s)
- Hui Gyu Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Matthew G Engel
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kumar Kothapalli
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
32
|
Hanssens L, Thiébaut I, Lefèvre N, Malfroot A, Knoop C, Duchateau J, Casimir G. The clinical benefits of long-term supplementation with omega-3 fatty acids in cystic fibrosis patients - A pilot study. Prostaglandins Leukot Essent Fatty Acids 2016; 108:45-50. [PMID: 27154364 DOI: 10.1016/j.plefa.2016.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/22/2022]
Abstract
Effectiveness of omega-3 supplementation in cystic fibrosis (CF) remains controversial. This study sought to evaluate clinical status, exercise tolerance, inflammatory parameters, and erythrocyte fatty acid profile after 1 year of oral omega-3 supplementation in CF patients. Fifteen ΔF508-homozygous patients undergoing chronic azithromycin were randomized to receive omega-3 fish oil supplementation at a dose of 60mg/Kg/day or placebo. In comparison with the previous year, in the supplemented group, the number of pulmonary exacerbations decreased at 12 months (1.7 vs. 3.0, p<0.01), as did the duration of antibiotic therapy (26.5 days vs. 60.0 days, p<0.025). Supplementation significantly increased the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as early as <3 months of administration, with concomitant decreases in arachidonic acid (AA) levels. This pilot study suggests that long-term omega-3 supplementation offers several clinical benefits as to the number of exacerbations and duration of antibiotic therapy in CF patients.
Collapse
Affiliation(s)
- L Hanssens
- Hôpital Universitaire des Enfants Reine Fabiola - Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - I Thiébaut
- Hôpital Universitaire des Enfants Reine Fabiola - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - N Lefèvre
- Hôpital Universitaire des Enfants Reine Fabiola - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Malfroot
- Universitair Ziekenhuis Brussel (UZ Brussel)-Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - C Knoop
- Hôpital Universitaire Erasme - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - J Duchateau
- Centre Hospitalier Universitaire Brugmann et laboratoire de pédiatrie de l'Hôpital Universitaire des Enfants Reine Fabiola - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - G Casimir
- Hôpital Universitaire des Enfants Reine Fabiola - Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
33
|
Cacabelos D, Ayala V, Granado-Serrano AB, Jové M, Torres P, Boada J, Cabré R, Ramírez-Núñez O, Gonzalo H, Soler-Cantero A, Serrano JCE, Bellmunt MJ, Romero MP, Motilva MJ, Nonaka T, Hasegawa M, Ferrer I, Pamplona R, Portero-Otín M. Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis. Neurobiol Dis 2016; 88:148-60. [PMID: 26805387 DOI: 10.1016/j.nbd.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/09/2015] [Accepted: 01/09/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown. METHODS DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot. Further, lipid composition was measured in organotypic spinal cord cultures by gas chromatography and liquid chromatography coupled to mass spectrometry. In these samples, mitochondrial respiratory functions were measured by high resolution respirometry. Finally, Neuro2-A and stem cell-derived human neurons were used for evaluating mechanistic relationships between TDP-43 aggregation, oxidative stress and cellular changes in DHA-related proteins. RESULTS ALS is associated to changes in the spinal cord distribution of DHA synthesis enzymatic machinery comparing ten ALS cases and eight controls. We found increased levels of desaturases (ca 95% increase, p<0.001), but decreased amounts of DHA-related β-oxidation enzymes in ALS samples (40% decrease, p<0.05). Further, drebrin, a DHA-dependent synaptic protein, is depleted in spinal cord samples from ALS patients (around 40% loss, p<0.05). In contrast, chronic excitotoxicity in spinal cord increases DHA acid amount, with both enhanced concentrations of neuroprotective docosahexaenoic acid-derived resolvin D, and higher lipid peroxidation-derived molecules such as 8-iso-prostaglandin-F2-α (8-iso-PGF2α) levels. Since α-tocopherol improved mitochondrial respiratory function and motor neuron survival in these conditions, it is suggested that oxidative stress could boost motor neuron loss. Cell culture and metabolic flux experiments, showing enhanced expression of desaturases (FADS2) and β-oxidation enzymes after H2O2 challenge suggest that DHA production can be an initial response to oxidative stress, driven by TDP-43 aggregation and drebrin loss. Interestingly, these changes were dependent on cell type used, since human neurons exhibited losses of FADS2 and drebrin after oxidative stress. These features (drebrin loss and FADS2 alterations) were also produced by transfection by aggregation prone C-terminal fragments of TDP-43. CONCLUSIONS sALS is associated with tissue-specific DHA-dependent synthetic machinery alteration. Furthermore, excitotoxicity sinergizes with oxidative stress to increase DHA levels, which could act as a response over stress, involving the expression of DHA synthetic enzymes. Later on, this allostatic overload could exacerbate cell stress by contributing to TDP-43 aggregation. This, at its turn, could blunt this protective response, overall leading to DHA depletion and neuronal dysfunction.
