1
|
Jain U, Srivastava P, Sharma A, Sinha S, Johari S. Impaired Fibroblast Growth Factor 21 (FGF21) Associated with Visceral Adiposity Leads to Insulin Resistance: The Core Defect in Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e260424229342. [PMID: 38676505 DOI: 10.2174/0115733998265915231116043813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 04/29/2024]
Abstract
The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.
Collapse
Affiliation(s)
- Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Ashwani Sharma
- Insight BioSolutions, Rue Joseph Colin, 35000 Rennes, France
| | - Subrata Sinha
- Centre of Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Surabhi Johari
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Brandt VP, Holland H, Blüher M, Klöting N. High-resolution genomic profiling and locus-specific FISH in subcutaneous and visceral adipose tissue of obese patients. Front Genet 2024; 14:1323052. [PMID: 38516060 PMCID: PMC10955090 DOI: 10.3389/fgene.2023.1323052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 03/23/2024] Open
Abstract
Obesity is known as a heterogeneous and multifactorial disease. The distribution of body fat is crucial for the development of metabolic complications. Comprehensive genetic analyses on different fat tissues are rare but necessary to provide more detailed information. Therefore, we performed genetic analyses of three patients with obesity using high resolution genome wide SNP array (blood, visceral fat tissue) and fluorescence in situ hybridization (FISH) analyses (visceral and subcutaneous fat tissue). Altogether, we identified 31 small Copy Number Variations (losses: 1p31.1, 1p22.2, 1q21.3, 2q34, 2q37.1, 3q28, 6p25.3, 7q31.33, 7q33, 8p23.3, 10q22.3, 11p15.4, 11p15.1, 11p14.2, 11p12, 13q12.3, 15q11.2-q13.1, 15q13.3, 20q13.2, 22q11.21; gains: 2q22.1-q22.2, 3p14.3, 4p16.3, 4q32.2, 6q27, 7p14.3, 7q34, 11p12, 12p11.21, 16p11.2-p11.1, 17q21.31) and 289 small copy-neutral Loss of Heterozygosity (cn-LOH). For the chromosomal region 15q11.2-q13.1, we detected a microdeletion (Prader-Willi-Syndrome) in one patient. Interestingly, we identified chromosomal SNP differences between EDTA-blood and visceral fat tissue (deletion and gain). Small losses of 7q31.33, 7q33, 11p14.2, 11p12, 13q12.3 as well as small gain of 7q34 were detected only in fat tissue and not in blood. Furthermore, FISH analyses on 7q31.33, 7q33 and 11p12 revealed differences between subcutaneous and visceral fat tissue. Generally, the deletions were detected more frequent in visceral fat tissue. Predominantly detected cn-LOH vs. CNV suggests a meaning of these cn-LOH for the pathogenesis of obesity. We conclude that the SNP array and FISH analyses used is applicable to generate more information for basic research on difficult cell subpopulations (e.g., visceral adipose tissue) and could opens up new diagnostic aspects in the field of obesity. Altogether, the significance of these mostly not yet described genetic aberrations in different fat tissues needs to confirmed in a larger series.
Collapse
Affiliation(s)
- Vivian-Pascal Brandt
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III–Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III–Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
3
|
Tao J, Yu XL, Yuan YJ, Shen X, Liu J, Gu PP, Wang Z, Ma YT, Li GQ. DMRT2 Interacts With FXR and Improves Insulin Resistance in Adipocytes and a Mouse Model. Front Endocrinol (Lausanne) 2022; 12:723623. [PMID: 35250844 PMCID: PMC8891600 DOI: 10.3389/fendo.2021.723623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Insulin resistance (IR) plays a critical role in cardiovascular diseases and metabolic diseases. In this study, we identified the downregulation of DMRT2 in adipose tissues from insulin-resistant subjects through bioinformatics analysis and in an insulin-resistant mouse model through experimental analysis. DMRT2 overexpression significantly attenuated HDF-induced insulin resistance and inflammation in mice. Moreover, in control and insulin-resistant differentiated mouse 3T3-L1 adipocytes, DMRT2 overexpression attenuated but DMRT2 knockdown enhanced the insulin resistance of 3T3-L1 adipocytes. DMRT2 interacted with FXR and positively regulated FXR level and transcription activity. In both control and insulin-resistant differentiated mouse 3T3-L1 adipocytes, FXR knockdown enhanced the insulin resistance and attenuated the effects of DMRT2 overexpression upon 3T3-L1 adipocyte insulin resistance. In conclusion, we identify the downregulation of DMRT2 in the insulin-resistant mouse model and cell model. DMRT2 interacts with FXR and improves insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Jing Tao
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiao-Lin Yu
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Yu-Juan Yuan
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Xin Shen
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jun Liu
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Pei-Pei Gu
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhao Wang
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yi-Tong Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guo-Qing Li
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
4
|
Später T, Marschall JE, Brücker LK, Nickels RM, Metzger W, Menger MD, Laschke MW. Vascularization of Microvascular Fragment Isolates from Visceral and Subcutaneous Adipose Tissue of Mice. Tissue Eng Regen Med 2021; 19:161-175. [PMID: 34536211 PMCID: PMC8782984 DOI: 10.1007/s13770-021-00391-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies in rodents exclusively use epididymal adipose tissue as a visceral fat source for MVF isolation. However, in future clinical practice, MVF may be rather isolated from liposuctioned subcutaneous fat tissue of patients. Therefore, we herein compared the vascularization characteristics of MVF isolates from visceral and subcutaneous fat tissue of murine origin. Methods: MVF isolates were generated from visceral and subcutaneous fat tissue of donor mice using two different enzymatic procedures. For in vivo analyses, the MVF isolates were seeded onto collagen-glycosaminoglycan scaffolds and implanted into full-thickness skin defects within dorsal skinfold chambers of recipient mice. Results: By means of the two isolation procedures, we isolated a higher number of MVF from visceral fat tissue when compared to subcutaneous fat tissue, while their length distribution, viability and cellular composition were comparable in both groups. Intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a significantly reduced vascularization of implanted scaffolds seeded with subcutaneous MVF isolates when compared to implants seeded with visceral MVF isolates. Light and scanning electron microscopy showed that this was due to high amounts of undigested connective tissue within the subcutaneous MVF isolates, which clogged the scaffold pores and prevented the interconnection of individual MVF into new microvascular networks. Conclusion: These findings indicate the need for improved protocols to generate connective tissue-free MVF isolates from subcutaneous fat tissue for future translational studies.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Lea K Brücker
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Ruth M Nickels
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
5
|
Nayor M, Shah SH, Murthy V, Shah RV. Molecular Aspects of Lifestyle and Environmental Effects in Patients With Diabetes: JACC Focus Seminar. J Am Coll Cardiol 2021; 78:481-495. [PMID: 34325838 DOI: 10.1016/j.jacc.2021.02.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 01/04/2023]
Abstract
Diabetes is characterized as an integrated condition of dysregulated metabolism across multiple tissues, with well-established consequences on the cardiovascular system. Recent advances in precision phenotyping in biofluids and tissues in large human observational and interventional studies have afforded a unique opportunity to translate seminal findings in models and cellular systems to patients at risk for diabetes and its complications. Specifically, techniques to assay metabolites, proteins, and transcripts, alongside more recent assessment of the gut microbiome, underscore the complexity of diabetes in patients, suggesting avenues for precision phenotyping of risk, response to intervention, and potentially novel therapies. In addition, the influence of external factors and inputs (eg, activity, diet, medical therapies) on each domain of molecular characterization has gained prominence toward better understanding their role in prevention. Here, the authors provide a broad overview of the role of several of these molecular domains in human translational investigation in diabetes.
