1
|
Jalil A, Pilot T, Bourgeois T, Laubriet A, Li X, Diedisheim M, Deckert V, Magnani C, Le Guern N, Pais de Barros JP, Nguyen M, Pallot G, Vouilloz A, Proukhnitzky L, Hermetet F, Aires V, Lesniewska E, Lagrost L, Auwerx J, Le Goff W, Venteclef N, Steinmetz E, Thomas C, Masson D. Plasmalogen remodeling modulates macrophage response to cytotoxic oxysterols and atherosclerotic plaque vulnerability. Cell Rep Med 2025; 6:102131. [PMID: 40345182 DOI: 10.1016/j.xcrm.2025.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/18/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Essential fatty acid metabolism in myeloid cells plays a critical but underexplored role in immune function. Here, we demonstrate that simultaneous inactivation of two key enzymes involved in macrophage polyunsaturated fatty acid (PUFA) metabolism-ELOVL5, which elongates long-chain PUFAs, and LPCAT3, which incorporates them into phospholipids-disrupts membrane organization by promoting the formation of cholesterol-enriched domains. This increases macrophage sensitivity to cytotoxic oxysterols and leads to more vulnerable atherosclerotic plaques with enlarged necrotic cores in a mouse model of atherosclerosis. In humans, analysis of 187 carotid plaques reveals a positive correlation between LPCAT3/ELOVL5-generated phospholipids-including arachidonate (C20:4 n-6)-containing ether lipids-and more stable plaque profiles. Additionally, Mendelian randomization analysis supports a causal relationship between LPCAT3 expression and reduced risk of ischemic stroke. Our findings uncover a regulatory circuit essential for PUFA-containing phospholipid generation in macrophages, positioning PUFA-containing ether lipids as promising biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Antoine Jalil
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thomas Pilot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thibaut Bourgeois
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Aline Laubriet
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marc Diedisheim
- Centre - Clinique Saint Gatien Alliance (NCT+), 37214 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Valérie Deckert
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Charlène Magnani
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Naig Le Guern
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; Lipidomic Analytic Platform, UBFC, 21000 Dijon, France
| | - Maxime Nguyen
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Department of Anesthesiology and Critical Care Medicine, Dijon University Medical Center, 21000 Dijon, France
| | - Gaëtan Pallot
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Adrien Vouilloz
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Lil Proukhnitzky
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - François Hermetet
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Virginie Aires
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Eric Lesniewska
- Université Bourgogne, UMR1231, 21000 Dijon, France; Laboratory of Physics, National Center for Scientific Research, URA 5027, UFR Sciences et techniques, 21000 Dijon, France
| | - Laurent Lagrost
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, ICAN Institut, UMR_S1166, Hôpital de la Pitié, 75013 Paris, France
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Eric Steinmetz
- CHRU Dijon Bourgogne, Department of Cardiovascular Surgery, Dijon University Medical Center, 21000 Dijon, France
| | - Charles Thomas
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- Université Bourgogne, UMR1231, 21000 Dijon, France; INSERM, UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, 21000 Dijon, France.
| |
Collapse
|
2
|
Alabed HBR, Mancini DF, Buratta S, Calzoni E, Giacomo DD, Emiliani C, Martino S, Urbanelli L, Pellegrino RM. LipidOne 2.0: A Web Tool for Discovering Biological Meanings Hidden in Lipidomic Data. Curr Protoc 2024; 4:e70009. [PMID: 39301800 DOI: 10.1002/cpz1.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
LipidOne 2.0 (https://lipidone.eu) is a new web bioinformatic tool for the analysis of lipidomic data. It facilitates the exploration of the three structural levels of lipids: classes, molecular species, and lipid building blocks (acyl, alkyl, or alkenes chains). The tool's flexibility empowers users to seamlessly include or exclude experimental groups and lipid classes at any stage of the analysis. LipidOne 2.0 offers a range of mono- and multivariate statistical analyses, specifically tailored to each structural level. This includes a novel lipid biomarker identification function, integrating four diverse statistical parameters. LipidOne 2.0 incorporates Lipid Pathway analysis across all three structural levels of lipids. Users can identify lipid-involved reactions through case-control comparisons, generating lists of genes/enzymes and their activation states based on Z scores. Accessible without the need for registration, LipidOne 2.0 provides a user-friendly and efficient platform for exploring and analyzing lipidomic data. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Dataset preparation for LipidOne 2.0 Support Protocol: Lipid nomenclature from spectrometric experiments Basic Protocol 2: Uploading a dataset into LipidOne 2.0 Basic Protocol 3: Data mining of lipidomic dataset by LipidOne 2.0.