Collapse
Affiliation(s)
- Daniel Cacabelos
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Victòria Ayala
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Ana Belén Granado-Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Mariona Jové
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Pascual Torres
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Jordi Boada
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Rosanna Cabré
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Omar Ramírez-Núñez
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Hugo Gonzalo
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Aranzazu Soler-Cantero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - José Carlos Enrique Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Maria Josep Bellmunt
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - María Paz Romero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - María José Motilva
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Masato Hasegawa
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Isidre Ferrer
- Institut de Neuropatologia, Hospital Universitari de Bellvitge - IDIBELL, Universitat de Barcelona, Spain; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Spanish Ministry of Health, Spain. L'Hospitalet de Llobregat, c/La Feixa Llarga, S/N 08908 Hospitalet de Llobregat, Barcelona, Spain.
| | - Reinald Pamplona
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Manuel Portero-Otín
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| |
Collapse
|
34
|
Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats. Nutrients 2015; 7:8802-17. [PMID: 26506385 PMCID: PMC4632453 DOI: 10.3390/nu7105433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.
Collapse
|
35
|
Abstract
SIGNIFICANCE Cystic fibrosis (CF) is the most common lethal genetic disorder in the Caucasian people. It is due to the mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene located on the long arm of the chromosome 7, which encodes for CFTR protein. The latter, an adenosine triphosphate binding cassette, is a transmembrane chloride channel that is also involved in glutathione transport. As glutathione/glutathione disulfide constitutes the most important pool of cellular redox systems, CFTR defects could thus disrupt the intracellular redox balance. Resulting multisystemic diseases are essentially characterized by a chronic respiratory failure, a pancreatic insufficiency, an essential fatty acid deficiency (EFAD), and inadequate levels of antioxidant vitamins. RECENT ADVANCES The pathophysiology of CF is complex; however, several mechanisms are proposed, including oxidative stress (OxS) whose implication is recognized and has been clearly demonstrated in CF airways. CRITICAL ISSUES Little is known about OxS intrinsic triggers and its own involvement in intestinal lipid disorders. Despite the regular administration of pancreatic supplements, high-fat high-calorie diets, and antioxidant fat-soluble vitamins, there is a persistence of steatorrhea, EFAD, and harmful OxS. Intriguingly, several trials with elevated doses of antioxidant vitamins have not yielded significant improvements. FUTURE DIRECTIONS The main sources and self-maintenance of OxS in CF should be clarified to improve treatment of patients. Therefore, this review will discuss the potential sources and study the mechanisms of OxS in the intestine, known to develop various complications, and its involvement in intestinal lipid disorders in CF patients.
Collapse
Affiliation(s)
- Marie-Laure Kleme
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montréal, Quebec, Canada
| | | |
Collapse
|
36
|
Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR−/− mice by suppressing fatty acid desaturases. J Nutr Biochem 2015; 26:36-43. [DOI: 10.1016/j.jnutbio.2014.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 01/23/2023]
|
37
|
Reverri EJ, Morrissey BM, Cross CE, Steinberg FM. Inflammation, oxidative stress, and cardiovascular disease risk factors in adults with cystic fibrosis. Free Radic Biol Med 2014; 76:261-77. [PMID: 25172163 DOI: 10.1016/j.freeradbiomed.2014.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.