Collapse
Affiliation(s)
- Matthew Nayor
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/MattNayor
| | - Svati H Shah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA; Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA. https://twitter.com/SvatiShah
| | - Venkatesh Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA. https://twitter.com/venkmurthy
| | - Ravi V Shah
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Raajendiran A, Krisp C, Souza DPD, Ooi G, Burton PR, Taylor RA, Molloy MP, Watt MJ. Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points. Am J Physiol Endocrinol Metab 2021; 320:E1068-E1084. [PMID: 33843278 DOI: 10.1152/ajpendo.00473.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adipose tissue is a primary regulator of energy balance and metabolism. The distribution of adipose tissue depots is of clinical interest because the accumulation of upper-body subcutaneous (ASAT) and visceral adipose tissue (VAT) is associated with cardiometabolic diseases, whereas lower-body glutealfemoral adipose tissue (GFAT) appears to be protective. There is heterogeneity in morphology and metabolism of adipocytes obtained from different regions of the body, but detailed knowledge of the constituent proteins in each depot is lacking. Here, we determined the human adipocyte proteome from ASAT, VAT, and GFAT using high-resolution Sequential Window Acquisition of all Theoretical (SWATH) mass spectrometry proteomics. We quantified 4,220 proteins in adipocytes, and 2,329 proteins were expressed in all three adipose depots. Comparative analysis revealed significant differences between adipocytes from different regions (6% and 8% when comparing VAT vs. ASAT and GFAT, 3% when comparing the subcutaneous adipose tissue depots, ASAT and GFAT), with marked differences in proteins that regulate metabolic functions. The VAT adipocyte proteome was overrepresented with proteins of glycolysis, lipogenesis, oxidative stress, and mitochondrial dysfunction. The GFAT adipocyte proteome predicted the activation of peroxisome proliferator-activated receptor α (PPARα), fatty acid, and branched-chain amino acid (BCAA) oxidation, enhanced tricarboxylic acid (TCA) cycle flux, and oxidative phosphorylation, which was supported by metabolomic data obtained from adipocytes. Together, this proteomic analysis provides an important resource and novel insights that enhance the understanding of metabolic heterogeneity in the regional adipocytes of humans.NEW & NOTEWORTHY Adipocyte metabolism varies depending on anatomical location and the adipocyte protein composition may orchestrate this heterogeneity. We used SWATH proteomics in patient-matched human upper- (visceral and subcutaneous) and lower-body (glutealfemoral) adipocytes and detected 4,220 proteins and distinguishable regional proteomes. Upper-body adipocyte proteins were associated with glycolysis, de novo lipogenesis, mitochondrial dysfunction, and oxidative stress, whereas lower-body adipocyte proteins were associated with enhanced PPARα activation, fatty acid, and BCAA oxidation, TCA cycle flux, and oxidative phosphorylation.
Collapse
Affiliation(s)
- Arthe Raajendiran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Macquarie University, New South Wales, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Ooi
- Faculty of Medicine, Nursing and Health Sciences, Centre for Obesity Research and Education, Monash University, Melbourne, Victoria, Australia
| | - Paul R Burton
- Faculty of Medicine, Nursing and Health Sciences, Centre for Obesity Research and Education, Monash University, Melbourne, Victoria, Australia
| | - Renea A Taylor
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, New South Wales, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Sharma M, Aggarwal S, Nayar U, Vikram NK, Misra A, Luthra K. Differential expression of insulin receptor substrate-1(IRS-1) in visceral and subcutaneous adipose depots of morbidly obese subjects undergoing bariatric surgery in a tertiary care center in north India; SNP analysis and correlation with metabolic profile. Diabetes Metab Syndr 2021; 15:981-986. [PMID: 33975152 DOI: 10.1016/j.dsx.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND /aim: Abdominal obesity and associated metabolic consequences are a burgeoning problem in Asian Indians and studying their genetic predisposition is important. This study is aimed at assessing variations in Insulin receptor substrate-1 (IRS-1), its expression at regional fat-depots (visceral and subcutaneous) in morbidly obese patients, and correlation with genotype-phenotype traits. METHODS Gene expression of IRS-1 in paired adipose tissue from 35 morbidly obese subjects (BMI) > 40 kg/m2) with co-morbidities and 15 controls (BMI<25 kg/m2), undergoing bariatric/elective abdominal surgery, respectively was determined by quantitative real time PCR. Genotyping of IRS-1Gly972Arg (n = 436) (rs 1801278) was performed by PCR-RFLP. Metabolic parameters were assessed. Full length sequencing of IRS-1 was performed to identify known/novel variations. RESULTS A marked reduction in IRS-1 expression was observed in visceral as compared to subcutaneous adipose tissue of morbidly obese subjects (p = 0.02). Homozygous variant of IRS-1 Gly972Arg was absent and there was no association with obesity or insulin resistance. A salient finding of this study was identification of two new variants in IRS-1 gene, representing G > A (codon 1102) encoding Glu > Lys and a deletion of (A) at codon 658 in morbidly obese subjects with insulin resistance. CONCLUSIONS Observation of a substantially lower expression of IRS-1 for first time in visceral adipose tissue of morbidly obese subjects is suggestive of predictive role of IRS-1 expression in insulin responsiveness of visceral adipose tissue. New variants in IRS-1, a non-synonymous mutation and a deletion should be evaluated further for their role in development of obesity and/orT2DM.
Collapse
Affiliation(s)
- Mukti Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi, India
| | - Sandeep Aggarwal
- Department of Surgery, All India Institute of Medical Sciences, Delhi, India
| | - Umakant Nayar
- Department of Surgery, All India Institute of Medical Sciences, Delhi, India
| | | | - Anoop Misra
- Diabetic Foundation, National Diabetes Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Fortis C-DOC Center of Excellence for Diabetes, Metabolic Diseases, and Endocrinology, B 16, Chirag Enclave, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi, India.
| |
Collapse
|
8
|
Goossens GH, Jocken JWE, Blaak EE. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol 2021; 17:47-66. [PMID: 33173188 DOI: 10.1038/s41574-020-00431-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Obesity is associated with many adverse health effects, such as an increased cardiometabolic risk. Despite higher adiposity for a given BMI, premenopausal women are at lower risk of cardiometabolic disease than men of the same age. This cardiometabolic advantage in women seems to disappear after the menopause or when type 2 diabetes mellitus develops. Sexual dimorphism in substrate supply and utilization, deposition of excess lipids and mobilization of stored lipids in various key metabolic organs (such as adipose tissue, skeletal muscle and the liver) are associated with differences in tissue-specific insulin sensitivity and cardiometabolic risk profiles between men and women. Moreover, lifestyle-related factors and epigenetic and genetic mechanisms seem to affect metabolic complications and disease risk in a sex-specific manner. This Review provides insight into sexual dimorphism in adipose tissue distribution, adipose tissue, skeletal muscle and liver substrate metabolism and tissue-specific insulin sensitivity in humans, as well as the underlying mechanisms, and addresses the effect of these sex differences on cardiometabolic health. Additionally, this Review highlights the implications of sexual dimorphism in the pathophysiology of obesity-related cardiometabolic risk for the development of sex-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| |
Collapse
|
9
|
Lopes H, Egan B. Visceral adiposity syndrome and cardiometabolism. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-32717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The distribution of fat in the human body is related to hemodynamic and metabolic homeostasis. Brown fat is inversely related to body mass index and is associated with a lower probability of developing diabetes. Beige adipose tissue shares some functional characteristics with brown adipose tissue. White adipose tissue constitutes the majority of the fatty tissue and is mainly distributed in the subcutaneous and abdominal cavity. Intra-abdominal white fat has gained prominence in recent years for its association with cardiovascular risk factors and higher cardiovascular mortality. This review article discusses the human adaptation in the environment, a sympathovagal and hypothalamic-pituitary-adrenal imbalance as a possible cause of increased visceral adiposity and its consequences on cardiometabolism.
Collapse
|
10
|
Zubáňová V, Červinková Z, Kučera O, Palička V. The Connection between MicroRNAs from Visceral Adipose Tissue and Non-Alcoholic Fatty Liver Disease. ACTA MEDICA (HRADEC KRALOVE) 2021; 64:1-7. [PMID: 33855952 DOI: 10.14712/18059694.2021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide leading the foreground cause of liver transplantation. Recently miRNAs, small non-coding molecules were identified as an important player in the negative translational regulation of many protein-coding genes involved in hepatic metabolism. Visceral adipose tissue was found to take part in lipid and glucose metabolism and to release many inflammatory mediators that may contribute to progression of NAFLD from simple steatosis to Non-Alcoholic SteatoHepatitis. Since visceral adipose tissue enlargement and dysregulated levels of miRNAs were observed in patients with NAFLD, the aim of this paper is to reflect the current knowledge of the role of miRNAs released from visceral adipose tissue and NAFLD.
Collapse
Affiliation(s)
- Veronika Zubáňová
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic.
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Vladimír Palička
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab (Lond) 2020; 17:88. [PMID: 33088334 PMCID: PMC7574417 DOI: 10.1186/s12986-020-00513-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In obesity, endocrine and metabolic perturbations, including those induced by chronic activation of the hypothalamus-pituitary-adrenal axis, are associated with the accumulation of adipose tissue and inflammation. Such changes are attributable to a combination of genetic and epigenetic factors that are influenced by the environment and exacerbated by chronic activation of the hypothalamus-pituitary-adrenal axis. Stress exposure at different life stages can alter adipose tissue metabolism directly through epigenetic modification or indirectly through the manipulation of hypothalamic appetite regulation, and thereby contribute to endocrine changes that further disrupt whole-body energy balance. This review synthesizes current knowledge, with an emphasis on human clinical trials, to describe metabolic changes in adipose tissue and associated endocrine, genetic and epigenetic changes in the obese state. In particular, we discuss epigenetic changes induced by stress exposure and their contribution to appetite and adipocyte dysfunction, which collectively promote the pathogenesis of obesity. Such knowledge is critical for providing future directions of metabolism research and targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
12
|
Anderson WD, Soh JY, Innis SE, Dimanche A, Ma L, Langefeld CD, Comeau ME, Das SK, Schadt EE, Björkegren JLM, Civelek M. Sex differences in human adipose tissue gene expression and genetic regulation involve adipogenesis. Genome Res 2020; 30:1379-1392. [PMID: 32967914 PMCID: PMC7605264 DOI: 10.1101/gr.264614.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.
