1
|
Xu Y, Hsu MF, Haj FG, Vahmani P. Effects of beef fat enriched with trans vaccenic acid and cis9, trans11-CLA on glucose homoeostasis and hepatic lipid accumulation in high-fat diet-induced obese mice. Br J Nutr 2024; 131:1975-1984. [PMID: 38439535 PMCID: PMC11361915 DOI: 10.1017/s000711452400062x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Trans vaccenic acid (TVA, trans11-18 : 1) and cis9, trans11-CLA (also known as rumenic acid; RA) have received widespread attention as potentially beneficial trans-FA due to their putative health benefits, including anti-diabetic properties. The objective of this study was to determine the effects of beef fat naturally enriched with TVA and RA on parameters related to glucose homoeostasis and associated metabolic markers in diet-induced obese (DIO) mice. Thirty-six male C57BL/6J mice (8 weeks old) were fed for 19 weeks with either a control low-fat diet (CLF), a control high-fat diet (CHF), or a TVA+RA-enriched high-fat diet (EHF). Compared with CLF, feeding either CHF or EHF resulted in adverse metabolic outcomes associated with high-fat diets, including adiposity, impaired glucose control and hepatic steatosis. However, the EHF diet induced a significantly higher liver weight TAG content and elevated plasma alanine transaminase levels compared with the CHF diet. Collectively, the findings from this study suggest that EHF does not improve glucose tolerance and worsens liver steatosis in DIO mice. However, the adverse effects of EHF on the liver could be in part related to the presence of other trans-FA in the enriched beef fat.
Collapse
Affiliation(s)
- Yanqing Xu
- Department of Animal Science, University of California Davis, One Shields Ave, Davis, CA95616, USA
| | - Ming-Fo Hsu
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA95616, USA
| | - Fawaz George Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA95616, USA
| | - Payam Vahmani
- Department of Animal Science, University of California Davis, One Shields Ave, Davis, CA95616, USA
| |
Collapse
|
2
|
Rao Y, Liang LW, Li MJ, Wang YY, Wang BZ, Gou KM. Transgenic female mice producing trans 10, cis 12-conjugated linoleic acid present excessive prostaglandin E2, adrenaline, corticosterone, glucagon, and FGF21. Sci Rep 2024; 14:12430. [PMID: 38816541 PMCID: PMC11139873 DOI: 10.1038/s41598-024-63282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.
Collapse
Affiliation(s)
- Yu Rao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Lu-Wen Liang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Mei-Juan Li
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550005, China
| | - Yang-Yang Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bao-Zhu Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ke-Mian Gou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Saika A, Nagatake T, Kishino S, Kitamura N, Honda T, Hosomi K, Tiwari P, Node E, Kawai S, Kondo S, Ishida K, Kabashima K, Ogawa J, Kunisawa J. The omega-3 postbiotic trans-10- cis-15-octadecadienoic acid attenuates contact hypersensitivity in mice through downregulation of vascular endothelial growth factor A. Front Cell Infect Microbiol 2024; 14:1355679. [PMID: 38841110 PMCID: PMC11151274 DOI: 10.3389/fcimb.2024.1355679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid-derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2-but not c9,c15-18:2-attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid-derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis-induced inflammation.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Laboratory of Functional Anatomy, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nahoko Kitamura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Node
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Soichiro Kawai
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Saki Kondo
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Kei Ishida
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Science, Osaka University, Suita, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
4
|
Rao Y, Li SL, Li MJ, Wang BZ, Wang YY, Liang LW, Yu S, Liu ZP, Cui S, Gou KM. Transgenic mice producing the trans 10, cis 12-conjugated linoleic acid present reduced adiposity and increased thermogenesis and fibroblast growth factor 21 (FGF21). J Nutr Biochem 2023; 120:109419. [PMID: 37487823 DOI: 10.1016/j.jnutbio.2023.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) from ruminant-derived foodstuffs can induce body fat loss after oral administration. In the current study, a transgenic mouse that produced t10c12-CLA had been generated by inserting the Propionibacterium acnes isomerase (Pai) expression cassette into the Rosa26 locus, and its male offspring were used to elucidate the enduring influence of t10c12-CLA on overall health. Compared to their wild-type (wt) C57BL/6J littermates, both biallelic Pai/Pai and monoallelic Pai/wt mice exhibited reduced plasma triglycerides levels, and Pai/wt mice exclusively showed increased serum fibroblast growth factor 21. Further analysis of Pai/Pai mice found a decrease in white fat and an increase in brown fat, with more heat release and less physical activity. Analysis of Pai/Pai brown adipose tissues revealed that hyperthermia was associated with the over-expression of carnitine palmitoyltransferase 1B, uncoupling proteins 1 and 2. These findings suggest that the systemic and long-term impact of t10c12-CLA on obesity might be mediated through the pathway of fibroblast growth factor 21 when low doses are administered or through enhanced thermogenesis of brown adipose tissues when high doses are employed.
Collapse
Affiliation(s)
- Yu Rao
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shi-Li Li
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mei-Juan Li
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Bao-Zhu Wang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yang-Yang Wang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lu-Wen Liang
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Yu
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zong-Ping Liu
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Sheng Cui
- Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ke-Mian Gou
- Institute of Comparative Medicine, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Department of Experimental Zoology, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Institute of Reproduction and Metabolism, Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Liu HY, Hu P, Li Y, Sun MA, Qu H, Zong Q, Gu H, Chen X, Bao W, Cai D. Targeted inhibition of PPARα ameliorates CLA-induced hypercholesterolemia via hepatic cholesterol biosynthesis reprogramming. Liver Int 2022; 42:1449-1466. [PMID: 35184357 DOI: 10.1111/liv.15199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Disruption of lipid metabolism is largely linked to metabolic disorders, such as hypercholesterolemia (HCL) and liver steatosis. While cholesterol metabolic re-programmers can serve as targets for relevant interventions. Here we explored the dietary conjugated linoleic acids (CLA)-induced HCL in mice and the molecular regulation behind it. METHODS A high dose of CLA supplementation in the diet was used to induce HCL in mice and was found to cause a hyper-activated cholesterol biosynthesis programme in the liver, leading to cholesterol metabolism dysregulation. The effects of a small-molecule drug targeting PPARα, i.e., GW6471 were studied in vivo in mice fed diets with CLA supplementation for 28 days, and in primary hepatocytes derived from HCL-mice in vitro. RESULTS We demonstrate that CLA induced HCL and liver steatosis through multiple pathways. Among which was the PPARα-mediated cholesterogenesis. It was found to cooperate with SREBP2 via binding to Hmgcr and Dhcr7 (genes encoding key enzymes of the cholesterol biosynthetic pathway) and recruits the histone marks H3K27ac and H3K4me1 and cofactors. PPARα inhibition disrupts its physical association with SREBP2 by blocking cobinding of PPARα and SREBP2 to the genomic DNA response element. We showed that NR RORγ functions as an essential mediator that facilitates the interaction of PPARα and SREBP2 to modulate the cholesterol biosynthesis genes expression. CONCLUSIONS Our study unravels that the small-molecule compound GW6471 exerts an attractive therapeutic effect for CLA-induced HCL, involving multiple pathways with the "PPARα-RORγ-SREBP2" being a potential complex player in this hepatic cholesterol biosynthesis programming.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaobo Chen
- Centre for Environment and Sustainability, University of Surrey, Surrey, UK
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Xu W, Song Z, Wang W, Li X, Yan P, Shi T, Fu C, Liu X. Effects of in ovo feeding of t10,c12-conjugated linoleic acid on hepatic lipid metabolism and subcutaneous adipose tissue deposition in newly hatched broiler chicks. Poult Sci 2022; 101:101797. [PMID: 35358926 PMCID: PMC8968647 DOI: 10.1016/j.psj.2022.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate whether in ovo feeding of t10,c12-conjugated linoleic acid (CLA) could regulate hepatic lipid metabolism and decrease lipid accumulation in newly hatched chicks. Three hundred and sixty fertilely specific pathogen-free hatching eggs were selected and randomly divided into 6 groups. On embryonic day 11 of incubation (E11), 0, 1.5, 3.0, 4.5, 6.0, or 7.5 mg t10,c12-CLA were injected into the eggs. The results indicated that in ovo feeding of t10,c12-CLA significantly decreased the subcutaneous adipose tissue (SAT) mass and the relative SAT weight of newly hatched chicks in linear and quadratic manners (P < 0.05). In liver, the levels of triglycerides were reduced linearly and quadratically and total cholesterol were reduced quadratically as the dose of t10,c12-CLA increased (P < 0.05). Meanwhile, the hepatic carnitine palmitoyltransferase-1a (CPT1a) content and polyunsaturated fatty acid proportion were increased quadratically in t10,c12-CLA groups (P < 0.05), accompanied by the decrease of malondialdehyde level and the increase of glutathione peroxidase and total antioxidant capacity activities (P < 0.05). In addition, in ovo feeding of t10,c12-CLA decreased the mRNA expression levels of fatty acid synthase, acetyl-CoA carboxylase 1 in linear and quadratic manners (P < 0.05), and decreased the mRNA expression of adipose triacylglyceride lipase and stearoyl-CoA desaturase significantly in liver (P < 0.05), accompanied by upregulating the mRNA expression of CPT1a quadratically and AMP-activated protein kinase α linearly and quadratically (P < 0.05). In SAT, the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1c were decreased linearly and quadratically (P < 0.05), and the expression of PPARα and CPT1a genes were increased linearly and quadratically as the dose of t10,c12-CLA increased (P < 0.05). In conclusion, our findings demonstrate that in ovo feeding of t10,c12-CLA alleviates lipid accumulation in newly hatched chicks by suppressing fatty acid synthesis and stimulating lipolysis in the liver and inhibiting adipocyte differentiation in subcutaneous adipose tissue.