Collapse
Affiliation(s)
- Husam B R Alabed
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Dorotea Frongia Mancini
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Sandra Buratta
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Eleonora Calzoni
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Danika Di Giacomo
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Carla Emiliani
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Sabata Martino
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Lorena Urbanelli
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| | - Roberto Maria Pellegrino
- Biochemistry and Molecular Biology Group, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, Perugia, Italy
| |
Collapse
|
3
|
Queathem ED, Moazzami Z, Stagg DB, Nelson AB, Fulghum K, Hayir A, Seay A, Gillingham JR, d'Avignon DA, Han X, Ruan HB, Crawford PA, Puchalska P. Ketogenesis supports hepatic polyunsaturated fatty acid homeostasis via fatty acid elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602593. [PMID: 39026753 PMCID: PMC11257565 DOI: 10.1101/2024.07.09.602593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation. Analysis of 13 C-labeled FAs in hepatocytes lacking mitochondrial D-β-hydroxybutyrate dehydrogenase (BDH1) revealed a partial reliance on mitochondrial conversion of D-βOHB to acetoacetate (AcAc) for cytoplasmic DNL contribution, whereas FA elongation from ketone bodies was fully dependent on cytosolic acetoacetyl-CoA synthetase (AACS). Ketone bodies were essential for polyunsaturated FA (PUFA) homeostasis in hepatocytes, as loss of AACS diminished both free and esterified PUFAs. Ketogenic insufficiency depleted liver PUFAs and increased triacylglycerols, mimicking human MASLD, suggesting that ketogenesis supports PUFA homeostasis, and may mitigate MASLD-MASH progression in humans.
Collapse
|
4
|
Loukil I, Mutch DM, Plourde M. Genetic association between FADS and ELOVL polymorphisms and the circulating levels of EPA/DHA in humans: a scoping review. GENES & NUTRITION 2024; 19:11. [PMID: 38844860 PMCID: PMC11157910 DOI: 10.1186/s12263-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two omega-3 fatty acids that can be synthesized out of their precursor alpha-linolenic acid (ALA). FADS and ELOVL genes encode the desaturase and elongase enzymes required for EPA and DHA synthesis from ALA; however, single nucleotide polymorphisms (SNPs) in FADS and ELOVL genes could modify the levels of EPA and DHA synthesized from ALA although there is no consensus in this area. This review aims to investigate EPA and DHA circulating levels in human blood and their association with FADS or ELOVL. METHODS PubMed, Cochrane, and Scopus databases were used to identify research articles. They were subsequently reviewed by two independent investigators. RESULTS Initially, 353 papers were identified. After removing duplicates and articles not meeting inclusion criteria, 98 full text papers were screened. Finally, this review included 40 studies investigating FADS and/or ELOVL polymorphisms. A total of 47 different SNPs in FADS genes were reported. FADS1 rs174537, rs174547, rs174556 and rs174561 were the most studied SNPs, with minor allele carriers having lower levels of EPA and DHA. SNPs in the FADS genes were in high linkage disequilibrium. SNPs in FADS were correlated with levels of EPA and DHA. No conclusion could be drawn with the ELOVL polymorphisms since the number of studies was too low. CONCLUSION Specific SNPs in FADS gene, such as rs174537, have strong associations with circulating levels of EPA and DHA. Continued investigation regarding the impact of genetic variants related to EPA and DHA synthesis is warranted.
Collapse
Affiliation(s)
- Insaf Loukil
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Guelph, ON, N1G 2W1, Canada
| | - Mélanie Plourde
- Research Center on Aging, Health, and Social Sciences Center, Department of Medicine, Sherbrooke University Geriatrics Institute, University of Sherbrooke, Sherbrooke, QC, J1G 1B1, Canada.
- Department de Medicine, Faculty of Medicine and health sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
5
|
Watabe S, Tanaka W, Sakakibara H, Yokoyama D. Daily Consumption of α-Linolenic Acid Increases Conversion Efficiency to Eicosapentaenoic Acid in Mice. Nutrients 2024; 16:1407. [PMID: 38794645 PMCID: PMC11124506 DOI: 10.3390/nu16101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
To maintain a beneficial concentration of eicosapentaenoic acid (EPA), the efficient conversion of its precursor, α-linolenic acid (α-LA), is important. Here, we studied the conversion of α-LA to EPA using ICR and C57BL/6 mice. A single dose of perilla oil rich-in α-LA or free α-LA had not been converted to EPA 18 h following administration. The α-LA was absorbed into the circulation, and its concentration peaked 6 h after administration, after which it rapidly decreased. In contrast, EPA administration was followed by an increase in circulating EPA concentration, but this did not decrease between 6 and 18 h, indicating that the clearance of EPA is slower than that of α-LA. After ≥1 week perilla oil intake, the circulating EPA concentration was >20 times higher than that of the control group which consumed olive oil, indicating that daily consumption, but not a single dose, of α-LA-rich oil might help preserve the physiologic EPA concentration. The consumption of high concentrations of perilla oil for 4 weeks also increased the hepatic expression of Elovl5, which is involved in fatty acid elongation; however, further studies are needed to characterize the relationship between the expression of this gene and the conversion of α-LA to EPA.
Collapse
Affiliation(s)
- Saori Watabe
- Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan; (S.W.); (W.T.)
| | - Wataru Tanaka
- Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan; (S.W.); (W.T.)
| | - Hiroyuki Sakakibara
- Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan; (S.W.); (W.T.)