Collapse
Affiliation(s)
- Warren D Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Joon Yuhl Soh
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Sarah E Innis
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Alexis Dimanche
- Physics Department, Southwestern University, Georgetown, Texas 78626, USA
| | - Lijiang Ma
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Swapan K Das
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Eric E Schadt
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Johan L M Björkegren
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
13
|
Tsiloulis T, Raajendiran A, Keenan SN, Ooi G, Taylor RA, Burton P, Watt MJ. Impact of human visceral and glutealfemoral adipose tissue transplant on glycemic control in a mouse model of diet-induced obesity. Am J Physiol Endocrinol Metab 2020; 319:E519-E528. [PMID: 32603261 DOI: 10.1152/ajpendo.00373.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regional distribution of adipose tissue is an important factor in conferring cardiometabolic risk and obesity-related morbidity. We tested the hypothesis that human visceral adipose tissue (VAT) impairs glucose homeostasis, whereas subcutaneous glutealfemoral adipose tissue (GFAT) protects against the development of impaired glucose homeostasis in mice. VAT and GFAT were collected from patients undergoing bariatric surgery and grafted onto the epididymal adipose tissue of weight- and age-matched severe, combined immunodeficient mice. SHAM mice underwent surgery without transplant of tissue. Mice were fed a high-fat diet after xenograft. Energy homeostasis, glucose metabolism, and insulin sensitivity were assessed 6 wk later. Xenograft of human adipose tissues was successful, as determined by histology, immunohistochemical evaluation of collagen deposition and angiogenesis, and maintenance of lipolytic function. Adipose tissue transplant did not affect energy expenditure, food intake, whole body substrate partitioning, or plasma free fatty acid, triglyceride, and insulin levels. Fasting blood glucose was significantly reduced in GFAT and VAT compared with SHAM, whereas glucose tolerance was improved only in mice transplanted with VAT compared with SHAM mice. This improvement was not associated with differences in whole body insulin sensitivity or plasma insulin between groups. Together, these data suggest that VAT improves glycemic control and GFAT does not protect against the development of high-fat diet-induced glucose intolerance. Hence, the intrinsic properties of VAT and GFAT do not necessarily explain the postulated negative and positive effects of these adipose tissue depots on metabolic health.
Collapse
Affiliation(s)
- Thomas Tsiloulis
- Department of Physiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedicine Discovery Institute; Metabolism, Diabetes and Obesity and Cancer Programs. Monash University, Clayton, Victoria, Australia
| | - Arthe Raajendiran
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stacey N Keenan
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Geraldine Ooi
- Centre for Obesity Research and Education, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Renea A Taylor
- Department of Physiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedicine Discovery Institute; Metabolism, Diabetes and Obesity and Cancer Programs. Monash University, Clayton, Victoria, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Paul Burton
- Centre for Obesity Research and Education, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Zacharia A, Saidemberg D, Mannully CT, Kogan NM, Shehadeh A, Sinai R, Zucker A, Bruck-Haimson R, Goldstein N, Haim Y, Dani C, Rudich A, Moussaieff A. Distinct infrastructure of lipid networks in visceral and subcutaneous adipose tissues in overweight humans. Am J Clin Nutr 2020; 112:979-990. [PMID: 32766878 PMCID: PMC7528551 DOI: 10.1093/ajcn/nqaa195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Adipose tissue plays important roles in health and disease. Given the unique association of visceral adipose tissue with obesity-related metabolic diseases, the distribution of lipids between the major fat depots located in subcutaneous and visceral regions may shed new light on adipose tissue-specific roles in systemic metabolic perturbations. OBJECTIVE We sought to characterize the lipid networks and unveil differences in the metabolic infrastructure of the 2 adipose tissues that may have functional and nutritional implications. METHODS Paired visceral and subcutaneous adipose tissue samples were obtained from 17 overweight patients undergoing elective abdominal surgery. Ultra-performance LC-MS was used to measure 18,640 adipose-derived features; 520 were putatively identified. A stem cell model for adipogenesis was used to study the functional implications of the differences found. RESULTS Our analyses resulted in detailed lipid metabolic maps of the 2 major adipose tissues. They point to a higher accumulation of phosphatidylcholines, triacylglycerols, and diacylglycerols, although lower ceramide concentrations, in subcutaneous tissue. The degree of unsaturation was lower in visceral adipose tissue (VAT) phospholipids, indicating lower unsaturated fatty acid incorporation into adipose tissue. The differential abundance of phosphatidylcholines we found can be attributed at least partially to higher expression of phosphatidylethanolamine methyl transferase (PEMT). PEMT-deficient embryonic stem cells showed a dramatic decrease in adipogenesis, and the resulting adipocytes exhibited lower accumulation of lipid droplets, in line with the lower concentrations of glycerolipids in VAT. Ceramides may inhibit the expression of PEMT by increased insulin resistance, thus potentially suggesting a functional pathway that integrates ceramide, PEMT, and glycerolipid biosynthetic pathways. CONCLUSIONS Our work unveils differential infrastructure of the lipid networks in visceral and subcutaneous adipose tissues and suggests an integrative pathway, with a discriminative flux between adipose tissues.
Collapse
Affiliation(s)
- Anish Zacharia
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Saidemberg
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Natalya M Kogan
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alaa Shehadeh
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Sinai
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avigail Zucker
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Goldstein
- Department of Clinical Biochemistry and Pharmacology and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Christian Dani
- University Côte d'Azur, CNRS, INSERM, iBV, Faculté de Medicine, Nice, France
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
15
|
Câmara DAD, Shibli JA, Müller EA, De-Sá-Junior PL, Porcacchia AS, Blay A, Lizier NF. Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3210. [PMID: 32708508 PMCID: PMC7420246 DOI: 10.3390/ma13143210] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be "immune privileged" since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful.
Collapse
Affiliation(s)
| | - Jamil Awad Shibli
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., Jundiaí 13212-213, Brazil;
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07040-170, Brazil;
| | - Eduardo Alexandre Müller
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07040-170, Brazil;
| | | | - Allan Saj Porcacchia
- Department of Psychobiology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
| | - Alberto Blay
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., Jundiaí 13212-213, Brazil;
| | - Nelson Foresto Lizier
- Nicell-Pesquisa e Desenvolvimento Científico LTDA, São Paulo 04006-000, Brazil;
- Department of Psychobiology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
| |
Collapse
|
16
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
Ronquillo MD, Mellnyk A, Cárdenas-Rodríguez N, Martínez E, Comoto DA, Carmona-Aparicio L, Herrera NE, Lara E, Pereyra A, Floriano-Sánchez E. Different gene expression profiles in subcutaneous & visceral adipose tissues from Mexican patients with obesity. Indian J Med Res 2020; 149:616-626. [PMID: 31417029 PMCID: PMC6702687 DOI: 10.4103/ijmr.ijmr_1165_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background & objectives Obesity is a health problem that requires substantial efforts to understand the physiopathology of its various types and to determine therapeutic strategies for its treatment. The objective of this study was to characterize differences in the global gene expression profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) between control patients (normal weight) and patients with obesity (IMC≥30) using microarrays. Methods Employing RNA isolated from SAT and VAT samples obtained from eight control and eight class I, II and III patients with obesity, the gene expression profiles were compared between SAT and VAT using microarrays and the findings were validated via real-time quantitative polymerase chain reaction. Results A total of 327 and 488 genes were found to be differentially expressed in SAT and VAT, respectively (P≤0.05). Upregulation of PPAP2C, CYP4A11 and CYP17A1 genes was seen in the VAT of obese individuals. Interpretation & conclusions SAT and VAT exhibited significant differences in terms of the expression of specific genes. These genes might be related to obesity. These findings may be used to improve the clinical diagnosis of obesity and could be a tool leading to the proposal of new therapeutic strategies for the treatment of obesity.