Collapse
|
7
|
Chai BK, Murugan DD, Rais MM, Al-Shagga M, Mohankumar SK. Conjugated linoleic acid isomers induced dyslipidemia and lipoatrophy are exacerbated by rosiglitazone in ApoE null mice fed a Western diet. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-211562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Insulin sensitizers have been used to treat Type 2 diabetes. However, their non-negligible side effects have led to cardiovascular concerns and the withdrawal of a member, rosiglitazone. OBJECTIVE: We combined conjugated linoleic acid (CLA) with rosiglitazone to test for amelioration of side effects posed by rosiglitazone in vivo. METHODS: We utilized ApoE null mice fed with Western diet (WD) to test our hypothesis. Mice were fed WD, with or without CLA administration, for 12 weeks. CLA utilized in our study consisted of a 1:1 ratio of 95% pure c9,t11, and t10,c12 isomers at a concentration of 0.1% w/v in fat-free milk. Starting from Week 12, select mice received rosiglitazone. RESULTS: It was found that mice receiving CLA from Week 0 and rosiglitazone from Week 12 had the lowest body weight and exacerbated hepatomegaly. Although these mice had attenuated insulin resistance compared to mice receiving only Western diet, they display a marked increase in total plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Mice receiving early CLA administration developed hyperleptinemia, which was not restored by rosiglitazone. CONCLUSION: Taken together, against the background of ApoE null genotype and WD feeding, simultaneous administration of 1:1 CLA and rosiglitazone led to dyslipidemic lipoatrophy.
Collapse
Affiliation(s)
- Boon Kheng Chai
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
- Present address: Biomedical Translation Research Centre, National Biotechnology Research Park, No 99, Lane 130, Academia Road Section 1, Nangang District, Taipei City 11571, Taiwan
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mustafa Mohd Rais
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mustafa Al-Shagga
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suresh K. Mohankumar
- Division of Biomedical Sciences, Faculty ofScience, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
- Present address: Swansea University Medical School, Singleton Park, Swansea SA2 8PP, Wales, United Kingdom
| |
Collapse
|
8
|
Berryhill GE, Gloviczki JM, Trott JF, Kraft J, Lock AL, Hovey RC. In Utero Exposure to trans-10, cis-12 Conjugated Linoleic Acid Modifies Postnatal Development of the Mammary Gland and its Hormone Responsiveness. J Mammary Gland Biol Neoplasia 2021; 26:263-276. [PMID: 34617201 PMCID: PMC8566432 DOI: 10.1007/s10911-021-09499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
We previously showed that dietary trans-10, cis-12 conjugated linoleic acid (10,12 CLA) stimulates estrogen-independent mammary growth in young ovariectomized mice. Here we investigated the effects of in utero or postnatal exposure to cis-9, trans-11 (9,11 CLA) and 10,12 CLA on postnatal development of the mammary gland and its responsiveness to ovarian steroids. In the first experiment we fed dams different CLA prior to and during gestation, then cross fostered female pups onto control fed dams prior to assessing the histomorphology of their mammary glands. Pregnant dams in the second experiment were similarly exposed to CLA, after which their female pups were ovariectomized then treated with 17β-estradiol (E), progesterone (P) or E + P for 5 days. In a third experiment, mature female mice were fed different CLA for 28 days prior to ovariectomy, then treated with E, P or E + P. Our data indicate that 10,12 CLA modifies the responsiveness of the mammary glands to E or E + P when exposure occurs either in utero, or postnatally. These findings underline the sensitivity of the mammary glands to dietary fatty acids and reinforce the potential for maternal nutrition to impact postnatal development of the mammary glands and their risk for developing cancer.
Collapse
Affiliation(s)
- Grace E Berryhill
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Julia M Gloviczki
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405-0148, USA
| | - Adam L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824-1225, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA.
| |
Collapse
|
9
|
Ban F, Hu L, Zhou X, Zhao Y, Mo H, Li H, Zhou W. Inverse molecular docking reveals a novel function of thymol: Inhibition of fat deposition induced by high-dose glucose in Caenorhabditis elegans. Food Sci Nutr 2021; 9:4243-4253. [PMID: 34401075 PMCID: PMC8358335 DOI: 10.1002/fsn3.2392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
As a natural product isolated from thyme oil in thyme, thymol (2-isopropyl-5-methylphenol) harbors antiviral, antioxidant, and other properties, and thus could be potentially used for the treatment of various diseases. However, the function of thymol has not been comprehensively studied. Here, we applied an inverse molecular docking approach to identify unappreciated functions of thymol. Potential targets of thymol in humans were identified by the server of DRAR-CPI, and targets of interest were then assessed by GO and KEGG pathway analysis. Subsequently, homologous proteins of these targets in Caenorhabditis elegans were identified by Blast tool, and their three-dimensional structures were achieved using Swiss-Model workspace. Interaction between thymol and the targeted proteins in worms was verified using AutoDock 4.0. Analyses of the targets revealed that thymol could be potentially involved in the glycolysis/gluconeogenesis and fatty acid degradation pathways. To verify the activity of thymol on lipid deposition in vivo, the C. elegans model was established. The lipid content of nematodes induced by high-dose glucose was determined by Oil Red O and Nile Red staining, and gene expression was assessed by qRT-PCR. The results showed that thymol might lead to the acceleration of β-oxidation by upregulating cpt-1, aco, fabp, and tph-1, causing the descent of lipid content in nematodes. Our findings indicated that thymol could be potentially used for the treatment of chronic metabolic diseases associated with increased fatty acid deposition.
Collapse
Affiliation(s)
- Fangfang Ban
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Liangbin Hu
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
- Department of Food and BioengineeringShaanxi University of Science & TechnologyShaanxiChina
| | - Xiao‐Hui Zhou
- Department of Pathobiology & Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yanyan Zhao
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Haizhen Mo
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
- Department of Food and BioengineeringShaanxi University of Science & TechnologyShaanxiChina
| | - Hongbo Li
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
- Department of Food and BioengineeringShaanxi University of Science & TechnologyShaanxiChina
| | - Wei Zhou
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| |
Collapse
|
10
|
Queiroz MP, da Silva Lima M, de Melo MFFT, Queiroga RDCRDE, Bessa RJB, Alves SPA, Barbosa Soares JK. Maternal consumption of conjugated linoleic acid improves tolerance to glucose and hdl-cholesterol in the rat progeny. Food Funct 2021; 11:9075-9085. [PMID: 33026015 DOI: 10.1039/d0fo00410c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our study evaluates the impacts of maternal consumption of different levels of CLA during pregnancy and lactation on physical and metabolic changes in the rat progeny. Three groups were formed: control (CG) - diet without CLA; CLA1 - diet containing 1% CLA; and CLA3 - diet containing 3% CLA. Murinometry, body fat collection, biochemical analysis, glycemic curves, liver fat amount, and fatty acid profiles of the liver were studied. The data were analyzed by ANOVA, followed by the Tukey test (p < 0.05). The CLA3 group presented highest body weight, feed intake and BMI (p < 0.05). The retroperitoneal fat, epididymal fat, and body fat index were higher in the CLA1 and CLA3 groups (p < 0.05) but no difference was observed for mesenteric fat. Yet in contrast, the experimental groups presented lower abdominal circumference and glycemic curves when compared to the CG (p < 0.05). CLA1 and CLA3 groups presented higher values of total cholesterol and HDL-cholesterol (p < 0.05), yet no difference was found in serum triglycerides or LDL. The CLA3 group presented less n-3, n-6, total PUFA, and arachidonic acid in liver fat (p < 0.05). The CLA1 and CLA3 groups were higher in total MUFA in the liver fat. In conclusion, CLA when consumed during gestation and lactation increased: tolerance to glucose, HDL, and the body fat index in the offspring. Only the CLA3 group presented reduced total PUFA, n-3, n-6 and arachidonic acid in the offspring's liver.
Collapse
Affiliation(s)
- Michelly Pires Queiroz
- Program of Food Science and Tecnology, Federal University of Paraiba, João Pessoa, PB, Brazil.
| | - Martiniano da Silva Lima
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | | | - Rita de Cássia Ramos do Egypto Queiroga
- Program of Food Science and Tecnology, Federal University of Paraiba, João Pessoa, PB, Brazil. and Laboratory of Bromatology, Department of Nutrition, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Rui José Branquinho Bessa
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Susana Paula Almeida Alves
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Tecnology, Federal University of Paraiba, João Pessoa, PB, Brazil. and Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
11
|
Gerstner C, Saín J, Lavandera J, González M, Bernal C. Functional milk fat enriched in conjugated linoleic acid prevented liver lipid accumulation induced by a high-fat diet in male rats. Food Funct 2021; 12:5051-5065. [PMID: 33960342 DOI: 10.1039/d0fo03296d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim was to investigate the potential effect of functional milk fat (FMF), naturally enriched in conjugated linoleic acid, on the prevention of liver lipid accumulation and some biochemical mechanisms involved in the liver triacylglycerol (TAG) regulation in high-fat (HF) fed rats. Male Wistar rats were fed (60 days) with S7 (soybean oil, 7%) or HF diets: S30 (soybean oil, 30%), MF30 (soybean oil, 3% + milk fat -MF-, 27%) or FMF30 (soybean oil, 3% + FMF, 27%). Nutritional parameters, hepatic fatty acid (FA) composition, liver and serum TAG levels, hepatic TAG secretion rate (TAG-SR), lipoprotein lipase (LPL) activity in adipose tissue and muscle, activities and/or mRNA levels of lipogenic and β-oxidative enzymes, and mRNA levels of transcription factors and FA transport proteins were assessed. The hepatic lipid accumulation induced by the S30 diet was associated with increased mRNA levels of FA transporters; and it was prevented by FMF through an increase in the hepatic TAG-SR, carnitine palmitoyltransferase-1a activity and peroxisome proliferator-activated receptor alpha mRNA levels, as well as by a reduction of the mRNA levels of FA transporters. The hypotriacylglyceridaemia observed in S30 was related with an increased LPL activity in adipose tissue and it was reverted by FMF through the increased hepatic TAG-SR. In brief, FMF prevented the liver lipid accumulation induced by HF diets by increasing the hepatic TAG-SR and β-oxidation, and reducing the hepatic FA uptake. The increased hepatic TAG-SR induced by FMF could be responsible for the attenuation of serum TAG alterations.