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Daigo Yokoyama
- Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai Nishi, Miyazaki 889-2192, Japan; (S.W.); (W.T.)
| |
Collapse
|
6
|
Alabed HBR, Pellegrino RM, Buratta S, Lema Fernandez AG, La Starza R, Urbanelli L, Mecucci C, Emiliani C, Gorello P. Metabolic Profiling as an Approach to Differentiate T-Cell Acute Lymphoblastic Leukemia Cell Lines Belonging to the Same Genetic Subgroup. Int J Mol Sci 2024; 25:3921. [PMID: 38612731 PMCID: PMC11011837 DOI: 10.3390/ijms25073921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive tumor mainly affecting children and adolescents. It is driven by multiple genetic mutations that together define the leukemic phenotype. Interestingly, based on genetic alterations and/or deregulated expression, at least six genetic subgroups have been recognized. The TAL/LMO subgroup is one of the most represented genetic subgroups, characterizing 30-45% of pediatric T-ALL cases. The study of lipid and metabolic profiles is increasingly recognized as a valuable tool for comprehending the development and progression of tumors. In this study, metabolic and lipidomic analysis via LC/MS have been carried out on four T-ALL cell lines belonging to the TAL/LMO subgroup (Jurkat, Molt-4, Molt-16, and CCRF-CEM) to identify new potential metabolic biomarkers and to provide a subclassification of T-ALL cell lines belonging to the same subgroup. A total of 343 metabolites were annotated, including 126 polar metabolites and 217 lipid molecules. The statistical analysis, for both metabolic and lipid profiles, shows significant differences and similarities among the four cell lines. The Molt-4 cell line is the most distant cell line and CCRF-CEM shows a high activity in specific pathways when compared to the other cell lines, while Molt-16 and Jurkat show a similar metabolic profile. Additionally, this study highlighted the pathways that differ in each cell line and the possible enzymes involved using bioinformatic tools, capable of predicting the pathways involved by studying the differences in the metabolic profiles. This experiment offers an approach to differentiate T-ALL cell lines and could open the way to verify and confirm the obtained results directly in patients.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.G.L.F.); (C.M.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy (R.M.P.); (S.B.); (L.U.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
7
|
Wang X, Yu H, Gao R, Liu M, Xie W. A comprehensive review of the family of very-long-chain fatty acid elongases: structure, function, and implications in physiology and pathology. Eur J Med Res 2023; 28:532. [PMID: 37981715 PMCID: PMC10659008 DOI: 10.1186/s40001-023-01523-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND The very-long-chain fatty acid elongase (ELOVL) family plays essential roles in lipid metabolism and cellular functions. This comprehensive review explores the structural characteristics, functional properties, and physiological significance of individual ELOVL isoforms, providing insights into lipid biosynthesis, cell membrane dynamics, and signaling pathways. AIM OF REVIEW This review aims to highlight the significance of the ELOVL family in normal physiology and disease development. By synthesizing current knowledge, we underscore the relevance of ELOVLs as potential therapeutic targets. KEY SCIENTIFIC CONCEPTS OF REVIEW We emphasize the association between dysregulated ELOVL expression and diseases, including metabolic disorders, skin diseases, neurodegenerative conditions, and cancer. The intricate involvement of ELOVLs in cancer biology, from tumor initiation to metastasis, highlights their potential as targets for anticancer therapies. Additionally, we discuss the prospects of using isoform-specific inhibitors and activators for metabolic disorders and cancer treatment. The identification of ELOVL-based biomarkers may advance diagnostics and personalized medicine. CONCLUSION The ELOVL family's multifaceted roles in lipid metabolism and cellular physiology underscore its importance in health and disease. Understanding their functions offers potential therapeutic avenues and personalized treatments.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Hao Yu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Rong Gao
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Ming Liu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
8
|
Irvine NA, West AL, Von Gerichten J, Miles EA, Lillycrop KA, Calder PC, Fielding BA, Burdge GC. Exogenous tetracosahexaenoic acid modifies the fatty acid composition of human primary T lymphocytes and Jurkat T cell leukemia cells contingent on cell type. Lipids 2023; 58:185-196. [PMID: 37177900 PMCID: PMC10946481 DOI: 10.1002/lipd.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Tetracosahexaenoic acid (24:6ω-3) is an intermediate in the conversion of 18:3ω-3 to 22:6ω-3 in mammals. There is limited information about whether cells can assimilate and metabolize exogenous 24:6ω-3. This study compared the effect of incubation with 24:6ω-3 on the fatty acid composition of two related cell types, primary CD3+ T lymphocytes and Jurkat T cell leukemia, which differ in the integrity of the polyunsaturated fatty acid (PUFA) biosynthesis pathway. 24:6ω-3 was only detected in either cell type when cells were incubated with 24:6ω-3. Incubation with 24:6ω-3 induced similar increments in the amount of 22:6ω-3 in both cell types and modified the homeoviscous adaptations fatty acid composition induced by activation of T lymphocytes. The effect of incubation with 18:3ω-3 compared to 24:6ω-3 on the increment in 22:6ω-3 was tested in Jurkat cells because primary T cells cannot convert 18:3ω-3 to 22:6ω-3. The increment in the 22:6ω-3 content of Jurkat cells incubated with 24:6ω-3 was 19.5-fold greater than that of cells incubated with 18:3ω-3. Acyl-coA oxidase siRNA knockdown decreased the amount of 22:6ω-3 and increased the amount of 24:6ω-3 in Jurkat cells. These findings show exogenous 24:6ω-3 can be incorporated into primary human T lymphocytes and Jurkat cells and induces changes in fatty acid composition consistent with its conversion to 22:6ω-3 via a mechanism involving peroxisomal β-oxidation that is regulated independently from the integrity of the upstream PUFA synthesis pathway. One further implication is that consuming 24:6ω-3 may be an effective alternative means of achieving health benefits attributed to 20:5ω-3 and 22:6ω-3.