Collapse
Affiliation(s)
- María D Ronquillo
- Laboratory of Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alla Mellnyk
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Noemí Cárdenas-Rodríguez
- Subdirection of Experimental Medicine, Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City, Mexico
| | - Emmanuel Martínez
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - David A Comoto
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - Liliana Carmona-Aparicio
- Subdirection of Experimental Medicine, Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City, Mexico
| | - Norma E Herrera
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Eleazar Lara
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Armando Pereyra
- Department of Surgery, Military Central Hospital, SEDENA, Mexico City, Mexico
| | - Esaú Floriano-Sánchez
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| |
Collapse
|
18
|
Grewal T, Enrich C, Rentero C, Buechler C. Annexins in Adipose Tissue: Novel Players in Obesity. Int J Mol Sci 2019; 20:ijms20143449. [PMID: 31337068 PMCID: PMC6678658 DOI: 10.3390/ijms20143449] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and the associated comorbidities are a growing health threat worldwide. Adipose tissue dysfunction, impaired adipokine activity, and inflammation are central to metabolic diseases related to obesity. In particular, the excess storage of lipids in adipose tissues disturbs cellular homeostasis. Amongst others, organelle function and cell signaling, often related to the altered composition of specialized membrane microdomains (lipid rafts), are affected. Within this context, the conserved family of annexins are well known to associate with membranes in a calcium (Ca2+)- and phospholipid-dependent manner in order to regulate membrane-related events, such as trafficking in endo- and exocytosis and membrane microdomain organization. These multiple activities of annexins are facilitated through their diverse interactions with a plethora of lipids and proteins, often in different cellular locations and with consequences for the activity of receptors, transporters, metabolic enzymes, and signaling complexes. While increasing evidence points at the function of annexins in lipid homeostasis and cell metabolism in various cells and organs, their role in adipose tissue, obesity and related metabolic diseases is still not well understood. Annexin A1 (AnxA1) is a potent pro-resolving mediator affecting the regulation of body weight and metabolic health. Relevant for glucose metabolism and fatty acid uptake in adipose tissue, several studies suggest AnxA2 to contribute to coordinate glucose transporter type 4 (GLUT4) translocation and to associate with the fatty acid transporter CD36. On the other hand, AnxA6 has been linked to the control of adipocyte lipolysis and adiponectin release. In addition, several other annexins are expressed in fat tissues, yet their roles in adipocytes are less well examined. The current review article summarizes studies on the expression of annexins in adipocytes and in obesity. Research efforts investigating the potential role of annexins in fat tissue relevant to health and metabolic disease are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carles Rentero
- Department of Biomedicine, Unit of Cell Biology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany.
| |
Collapse
|
19
|
Fat Grafting into Younger Recipients Improves Volume Retention in an Animal Model. Plast Reconstr Surg 2019; 143:1067-1075. [PMID: 30730498 DOI: 10.1097/prs.0000000000005483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Soft-tissue deficits associated with various craniofacial anomalies can be addressed by fat grafting, although outcomes remain unpredictable. Furthermore, consensus does not exist for timing of these procedures. Whereas some advocate approaching soft-tissue reconstruction after the underlying skeletal foundation has been corrected, other studies have suggested that earlier grafting may exploit a younger recipient niche that is more conducive to fat graft survival. As there is a dearth of research investigating effects of recipient age on fat graft volume retention, this study compared the effectiveness of fat grafting in younger versus older animals through a longitudinal, in vivo analysis. METHODS Human lipoaspirate from three healthy female donors was grafted subcutaneously over the calvaria of immunocompromised mice. Volume retention over 8 weeks was evaluated using micro-computed tomography at three experimental ages: 3 weeks, 6 months, and 1 year. Histologic examination was performed on explanted grafts to evaluate graft health and vascularity. Recipient-site vascularity was also evaluated by confocal microscopy. RESULTS The greatest retention of fat graft volume was noted in the youngest group compared with both older groups (p < 0.05) at 6 and 8 weeks after grafting. Histologic and immunohistochemical analyses revealed that improved retention in younger groups was associated with greater fat graft integrity and more robust vascularization. CONCLUSION The authors' study provides evidence that grafting fat into a younger recipient site correlates with improved volume retention over time, suggesting that beginning soft-tissue reconstruction with fat grafting in patients at an earlier age may be preferable to late correction.
Collapse
|
20
|
Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 2019; 11:147-166. [PMID: 30949294 PMCID: PMC6441940 DOI: 10.4252/wjsc.v11.i3.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases (such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue (WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations (subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adipose-derived stem/stromal cells (ASC; referred to as adipose progenitor cells, in vivo) with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morpho-functional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.
Collapse
Affiliation(s)
- Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
21
|
Hillers LE, D'Amato JV, Chamberlin T, Paderta G, Arendt LM. Obesity-Activated Adipose-Derived Stromal Cells Promote Breast Cancer Growth and Invasion. Neoplasia 2018; 20:1161-1174. [PMID: 30317122 PMCID: PMC6187054 DOI: 10.1016/j.neo.2018.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 01/07/2023] Open
Abstract
Obese women diagnosed with breast cancer have an increased risk for metastasis, and the underlying mechanisms are not well established. Within the mammary gland, adipose-derived stromal cells (ASCs) are heterogeneous cells with the capacity to differentiate into multiple mesenchymal lineages. To study the effects of obesity on ASCs, mice were fed a control diet (CD) or high-fat diet (HFD) to induce obesity, and ASCs were isolated from the mammary glands of lean and obese mice. We observed that obesity increased ASCs proliferation, decreased differentiation potential, and upregulated expression of α-smooth muscle actin, a marker of activated fibroblasts, compared to ASCs from lean mice. To determine how ASCs from obese mice impacted tumor growth, we mixed ASCs isolated from CD- or HFD-fed mice with mammary tumor cells and injected them into the mammary glands of lean mice. Tumor cells mixed with ASCs from obese mice grew significantly larger tumors and had increased invasion into surrounding adipose tissue than tumor cells mixed with control ASCs. ASCs from obese mice demonstrated enhanced tumor cell invasion in culture, a phenotype associated with increased expression of insulin-like growth factor-1 (IGF-1) and abrogated by IGF-1 neutralizing antibodies. Weight loss induced in obese mice significantly decreased expression of IGF-1 from ASCs and reduced the ability of the ASCs to induce an invasive phenotype. Together, these results suggest that obesity enhances local invasion of breast cancer cells through increased expression of IGF-1 by mammary ASCs, and weight loss may reverse this tumor-promoting phenotype.
Collapse
Affiliation(s)
- Lauren E Hillers
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706
| | - Joseph V D'Amato
- Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Tamara Chamberlin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706
| | - Gretchen Paderta
- Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706; Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706.
| |
Collapse
|
22
|
Wang L, Perez J, Heard-Costa N, Chu AY, Joehanes R, Munson PJ, Levy D, Fox CS, Cupples LA, Liu CT. Integrating genetic, transcriptional, and biological information provides insights into obesity. Int J Obes (Lond) 2018; 43:457-467. [PMID: 30232418 PMCID: PMC6405310 DOI: 10.1038/s41366-018-0190-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Objective: Indices of body fat distribution are heritable, but few genetic signals have been reported from genome-wide association studies (GWAS) of computed tomography (CT) imaging measurements of body fat distribution. We aimed to identify genes associated with adiposity traits and the key drivers that are central to adipose regulatory networks. Subjects: We analyzed gene transcript expression data in blood from participants in the Framingham Heart Study, a large community-based cohort (n up to 4,303), as well as implemented an integrative analysis of these data and existing biological information. Results: Our association analyses identified unique and common gene expression signatures across several adiposity traits, including body mass index, waist-hip ratio, waist circumference, and CT-measured indices, including volume and quality of visceral and subcutaneous adipose tissues. We identified six enriched KEGG pathways and two co-expression modules for further exploration of adipose regulatory networks. The integrative analysis revealed four gene sets (Apoptosis, p53 signaling pathway, Proteasome, Ubiquitin mediated proteolysis) and two co-expression modules with significant genetic variants and 94 key drivers/genes whose local networks were enriched with adiposity-associated genes, suggesting that these enriched pathways or modules have genetic effects on adiposity. Most identified key driver genes are involved in essential biological processes such as controlling cell cycle, DNA repair and degradation of regulatory proteins and are cancer related. Conclusion: Our integrative analysis of genetic, transcriptional and biological information provides a list of compelling candidates for further follow-up functional studies to uncover the biological mechanisms underlying obesity. These candidates highlight the value of examining CT-derived and central adiposity traits.