Collapse
Affiliation(s)
- Carolina Gerstner
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Juliana Saín
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marcela González
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Claudio Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
12
|
Fujita Y, Kano K, Kishino S, Nagao T, Shen X, Sato C, Hatakeyama H, Ota Y, Niibori S, Nomura A, Kikuchi K, Yasuno W, Takatori S, Kikuchi K, Sano Y, Tomita T, Suzuki T, Aoki J, Zou K, Natori S, Komano H. Dietary cis-9, trans-11-conjugated linoleic acid reduces amyloid β-protein accumulation and upregulates anti-inflammatory cytokines in an Alzheimer's disease mouse model. Sci Rep 2021; 11:9749. [PMID: 33980877 PMCID: PMC8115273 DOI: 10.1038/s41598-021-88870-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Conjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer's disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-β protein (Aβ) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aβ levels and suppression of inflammation.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduates School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, Morinomiya Center, Joto-ku, Osaka, Japan
| | - Xuefeng Shen
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Chiharu Sato
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Hatsune Hatakeyama
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Yume Ota
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Sho Niibori
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Ayako Nomura
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kota Kikuchi
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
- Department of Pharmacy, Japanese Red Cross Morioka Hospital, Morioka, Iwate, Japan
| | - Wataru Yasuno
- Institute for Biomedical Sciences, Library, Iwate Medical University, Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kikuchi
- Laboratory of Neuropathology and Neuroscience, Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduates School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kun Zou
- Department of Biochemistry, School of Medicine, Nagoya City University, Nagoya, Aichi, Japan
| | - Shunji Natori
- Graduates School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
| | - Hiroto Komano
- Division of Neuroscience, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
13
|
Evaluating the effect of a mixture of two main conjugated linoleic acid isomers on hepatic steatosis in HepG2 cellular model. Mol Biol Rep 2021; 48:1359-1370. [PMID: 33580458 DOI: 10.1007/s11033-021-06203-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
Hepatic steatosis is an early form of non-alcoholic fatty liver disease (NAFLD), caused by abnormal fat deposition in the hepatocytes. Conjugated linoleic acid (CLA) is a group of positional and geometric dienoic isomers of linoleic acid that attract significant attention because of its beneficial effects on chronic diseases such as cancer, obesity, and metabolic syndrome. This study examined the influence of a mixture of two main CLA isomers (CLA-mix) on lipid accumulation and lipid metabolism-related genes using HepG2 cells treated with palmitic acid (PA) as an in vitro model for hepatic steatosis. Methods and Results: HepG2 cells were treated for 24 h: control (BSA), model (BSA + PA), and treated groups (BSA-PA + non-toxic concentrations of CLA-mix). Intracellular lipid deposition, triglyceride (TG), total cholesterol (TC) and gene expression were measured by Oil-Red O staining, colorimetric assay kits and real-time PCR, respectively. CLA-mix at high concentrations had significantly decreased intracellular total lipid and TG deposition compared to the model group. However, none of the CLA-mix concentrations had a significant effect on the intracellular TC level. CLA-mix significantly increased the expression of some genes mainly regulated by PPARα but did not alter the expression of lipogenesis-related genes. Conclusions: These results demonstrate that high concentrations of CLA-mix protect against hepatic steatosis and play a role in regulating fatty acid oxidation and bile excretion through the PPARα pathway. It is suggested that the effect of different ratios of two main CLA isomers on the amount and ratio of bile compounds be investigated in future studies.
Collapse
|
14
|
Chen Y, Jin Y, Stanton C, Paul Ross R, Zhao J, Zhang H, Yang B, Chen W. Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation. Eur J Nutr 2021; 60:369-387. [PMID: 32350653 DOI: 10.1007/s00394-020-02252-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The study aimed to investigate the discrepancy and potential mechanisms of different CLA-producing B. breve on dextran sulphate sodium (DSS)-induced colitis. METHODS Colitis was induced in C57BL/6 J mice using DSS. Disease activity index (DAI), histopathological changes, epithelial barrier integrity and epithelial apoptosis were determined. Gut microbiota were gauged to evaluate the systemic effects of CLA-producing B. breve. RESULTS Oral administration of different B. breve showed different effects, in which B. breve M1 and B. breve M2 alleviated the inflammation induced by DSS as well as significantly increased the concentration of mucin2 (MUC2) and goblet cells, but neither B. breve M3 nor B. breve M4 had those protective effects. Meanwhile, B. breve M1 and B. breve M2 treatments significantly up-regulated the tight junction (TJ) proteins and ameliorated the epithelial apoptosis lead by DSS challenge. Moreover, inflammatory cytokines (TNF-α, IL-6) were modulated by B. breve M1 and B. breve M2, neither B. breve M3 nor B. breve M4. Furthermore, B. breve M1 and B. breve M2 reduced the abundance of Bacteroides and increased the abundance of Odoribacter, then rebalanced the damaged gut microbiota. Colonic CLA concentrations in mice fed with B. breve M1, B. breve M2, B. breve M3 and B. breve M4 decreased successively, which showed significant positive correlation with the effectiveness of relieving colitis. CONCLUSIONS Bifidobacterium breve M1 and B. breve M2 alleviated DSS-induced colitis by producing CLA, inhibiting the inflammatory cytokines, maintaining of the intestinal epithelial barrier and regulating the gut microbiota.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Yan Jin
- Department of Gastroenterology, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
15
|
Koncz D, Tóth B, Roza O, Csupor D. A Systematic Review of the European Rapid Alert System for Food and Feed: Tendencies in Illegal Food Supplements for Weight Loss. Front Pharmacol 2021; 11:611361. [PMID: 33574758 PMCID: PMC7870490 DOI: 10.3389/fphar.2020.611361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Slimming products represent a dynamically growing group of food supplements worldwide. The efficacy of safely usable natural ingredients is usually below consumers' expectations. Certain manufacturers add unauthorized or prohibited ingredients to weight loss supplements in order to increase their efficacy. Hence, many of these products are adulterated and may pose a risk to the consumers' health. Aims: The aim of our work was to give an overview on natural ingredients used in slimming products, to summarize the frequently used synthetic adulterants and also to assess the trends of adulterated and illegal food supplements in the European Union based on the warnings of the Rapid Alert System for Food and Feed (RASFF) in the time period of 1988-2019. Methods: Reports between 1988-2019 were extracted from the RASFF portal on January 1, 2020. Each entry was individually reviewed. Results: 2,559 records of food supplements with quality problems were identified in the RASFF, several of which [319 (12,5%)] were marketed to facilitate weight loss. 202 (63,3%) contained unapproved, synthetic drug ingredients. The major adulterant (113 of 319, 35.4%) was DNP (2,4-dinitrophenol), whereas sibutramine was the second most frequent adulterant agent (69 products, 21,6%) between 1988 and 2019. Conclusion: The number of approved medicines for the indication of weight loss is relatively low and their efficacy (and also that of the natural ingredients) is limited. Therefore, a significant number of weight loss supplements is adulterated to satisfy patients' expectations. Hence, these products may cause serious adverse effects in sensitive patients.
Collapse
Affiliation(s)
- Dorottya Koncz
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Barbara Tóth
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Orsolya Roza
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| | - Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Szeged, Hungary
- Medical School, Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
16
|
Wu Q, Tsuduki T. CYP4F13 is the Major Enzyme for Conversion of alpha-Eleostearic Acid into cis-9, trans-11-Conjugated Linoleic Acid in Mouse Hepatic Microsomes. J Oleo Sci 2020; 69:1061-1075. [PMID: 32879197 DOI: 10.5650/jos.ess20080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous studies have shown that α-eleostearic acid (α-ESA; cis-9, trans-11, trans-13 (c9,t11,t13)-conjugated linolenic acid (CLnA)) is converted into c9,t11-conjugated linoleic acid (CLA) in rats. Furthermore, we have demonstrated that the conversion of α-ESA into CLA is a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent enzymatic reaction, which occurs mostly in the rat liver. However, the precise metabolic pathway and enzyme involved have not been identified yet. Therefore, in this study we aimed to determine the role of cytochrome P450 (CYP) in the conversion of α-ESA into c9,t11-CLA using an in vitro reconstitution system containing mouse hepatic microsomes, NADPH, and α-ESA. The CYP4 inhibitors, 17-ODYA and HET0016, performed the highest level of inhibition of CLA formation. Furthermore, the redox partner cytochrome P450 reductase (CPR) inhibitor, 2-chloroethyl ethyl sulfide (CEES), also demonstrated a high level of inhibition. Thus, these results indicate that the NADPH-dependent CPR/CYP4 system is responsible for CLA formation. In a correlation analysis between the specific activity of CLA formation and Cyp4 family gene expression in tissues, Cyp4a14 and Cyp4f13 demonstrated the best correlations. However, the CYP4F substrate prostaglandin A1 (PGA1) exhibited the strongest inhibitory effect on CLA formation, while the CYP4A and CYP4B1 substrate lauric acid had no inhibitory effect. Therefore, we conclude that the CYP4F13 enzyme is the major enzyme involved in CLA formation. This pathway is a novel pathway for endogenous CLA synthesis, and this study provides insight into the potential application of CLnA in functional foods.
Collapse
Affiliation(s)
- Qiming Wu
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University
| |
Collapse
|
17
|
Chang H, Gan W, Liao X, Wei J, Lu M, Chen H, Wang S, Ma Y, Wu Q, Yu Y, Liu X. Conjugated linoleic acid supplements preserve muscle in high-body-fat adults: A double-blind, randomized, placebo trial. Nutr Metab Cardiovasc Dis 2020; 30:1777-1784. [PMID: 32684362 DOI: 10.1016/j.numecd.2020.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Conjugated linoleic acid (CLA) has been used to improve body composition in weight management. However, clinical trial results are inconsistent and limited among Asians. We aimed to investigate the effect of CLA on body composition of Chinese adults with elevated body fat percentage. METHODS AND RESULTS In this double-blind, randomized, placebo-controlled trial, 66 Chinese adults (aged 18-45 years old, 37.9% male) with elevated body fat percentage were provided with 3.2 g/day CLA (n = 33) or 3.2 g/day placebo (sunflower oil; n = 33) for 12 weeks. Both groups received lifestyle counseling, featured with low fat and low sugar diet, and moderate physical activity. Body composition was measured using dual-energy X-ray absorptiometry at the baseline and end of the trial. Sixty-four participants finished this study. Compared with the placebo group, the CLA group showed increased trunk muscle mass (MM) (0.6 ± 1.7 vs. -0.3 ± 1.2 kg, P = 0.019). Among those with an adherence score higher than 0.80 (n = 56, 87.5%), a greater increase in both total and trunk MM was observed in the CLA group (both P < 0.05). Moreover, the effect on MM appeared to be more evident in men, those with a body mass index <25 kg/m2, or those with higher self-rated physical activity. CONCLUSIONS In Chinese adults with elevated body fat percentage, 3.2 g/day CLA supplementation may be effective in preserving MM, especially in the trunk region. REGISTRATION This study was registered at ClinicalTrials.gov as NCT03915808 on April 9, 2019.
Collapse
Affiliation(s)
- Huan Chang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Wei Gan
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, OX3 7LF, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, 277 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Junxiang Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Mengnan Lu
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Huangtao Chen
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Shenglong Wang
- Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Yan Ma
- School of Sports and Health Sciences, Xi'an Physical Education University, 65 North Hanguang Road, 710068, Xi'an, Shaanxi, China
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China
| | - Yan Yu
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China.