Collapse
Affiliation(s)
- Elizabeth J Reverri
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Brian M Morrissey
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA
| | - Carroll E Cross
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA.
| | - Francene M Steinberg
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
38
|
Seegmiller AC. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: biochemical mechanisms and clinical implications. Int J Mol Sci 2014; 15:16083-99. [PMID: 25216340 PMCID: PMC4200767 DOI: 10.3390/ijms150916083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be linked to cystic fibrosis mutations via stimulation of the AMP-activated protein kinase in the absence of functional CFTR protein. There is evidence that these abnormalities may contribute to disease pathophysiology by increasing production of eicosanoids, such as prostaglandins and leukotrienes, of which arachidonate is a key substrate. Understanding these underlying mechanisms provides key insights that could potentially impact the diagnosis, clinical monitoring, nutrition, and therapy of patients suffering from this deadly disease.
Collapse
Affiliation(s)
- Adam C Seegmiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 4918B TVC, 1301 Medical Center Dr., Nashville, TN 37027, USA.
| |
Collapse
|
39
|
Sherif IO, Al-Gayyar MM. Cod liver oil in sodium nitrite induced hepatic injury: does it have a potential protective effect? Redox Rep 2014; 20:11-6. [PMID: 24945989 DOI: 10.1179/1351000214y.0000000097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Exposure to sodium nitrites, a food additive, at high levels has been reported to produce reactive nitrogen and oxygen species that cause dysregulation of inflammatory responses and tissue injury. In this work, we examined the impact of dietary cod liver oil on sodium nitrite-induced inflammation in rats. METHODS Thirty-two adult male Sprague-Dawely rats were treated with 80 mg/kg sodium nitrite in presence/absence of 5 ml/kg cod liver oil. Liver sections were stained with hematoxylin/eosin. We measured hepatic tumor necrosis factor (TNF)-α, interleukin-1 beta (IL)-1β, C-reactive protein (CRP), transforming growth factor (TGF)-β1, and caspase-3. RESULTS Cod liver oil reduced sodium nitrite-induced hepatocyte damage. In addition, cod liver oil results in reduction of hepatic TNF-α, IL-1β, CRP, TGF-β1, and caspase-3 when compared with the sodium nitrite group. DISCUSSION Cod liver oil ameliorates sodium nitrite-induced hepatic injury via multiple mechanisms including blocking sodium nitrite-induced elevation of inflammatory cytokines, fibrosis mediators, and apoptosis markers.
Collapse
|
40
|
Umunakwe OC, Seegmiller AC. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase. J Lipid Res 2014; 55:1489-97. [PMID: 24859760 DOI: 10.1194/jlr.m050369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism.
Collapse
Affiliation(s)
- Obi C Umunakwe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Adam C Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
41
|
Shi AJ, Morrissey BM, Durbin-Johnson B, Pilli S, Zawadzki RJ, Cross CE, Park SS. Macular pigment and macular volume in eyes of patients with cystic fibrosis. Free Radic Res 2014; 48:740-8. [DOI: 10.3109/10715762.2014.904043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Mahanty A, Ganguly S, Verma A, Sahoo S, Mitra P, Paria P, Sharma AP, Singh BK, Mohanty BP. Nutrient Profile of Small Indigenous Fish Puntius sophore: Proximate Composition, Amino Acid, Fatty Acid and Micronutrient Profiles. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2014. [DOI: 10.1007/s40009-013-0186-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
García-Pelayo MC, García-Peregrín E, Martínez-Cayuela M. Influence of environmental medium on membrane fatty acid composition of Reuber H35 hepatoma cells. FRONTIERS IN LIFE SCIENCE 2014. [DOI: 10.1080/21553769.2013.860406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Haack A, Aragão GG, Novaes MRCG. Pathophysiology of cystic fibrosis and drugs used in associated digestive tract diseases. World J Gastroenterol 2013; 19:8552-61. [PMID: 24379572 PMCID: PMC3870500 DOI: 10.3748/wjg.v19.i46.8552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/28/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) causes chronic infections in the respiratory tract and alters the digestive tract. This paper reviews the most important aspects of drug treatment and changes in the digestive tract of patients with CF. This is a review of the literature, emphasizing the discoveries made within the last 15 years by analyzing scientific papers published in journals indexed in the Scientific Electronic Library Online, Sciences Information, United States National Library of Medicine and Medical Literature Analysis and Retrieval System Online databases, both in English and Portuguese, using the key words: cystic fibrosis, medication, therapeutic, absorption, digestion. Randomized, observational, experimental, and epidemiological clinical studies were selected, among others, with statistical significance of 5%. This review evaluates the changes found in the digestive tract of CF patients including pancreatic insufficiency, constipation and liver diseases. Changes in nutritional status are also described. Clinical treatment, nutritional supplementation and drug management were classified in this review as essential to the quality of life of CF patients, and became available through public policies for monitoring and treating CF. The information gathered on CF and a multi professional approach to the disease is essential in the treatment of these patients.