Collapse
Affiliation(s)
- Lan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jeremiah Perez
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | | | - Audrey Y Chu
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,The Framingham Heart Study, Framingham, MA, 01702, USA
| | - Roby Joehanes
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, 02131, USA
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,The Framingham Heart Study, Framingham, MA, 01702, USA
| | - Caroline S Fox
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,The Framingham Heart Study, Framingham, MA, 01702, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.,The Framingham Heart Study, Framingham, MA, 01702, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
| |
Collapse
|
23
|
Blackshear CP, Borrelli MR, Shen EZ, Ransom RC, Chung NN, Vistnes SM, Irizarry D, Nazerali R, Momeni A, Longaker MT, Wan DC. Utilizing Confocal Microscopy to Characterize Human and Mouse Adipose Tissue. Tissue Eng Part C Methods 2018; 24:566-577. [PMID: 30215305 DOI: 10.1089/ten.tec.2018.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Significant advances in our understanding of human obesity, endocrinology, and metabolism have been made possible by murine comparative models, in which anatomically analogous fat depots are utilized; however, current research has questioned how truly analogous these depots are. In this study, we assess the validity of the analogy from the perspective of cellular architecture. Whole tissue mounting, confocal microscopy, and image reconstruction software were used to characterize the three-dimensional structure of the inguinal fat pad in mice, gluteofemoral fat in humans, and subcutaneous adipose tissue of the human abdominal wall. Abdominal and gluteofemoral adipose tissue specimens from 12 human patients and bilateral inguinal fat pads from 12 mice were stained for adipocytes, blood vessels, and a putative marker for adipose-derived multipotent progenitor cells, cluster of differentiation 34 (CD34). Samples were whole-mounted and imaged with laser scanning confocal microscopy. Expectedly, human adipocytes were larger and demonstrated greater size heterogeneity. Mouse fat displayed significantly higher vascular density compared with human fat when normalized to adipocyte count. There was no significant difference in the concentration of CD34-positive (CD34+) stromal cells from either species. However, the mean distance between CD34+ stromal cells and blood vessels was significantly greater in human fat. Finally, mouse inguinal fat contained larger numbers of brown adipocytes than did human gluteofemoral or human abdominal fat. Overall, the basic architecture of human adipose tissue differs significantly from that of mice. Insofar as human gluteofemoral fat differs from human abdominal adipose tissue, it was closer to mouse inguinal fat, being its comparative developmental analog. These differences likely confer variance in functional properties between the two sources and thus must be considered when designing murine models of human disease.
Collapse
Affiliation(s)
- Charles P Blackshear
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Mimi R Borrelli
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Ethan Z Shen
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - R Chase Ransom
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Natalie N Chung
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Stephanie M Vistnes
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Dre Irizarry
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Rahim Nazerali
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Arash Momeni
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Research and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
24
|
Allison KC, Goel N. Timing of eating in adults across the weight spectrum: Metabolic factors and potential circadian mechanisms. Physiol Behav 2018; 192:158-166. [PMID: 29486170 PMCID: PMC6019166 DOI: 10.1016/j.physbeh.2018.02.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
Timing of eating is recognized as a significant contributor to body weight regulation. Disruption of sleep-wake cycles from a predominantly diurnal (daytime) to a delayed (evening) lifestyle leads to altered circadian rhythms and metabolic dysfunction. This article reviews current evidence for timed and delayed eating in individuals of normal weight and those with overweight or obesity: although some findings indicate a benefit of eating earlier in the daytime on weight and/or metabolic outcomes, results have not been uniformly consistent, and more rigorous and longer-duration studies are needed. We also review potential circadian mechanisms underlying the metabolic- and weight-related changes resulting from timed and delayed eating. Further identification of such mechanisms using deep phenotyping is required to determine targets for medical interventions for obesity and for prevention of metabolic syndrome and diabetes, and to inform clinical guidelines regarding eating schedules for management of weight and metabolic disease.
Collapse
Affiliation(s)
- Kelly C Allison
- Center for Weight and Eating Disorders, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Namni Goel
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. ACTA ACUST UNITED AC 2018. [PMID: 29514879 DOI: 10.1242/jeb.162958] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a central metabolic organ. Unlike other organs, adipose tissue is compartmentalized into individual depots and distributed throughout the body. These different adipose depots show major functional differences and risk associations for developing metabolic syndrome. Recent advances in lineage tracing demonstrate that individual adipose depots are composed of adipocytes that are derived from distinct precursor populations, giving rise to different populations of energy-storing white adipocytes. Moreover, distinct lineages of energy-dissipating brown and beige adipocytes exist in discrete depots or within white adipose tissue depots. In this Review, we discuss developmental and functional heterogeneity, as well as sexual dimorphism, between and within individual adipose tissue depots. We highlight current data relating to the differences between subcutaneous and visceral white adipose tissue in the development of metabolic dysfunction, with special emphasis on adipose tissue expansion and remodeling of the extracellular matrix. Moreover, we provide a detailed overview of adipose tissue development as well as the consensus and controversies relating to adult adipocyte precursor populations.
Collapse
Affiliation(s)
- Theresa Schoettl
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingrid P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Siegfried Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany .,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
26
|
Cleal L, Aldea T, Chau YY. Fifty shades of white: Understanding heterogeneity in white adipose stem cells. Adipocyte 2017; 6:205-216. [PMID: 28949833 PMCID: PMC5638386 DOI: 10.1080/21623945.2017.1372871] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/03/2023] Open
Abstract
The excessive expansion of white adipose tissue underlies the global obesity epidemic. However, not all fat is equal, and the impact of heterogeneity on the development and expansion of different adipose depots is becoming increasingly apparent. Two mechanisms are responsible for the growth of adipose tissue: hyperplasia (increasing adipocyte number) and hypertrophy (increasing adipocyte size). The former relies on the differentiation of adipocyte stem cells, which reside within the adipose stromal vascular fraction. Many differences in gene expression, adipogenesis, and the response to obesogenic stimuli have been described when comparing adipose stem cells from different depots. Considering that there is disparity in the pathogenicity of the depots, understanding this heterogeneity has clinically relevant implications. Here we review the current knowledge surrounding such differences, in the context of development, expansion and therapeutics. Moreover, given the importance of these differences, we suggest that careful consideration for the precise methodologies used, is essential if we are to truly understand the physiologically relevant consequences of this heterogeneity.
Collapse
Affiliation(s)
- Louise Cleal
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Teodora Aldea
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - You-Ying Chau
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
27
|
Li L, Wang G, Li N, Yu H, Si J, Wang J. Identification of key genes and pathways associated with obesity in children. Exp Ther Med 2017; 14:1065-1073. [PMID: 28810559 PMCID: PMC5525596 DOI: 10.3892/etm.2017.4597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 02/24/2017] [Indexed: 01/22/2023] Open
Abstract
The present study aimed to identify potential key genes and pathways in obese children in order to explore possible molecular mechanisms associated with child obesity. The array dataset GSE29718 was downloaded from the Gene Expression Omnibus database. Subcutaneous adipose tissue samples derived from 7 obese children and 8 lean children were selected for the analysis. Differentially expressed genes (DEGs) in samples from obese children compared with those from lean children were analyzed by the limma package. Gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes and Reactome pathway enrichment analyses for up and downregulated genes were performed. A protein-protein interaction (PPI) network was constructed with Cytoscape software and important genes associated with obesity were determined using IRegulon. A total of 199 DEGs (79 up and 120 downregulated genes) were identified in the samples of obese children compared with those from lean children. The PPI network was established with 103 nodes and 147 protein pairs. Matrix metalloproteinase 9 (MMP9) and acetyl-CoA carboxylase β (ACACB) were identified as hub genes in the PPI network and may therefore be marker genes for child obesity. In addition, upregulated DEGs were enriched in Reactome pathways associated with the immune system. Besides, MMP9 was upregulated in immune system processes as a GO term in the category Biological Processes. The results of the present study indicated that MMP9, ACACB and immune system pathways may have a significant role in child obesity.