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Mądry E, Malesza IJ, Subramaniapillai M, Czochralska-Duszyńska A, Walkowiak M, Miśkiewicz-Chotnicka A, Walkowiak J, Lisowska A. Body Fat Changes and Liver Safety in Obese and Overweight Women Supplemented with Conjugated Linoleic Acid: A 12-Week Randomised, Double-Blind, Placebo-Controlled Trial. Nutrients 2020; 12:nu12061811. [PMID: 32560516 PMCID: PMC7353155 DOI: 10.3390/nu12061811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Preliminary evidence suggests that conjugated linoleic acid (CLA) may reduce body weight and affect body composition. The present study assessed the effect of CLA supplementation on body fat composition in overweight and obese women, while also evaluating the liver safety of CLA use. Seventy-four obese or overweight women were randomly assigned to receive 3 g/day CLA or placebo for 12 weeks. Body composition (dual-energy X-ray absorptiometry) and liver function (13C-methacetin breath test and serum liver enzymes) were assessed before and after the trial. Patients receiving CLA experienced a significant reduction of total body fat expressed as mass (p = 0.0007) and percentage (p = 0.0006), android adipose tissue (p = 0.0002), gynoid adipose tissue (p = 0.0028), and visceral adipose tissue (p = 4.2 × 10−9) as well as a significant increase in lean body mass to height (p = 6.1 × 10−11) when compared to those receiving a placebo. The maximum momentary 13C recovery changes and end-point values were significantly higher in the CLA group when compared to the placebo group (p = 0.0385 and p = 0.0076, respectively). There were no significant changes in alanine aminotransferase, asparagine aminotransferase, and gamma-glutamyl transpeptidase activities between the groups. In conclusion, CLA supplementation was well tolerated and safe for the liver, which shows beneficial effects on fat composition in overweight and obese women.
Collapse
Affiliation(s)
- Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61701 Poznań, Poland; (M.S.); (A.C.-D.)
- Correspondence: ; Tel.: +48-501-728-956
| | - Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Mehala Subramaniapillai
- Department of Physiology, Poznan University of Medical Sciences, 61701 Poznań, Poland; (M.S.); (A.C.-D.)
| | | | - Marek Walkowiak
- Division of Reproduction, Department of Gynecology and Obstetrics, Poznan University of Medical Sciences, 61701 Poznań, Poland;
| | - Anna Miśkiewicz-Chotnicka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61701 Poznań, Poland; (I.J.M.); (A.M.-C.); (J.W.)
| | - Aleksandra Lisowska
- Department of Clinical Auxology and Pediatric Nursing, Poznan University of Medical Sciences, 61701 Poznań, Poland;
| |
Collapse
|
19
|
Oteng AB, Kersten S. Mechanisms of Action of trans Fatty Acids. Adv Nutr 2020; 11:697-708. [PMID: 31782488 PMCID: PMC7231579 DOI: 10.1093/advances/nmz125] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Human studies have established a positive association between the intake of industrial trans fatty acids and the development of cardiovascular diseases, leading several countries to enact laws that restrict the presence of industrial trans fatty acids in food products. However, trans fatty acids cannot be completely eliminated from the human diet since they are also naturally present in meat and dairy products of ruminant animals. Moreover, bans on industrial trans fatty acids have not yet been instituted in all countries. The epidemiological evidence against trans fatty acids by far overshadows mechanistic insights that may explain how trans fatty acids achieve their damaging effects. This review focuses on the mechanisms that underlie the deleterious effects of trans fatty acids by juxtaposing effects of trans fatty acids against those of cis-unsaturated fatty acids and saturated fatty acids (SFAs). This review also carefully explores the argument that ruminant trans fatty acids have differential effects from industrial trans fatty acids. Overall, in vivo and in vitro studies demonstrate that industrial trans fatty acids promote inflammation and endoplasmic reticulum (ER) stress, although to a lesser degree than SFAs, whereas cis-unsaturated fatty acids are protective against ER stress and inflammation. Additionally, industrial trans fatty acids promote fat storage in the liver at the expense of adipose tissue compared with cis-unsaturated fatty acids and SFAs. In cultured hepatocytes and adipocytes, industrial trans fatty acids, but not cis-unsaturated fatty acids or SFAs, stimulate the cholesterol synthesis pathway by activating sterol regulatory element binding protein (SREBP) 2-mediated gene regulation. Interestingly, although industrial and ruminant trans fatty acids show similar effects on human plasma lipoproteins, in preclinical models, only industrial trans fatty acids promote inflammation, ER stress, and cholesterol synthesis. Overall, clearer insight into the molecular mechanisms of action of trans fatty acids may create new therapeutic windows for the treatment of diseases characterized by disrupted lipid metabolism.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
20
|
Beneficial Effects of a Low-dose of Conjugated Linoleic Acid on Body Weight Gain and other Cardiometabolic Risk Factors in Cafeteria Diet-fed Rats. Nutrients 2020; 12:nu12020408. [PMID: 32033223 PMCID: PMC7071287 DOI: 10.3390/nu12020408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/18/2023] Open
Abstract
Conjugated linoleic acid (CLA) is a dietary supplement that has been shown to improve obesity. However, some authors have associated high doses of CLA supplementation with liver impairment and insulin resistance. The aim of this study was to assess whether the consumption of low doses of CLA maintained the beneficial effects on the main metabolic disturbances associated with metabolic syndrome (MetS) but prevented the occurrence of non-desirable outcomes associated with its consumption. Male Wistar rats, fed standard or cafeteria (CAF) diet for 12 weeks, were supplemented with three different low doses of CLA in the last three weeks. Both biochemical and H1 NMR-based metabolomics profiles were analysed in serum and liver. The consumption of 100 mg/kg CLA, but not doses of 200 and 300 mg/kg, ameliorated the increase in body weight gain as well as the serum concentrations of glucose, insulin, cholesterol, triglyceride, diglyceride, and total phospholipid induced by a CAF diet. In turn, CLA reverted the increase in lactate, alanine, and glucose concentrations in the liver of these animals, but enhanced hepatic cholesterol accumulation without any detrimental effect on liver function. In conclusion, a low dose of CLA corrected the adverse effects associated with MetS without compromising other metabolic parameters.
Collapse
|
21
|
Oteng A, Loregger A, van Weeghel M, Zelcer N, Kersten S. Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2019; 63:e1900385. [PMID: 31327168 PMCID: PMC6790681 DOI: 10.1002/mnfr.201900385] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Abstract
SCOPE The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. METHODS AND RESULTS Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage-activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. CONCLUSION Elaidate induces cholesterogenesis in vitro by activating the SCAP-SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.
Collapse
Affiliation(s)
- Antwi‐Boasiako Oteng
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| | - Anke Loregger
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences1105 AZAmsterdamThe Netherlands
| | - Noam Zelcer
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| |
Collapse
|
22
|
Fariña AC, Lavandera J, González MA, Bernal CA. Effect of Conjugated Linoleic Acids on Nutritional Status and Lipid Metabolism in Rats Fed Linoleic‐Acid‐Deprived Diets. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ana Clara Fariña
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
| | - Jimena Lavandera
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
- Centro Científico Tecnológico CONICET Santa FePredio CONICET “Dr. Alberto Cassano”Colectora Ruta Nac. Nº 168, Km. 0Paraje El PozoSanta Fe 3000Argentina
| | - Marcela Aída González
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
| | - Claudio Adrián Bernal
- Cátedra de Bromatología y NutriciónFacultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeC.C. 242Argentina
- Centro Científico Tecnológico CONICET Santa FePredio CONICET “Dr. Alberto Cassano”Colectora Ruta Nac. Nº 168, Km. 0Paraje El PozoSanta Fe 3000Argentina
| |
Collapse
|
23
|
Pang K, Zhu Z, Zhu S, Han L. A high dose of conjugated linoleic acid increases fatty liver and insulin resistance in lactating mice. PLoS One 2019; 14:e0214903. [PMID: 31390361 PMCID: PMC6685630 DOI: 10.1371/journal.pone.0214903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
This study aimed to evaluate the effects of a high dose of conjugated linoleic acid (CLA) on lactating mice. In one experiment, Kunming mice were separated into four groups (n = 6 per group); the control (CON) group received 3.0% linoleic acid (LA) oil, the L-CLA group received a mixture of 2.0% LA and 1.0% CLA, the M-CLA group received a mixture of 1.0% LA and a 2.0% CLA, and the H-CLA group received 3.0% CLA. Feeding proceeded from day 4 to day 10 of lactation. In a second experiment, a CON group received 3.0% LA, and an H-CLA group received 3.0% CLA. Plasma parameters were analyzed for all groups, and insulin tolerance tests (ITTs) were conducted. CLA treatment did not affect dam weight but significantly decreased the food intake of dams during lactation. Furthermore, CLA decreased the weight of pups on day 10 of lactation; this effect was attributed to lower milk fat of dams in the CLA group than in those of the other groups. Relative to mice in the CON group, the mice in the H-CLA group displayed increased liver weight and liver triglyceride (TG) content as well as higher TG content and γ-glutamyl transferase (γ-GT) activity in the plasma. Moreover, high-dose CLA resulted in insulin resistance, possibly affecting the red blood cell (RBC) and hemoglobin (HCB) levels in the plasma. In conclusion, lactating mice receiving a high dose of CLA exhibited fatty liver, insulin resistance, and impaired lactation performance.