Collapse
|
45
|
Glick NR, Fischer MH. The Role of Essential Fatty Acids in Human Health. J Evid Based Complementary Altern Med 2013. [DOI: 10.1177/2156587213488788] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fatty acid research began about 90 years ago but intensified in recent years. Essential fatty acids (linoleic and α-linolenic) must come from diet. Other fatty acids may come from diet or may be synthesized. Fatty acids are major components of cell membrane structure, modulate gene transcription, function as cytokine precursors, and serve as energy sources in complex, interconnected systems. It is increasingly apparent that dietary fatty acids influence these vital functions and affect human health. While the strongest evidence for influence is found in cardiovascular disease and mental health, many additional conditions are affected. Problematic changes in the fatty acid composition of human diet have also taken place over the last century. This review summarizes current understanding of the pervasive roles of essential fatty acids and their metabolites in human health.
Collapse
|
46
|
Lamaziere A, Farabos D, Wolf C, Quinn PJ. The deficit of lipid in cultured cells contrasted with clinical lipidomics. Mol Nutr Food Res 2013; 57:1401-9. [PMID: 23526634 DOI: 10.1002/mnfr.201200741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/07/2013] [Accepted: 02/10/2013] [Indexed: 12/11/2022]
Abstract
Cells grown in culture are frequently employed to model lipid metabolism in vivo. There are reasons of convenience for this but examination of the lipidome of cultured cells and their metabolic responses to lipid supplementation give cause to indicate disparity with their counterparts in living animals. The reason is mainly that homeostatic regulation is exercised in animals supplied with an adequate diet in which the adipose tissue and liver represent plentiful sources of lipid integrated via inter-organ collaboration and able to buffer transient fluctuations in dietary lipid and essential fatty acids (EFAs). Moreover, conventional culture media are generally deficient in total lipids as well as essential EFAs. Cultured cells exposed to high glucose concentrations and lipid deficit typically manifest accelerated rates of lipogenesis evidenced by high rates of de novo FA biosynthesis. A more realistic model may be obtained by increasing supplements of lipid especially enriched in essential EFAs in the growth medium. Increasing concentrations of ω3 FAs, in particular, attenuate the rate of de novo lipogenesis. The improvement of cell culture models for pharmacological screening of drug-candidates targeting lipid or glucose metabolism is highlighted.
Collapse
Affiliation(s)
- Antonin Lamaziere
- Laboratoire des Biomolécules, Ecole Normale Supérieure, Paris, France
| | | | | | | |
Collapse
|
47
|
Katrangi W, Lawrenz J, Seegmiller AC, Laposata M. Interactions of linoleic and alpha-linolenic acids in the development of fatty acid alterations in cystic fibrosis. Lipids 2013; 48:333-42. [PMID: 23440519 DOI: 10.1007/s11745-013-3768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/22/2013] [Indexed: 01/13/2023]
Abstract
Patients with cystic fibrosis (CF) exhibit characteristic polyunsaturated fatty acid abnormalities, including low linoleic acid and high arachidonic acid levels that are thought to contribute to the pathophysiology of this disease. Recent studies indicate that changes in fatty acid metabolism are responsible for these abnormalities. This study examines the role of fatty acid substrate concentrations in the development of these alterations in a cultured cell model of CF. By incubating cells with varying concentrations of exogenous fatty acids, it shows that increasing the concentration of substrates from the parallel n-3 and n-6 polyunsaturated fatty acid pathways (linoleic acid and alpha-linolenic acid, respectively) not only increases formation of the products in that pathway, but also reduces metabolism in the parallel pathway. In particular, we demonstrate that high levels of linoleic acid and low levels of alpha-linolenic acid are required to observe the typical fatty acid alterations of cystic fibrosis. These results shed light on the mechanisms of fatty acid metabolic abnormalities in cystic fibrosis. They also have implications for the nutritional therapy of CF, highlighting the importance of specific fatty acid content, and in understanding the anti-inflammatory effects of n-3 fatty acids.