Collapse
Affiliation(s)
- Ling Li
- Department of Paediatrics, Jinan Children's Hospital, Jinan, Shandong 250022, P.R. China
| | - Guangyu Wang
- Department of Paediatrics, Jinan Children's Hospital, Jinan, Shandong 250022, P.R. China
| | - Ning Li
- Department of Paediatrics, Jinan Children's Hospital, Jinan, Shandong 250022, P.R. China
| | - Haiyan Yu
- Department of Paediatrics, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Jianping Si
- Department of Pediatrics, The People's Hospital of Guangrao, Dongying, Shandong 257300, P.R. China
| | - Jiwen Wang
- Department of Neurology, Children's Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200240, P.R. China
| |
Collapse
|
28
|
Kwan HY, Wu J, Su T, Chao XJ, Liu B, Fu X, Chan CL, Lau RHY, Tse AKW, Han QB, Fong WF, Yu ZL. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep 2017; 7:2447. [PMID: 28550279 PMCID: PMC5446408 DOI: 10.1038/s41598-017-02263-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/10/2017] [Indexed: 11/24/2022] Open
Abstract
Browning is the process of increasing the number of brite cells, which helps to increase energy expenditure and reduce obesity. Consumption of natural and non-toxic herbal extracts that possess the browning effect is an attractive anti-obesity strategy. In this study, we examined the browning effect of cinnamon extract. We found that cinnamon extract (CE) induced typical brown adipocyte multiocular phenotype in 3T3-L1 adipocytes. The treatment also increased brown adipocytes markers and reduced white adipocytes markers in the 3T3-L1 adipocytes. In ex vivo studies, we found that CE increased brown adipocytes markers in the subcutaneous adipocytes isolated from db/db mice and diet-induced obesity (DIO) mice. However, CE did not significantly affect UCP1 expression in the adipocytes isolated from perinephric adipose tissue and epididymal adipose tissue. β3-adernergic receptor (β3-AR) antagonist reduced the CE-enhanced UCP1 expression, suggesting an involvement of the β3-AR activity. Oral administration of CE significantly increased UCP1 expression in the subcutaneous adipose tissue in vivo and reduced the body weight of the DIO mice. Taken together, our data suggest that CE has a browning effect in subcutaneous adipocytes. Our study suggests a natural non-toxic herbal remedy to reduce obesity.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| | - Jiahui Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiao-Juan Chao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiuqiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Chi Leung Chan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Rebecca Hiu Ying Lau
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Quan Bin Han
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Wang Fun Fong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
29
|
Hamlat-Khennaf N, Neggazi S, Ayari H, Feugier P, Bricca G, Aouichat-Bouguerra S, Beylot M. [Inflammation in the perivascular adipose tissue and atherosclerosis]. C R Biol 2017; 340:156-163. [PMID: 28188070 DOI: 10.1016/j.crvi.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
In atherosclerosis studies, there are few data, especially in men, on the biology of perivascular adipose tissue (PVAT) compared to that of other adipose tissue (AT), on amendments in obesity, and its possible role in the development of atherosclerosis. We conducted an ex vivo human study on pericarotid adipose tissue-collected in the immediate vicinity (PVATp) and away from the plate (tapas)-and subcutaneous (SC) neck gathered during surgery from patients suffering from atheromatous carotid disease. In addition, we conducted a study in obese Zucker rats (models of obesity and insulin resistance) and Wistar rats subjected to moderate stress. In these models, we collected renal adipose tissue (RAT), epididymal adipose tissue (EAT), and TAPA samples. On all samples, we measured mRNA levels encoding for proinflammatory cytokines (TNFα, IL-6, IL-1β, MCP-1). Our results showed an increase in mRNA MCP-1, TNF and IL-6 in the adipose tissue around atherosclerotic plaques, an increase that was greater in diabetics than in non-diabetic subjects; we noted for the mRNA of MCP-1 in the TAPAp, 3.49×10-2±1.17×10-2ng/ug 18S in diabetic patients compared to 7.26×10-3±1.00×10-3ng/ug 18S (**P<0.01) in non-diabetic patients. In the obese Zucker rat, we found a significant increase in IL-6 in TAPA in obese animals compared to the corresponding controls (4.24×10-5±1.75×10-6ng/μg 18S vs 1.29×10-5±1.55×10-6ng/ug 18S). In stressed rats, we recorded a TNFα mRNA increase in the PVAT and EAT in the stressed rats compared to fatty tissue of control animals, we note respectively, 7.52×10-3±2.8×10-3ng/μg 18S vs 2.62×10-3±0.57×10-3ng/18S and 4.78×10-3±1.52×10-3ng/μg 18S vs 2.02×10-3±0.3×10-3ng/ug 18S. In summary, our work shows an inflammatory state of the TAPA surrounding the atheromatous plaques in diabetic patients. An obesity or stress state promotes an inflammatory profile of PVAT.
Collapse
Affiliation(s)
- Nadjiba Hamlat-Khennaf
- Laboratoire de biologie et physiologie des organismes, faculté des sciences biologiques, université des sciences et de la technologie Houari-Boumediene, BP n(o) 32 El Alia Bab Ezzouar, 16111 Alger, Algérie; ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France.
| | - Samia Neggazi
- Laboratoire de biologie et physiologie des organismes, faculté des sciences biologiques, université des sciences et de la technologie Houari-Boumediene, BP n(o) 32 El Alia Bab Ezzouar, 16111 Alger, Algérie
| | - Hanene Ayari
- ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France
| | | | - Giampiero Bricca
- ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France
| | - Souhila Aouichat-Bouguerra
- Laboratoire de biologie et physiologie des organismes, faculté des sciences biologiques, université des sciences et de la technologie Houari-Boumediene, BP n(o) 32 El Alia Bab Ezzouar, 16111 Alger, Algérie
| | - Michel Beylot
- ERI-22-EA4173, faculté de médecine et de pharmacie Rockefeller, université Claude-Bernard Lyon-1, 69008 Lyon, France
| |
Collapse
|
30
|
Mazaki-Tovi S, Tarca AL, Vaisbuch E, Kusanovic JP, Than NG, Chaiworapongsa T, Dong Z, Hassan SS, Romero R. Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition. J Perinat Med 2016; 44:813-835. [PMID: 26994472 PMCID: PMC5987212 DOI: 10.1515/jpm-2015-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to determine gene expression and splicing changes associated with parturition and regions (visceral vs. subcutaneous) of the adipose tissue of pregnant women. STUDY DESIGN The transcriptome of visceral and abdominal subcutaneous adipose tissue from pregnant women at term with (n=15) and without (n=25) spontaneous labor was profiled with the Affymetrix GeneChip Human Exon 1.0 ST array. Overall gene expression changes and the differential exon usage rate were compared between patient groups (unpaired analyses) and adipose tissue regions (paired analyses). Selected genes were tested by quantitative reverse transcription-polymerase chain reaction. RESULTS Four hundred and eighty-two genes were differentially expressed between visceral and subcutaneous fat of pregnant women with spontaneous labor at term (q-value <0.1; fold change >1.5). Biological processes enriched in this comparison included tissue and vasculature development as well as inflammatory and metabolic pathways. Differential splicing was found for 42 genes [q-value <0.1; differences in Finding Isoforms using Robust Multichip Analysis scores >2] between adipose tissue regions of women not in labor. Differential exon usage associated with parturition was found for three genes (LIMS1, HSPA5, and GSTK1) in subcutaneous tissues. CONCLUSION We show for the first time evidence of implication of mRNA splicing and processing machinery in the subcutaneous adipose tissue of women in labor compared to those without labor.
Collapse
Affiliation(s)
- Shali Mazaki-Tovi
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Edi Vaisbuch
- Department of Obstetrics and Gynecology, Kaplan Medical Center, Rehovot, Israel
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF). Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
31
|
DeClercq VC, Goldsby JS, McMurray DN, Chapkin RS. Distinct Adipose Depots from Mice Differentially Respond to a High-Fat, High-Salt Diet. J Nutr 2016; 146:1189-96. [PMID: 27146921 PMCID: PMC4877629 DOI: 10.3945/jn.115.227496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dietary factors such as high-sodium or high-fat (HF) diets have been shown to induce a proinflammatory phenotype. However, there is limited information with respect to how microenvironments of distinct intra-abdominal adipose depots respond to the combination of a high-salt, HF diet. OBJECTIVE We tested the hypothesis that HF feeding would cause changes in distinct adipose depots, which would be further amplified by the addition of high salt to the diet. METHODS Twenty-seven male C57BL6 mice were fed an HF diet (60% of kcal from fat), an HF + high-salt diet (4% wt:wt), a control diet [low-fat (LF);10% of kcal from fat], or an LF + high-salt diet for 12 wk. The main sources of fat in the diets were corn oil and lard. Adipokines in serum and released from adipose tissue organ cultures were measured by immunoassays. QIAGEN's Ingenuity Pathway Analysis was used to perform functional analysis of the RNA-sequencing data from distinct adipose depots. RESULTS Diet-induced obesity resulted in a classical inflammatory phenotype characterized by increased concentrations of circulating inflammatory mediators (38-56%) and reduced adiponectin concentrations (27%). However, high-salt feeding did not exacerbate the HF diet-induced changes in adipokines and cytokines. Leptin and interleukin-6 were differentially released from adipose depots and HF feeding impaired adiponectin and resistin secretion across all 3 depots (34-48% and 45-83%, respectively). The addition of high salt to the HF diet did not further modulate secretion in cultured adipose tissue experiments. Although gene expression data from RNA sequencing indicated a >4.3-fold upregulation of integrin αX (Itgax) with HF feeding in all 3 depots, markers of cellular function were differentially expressed in response to diet across depots. CONCLUSION Collectively, these findings highlight the role of distinct adipose depots in mice in the development of obesity and emphasize the importance of selecting specific depots to study the effects of therapeutic interventions on adipose tissue function.