Collapse
Affiliation(s)
- Kun Pang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhongke Zhu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Songbo Zhu
- Zhengzhou Academy of Agriculture and Forestry Sciences, Zhengzhou, China
| | - Liqiang Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
24
|
Chai BK, Al-Shagga M, Pan Y, Then SM, Ting KN, Loh HS, Mohankumar SK. Cis-9, Trans-11 Conjugated Linoleic Acid Reduces Phosphoenolpyruvate Carboxykinase Expression and Hepatic Glucose Production in HepG2 Cells. Lipids 2019; 54:369-379. [PMID: 31124166 DOI: 10.1002/lipd.12154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022]
Abstract
Dysregulated hepatic gluconeogenesis is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Although existing drugs have been proven to improve gluconeogenesis, achieving this objective with functional food is of interest, especially using conjugated linoleic acid (CLA) found in dairy products. Both cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) isomers of CLA were tested in human (HepG2) and rat (H4IIE) hepatocytes for their potential effects on gluconeogenesis. The hepatocytes exposed for 24 h with 20 μM of c9,t11-CLA had attenuated the gluconeogenesis in both HepG2 and H4IIE by 62.5% and 80.1%, respectively. In contrast, t10,c12-CLA had no effect. Of note, in HepG2 cells, the exposure of c9,t11-CLA decreased the transcription of gluconeogenic enzymes, cytosolic phosphoenolpyruvate carboxykinase (PCK1) by 87.7%, and glucose-6-phosphatase catalytic subunit (G6PC) by 38.0%, while t10,c12-CLA increased the expression of G6PC, suggesting the isomer-specific effects of CLA on hepatic glucose production. In HepG2, the peroxisome proliferator-activated receptor (PPAR) agonist, rosiglitazone, reduced the glucose production by 72.9%. However, co-administration of c9,t11-CLA and rosiglitazone neither exacerbated nor attenuated the efficacy of rosiglitazone to inhibit glucose production; meanwhile, t10,c12-CLA abrogated the efficacy of rosiglitazone. Paradoxically, PPARγ antagonist GW 9662 also led to 70.2% reduction of glucose production and near undetectable PCK1 expression by abrogating CLA actions. Together, while the precise mechanisms by which CLA isomers modulate hepatic gluconeogenesis directly or via PPAR warrant further investigation, our findings establish that c9,t11-CLA suppresses gluconeogenesis by decreasing PEPCK on hepatocytes.
Collapse
Affiliation(s)
- Boon Kheng Chai
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mustafa Al-Shagga
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yan Pan
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sue-Mian Then
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kang Nee Ting
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suresh K Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy (Ooty), JSS Academy of Higher Education & Research, Rocklands, Udhagamandalam, 643001, Tamil Nadu, India
| |
Collapse
|
25
|
Cordoba-Chacon J, Sugasini D, Yalagala PCR, Tummala A, White ZC, Nagao T, Kineman RD, Subbaiah PV. Tissue-dependent effects of cis-9,trans-11- and trans-10,cis-12-CLA isomers on glucose and lipid metabolism in adult male mice. J Nutr Biochem 2019; 67:90-100. [PMID: 30856468 DOI: 10.1016/j.jnutbio.2019.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022]
Abstract
Mixtures of the two major conjugated linoleic acid (CLA) isomers trans-10,cis-12-CLA and cis-9,trans-11-CLA are used as over the counter supplements for weight loss. Because of the reported adverse effects of CLA on insulin sensitivity in some mouse studies, we sought to compare the impact of dietary t10c12-CLA and c9t11-CLA on liver, adipose tissue, and systemic metabolism of adult lean mice. We fed 8 week-old C57Bl/6J male mice with low fat diets (10.5% Kcal from fat) containing 0.8% t10c12-CLA or c9t11-CLA for 9 or 38 days. Diets containing c9t11-CLA had minimal impact on the endpoints studied. However, 7 days after starting the t10c12-CLA diet, we observed a dramatic reduction in fat mass measured by NMR spectroscopy, which interestingly rebounded by 38 days. This rebound was apparently due to a massive accumulation of lipids in the liver, because adipose tissue depots were visually undetectable. Hepatic steatosis and the disappearance of adipose tissue after t10c12-CLA feeding was associated with elevated plasma insulin levels and insulin resistance, compared to mice fed a control diet or c9t11-CLA diet. Unexpectedly, despite being insulin resistant, mice fed t10c12-CLA had normal levels of blood glucose, without signs of impaired glucose clearance. Hepatic gene expression and fatty acid composition suggested enhanced hepatic de novo lipogenesis without an increase in expression of gluconeogenic genes. These data indicate that dietary t10c12-CLA may alter hepatic glucose and lipid metabolism indirectly, in response to the loss of adipose tissue in mice fed a low fat diet.
Collapse
Affiliation(s)
- Jose Cordoba-Chacon
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL.
| | - Dhavamani Sugasini
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Poorna C R Yalagala
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Apoorva Tummala
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Zachary C White
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL; Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Papasani V Subbaiah
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL; Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL.
| |
Collapse
|
26
|
Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019; 11:nu11020370. [PMID: 30754681 PMCID: PMC6413010 DOI: 10.3390/nu11020370] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.
Collapse
|
27
|
Moreira TG, Gomes-Santos AC, Horta LS, Goncalves MC, Santiago AF, Lauar JG, Dos Reis DS, Castro-Junior AB, Lemos L, Guimarães M, Aguilar EC, Pap A, Amaral JF, Alvarez-Leite JI, Cara DC, Rezende RM, Nagy L, Faria AMC, Maioli TU. Consumption of conjugated linoleic acid (CLA)-supplemented diet during colitis development ameliorates gut inflammation without causing steatosis in mice. J Nutr Biochem 2018; 57:238-245. [PMID: 29800810 DOI: 10.1016/j.jnutbio.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022]
Abstract
Dietary supplementation with conjugated linoleic acid (CLA) has been proposed for weight management and to prevent gut inflammation. However, some animal studies suggest that supplementation with CLA leads to the development of nonalcoholic fatty liver disease. The aims of this study were to test the efficiency of CLA in preventing dextran sulfate sodium (DSS)-induced colitis, to analyze the effects of CLA in the liver function, and to access putative liver alterations upon CLA supplementation during colitis. So, C57BL/6 mice were supplemented for 3 weeks with either control diet (AIN-G) or 1% CLA-supplemented diet. CLA content in the diet and in the liver of mice fed CLA containing diet were accessed by gas chromatography. On the first day of the third week of dietary treatment, mice received ad libitum a 1.5%-2.5% DSS solution for 7 days. Disease activity index score was evaluated; colon and liver samples were stained by hematoxylin and eosin for histopathology analysis and lamina propria cells were extracted to access the profile of innate cell infiltrate. Metabolic alterations before and after colitis induction were accessed by an open calorimetric circuit. Serum glucose, cholesterol, triglycerides and alanine aminotransaminase were measured; the content of fat in liver and feces was also accessed. CLA prevented weight loss, histopathologic and macroscopic signs of colitis, and inflammatory infiltration. Mice fed CLA-supplemented without colitis induction diet developed steatosis, which was prevented in mice with colitis probably due to the higher lipid consumption as energy during gut inflammation. This result suggests that CLA is safe for use during gut inflammation but not at steady-state conditions.
Collapse
Affiliation(s)
- Thais Garcias Moreira
- Departamento de Ciência de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Cristina Gomes-Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laila Sampaio Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana Camila Goncalves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrezza Fernanda Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Gonçalves Lauar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniela Silva Dos Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Archimedes Barbosa Castro-Junior
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Lemos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Edenil Costa Aguilar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | - Joana Ferreira Amaral
- Escola de Nutrição e Núcleo de Pesquisa em Biologia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Jacqueline I Alvarez-Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary; Diabetes and Obesity Research Center, Sanford Burnham Medical Research Institute, Lake Nona, Orlando, FL, USA
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
28
|
Sung YY, Kim DS, Kim SH, Kim HK. Aqueous and ethanolic extracts of welsh onion, Allium fistulosum, attenuate high-fat diet-induced obesity. Altern Ther Health Med 2018; 18:105. [PMID: 29558911 PMCID: PMC5861601 DOI: 10.1186/s12906-018-2152-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022]
Abstract
Background Allium fistulosum (Welsh onion) is a traditional medicinal plant used for the treatment of colds, influenza, abdominal pain, headache, and heart disease. This study evaluated the effects of A. fistulosum ethanolic extract (AFE) and aqueous extract (AFW) on body weight and other obesity-related parameters. Methods Male 8-week-old C57BL/6 J mice were fed either a standard chow diet (normal control) or a high-fat diet (HFD) either alone (HFD-control) or in combination with G. cambogia extract containing hydroxycitric acid (HCA, an herbal weight-loss supplement), conjugated linoleic acid (CLA, a weight-loss supplement), orlistat (a clinically available anti-obesity drug), AFW, or AFE (n = 6 mice per group) for 6 weeks. At the end of 6 weeks, several body weight and obesity-related parameters were examined, including: liver and adipose weight, adipocyte size, serum lipid profiles, liver expression of adenosine monophosphate-activated protein kinase (AMPK), and adipose tissue expression of uncoupling protein 2 (UCP2). Results High-performance liquid chromatography showed that both AFE and AFW contain ferulic acid and quercetin. Oral administration of AFW and AFE to HFD-fed mice decreased body weight as well as liver and adipose tissue weight and adipocyte size. Serum lipid profiles and adiponectin levels were improved in HFD-fed mice treated with AFE but not AFW. However, both AFW and AFE significantly attenuated HFD-induced changes in serum leptin and insulin-like growth factor 1 levels, liver expression of AMPK, and adipose tissue expression of UCP2. Conclusions The findings from this study suggest that A. fistulosum extracts have potential as functional food materials for weight control in obesity.
Collapse
|
29
|
Noureldein MH, Eid AA. Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microb Pathog 2018; 118:98-104. [PMID: 29548696 DOI: 10.1016/j.micpath.2018.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 02/08/2023]
Abstract
The gut microbiota plays a substantial role in regulating the host metabolic and immune functions. Dysbiosis, resulting from disruption of gut microbiota, predisposes many morbid pathologies like obesity and its associated comorbidities, diabetes and inflammatory conditions including some types of cancer. There are numerous proposed signaling pathways through which alterations in gut microbiota and its metabolites can disturb the host's normal physiological functions. Interestingly, many of these processes happen to be controlled by the mammalian target of rapamycin (mTOR). The mTOR pathway responds to environmental changes and regulates accordingly many intracellular processes such as transcription, translation, cell growth, cytoskeletal organization and autophagy. In this review, we aim to highlight the cross-talk between the gut microbiota and the mTOR pathway and discuss how this emerging field of research gives a beautiful insight into how the mentioned cross-talk impacts the body's homeostasis thus leading to undesirable complications including obesity, diabetes, colon and pancreatic cancer, immune system malfunctioning and ageing. Although there are a limited number of studies investigating the crosstalk between the gut microbiota and the mTOR pathway, the results obtained so far are enough to elucidate the key role of the mTOR signaling in microbiota-associated metabolic and immune regulations.