Collapse
Affiliation(s)
- Nicola A. Irvine
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Annette L. West
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Johanna Von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental SciencesUniversity of SouthamptonSouthamptonHampshireUK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
- National Institute of Health and Care Research Southampton Biomedical Research CentreUniversity Hospital Southampton National Health Service Foundation Trust and University of SouthamptonSouthamptonHampshireUK
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonHampshireUK
- National Institute of Health and Care Research Southampton Biomedical Research CentreUniversity Hospital Southampton National Health Service Foundation Trust and University of SouthamptonSouthamptonHampshireUK
| |
Collapse
|
9
|
Rodencal J, Dixon SJ. A tale of two lipids: Lipid unsaturation commands ferroptosis sensitivity. Proteomics 2023; 23:e2100308. [PMID: 36398995 DOI: 10.1002/pmic.202100308] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Membrane lipids play important roles in the regulation of cell fate, including the execution of ferroptosis. Ferroptosis is a non-apoptotic cell death mechanism defined by iron-dependent membrane lipid peroxidation. Phospholipids containing polyunsaturated fatty acids (PUFAs) are highly vulnerable to peroxidation and are essential for ferroptosis execution. By contrast, the incorporation of less oxidizable monounsaturated fatty acids (MUFAs) in membrane phospholipids protects cells from ferroptosis. The enzymes and pathways that govern PUFA and MUFA metabolism therefore play a critical role in determining cellular sensitivity to ferroptosis. Here, we review three lipid metabolic processes-fatty acid biosynthesis, ether lipid biosynthesis, and phospholipid remodeling-that can govern ferroptosis sensitivity by regulating the balance of PUFAs and MUFAs in membrane phospholipids.
Collapse
Affiliation(s)
- Jason Rodencal
- Department of Biology, Stanford University, Stanford, California, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Bogie JF, Guns J, Vanherle S. Lipid metabolism in neurodegenerative diseases. CELLULAR LIPID IN HEALTH AND DISEASE 2023:389-419. [DOI: 10.1016/b978-0-323-95582-9.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
West AL, von Gerichten J, Irvine NA, Miles EA, Lillycrop KA, Calder PC, Fielding BA, Burdge GC. Fatty acid composition and metabolic partitioning of α-linolenic acid are contingent on life stage in human CD3 + T lymphocytes. Front Immunol 2022; 13:1079642. [PMID: 36582247 PMCID: PMC9792684 DOI: 10.3389/fimmu.2022.1079642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Immune function changes across the life course; the fetal immune system is characterised by tolerance while that of seniors is less able to respond effectively to antigens and is more pro-inflammatory than in younger adults. Lipids are involved centrally in immune function but there is limited information about how T cell lipid metabolism changes during the life course. Methods and Results We investigated whether life stage alters fatty acid composition, lipid droplet content and α-linolenic acid (18:3ω-3) metabolism in human fetal CD3+ T lymphocytes and in CD3+ T lymphocytes from adults (median 41 years) and seniors (median 70 years). Quiescent fetal T cells had higher saturated (SFA), monounsaturated fatty acid (MUFA), and ω-6 polyunsaturated fatty acid (PUFA) contents than adults or seniors. Activation-induced changes in fatty acid composition differed between life stages. The principal metabolic fates of [13C]18:3ω-3 were constitutive hydroxyoctadecatrienoic acid synthesis and β-oxidation and carbon recycling into SFA and MUFA. These processes declined progressively across the life course. Longer chain ω-3 PUFA synthesis was a relatively minor metabolic fate of 18:3ω-3 at all life stages. Fetal and adult T lymphocytes had similar lipid droplet contents, which were lower than in T cells from seniors. Variation in the lipid droplet content of adult T cells accounted for 62% of the variation in mitogen-induced CD69 expression, but there was no significant relationship in fetal cells or lymphocytes from seniors. Discussion Together these findings show that fatty acid metabolism in human T lymphocytes changes across the life course in a manner that may facilitate the adaptation of immune function to different life stages.
Collapse
Affiliation(s)
- Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A. Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,*Correspondence: Graham C. Burdge,
| |
Collapse
|
12
|
Burdge GC. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022; 57:267-287. [PMID: 35908848 DOI: 10.1002/lipd.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
α-linolenic acid (αLNA) conversion into the functionally important ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has been regarded as inadequate for meeting nutritional requirements for these PUFA. This view is based on findings of small αLNA supplementation trials and stable isotope tracer studies that have been interpreted as indicating human capacity for EPA and, in particular, DHA synthesis is limited. The purpose of this review is to re-evaluate this interpretation. Markedly differing study designs, inconsistent findings and lack of trial replication preclude robust consensus regarding the nutritional adequacy of αLNA as a source of EPC and DHA. The conclusion that αLNA conversion in humans is constrained is inaccurate because it presupposes the existence of an unspecified, higher level of metabolic activity. Since capacity for EPA and DHA synthesis is the product of evolution it may be argued that the levels of EPA and DHA it maintains are nutritionally appropriate. Dietary and supra-dietary EPA plus DHA intakes confer health benefits. Paradoxically, such health benefits are also found amongst vegetarians who do not consume EPA and DHA, and for whom αLNA conversion is the primary source of ω-3 PUFA. Since there are no reported adverse effects on health or cognitive development of diets that exclude EPA and DHA, their synthesis from αLNA appears to be nutritionally adequate. This is consistent with the dietary essentiality of αLNA and has implications for developing sustainable nutritional recommendations for ω-3 PUFA.