Collapse
Affiliation(s)
| | | | - David N McMurray
- Program in Integrative Nutrition and Complex Diseases,,Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Department of Nutrition and Food Science, and Center for Translational Environmental Health Research, Texas A&M University, College Station, TX; and Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX
| |
Collapse
|
32
|
Mahesan AM, Ogunyemi D, Kim E, Paul ABM, Chen YDI. Insulin Resistance in Pregnancy Is Correlated with Decreased Insulin Receptor Gene Expression in Omental Adipose: Insulin Sensitivity and Adipose Tissue Gene Expression in Normal Pregnancy. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jdm.2016.61011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Mazaki-Tovi S, Vaisbuch E, Tarca AL, Kusanovic JP, Than NG, Chaiworapongsa T, Dong Z, Hassan SS, Romero R. Characterization of Visceral and Subcutaneous Adipose Tissue Transcriptome and Biological Pathways in Pregnant and Non-Pregnant Women: Evidence for Pregnancy-Related Regional-Specific Differences in Adipose Tissue. PLoS One 2015; 10:e0143779. [PMID: 26636677 PMCID: PMC4670118 DOI: 10.1371/journal.pone.0143779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022] Open
Abstract
Objective The purpose of this study was to compare the transcriptome of visceral and subcutaneous adipose tissues between pregnant and non-pregnant women. Study Design The transcriptome of paired visceral and abdominal subcutaneous adipose tissues from pregnant women at term and matched non-pregnant women (n = 11) was profiled with the Affymetrix Human Exon 1.0 ST array. Differential expression of selected genes was validated with the use of quantitative reverse transcription–polymerase chain reaction. Results Six hundred forty-four transcripts from 633 known genes were differentially expressed (false discovery rate (FDR) <0.1; fold-change >1.5), while 42 exons from 36 genes showed differential usage (difference in FIRMA scores >2 and FDR<0.1) between the visceral and subcutaneous fat of pregnant women. Fifty-six known genes were differentially expressed between pregnant and non-pregnant subcutaneous fat and three genes in the visceral fat. Enriched biological processes in the subcutaneous adipose tissue of pregnant women were mostly related to inflammation. Conclusion The transcriptome of visceral and subcutaneous fat depots reveals pregnancy-related gene expression and splicing differences in both visceral and subcutaneous adipose tissue. Furthermore, for the first time, alternative splicing in adipose tissue has been associated with regional differences and human parturition.
Collapse
Affiliation(s)
- Shali Mazaki-Tovi
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University, Tel Aviv, Israel
- * E-mail: (SMT); (RR)
| | - Edi Vaisbuch
- Department of Obstetrics and Gynecology, Kaplan Medical Center, Rehovot, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (SMT); (RR)
| |
Collapse
|
34
|
Kommuri NVA, Zalawadiya SK, Veeranna V, Kollepara SLS, Ramesh K, Briasoulis A, Afonso L. Association between various anthropometric measures of obesity and markers of subclinical atherosclerosis. Expert Rev Cardiovasc Ther 2015; 14:127-35. [DOI: 10.1586/14779072.2016.1118346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Mardinoglu A, Heiker JT, Gärtner D, Björnson E, Schön MR, Flehmig G, Klöting N, Krohn K, Fasshauer M, Stumvoll M, Nielsen J, Blüher M. Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue. Sci Rep 2015; 5:14841. [PMID: 26434764 PMCID: PMC4593186 DOI: 10.1038/srep14841] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022] Open
Abstract
Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and secretory function of AT. We assessed gene expression changes by whole genome expression chips in AT samples obtained from six morbidly obese individuals, who underwent a two step BS strategy with sleeve gastrectomy as initial and a Roux-en-Y gastric bypass as second step surgery after 12 ± 2 months. Global gene expression differences in VAT and subcutaneous (S)AT were analyzed through the use of genome-scale metabolic model (GEM) for adipocytes. Significantly altered gene expressions were PCR-validated in 16 individuals, which also underwent a two-step surgery intervention. We found increased expression of cell death-inducing DFFA-like effector a (CIDEA), involved in formation of lipid droplets in both fat depots in response to significant weight loss. We observed that expression of the genes associated with metabolic reactions involved in NAD+, glutathione and branched chain amino acid metabolism are significantly increased in AT depots after surgery-induced weight loss.
Collapse
Affiliation(s)
- Adil Mardinoglu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - John T Heiker
- University of Leipzig, Department of Medicine, Leipzig, Germany
| | - Daniel Gärtner
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany
| | - Elias Björnson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany
| | - Gesine Flehmig
- University of Leipzig, Department of Medicine, Leipzig, Germany
| | - Nora Klöting
- IFB Adiposity Diseases, Junior Research Group 2 "Animal models of obesity"
| | - Knut Krohn
- Core Unit DNA-Technologies, Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Leipzig, Germany
| | | | | | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Matthias Blüher
- University of Leipzig, Department of Medicine, Leipzig, Germany
| |
Collapse
|
36
|
Choma SSR, Alberts M, Modjadji SEP. Conflicting effects of BMI and waist circumference on iron status. J Trace Elem Med Biol 2015; 32:73-8. [PMID: 26302915 DOI: 10.1016/j.jtemb.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/24/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
The association between obesity and iron status has a long history and is still receiving attention. However comparative analysis of the association between general obesity (BMI) and visceral obesity (waist circumference) with iron status has not been extensively researched. The aim of the present study is thus to determine if body mass index and waist circumference have the same correlation with iron status. One thousand one hundred and thirty people (225 men and 905 women) aged 30 years and above participated in this study. Anthropometric parameters, haemoglobin, iron and total iron binding capacity concentrations were measured using standard methods. Percentage transferrin saturation was calculated and ferritin concentrations were measured using an enzyme linked immunosorbent assay. Obese or overweight women had significantly lower iron and transferrin saturation concentration when compared to non-obese women. In contrast, women with high waist circumference had comparable plasma iron and transferrin saturation to women with normal waist circumference. Partial correlation analysis and linear regression analysis showed that BMI is negatively and significantly associated with plasma iron, transferrin saturation, Hb and ferritin concentration, whilst waist circumference is positively but insignificantly associated with plasma iron, transferrin saturation, Hb and ferritin concentration. Binary regression analysis showed that obese or overweight people are more likely to have iron deficiency, whilst those with raised waist circumference are more likely to have iron overload. Multivariate analysis showed that body mass index is negatively and significantly associated with low iron status, while waist circumference is positively and insignificantly associated with iron status. This is supported by a comparison of plasma iron, transferrin saturation and ferritin concentrations in participants with high body mass index and normal waist circumference and participants with normal body mass index and high waist circumference to those participants having normal body mass index and normal waist circumference. The present study suggests that in women body mass index is associated with low plasma iron, transferrin saturation and ferritin concentrations, while waist circumference is associated with high plasma iron, transferrin saturation and ferritin concentrations.
Collapse
Affiliation(s)
- Solomon Simon Ramphai Choma
- Department of Medical Sciences, Public Health and Health Promotion, Faculty of Health Sciences, University of Limpopo, Private Bag X1106, Sovenga, Polokwane, South Africa.
| | - Marianne Alberts
- Department of Medical Sciences, Public Health and Health Promotion, Faculty of Health Sciences, University of Limpopo, Private Bag X1106, Sovenga, Polokwane, South Africa.
| | - Sewela Elizabeth Perpetua Modjadji
- Department of Medical Sciences, Public Health and Health Promotion, Faculty of Health Sciences, University of Limpopo, Private Bag X1106, Sovenga, Polokwane, South Africa.
| |
Collapse
|
37
|
Booth A, Magnuson A, Foster M. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Horm Mol Biol Clin Investig 2015; 17:13-27. [PMID: 25372727 DOI: 10.1515/hmbci-2014-0009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
Obesity is linked to numerous comorbidities that include, but are not limited to, glucose intolerance, insulin resistance, dyslipidemia, and cardiovascular disease. Current evidence suggests, however, obesity itself is not an exclusive predictor of metabolic dysregulation but rather adipose tissue distribution. Obesity-related adverse health consequences occur predominately in individuals with upper body fat accumulation, the detrimental distribution, commonly associated with visceral obesity. Increased lower body subcutaneous adipose tissue, however, is associated with a reduced risk of obesity-induced metabolic dysregulation and even enhanced insulin sensitivity, thus, storage in this region is considered protective. The proposed mechanisms that causally relate the differential outcomes of adipose tissue distribution are often attributed to location and/or adipocyte regulation. Visceral adipose tissue effluent to the portal vein drains into the liver where hepatocytes are directly exposed to its metabolites and secretory products, whereas the subcutaneous adipose tissue drains systemically. Adipose depots are also inherently different in numerous ways such as adipokine release, immunity response and regulation, lipid turnover, rate of cell growth and death, and response to stress and sex hormones. Proximal extrinsic factors also play a role in the differential drive between adipose tissue depots. This review focuses on the deleterious mechanisms postulated to drive the differential metabolic response between central and lower body adipose tissue distribution.