Collapse
Affiliation(s)
- Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
30
|
Pachikian BD, Druart C, Catry E, Bindels LB, Neyrinck AM, Larondelle Y, Cani PD, Delzenne NM. Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS One 2018; 13:e0192447. [PMID: 29389988 PMCID: PMC5794163 DOI: 10.1371/journal.pone.0192447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
SCOPE Conjugated linoleic acids are linoleic acid isomers found in the diet that can also be produced through bacterial metabolism of polyunsaturated fatty acids. Our objective was to evaluate the contribution of fatty acid metabolites produced from polyunsaturated fatty acids by the gut microbiota in vivo to regulation of hepatic lipid metabolism and steatosis. METHODS AND RESULTS In mice with depleted n-3 polyunsaturated fatty acids, we observed an accumulation of trans-11,trans-13 CLA and cis-9,cis-11 conjugated linoleic acids in the liver tissue that were associated with an increased triglyceride content and expression of lipogenic genes. We used an in vitro model to evaluate the impact of these two conjugated linoleic acids on hepatic lipid metabolism. In HepG2 cells, we observed that only trans-11,trans-13 conjugated linoleic acids recapitulated triglyceride accumulation and increased lipogenic gene expression, which is a phenomenon that may implicate the nuclear factors sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). CONCLUSION The trans-11,trans-13 conjugated linoleic acids can stimulate hepatic lipogenesis, which supports the conclusion that gut microbiota and related metabolites should be considered in the treatment of non-alcoholic liver disease.
Collapse
Affiliation(s)
- Barbara D. Pachikian
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Catry
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Yvan Larondelle
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Université catholique de Louvain, WELBIO, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
31
|
Shokryzadan P, Rajion MA, Meng GY, Boo LJ, Ebrahimi M, Royan M, Sahebi M, Azizi P, Abiri R, Jahromi MF. Conjugated linoleic acid: A potent fatty acid linked to animal and human health. Crit Rev Food Sci Nutr 2018; 57:2737-2748. [PMID: 26252346 DOI: 10.1080/10408398.2015.1060190] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid (C18:2 n-6), which is mostly found in the ruminant meat and dairy products. The CLA is known to have many potential health benefits, and considered a potent powerful fatty acid, which is linked to animal and human health. The present work aims to discuss the source and production, mechanism of action, and effects of CLA on humans, poultry, and ruminants by reviewing the recent studies carried out on CLA. Despite most of the recent studies indicating beneficial effects of CLA on improving body weight control parameters, its effects on reducing risk factors of cardiovascular diseases (CVD), inflammation, blood glucose, and insulin are still controversial, and need to be further studied in different hosts.
Collapse
Affiliation(s)
- Parisa Shokryzadan
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia.,b Agriculture Biotechnology Research Institute of Iran (ABRII) , East and North-East Branch , Mashhad , Iran
| | - Mohamed Ali Rajion
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Goh Yong Meng
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia.,c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Liang Juan Boo
- c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Mahdi Ebrahimi
- a Faculty of Veterinary Medicine , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Maryam Royan
- d Agriculture Biotechnology Research Institute of Iran (ABRII) , North Branch , Rasht , Iran
| | - Mahbod Sahebi
- c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Parisa Azizi
- c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Rambod Abiri
- e Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Mohammad Faseleh Jahromi
- b Agriculture Biotechnology Research Institute of Iran (ABRII) , East and North-East Branch , Mashhad , Iran.,c Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| |
Collapse
|
32
|
Berryhill GE, Lemay DG, Trott JF, Aimo L, Lock AL, Hovey RC. The Transcriptome of Estrogen-Independent Mammary Growth in Female Mice Reveals That Not All Mammary Glands Are Created Equally. Endocrinology 2017; 158:3126-3139. [PMID: 28938404 PMCID: PMC5659702 DOI: 10.1210/en.2017-00395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023]
Abstract
Allometric growth of ducts in the mammary glands (MGs) is widely held to be estrogen dependent. We previously discovered that the dietary fatty acid trans-10, cis-12 conjugated linoleic acid (CLA) stimulates estrogen-independent allometric growth and terminal end bud formation in ovariectomized mice. Given the similar phenotype induced by estrogen and CLA, we investigated the shared and/or divergent mechanisms underlying these changes. We confirmed MG growth induced by CLA is temporally distinct from that elicited by estrogen. We then used RNA sequencing to compare the transcriptome of the MG during similar proliferative and morphological states. Both estrogen and CLA affected the genes involved in proliferation. The transcriptome for estrogen-treated mice included canonical estrogen-induced genes, including Pgr, Areg, and Foxa1. In contrast, their expression was unchanged by CLA. However, CLA, but not estrogen, altered expression of a unique set of inflammation-associated genes, consistent with stromal changes. This CLA-altered signature included increased expression of epidermal growth factor receptor (EGFR) pathway components, consistent with the demonstration that CLA-induced MG growth is EGFR dependent. Our findings highlight a unique role for diet-induced inflammation that underlies estrogen-independent MG development.
Collapse
Affiliation(s)
- Grace E. Berryhill
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| | - Danielle G. Lemay
- UC Davis Genome Center, University of California Davis, Davis, California 95616-8521
- US Department of Agriculture, Agricultural Research Services, Western Human Nutrition Research Center, Davis, California 95616
| | - Josephine F. Trott
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| | - Lucila Aimo
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| | - Adam L. Lock
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824-1225
| | - Russell C. Hovey
- Department of Animal Science, University of California Davis, Davis, California 95616-8521
| |
Collapse
|
33
|
Translational Aspects of Diet and Non-Alcoholic Fatty Liver Disease. Nutrients 2017; 9:nu9101077. [PMID: 28956824 PMCID: PMC5691694 DOI: 10.3390/nu9101077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of diseases ranging from simple steatosis without inflammation or fibrosis to nonalcoholic steatohepatitis (NASH). Despite the strong association between dietary factors and NAFLD, no dietary animal model of NAFLD fully recapitulates the complex metabolic and histological phenotype of the disease, although recent models show promise. Although animal models have significantly contributed to our understanding of human diseases, they have been less successful in accurate translation to predict effective treatment strategies. We discuss strategies to overcome this challenge, in particular the adoption of big data approaches combining clinical phenotype, genomic heterogeneity, transcriptomics, and metabolomics changes to identify the ideal NAFLD animal model for a given scientific question or to test a given drug. We conclude by noting that novel big data approaches may help to bridge the translational gap for selecting dietary models of NAFLD.
Collapse
|
34
|
Tremblay BL, Rudkowska I. Nutrigenomic point of view on effects and mechanisms of action of ruminant trans fatty acids on insulin resistance and type 2 diabetes. Nutr Rev 2017; 75:214-223. [PMID: 28340087 DOI: 10.1093/nutrit/nuw066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Evidence from observational studies suggests beneficial effects of ruminant trans fatty acids (rTFA) on insulin resistance (IR) and type 2 diabetes (T2D). However, beneficial effects of rTFA are not always observed in cell, animal, and human studies. This narrative review presents potential mechanisms of action of rTFA using nutrigenomics and microRNA results in an integrative model. In addition, the review presents factors, including measures of IR and T2D, dose and duration of studies, as well as health status, ethnicity, and genotypes of subjects, that may help explain the heterogeneity in response to rTFA supplementation. Future studies should consider these factors, as well as research in nutritional genomics, to better understand the effects of rTFA on IR and T2D.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, Quebec, Canada
| | - Iwona Rudkowska
- Department of Endocrinology and Nephrology, CHU de Québec Research Center, Quebec City, Quebec, Canada
| |
Collapse
|
35
|
Regassa A, Suh M, Datar J, Chen C, Kim WK. Fatty Acids Have Different Adipogenic Differentiation Potentials in Stromal Vascular Cells Isolated from Abdominal Fat in Laying Hens. Lipids 2017; 52:513-522. [PMID: 28523479 DOI: 10.1007/s11745-017-4261-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
This study was conducted to examine the effects of fatty acids (FA) with/without chicken serum (CS) on the expression of adipogenic transcripts and adipogenesis in chicken stromal vascular cells (SVC). In experiment 1, SVC were grown in DMEM containing 10% FBS (Control) and treated with 300 µM oleic acid (OLA) + FBS, linoleic acid (LNA) + FBS, palmitic acid (PAM) + FBS, or stearic acid (STA) + FBS for 48 h. In experiment 2, cells were grown in DMEM containing 5% CS and treated with 300 µM OLA (CS + OLA), PAM (CS + PAM), STA (CS + STA) or 200 µM LNA (CS + LNA) for 48 h. Adipogenesis was determined using Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. The proportion of OLA, PAM, or STA was increased (P < 0.05) in SVC grown in either FBS or CS with OLA, PAM or STA. Adipogenesis was induced in FBS + OLA, FBS + LNA, FBS + PAM, FBS + STA, CS + OLA, CS + LNA, CS + PAM, or CS + SAT compared to FBS. GPDH activity was significantly higher in FBS + OLA and FBS + LNA than one in FBS. Compared to FBS, the expression of FABP4 mRNA increased (P < 0.05) in FBS + OLA, FBS + LNA, or FBS + PAM, whereas that of C/EBPα, C/EBPβ, and ATGL increased (P < 0.05) in FBS + OLA or FBS + LNA cells. Expression of FABP4 and C/EBPβ mRNA was higher in CS, CS + OLA, CS + LNA, CS + PAM, or CS + SAT compared with (FBS, whereas the expression of ATGL and C/EBPα was higher in CS, CS + OLA, or CS + LNA than FBS cells. In conclusion, these results showed that FA have different potentials to induce adipogenesis, LNA is the most potent among the tested FA, and these potentials can be improved in the presence of CS.
Collapse
Affiliation(s)
- Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Jutika Datar
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, USA.
| |
Collapse
|
36
|
Schäfers S, von Soosten D, Meyer U, Drong C, Frahm J, Kluess J, Raschka C, Rehage J, Tröscher A, Pelletier W, Dänicke S. Influence of conjugated linoleic acid and vitamin E on performance, energy metabolism, and change of fat depot mass in transitional dairy cows. J Dairy Sci 2017; 100:3193-3208. [DOI: 10.3168/jds.2016-11882] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/10/2016] [Indexed: 12/23/2022]
|
37
|
Berryhill GE, Miszewski SG, Trott JF, Kraft J, Lock AL, Hovey RC. Trans-Fatty Acid-Stimulated Mammary Gland Growth in Ovariectomized Mice is Fatty Acid Type and Isomer Specific. Lipids 2017; 52:223-233. [PMID: 28074319 DOI: 10.1007/s11745-016-4221-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
Abstract
We previously reported that the trans-18:2 fatty acid trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) stimulates mammary gland development independent of estrogen and its receptor. Given the negative consequences of dietary trans-fatty acids on various aspects of human health, we sought to establish whether other trans-fatty acids could similarly induce ovary-independent mammary gland growth in mice. Prepubertal BALB/cJ mice were ovariectomized at 21 days of age then were fed diets enriched with cis-9, trans-11 CLA (c9,t11-CLA), or mixtures of trans-18:1 fatty acids supplied by partially hydrogenated sunflower, safflower, or linseed oil. The resultant mammary phenotype was evaluated 3 weeks later and compared to the growth response elicited by t10,c12-CLA, or the defined control diet. Whereas partially hydrogenated safflower oil increased mammary gland weight, none of the partially hydrogenated vegetable oils promoted mammary ductal growth. Similarly, the c9,t11-CLA supplemented diet was without effect on mammary development. Taken together, our data emphasize a unique effect of t10,c12-CLA in stimulating estrogen-independent mammary gland growth manifest as increased mammary ductal area and elongation that was not recapitulated by c9,t11-CLA or the partially hydrogenated vegetable oil diets.