Collapse
Affiliation(s)
- Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
13
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
14
|
Biam RS, Robichaud PP, Mbarik M, Pineau P, Surette ME. Loss of detection of fatty acid-metabolizing proteins in Western blot analyses – Impact of sample heating. Biochem Biophys Res Commun 2022; 607:110-116. [DOI: 10.1016/j.bbrc.2022.03.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
15
|
Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 2022; 82:2215-2227. [PMID: 35390277 DOI: 10.1016/j.molcel.2022.03.022] [Citation(s) in RCA: 599] [Impact Index Per Article: 199.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, a newly emerged form of regulated necrotic cell death, has been demonstrated to play an important role in multiple diseases including cancer, neurodegeneration, and ischemic organ injury. Mounting evidence also suggests its potential physiological function in tumor suppression and immunity. The execution of ferroptosis is driven by iron-dependent phospholipid peroxidation. As such, the metabolism of biological lipids regulates ferroptosis via controlling phospholipid peroxidation, as well as various other cellular processes relevant to phospholipid peroxidation. In this review, we provide a comprehensive analysis by focusing on how lipid metabolism impacts the initiation, propagation, and termination of phospholipid peroxidation; how multiple signal transduction pathways communicate with ferroptosis via modulating lipid metabolism; and how such intimate cross talk of ferroptosis with lipid metabolism and related signaling pathways can be exploited for the development of rational therapeutic strategies.
Collapse
Affiliation(s)
- Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | - Alexander M Minikes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave., New York, NY 10065, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA.
| |
Collapse
|
16
|
von Gerichten J, West AL, Irvine NA, Miles EA, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. The Partitioning of Newly Assimilated Linoleic and α-Linolenic Acids Between Synthesis of Longer-Chain Polyunsaturated Fatty Acids and Hydroxyoctadecaenoic Acids Is a Putative Branch Point in T-Cell Essential Fatty Acid Metabolism. Front Immunol 2021; 12:740749. [PMID: 34675928 PMCID: PMC8523940 DOI: 10.3389/fimmu.2021.740749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes. CD3+ T cells were incubated for up to 48 h with or without concanavalin A in media containing a 18:2n-6:18:3n-3 (EFA) ratio of either 5:1 or 8:1 and [13C]18:3n-3 plus [d5]18:2n-6. Mitogen stimulation increased the amounts of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-6, 20:4n-6, 18:3n-3, and 20:5n-3 in T cells. Expression of the activation marker CD69 preceded increased FADS2 and FADS1 mRNA expression and increased amounts of [d5]20:2n-6 and [13C]20:3n-3 at 48 h. In addition, 22-carbon n-6 or n-3 LCPUFA synthesis was not detected, consistent with the absence of ELOVL2 expression. An EFA ratio of 8:1 reduced 18:3n-3 conversion and enhanced 20:2n-6 synthesis compared to a 5:1 ratio. Here, [d5]9- and [d5]-13-hydroxyoctadecadienoic (HODE) and [13C]9- and [13C]13-hydroxyoctadecatrienoic acids (HOTrE) were the major labelled oxylipins in culture supernatants; labelled oxylipins ≥20 carbons were not detected. An EFA ratio of 8:1 suppressed 9- and 13-HOTrE synthesis, but there was no significant effect on 9- and 13-HODE synthesis. These findings suggest that partitioning of newly assimilated EFA between LCPUFA synthesis and hydroxyoctadecaenoic acid may be a metabolic branch point in T-cell EFA metabolism that has implications for understanding the effects of dietary fats on T lymphocyte function.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicola A Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute of Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
17
|
The Fatty Acid-Based Erythrocyte Membrane Lipidome in Dogs with Chronic Enteropathy. Animals (Basel) 2021; 11:ani11092604. [PMID: 34573570 PMCID: PMC8469057 DOI: 10.3390/ani11092604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Canine chronic enteropathies (CEs) are inflammatory processes resulting from complex interplay between the mucosal immune system, intestinal microbiome, and dietary components in susceptible dogs. Fatty acids (FAs) play important roles in the regulation of physiologic and metabolic pathways and their role in inflammation seems to be dual, as they exhibit pro-inflammatory and anti-inflammatory functions. Analysis of red blood cell (RBC) membrane fatty acid profile represents a tool for assessing the quantity and quality of structural and functional molecular components. This study was aimed at comparing the FA membrane profile, determined by Gas Chromatography and relevant lipid parameter of 48 CE dogs compared with 68 healthy dogs. In CE patients, the levels of stearic (p < 0.0001), dihomo-gamma-linolenic, eicosapentaenoic (p = 0.02), and docosahexaenoic (p = 0.02) acids were significantly higher, and those of palmitic (p < 0.0001) and linoleic (p = 0.0006) acids were significantly lower. Non-responder dogs presented higher percentages of vaccenic acid (p = 0.007), compared to those of dogs that responded to diagnostic trials. These results suggest that lipidomic status may reflect the "gut health", and the non-invasive analysis of RBC membrane might have the potential to become a candidate biomarker in the evaluation of dogs affected by CE.