Collapse
Affiliation(s)
- Waddah Katrangi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
48
|
Eiserich JP, Yang J, Morrissey BM, Hammock BD, Cross CE. Omics approaches in cystic fibrosis research: a focus on oxylipin profiling in airway secretions. Ann N Y Acad Sci 2012; 1259:1-9. [PMID: 22758630 DOI: 10.1111/j.1749-6632.2012.06580.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis (CF) is associated with abnormal lipid metabolism, intense respiratory tract (RT) infection, and inflammation, eventually resulting in lung tissue destruction and respiratory failure. The CF RT inflammatory milieu, as reflected by airway secretions, includes a complex array of inflammatory mediators, bacterial products, and host secretions. It is dominated by neutrophils and their proteolytic and oxidative products and includes a wide spectrum of bioactive lipids produced by both host and presumably microbial metabolic pathways. The fairly recent advent of "omics" technologies has greatly increased capabilities of further interrogating this easily obtainable RT compartment that represents the apical culture media of the underlying RT epithelial cells. This paper discusses issues related to the study of CF omics with a focus on the profiling of CF RT oxylipins. Challenges in their identification/quantitation in RT fluids, their pathways of origin, and their potential utility for understanding CF RT inflammatory and oxidative processes are highlighted. Finally, the utility of oxylipin metabolic profiling in directing optimal therapeutic approaches and determining the efficacy of various interventions is discussed.
Collapse
Affiliation(s)
- Jason P Eiserich
- Department of Internal Medicine, University of California, Davis, California, USA
| | | | | | | | | |
Collapse
|
49
|
Yang J, Eiserich JP, Cross CE, Morrissey BM, Hammock BD. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic Biol Med 2012; 53:160-71. [PMID: 22580336 PMCID: PMC3412514 DOI: 10.1016/j.freeradbiomed.2012.05.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 04/29/2012] [Accepted: 05/01/2012] [Indexed: 01/22/2023]
Abstract
Retained respiratory tract (RT) secretions, infection, and exuberant inflammatory responses are core abnormalities in cystic fibrosis (CF) lung disease. Factors contributing to the destructive CF airway inflammatory processes remain incompletely characterized. The pro-oxidative inflammatory CF RT milieu is known to contain enzymatically and nonenzymatically produced regulatory lipid mediators, a panel of structurally defined oxidized metabolites of polyunsaturated fatty acids known to play a role in pathology related to inflammation. Using an extraction protocol that maximizes recoveries of sputum-spiked deuterated standards, coupled with an LC/MS/MS detection system, this study presents a metabolomic method to assess a broad spectrum of regulatory lipid mediators in freshly obtained sputum from CF patients. A broad range of both proinflammatory and anti-inflammatory lipid mediators was detected, including PGE2, PGD2, TXB2, LTB4, 6-trans-LTB4, 20-OH-LTB4, 20-COOH-LTB4, 20-HETE, 15-HETE, 11-HETE, 12-HETE, 8-HETE, 9-HETE, 5-HETE, EpETrEs, diols, resolvin E1, 15-deoxy-PGJ2, and LXA4. The vast majority of these oxylipins have not been reported previously in CF RT secretions. Whereas direct associations of individual proinflammatory lipid mediators with compromised lung function (FEV-1) were observed, the relationships were not robust. However, multiple statistical analyses revealed that the regulatory lipid mediators profile taken in aggregate proved to have a stronger association with lung function in relatively stable outpatient adult CF patients. Our data reveal a relative paucity of the anti-inflammatory lipid mediator lipoxin A4 in CF sputum. Patients displaying detectable levels of the anti-inflammatory lipid mediator resolvin E1 demonstrated a better lung function compared to those patients with undetectable levels. Our data suggest that comprehensive metabolomic profiling of regulatory lipid mediators in CF sputum should contribute to a better understanding of the molecular mechanisms underlying CF RT inflammatory pathobiology. Further studies are required to determine the extent to which nutritional or pharmacological interventions alter the regulatory lipid mediators profile of the CF RT and the impact of potential modulations of RT regulatory lipid mediators on the clinical progression of CF lung disease.
Collapse
Affiliation(s)
- Jun Yang
- Department of Entomology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|