Collapse
Affiliation(s)
- Grace E Berryhill
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616-8521, USA
| | - Susan G Miszewski
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616-8521, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616-8521, USA
| | - Jana Kraft
- Department of Animal and Veterinary Science, University of Vermont, 570 Main St., Burlington, VT, 05405-0148, USA
| | - Adam L Lock
- Department of Animal Science, Michigan State University, 474 S. Shaw Lane, East Lansing, MI, 48824-1225, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616-8521, USA.
| |
Collapse
|
38
|
Garibay-Nieto N, Queipo-García G, Alvarez F, Bustos M, Villanueva E, Ramírez F, León M, Laresgoiti-Servitje E, Duggirala R, Macías T, Cuevas S, Jalife A, Fonseca-Sánchez M, Serratos F, López-Alvarenga JC. Effects of Conjugated Linoleic Acid and Metformin on Insulin Sensitivity in Obese Children: Randomized Clinical Trial. J Clin Endocrinol Metab 2017; 102:132-140. [PMID: 27778642 DOI: 10.1210/jc.2016-2701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Insulin resistance precedes metabolic syndrome abnormalities and may promote cardiovascular disease and type 2 diabetes in children with obesity. Results of lifestyle modification programs have been discouraging, and the use of adjuvant strategies has been necessary. OBJECTIVE This study aimed to evaluate the effects of metformin and conjugated linoleic acid (CLA) on insulin sensitivity, measured via euglycemic-hyperinsulinemic clamp technique and insulin pathway expression molecules in muscle biopsies of children with obesity. DESIGN A randomized, double-blinded, placebo-controlled clinical trial was conducted. SETTING Children with obesity were randomly assigned to receive metformin, CLA, or placebo. RESULTS Intervention had a positive effect in all groups. For insulin sensitivity Rd value (mg/kg/min), there was a statistically significant difference between the CLA vs placebo (6.53 ± 2.54 vs 5.05 ± 1.46, P = 0.035). Insulinemia and homeostatic model assessment of insulin resistance significantly improved in the CLA group (P = 0.045). After analysis of covariance was performed and the influence of body mass index, age, Tanner stage, prescribed diet, and fitness achievement was controlled, a clinically relevant effect size on insulin sensitivity remained evident in the CLA group (37%) and exceeded lifestyle program benefits. Moreover, upregulated expression of the insulin receptor substrate 2 was evident in muscle biopsies of the CLA group. CONCLUSIONS Improvement of insulin sensitivity, measured via euglycemic-hyperinsulinemic clamp and IRS2 upregulation, favored patients treated with CLA.
Collapse
Affiliation(s)
- Nayely Garibay-Nieto
- Children and Adolescent Obesity Clinic
- Department of Human Genetics, Hospital General de México Eduardo Liceaga-Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Gloria Queipo-García
- Department of Human Genetics, Hospital General de México Eduardo Liceaga-Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | | | | | | | - Fernando Ramírez
- Specialized Center for Diabetes Control, Public Health Services, Mexico City, Mexico 11340
| | | | | | - Ravindranath Duggirala
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, Texas 78539
| | - Teresa Macías
- Department of Human Genetics, Hospital General de México Eduardo Liceaga-Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Sergio Cuevas
- Department of Human Genetics, Hospital General de México Eduardo Liceaga-Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Abel Jalife
- Department of Surgery, Hospital General de México Eduardo Liceaga, 06726 Mexico City, Mexico
| | - Miguel Fonseca-Sánchez
- Department of Human Genetics, Hospital General de México Eduardo Liceaga-Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | | | - Juan Carlos López-Alvarenga
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, Texas 78539
| |
Collapse
|
39
|
Della Casa L, Rossi E, Romanelli C, Gibellini L, Iannone A. Effect of diets supplemented with different conjugated linoleic acid (CLA) isomers on protein expression in C57/BL6 mice. GENES AND NUTRITION 2016; 11:26. [PMID: 27713773 PMCID: PMC5050585 DOI: 10.1186/s12263-016-0542-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/17/2016] [Indexed: 02/01/2023]
Abstract
Background The individual genetic variations, as a response to diet, have recently caught the attention of several researchers. In addition, there is also a trend to assume food containing beneficial substances, or to supplement food with specific compounds. Among these, there is the conjugated linoleic acid (CLA), which has been demonstrated to reduce fat mass and to increase lean mass, even though its mechanism of action is still not known. We investigated the effect of CLA isomers (CLA c9,t11 and CLA t10,c12) on the proteomic profile of liver, adipose tissue, and muscle of mouse, with the aim of verifying the presence of a modification in fat and lean mass, and to explore the mechanism of action. Methods C57/BL6 mice were fed for 2 months with different diets: (1) standard chow, (2) CLA c9,t11 diet, (3) CLA t10,c11 diet, (4) CLA isomers mixture diet, and (5) linoleic acid diet. The proteomic profile of liver, white adipose tissue, and muscle was investigated. Statistical significance of the spots with an intensity higher than twofold in expression compared to the control was tested using student’s t test (two-tail). Results We found that both isomers modulate the proteomic profiles of liver, adipose tissue, and muscle by different mechanisms of action. Liver steatosis is mostly due to the isomer CLA t10,c12, since it alters the expression of lipogenetic proteins; it acts also reducing the adipose tissue and increasing fatty acid oxidation in muscle. Conversely, CLA c9,t11 has no relevant effects on liver and adipose tissue, but acts mostly on muscle, where it enhances muscular cell differentiation. Conclusions Administration of CLA in humans has to be carefully personalized, since even considering the presence of a species-specific effect, adverse effects might occur on long-term supplementation. Here we demonstrated that, in mouse, CLA is effective in reducing fat mass, but it also induces liver steatosis. The increase of lean mass is linked to an induction of cell proliferation, which, on long-term supplementation, might also lead to adverse effects.
Collapse
Affiliation(s)
- L Della Casa
- "ProteoWork Lab", Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - E Rossi
- "ProteoWork Lab", Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - C Romanelli
- "ProteoWork Lab", Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - L Gibellini
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - A Iannone
- "ProteoWork Lab", Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia, via Campi 287, 41125 Modena, Italy
| |
Collapse
|
40
|
Kim Y, Kim D, Park Y. Conjugated linoleic acid (CLA) promotes endurance capacity via peroxisome proliferator-activated receptor δ-mediated mechanism in mice. J Nutr Biochem 2016; 38:125-133. [PMID: 27736732 DOI: 10.1016/j.jnutbio.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/30/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
Previously, it was reported that conjugated linoleic acid (CLA) with exercise training potentially improved endurance capacity via the peroxisome proliferator-activated receptor δ (PPARδ)-mediated mechanism in mice. This study determined the role of exercise and/or CLA in endurance capacity and PPARδ-associated regulators. Male 129Sv/J mice were fed either control (soybean oil) or CLA (0.5%) containing diets for 4 weeks and were further divided into sedentary or training regimes. CLA supplementation significantly reduced body weight and fat mass independent of exercise during the experimental period. Endurance capacity was significantly improved by CLA supplementation, while no effect of exercise was observed. Similarly, CLA treatment significantly increased expressions of sirtuin 1 and PPARγ coactivator-1α, up-stream regulators of PPARδ, in both sedentary and trained animals. With respect to downstream markers of PPARδ, CLA up-regulated the key biomarker needed to stimulate mitochondrial biogenesis, nuclear respiratory factor 1. Moreover, CLA supplementation significantly induced overall genes associated with muscle fibers, such as type I (slow-twitch) and type II (fast twitch). Taken together, it suggests that CLA improves endurance capacity independent of mild-intensity exercise via PPARδ-mediated mechanism.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
41
|
Koronowicz AA, Banks P, Szymczyk B, Leszczyńska T, Master A, Piasna E, Szczepański W, Domagała D, Kopeć A, Piątkowska E, Laidler P. Dietary conjugated linoleic acid affects blood parameters, liver morphology and expression of selected hepatic genes in laying hens. Br Poult Sci 2016; 57:663-673. [PMID: 27267260 DOI: 10.1080/00071668.2016.1192280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The objective of this research were to investigate the effect of a conjugated linoleic acid (CLA)-enriched diet on Isa Brown laying hen health status and to provide a comprehensive analysis of changes in blood parameters, liver morphology and selected hepatic gene expression. Hens were allocated to the control and experimental group (diet enriched with 0.75% CLA) for a total period of 4 m. At the end of the experiment half of the hens from each group were slaughtered for analyses. The remaining hens were transferred to an organic farm for the next 5 m and fed on the diet without CLA supplementation. The CLA-enriched diet resulted in significant changes in blood and serum parameters; specifically, haematocrit (HCT), mean corpuscular volume (MCV) and white blood cells (WBC) count were decreased compared to the control. The total cholesterol (TC) was not significantly affected while the triacylglycerol's (TG) concentration was elevated. The activity of alanine aminotransferase (ALT) was significantly increased in the CLA-supplemented group, while aspartate aminotransferase (AST) showed an increasing tendency. Liver biopsies showed pathological changes classified as non-alcoholic fatty liver disease (NAFLD). Additionally, the expression of hepatic genes involved in fatty acids synthesis (ME1, ACLY, ACC, FASN, SCD1), oxidation (CPT1α, PPARA), detoxification processes (Cytochrome P450, CYP, Flavin-containing monooxygenase, FMO3), oxidative stress (NOX4, XbP1) and inflammation (IL6, TNFα) were elevated. Cessation of CLA supplementation for 5 m of organic farming resulted in normalisation of blood and hepatic parameters to the levels observed in control hens. The results of this study indicate that dietary CLA triggers an integrated stress response in laying hens and activates mechanisms involved in liver detoxification.