Collapse
|
18
|
Macášek J, Zeman M, Žák A, Staňková B, Vecka M. Altered Indices of Fatty Acid Elongases ELOVL6, ELOVL5, and ELOVL2 Activities in Patients with Impaired Fasting Glycemia. Metab Syndr Relat Disord 2021; 19:386-392. [PMID: 33983851 DOI: 10.1089/met.2021.0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Dysregulation of fatty acids (FA) seems to participate in the pathogenesis of disorders such as metabolic syndrome (MetS), cardiovascular diseases, or some cancers. Activities of enzymes FA desaturases and elongases [elongation of very long-chain fatty acid (ELOVL)] significantly influence FA profile in different body compartments. Although the impact of activities of desaturases on cardiometabolic diseases was broadly studied, relatively little attention was devoted to the role of elongases. Methods: Case-control study was carried out in 36 patients (18 men/18 women) with impaired fasting glycemia (IFG) without MetS and 36 age and gender-matched healthy controls. FA profiles in plasma phospholipids (PL) were assessed using gas chromatograph-flame ionization detector and indices of desaturase and elongase activities were calculated. Results: In the IFG group, we observed decreased estimated activities of ELOVL2 and ELOVL5, whereas higher estimated activities of elongase ELOVL6 were noted. IFG group was also characterized by altered composition of plasma PL FA, above all by lower percentage of cis-vaccenic acid (cVA; 18:1n-7) and of total polyunsaturated FA n-6, especially linoleic acid, and by higher proportion of stearic acid and gamma-linolenic acid. Concurrently, elevated estimated activities of desaturases delta-9-desaturase (D9D), D6D were found. Conclusions: Lower estimated activities of ELOVL2 and ELOVL5 with lowered proportion of PL cVA could be associated with disturbances of glucose homeostasis development and their corresponding indices could serve as biomarkers of such risk.
Collapse
Affiliation(s)
- Jaroslav Macášek
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miroslav Zeman
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Aleš Žák
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Barbora Staňková
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
19
|
Tan M, Ye J, Zhou Z, Ke X, Yu X, Huang K. Fatty Acid Metabolism in Immune Cells: A Bioinformatics Analysis of Genes Involved in Ulcerative Colitis. DNA Cell Biol 2020; 39:1573-1582. [PMID: 32678986 DOI: 10.1089/dna.2020.5582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many immune cells participate in the pathogenesis of ulcerative colitis (UC), and fatty acid metabolism (FAM) is reported to supporting their cell-specific functions and proliferation, but the underlying mechanism is unclear. This study aimed to investigate the relationship between FAM and inflammation in colon tissues and identify potential therapeutic targets for regulating immune response. A total of 870 different expression genes (DEGs), 304 immunity-related DEGs, and 11 FAM-related DEGs were obtained, gene ontology analysis results showed that immune DEGs were significantly enriched in neutrophil migration, positive regulation of T cell activation. Fifteen types of immune cells were identified in inflamed colon tissues. Five FAM-related DEGs (ACOX1, ACSL4, ELOVL5, FADS2, and SCD) were highly correlated with immunity-related DEGs, and ACSL4, ELOVL5, and FADS2 were significantly upregulated in immune cells, while SCD is downregulated. Five FAM-related DEGs were highly correlated with immune cells. The study promotes the understanding of the pathogenesis of FAM in UC immune cells.
Collapse
Affiliation(s)
- Meiao Tan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jintong Ye
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zunming Zhou
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqing Yu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keer Huang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Schmidt MA, Meydan C, Schmidt CM, Afshinnekoo E, Mason CE. The NASA Twins Study: The Effect of One Year in Space on Long-Chain Fatty Acid Desaturases and Elongases. Lifestyle Genom 2020; 13:107-121. [PMID: 32375154 DOI: 10.1159/000506769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND At present, there is no clear understanding of the effect of long-duration spaceflight on the major enzymes that govern the metabolism of omega-6 and omega-3 fatty acids. To address this gap in knowledge, we used data from the NASA Twins Study, which includes a multiscale omics investigation of the changes that occurred during a year-long (340 days) human spaceflight. Embedded within the NASA Twins data are specific analytes associated with fatty acid metabolism. OBJECTIVES To examine the long-chain fatty acid desaturases and elongases in a single human during 1 year in space. METHOD One male twin was on board the International Space Station (ISS) for 1 year, while his monozygotic twin served as a genetically matched ground control. Longitudinal assessments included the genome, epige-nome, transcriptome, proteome, metabolome, microbiome, and immunome during the mission, as well as 6 months before and after. The gene-specific fatty acid desaturase and elongase transcriptome data (FADS1, FADS2, ELOVL2, and ELOVL5) were extracted from untargeted RNA-seq measurements derived from white blood cell fractions. RESULTS Most data from the elongases and desaturases exhibited relatively similar expression profiles (R2 >0.6) over time for the CD8, CD19, and lymphocyte-depleted (LD) cell fractions, indicating overall conservation of function within and between the subjects. Both cell-type and temporal specificity was observed in some cases, and some differences were also apparent between the polyadenylated (polyA) fraction of processed RNAs versus the ribodepleted (ribo-) fraction. The flight subject showed a stronger enrichment of the fatty acid metabolic process pathway across almost all cell types (columns, CD4, CD8, CPT, and LD), most especially in the ribodepleted fraction of RNA, but also with the polyA+ fraction of RNA. Gene set enrichment analysis (GSEA) measures across three related fatty acid metabolism pathways showed a differential between the ground and the flight subject. CONCLUSIONS There appears to be no persistent alteration of desaturase and elongase gene expression associated with 1 year in space. However, these data provide evidence that cellular lipid metabolism can be responsive and dynamic to spaceflight, even though it appears cell-type and context specific, most notably in terms of the fraction of RNA measured and the collection protocols. These results also provide new evidence of mid-flight spikes in expression of selected genes, which may indicate transient responses to specific insults during spaceflight.
Collapse
Affiliation(s)
- Michael A Schmidt
- Advanced Pattern Analysis & Countermeasures Group, Boulder, Colorado, USA,
- Sovaris Aerospace, Boulder, Colorado, USA,
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Mbarik M, Biam RS, Robichaud PP, Surette ME. The impact of PUFA on cell responses: Caution should be exercised when selecting PUFA concentrations in cell culture. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102083. [PMID: 32126480 DOI: 10.1016/j.plefa.2020.102083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are important components of cellular membranes, serving both structural and signaling functions. Investigation of the functional responses of cells to various PUFA often involves cell culture experiments, which can then inform or guide subsequent in vivo and clinical investigations. In this study, human carcinoma and leukemia cell lines (MCF-7, HepG2, THP-1, Jurkat) were incubated for 3 days in the presence of up to 150 μM of exogenous arachidonic or eicosapentaenoic acids. At concentrations up to 20 μM these PUFA were enriched in cellular phospholipids, but at concentrations of 20 μM or higher cells accumulated large quantities of these PUFA and their elongation products into triglycerides. This coincided with decreased cell proliferation and enhanced apoptosis. Inhibition of DGAT1 but not DGAT2 enhanced the cytotoxic effect of exogenous PUFA suggesting a protective role of PUFA sequestration into TGs. Lower (10 μM) and higher (50 μM) exogenous PUFA concentrations also had different impacts on the expression of PUFA metabolizing enzymes. Overall, these results indicate that caution must be exercised when planning in vitro experiments since elevated concentrations of PUFA can lead to dysfunctional cellular responses that are not predictive of in vivo responses to dietary PUFA.
Collapse
Affiliation(s)
- Maroua Mbarik
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Roody S Biam
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | | | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
22
|
Tsachaki M, Strauss P, Dunkel A, Navrátilová H, Mladenovic N, Odermatt A. Impact of 17β-HSD12, the 3-ketoacyl-CoA reductase of long-chain fatty acid synthesis, on breast cancer cell proliferation and migration. Cell Mol Life Sci 2020; 77:1153-1175. [PMID: 31302749 PMCID: PMC7109200 DOI: 10.1007/s00018-019-03227-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming of tumor cells involves upregulation of fatty acid (FA) synthesis to support high bioenergetic demands and membrane synthesis. This has been shown for cytosolic synthesis of FAs with up to 16 carbon atoms. Synthesis of long-chain fatty acids (LCFAs), including ω-6 and ω-3 polyunsaturated FAs, takes place at the endoplasmic reticulum. Despite increasing evidence for an important role of LCFAs in cancer, the impact of their synthesis in cancer cell growth has scarcely been studied. Here, we demonstrated that silencing of 17β-hydroxysteroid dehydrogenase type 12 (17β-HSD12), essentially catalyzing the 3-ketoacyl-CoA reduction step in LCFA production, modulates proliferation and migration of breast cancer cells in a cell line-dependent manner. Increased proliferation and migration after 17β-HSD12 knockdown were partly mediated by metabolism of arachidonic acid towards COX2 and CYP1B1-derived eicosanoids. Decreased proliferation was rescued by increased glucose concentration and was preceded by reduced ATP production through oxidative phosphorylation and spare respiratory capacity. In addition, 17β-HSD12 silencing was accompanied by alterations in unfolded protein response, including a decrease in CHOP expression and increase in eIF2α activation and the folding chaperone ERp44. Our study highlights the significance of LCFA biosynthesis for tumor cell physiology and unveils unknown aspects of breast cancer cell heterogeneity.