Collapse
Affiliation(s)
- A A Koronowicz
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - P Banks
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - B Szymczyk
- b Department of Animal Nutrition and Feed Science , National Research Institute of Animal Production , Krakow , Poland
| | - T Leszczyńska
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - A Master
- c Department of Biochemistry and Molecular Biology , Medical Centre for Postgraduate Education , Warszawa , Poland
| | - E Piasna
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - W Szczepański
- d Department of Pathomorphology , Jagiellonian University Medical College , Krakow , Poland
| | - D Domagała
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - A Kopeć
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - E Piątkowska
- a Department of Human Nutrition, Faculty of Food Technology , University of Agriculture , Krakow , Poland
| | - P Laidler
- e Department of Medical Biochemistry , Jagiellonian University Medical College , Krakow , Poland
| |
Collapse
|
42
|
Sauerwein H, Häußler S. Endogenous and exogenous factors influencing the concentrations of adiponectin in body fluids and tissues in the bovine. Domest Anim Endocrinol 2016; 56 Suppl:S33-43. [PMID: 27345322 DOI: 10.1016/j.domaniend.2015.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
Adiponectin, one of the messenger molecules secreted from adipose tissue that are collectively termed adipokines, has been demonstrated to play a central role in lipid and glucose metabolism in humans and laboratory rodents; it improves insulin sensitivity and exerts antidiabetic and antiinflammatory actions. Adiponectin is synthesized as a 28 kDa monomer but is not secreted as such; instead, it is glycosylated and undergoes multimerization to form different molecular weight multimers before secretion. Adiponectin is one of the most abundant adipokines (μg/mL range) in the circulation. The concentrations are negatively correlated with adipose depot size, in particular with visceral fat mass in humans. Adiponectin exerts its effects by activating a range of different signaling molecules via binding to 2 transmembrane receptors, adiponectin receptor 1 and adiponectin receptor 2. The adiponectin receptor 1 is expressed primarily in the skeletal muscle, whereas adiponectin receptor 2 is predominantly expressed in the liver. Many of the functions of adiponectin are relevant to growth, lactation, and health and are thus of interest in both beef and dairy production systems. Studies on the role of the adiponectin protein in cattle have been impeded by the lack of reliable assays for bovine adiponectin. Although there are species-specific bovine adiponectin assays commercially available, they suffer from a lack of scientific peer-review of validity. Quantitative data about the adiponectin protein in cattle available in the literature emerged only during the last 3 yr and were largely based on Western blotting using either antibodies against human adiponectin or partial peptides from the bovine sequence. Using native bovine high-molecular-weight adiponectin purified from serum, we were able to generate a polyclonal antiserum that can be used for Western blot but also in an ELISA system, which was recently validated. The objective of this review is to provide an overview of the literature about the adiponectin protein in cattle addressing the following aspects: (1) the course of the adiponectin serum concentrations during development in both sexes, during inflammation, nutritional energy deficit and energy surplus, and lactation-induced changes including the response to supplementation with conjugated linoleic acids and with niacin, (2) the concentrations of adiponectin in subcutaneous vs visceral fat depots of dairy cows, (3) the protein expression of adiponectin in tissues other than adipose, and (4) the concentrations in different body fluids including milk.
Collapse
Affiliation(s)
- Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn 53115, Germany.
| | - Susanne Häußler
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
43
|
Xie K, Miles EA, Calder PC. A review of the potential health benefits of pine nut oil and its characteristic fatty acid pinolenic acid. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
44
|
Woo H, Chung MY, Kim J, Kong D, Min J, Choi HD, Choi IW, Kim IH, Noh SK, Kim BH. Conjugated Linoleic Triacylglycerols Exhibit Superior Lymphatic Absorption Than Free Conjugate Linoleic Acids and Have Antiobesity Properties. J Med Food 2016; 19:486-94. [PMID: 27081749 DOI: 10.1089/jmf.2015.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to compare lymphatic absorption of conjugated linoleic acids (CLAs) in the triacylglycerol (TAG) or free fatty acid (FFA) form and to examine the antiobesity effects of different doses of CLAs in the TAG form in animals. Conjugated linoleic TAGs (containing 70.3 wt% CLAs; CLA-TAG) were prepared through lipase-catalyzed esterification of glycerol with commercial CLA mixtures (CLA-FFA). Lymphatic absorption of CLA-TAG and CLA-FFA was compared in a rat model of lymphatic cannulation. Greater amounts of cis-9,trans-11 and trans-10,cis-12 CLAs were detected in the collected lymph from a lipid emulsion containing CLA-TAG. This result suggests that CLA-TAG has greater capacity for lymphatic absorption than does CLA-FFA. The antiobesity efficacy of CLA-TAG at different doses was examined in mice with diet-induced obesity. A high-fat diet (HFD) for 12 weeks caused a significant increase in body weight and epididymal and retroperitoneal fat weights, which were significantly decreased by 2% dietary supplementation (w/w) with CLA-TAG. CLA-TAG at 2% significantly attenuated the HFD-induced upregulation of serum TAG, but led to hepatomegaly and exacerbated HFD-induced hypercholesterolemia. CLA-TAG at 1% significantly attenuated upregulation of retroperitoneal fat weight and significantly increased liver weight, which was decreased by the HFD. Nonetheless, the liver weight in group "HFD +1% CLA-TAG" was not significantly different from that of normal diet controls. CLA-TAG at 1% significantly reduced serum TAG levels and did not exacerbate HFD-induced hypercholesterolemia. Thus, 1% dietary supplementation with CLA-TAG reduces retroperitoneal fat weight without apparent hepatomegaly, a known side-effect of CLAs in mouse models of obesity.
Collapse
Affiliation(s)
- Hyunjoon Woo
- 1 Department of Food Science and Technology, Chung-Ang University , Anseong, Korea
| | - Min-Yu Chung
- 2 Korea Food Research Institute , Seongnam, Korea
| | - Juyeon Kim
- 3 Department of Food and Nutrition, Changwon National University , Changwon, Korea
| | - Daecheol Kong
- 3 Department of Food and Nutrition, Changwon National University , Changwon, Korea
| | - Jinyoung Min
- 2 Korea Food Research Institute , Seongnam, Korea
| | - Hee-Don Choi
- 2 Korea Food Research Institute , Seongnam, Korea
| | - In-Wook Choi
- 2 Korea Food Research Institute , Seongnam, Korea
| | - In-Hwan Kim
- 4 Department of Food and Nutrition, Korea University , Seoul, Korea
| | - Sang K Noh
- 3 Department of Food and Nutrition, Changwon National University , Changwon, Korea
| | - Byung Hee Kim
- 5 Department of Food and Nutrition, Sookmyung Women's University , Seoul, Korea
| |
Collapse
|
45
|
Flores-Sierra J, Arredondo-Guerrero M, Cervantes-Paz B, Rodríguez-Ríos D, Alvarado-Caudillo Y, Nielsen FC, Wrobel K, Wrobel K, Zaina S, Lund G. The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo. Lipids Health Dis 2016; 15:75. [PMID: 27068706 PMCID: PMC4828757 DOI: 10.1186/s12944-016-0243-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Background The deleterious effects of dietary trans fatty acids (tFAs) on human health are well documented. Although significantly reduced or banned in various countries, tFAs may trigger long-term responses that would represent a valid human health concern, particularly if tFAs alter the epigenome. Methods Based on these considerations, we asked whether the tFA elaidic acid (EA; tC18:1) has any effects on global DNA methylation and the transcriptome in cultured human THP-1 monocytes, and whether the progeny of EA-supplemented dams during either pregnancy or lactation in mice (n = 20 per group) show any epigenetic change after exposure. Results EA induced a biphasic effect on global DNA methylation in THP-1 cells, i.e. hypermethylation in the 1–50 μM concentration range, followed by hypomethylation up to the 200 μM dose. On the other hand, the cis isomer oleic acid (OA), a fatty acid with documented beneficial effects on human health, exerted a distinct response, i.e. its effects were weaker and only partially overlapping with EA’s. The maximal differential response between EA and OA was observed at the 50 μM dose. Array expression data revealed that EA induced a pro-inflammatory and adipogenic transcriptional profile compared with OA, although with modest effects on selected (n = 9) gene promoter methylation. In mice, maternal EA supplementation in utero or via the breastmilk induced global adipose tissue DNA hypermethylation in the progeny, that was detectable postnatally at the age of 3 months. Conclusion We document that global DNA hypermethylation is a specific and consistent response to EA in cell culture and in mice, and that EA may exert long-term effects on the epigenome following maternal exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0243-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Flores-Sierra
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico
| | - Martín Arredondo-Guerrero
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico.,Tecnológico de Monterrey, Leon Campus, Leon, Gto., Mexico
| | - Braulio Cervantes-Paz
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico
| | - Dalia Rodríguez-Ríos
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico
| | - Yolanda Alvarado-Caudillo
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katarzyna Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato, Gto., Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato, Gto., Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico.
| |
Collapse
|
46
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
47
|
Ramiah SK, Meng GY, Ebrahimi M. Upregulation of Peroxisome Proliferator-Activated Receptors and Liver Fatty Acid Binding Protein in Hepatic Cells of Broiler Chicken Supplemented with Conjugated Linoleic Acids. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Suriya Kumari Ramiah
- Department of Animal Production, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Goh Y. Meng
- Department of Animal Production, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
48
|
Wang J, Chen H, Yang B, Gu Z, Zhang H, Chen W, Chen YQ. Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice. RSC Adv 2016. [DOI: 10.1039/c5ra24491a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lactobacillus plantarumZS2058 is an efficient producer of conjugated linoleic acid (CLA)in vitro.
Collapse
Affiliation(s)
- Juntong Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| |
Collapse
|
49
|
Kim Y, Kim D, Good DJ, Park Y. Conjugated linoleic acid (CLA) influences muscle metabolism via stimulating mitochondrial biogenesis signaling in adult‐onset inactivity induced obese mice. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoo Kim
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| | - Daeyoung Kim
- Department of Mathematics and StatisticsUniversity of MassachusettsAmherstMAUSA
| | - Deborah J. Good
- Department of Human Nutrition, Foods and ExerciseVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Yeonhwa Park
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
50
|
Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques1,2. J Anim Sci 2015; 93:5531-53. [DOI: 10.2527/jas.2015-9192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|