Collapse
Affiliation(s)
- Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Pirmin Strauss
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Anja Dunkel
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Hana Navrátilová
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Natasa Mladenovic
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
23
|
Abstract
In the search for biomarkers and modifiable risk factors for suicide, lipid status has garnered considerable interest, although the lipid-suicide connection is not without controversy. Major categories of lipids that have been reported as germane to suicide include sterols and polyunsaturated fatty acids (PUFAs). Research concerning lipid effects on mood and suicide risk includes epidemiologic approaches, cohort studies, and clinical trials. In general, current evidence suggests that higher n-3 relative to n-6 PUFA intake may have beneficial effects on depression and suicide risk, particularly in women, while low cholesterol may be detrimental in both sexes. Additionally, low estrogen in women has been associated with suicide attempts, whereas high androgen loads may contribute to the higher suicide completion rate in men. Basic and translational research provides strong evidence for several potential mechanisms that have been implicated in depression and suicide. Firstly, PUFAs, cholesterol, and estrogen can interact to influence structure and function of membrane microdomains ("lipid rafts"), with potential regulatory effects on inflammation and signal transduction, including monoaminergic signaling. Secondly, PUFAs bind to and activate peroxisome proliferator-activated receptors (PPARs), nuclear receptors that regulate gene expression, with resultant effects on inflammation and bioenergetics. Thirdly, PUFAs are both a target for and a hormetic regulator of oxidative stress. Critical to a greater understanding of lipid status as a suicide risk predictor and treatment target will be studies that map genomic and phenotypic characteristics of individuals whose emotional state is affected most by lipid status. Also important will be a more nuanced understanding of lipid-lipid interactions and the differential roles of lipid subclasses on suicide risk.
Collapse
Affiliation(s)
- M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA.
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
24
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
25
|
Kuwata H, Nakatani E, Shimbara-Matsubayashi S, Ishikawa F, Shibanuma M, Sasaki Y, Yoda E, Nakatani Y, Hara S. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1606-1618. [PMID: 31376475 DOI: 10.1016/j.bbalip.2019.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/14/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022]
Abstract
Long-chain acyl-coenzyme A synthetases (ACSLs) are a family of enzymes that convert free long-chain fatty acids into their acyl-coenzyme A (CoA) forms. ACSL4, belonging to the ACSL family, shows a preferential use of arachidonic acid (AA) as its substrate and plays a role in the remodeling of AA-containing phospholipids by incorporating free AA. However, little is known about the roles of ACSL4 in inflammatory responses. Here, we assessed the roles of ACSL4 on the effector functions of bone marrow-derived macrophages (BMDMs) obtained from mice lacking ACSL4. Liquid chromatography-tandem mass spectrometry analysis revealed that various highly unsaturated fatty acid (HUFA)-derived fatty acyl-CoA species were markedly decreased in the BMDMs obtained from ACSL4-deficient mice compared with those in the BMDMs obtained from wild-type mice. BMDMs from ACSL4-deficient mice also showed a reduced incorporation of HUFA into phosphatidylcholines. The stimulation of BMDMs with lipopolysaccharide (LPS) elicited the release of prostaglandins (PGs), such as PGE2, PGD2 and PGF2α, and the production of these mediators was significantly enhanced by ACSL4 deficiency. In contrast, neither the LPS-induced release of cytokines, such as IL-6 and IL-10, nor the endocytosis of zymosan or dextran was affected by ACSL4 deficiency. These results suggest that ACSL4 has a crucial role in the maintenance of HUFA composition of certain phospholipid species and in the incorporation of free AA into the phospholipids in LPS-stimulated macrophages. ACSL4 dysfunction may facilitate inflammatory responses by an enhanced eicosanoid storm.
Collapse
Affiliation(s)
- Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Eriko Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoko Shimbara-Matsubayashi
- Division of Bioanalytical Chemistry, Department of Pharmaceutical Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
26
|
Gapeyev AB, Aripovsky AV, Kulagina TP. Fatty Acid Content and Tumor Growth Changes in Mice After Exposure to Extremely High-Frequency Electromagnetic Radiation and Consumption of N-3 Fatty Acids. Nutr Cancer 2019; 71:1325-1334. [PMID: 30990087 DOI: 10.1080/01635581.2019.1601746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The topical problem is to find new, more effective and safe treatments for cancer. The purpose of the present work was to study the combined effects of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) and consumption of n-3 polyunsaturated fatty acids (PUFAs) on tumor growth and the content of FAs in the thymus and tumor tissue in mice. Fatty acid composition was determined using gas chromatography. Exposure of tumor-bearing mice with solid Ehrlich carcinoma to EHF EMR with effective parameters (42.2 GHz, 0.1 mW/cm2, 20 min daily for 5 consecutive days beginning on the first day after the tumor inoculation) led to delaying the tumor growth and restored the content of almost all FAs in thymic tissue to the level of intact animals. Animal intake of the preparation enriched with n-3 PUFAs increased the content of n-3 PUFAs in thymic tissue significantly, but did not affect the tumor growth, even in combination with EHF EMR exposure. Combined action of EHF EMR exposure and n-3 preparation promoted recovery of thymus weight in tumor-bearing animals. The data obtained assume a complex interaction between the immune system and the tumor, and the important role of FAs in the regulation of this interaction.
Collapse
Affiliation(s)
- Andrew B Gapeyev
- Institute of Cell Biophysics of the Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Alexander V Aripovsky
- State Scientific Center of Applied Microbiology and Biotechnology , Obolensk , Moscow Region , Russia
| | - Tatyana P Kulagina
- Institute of Cell Biophysics of the Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| |
Collapse
|