Collapse
|
38
|
Aguilera CM, Gomez-Llorente C, Tofe I, Gil-Campos M, Cañete R, Gil Á. Genome-wide expression in visceral adipose tissue from obese prepubertal children. Int J Mol Sci 2015; 16:7723-37. [PMID: 25856673 PMCID: PMC4425045 DOI: 10.3390/ijms16047723] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
Abstract
Characterization of the genes expressed in adipose tissue (AT) is key to understanding the pathogenesis of obesity and to developing treatments for this condition. Our objective was to compare the gene expression in visceral AT (VAT) between obese and normal-weight prepubertal children. A total of fifteen obese and sixteen normal-weight children undergoing abdominal elective surgery were selected. RNA was extracted from VAT biopsies. Microarray experiments were independently performed for each sample (six obese and five normal-weight samples). Validation by quantitative PCR (qPCR) was performed on an additional 10 obese and 10 normal-weight VAT samples. Of 1276 differentially expressed genes (p < 0.05), 245 were more than two-fold higher in obese children than in normal-weight children. As validated by qPCR, expression was upregulated in genes involved in lipid and amino acid metabolism (CES1, NPRR3 and BHMT2), oxidative stress and extracellular matrix regulation (TNMD and NQO1), adipogenesis (CRYAB and AFF1) and inflammation (ANXA1); by contrast, only CALCRL gene expression was confirmed to be downregulated. In conclusion, this study in prepubertal children demonstrates the up- and down-regulation of genes that encode molecules that were previously proposed to influence the pathogenesis of adulthood obesity, as well as previously unreported dysregulated genes that may be candidate genes in the aetiology of obesity.
Collapse
Affiliation(s)
- Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Armilla, 18100 Granada, Spain.
| | - Carolina Gomez-Llorente
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Armilla, 18100 Granada, Spain.
| | - Inés Tofe
- Unit of Pediatric Endocrinology, Reina Sofia University Hospital, Avda Menéndez Pidal s/n. 14004 Córdoba, Spain.
| | - Mercedes Gil-Campos
- Unit of Pediatric Endocrinology, Reina Sofia University Hospital, Avda Menéndez Pidal s/n. 14004 Córdoba, Spain.
| | - Ramón Cañete
- Unit of Pediatric Endocrinology, Reina Sofia University Hospital, Avda Menéndez Pidal s/n. 14004 Córdoba, Spain.
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Armilla, 18100 Granada, Spain.
| |
Collapse
|
39
|
Yin Z, Deng T, Peterson LE, Yu R, Lin J, Hamilton DJ, Reardon PR, Sherman V, Winnier GE, Zhan M, Lyon CJ, Wong STC, Hsueh WA. Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation. Mol Cell Endocrinol 2014; 394:80-7. [PMID: 25011057 PMCID: PMC4219530 DOI: 10.1016/j.mce.2014.06.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 11/21/2022]
Abstract
Adipose tissue inflammation increases with obesity, but adipocyte vs. immune cell contributions are unclear. In the present study, transcriptome analyses were performed on highly-purified subcutaneous adipocytes from lean and obese women, and differentially expressed genes/pathways were determined in both adipocyte and stromal vascular fraction (SVF) samples. Adipocyte but not SVF expression of NOD-like receptor pathway genes, including NLRP3 and PYCARD, which regulate caspase-1-mediated IL-1β secretion, correlated with adiposity phenotypes and adipocyte class II major histocompatibility complex (MHCII) gene expression, but only MHCII remained after adjusting for age and body mass index. IFNγ stimulated adipocyte MHCII, NLRP3 and caspase-1 expression, while adipocyte MHCII-mediated CD4(+) T cell activation, an important factor in adipose inflammation, induced IFNγ-dependent adipocyte IL-1β secretion. These results uncover a dialogue regulated by interactions among T cell IFNγ and adipocyte MHCII and NLRP3 inflammasome activity that appears to initiate and escalate adipose tissue inflammation during obesity.
Collapse
Affiliation(s)
- Zheng Yin
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA; Houston Methodist Research Institute, Department of Systems Medicine and Bioengineering, Data Science Laboratory, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Tuo Deng
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Leif E Peterson
- Houston Methodist Research Institute, Center for Biostatistics, Houston, TX 77030, USA
| | - Richeng Yu
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA; Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jianxin Lin
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Dale J Hamilton
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Patrick R Reardon
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Vadim Sherman
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Glenn E Winnier
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Ming Zhan
- Houston Methodist Research Institute, Department of Systems Medicine and Bioengineering, Data Science Laboratory, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Christopher J Lyon
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Stephen T C Wong
- Houston Methodist Research Institute, Department of Systems Medicine and Bioengineering, Data Science Laboratory, Weill Cornell Medical College, Houston, TX 77030, USA.
| | - Willa A Hsueh
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Peral B, Camafeita E, Fernández-Real JM, López JA. Tackling the human adipose tissue proteome to gain insight into obesity and related pathologies. Expert Rev Proteomics 2014; 6:353-61. [DOI: 10.1586/epr.09.53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Anderson JL, Ashwell CM, Smith SC, Shine R, Smith EC, Taylor RL. Atherosclerosis-susceptible and atherosclerosis-resistant pigeon aortic cells express different genes in vivo. Poult Sci 2013; 92:2668-80. [PMID: 24046414 DOI: 10.3382/ps.2013-03306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spontaneous atherosclerosis in the White Carneau (WC-As) pigeon is inherited as a single gene disorder, and its progression closely mirrors the human disease. Representational difference analysis and microarray were used to identify genes that were differentially expressed between the susceptible WC-As and resistant Show Racer (SR-Ar) aortic tissue. The RNA extracted from 1-d-old squab aortas was used to make cDNA for each experiment. Fifty-six unique genes were found using representational difference analysis, with 25 exclusively expressed in the WC-As, 15 exclusive to the SR-Ar, and 16 nonexclusive genes having copy number variation between breeds. Caveolin and β-actin were expressed in the WC-As, whereas the proteasome maturation protein and the transcription complex CCR4-NOT were exclusive to the SR-Ar. Microarray analysis revealed 48 genes with differential expression. Vascular endothelial growth factor and p53 binding protein were among the 17 genes upregulated in the WC-As. Thirty-one genes were upregulated in the SR-Ar including the transforming growth factor-β signaling factor SMAD2 and heat shock protein 90. Genes representing several biochemical pathways were distinctly different between breeds. The most striking divergences were in cytoskeletal remodeling, proteasome activity, cellular respiration, and immune response. Actin cytoskeletal remodeling appears to be one of the first differences between susceptible and resistant breeds, lending support to the smooth muscle cell phenotypic reversion hypothesis of human atherogenesis.
Collapse
Affiliation(s)
- J L Anderson
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824; and
| | | | | | | | | | | |
Collapse
|
42
|
Adipose-derived mesenchymal cells for bone regereneration: state of the art. BIOMED RESEARCH INTERNATIONAL 2013; 2013:416391. [PMID: 24307997 PMCID: PMC3838853 DOI: 10.1155/2013/416391] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022]
Abstract
Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs) are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.
Collapse
|
43
|
Birsoy K, Festuccia WT, Laplante M. A comparative perspective on lipid storage in animals. J Cell Sci 2013; 126:1541-52. [PMID: 23658371 DOI: 10.1242/jcs.104992] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid storage is an evolutionary conserved process that exists in all organisms from simple prokaryotes to humans. In Metazoa, long-term lipid accumulation is restricted to specialized cell types, while a dedicated tissue for lipid storage (adipose tissue) exists only in vertebrates. Excessive lipid accumulation is associated with serious health complications including insulin resistance, type 2 diabetes, cardiovascular diseases and cancer. Thus, significant advances have been made over the last decades to dissect out the molecular and cellular mechanisms involved in adipose tissue formation and maintenance. Our current understanding of adipose tissue development comes from in vitro cell culture and mouse models, as well as recent approaches to study lipid storage in genetically tractable lower organisms. This Commentary gives a comparative insight into lipid storage in uni- and multi-cellular organisms with a particular emphasis on vertebrate adipose tissue. We also highlight the molecular mechanisms and nutritional signals that regulate the formation of mammalian adipose tissue.
Collapse
Affiliation(s)
- Kivanç Birsoy
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
44
|
Stenvinkel P, Zoccali C, Ikizler TA. Obesity in CKD--what should nephrologists know? J Am Soc Nephrol 2013; 24:1727-36. [PMID: 24115475 DOI: 10.1681/asn.2013040330] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Obesity, the epidemic of the 21st century, carries a markedly increased risk for comorbid complications, such as type 2 diabetes, cancer, hypertension, dyslipidemia, cardiovascular disease, and sleep apnea. In addition, obesity increases the risk for CKD and its progression to ESRD. Paradoxically, even morbid obesity associates with better outcomes in studies of ESRD patients on maintenance dialysis. Because the number of obese CKD and maintenance dialysis patients is projected to increase markedly in developed as well as low- and middle-income countries, obesity is a rapidly emerging problem for the international renal community. Targeting the obesity epidemic represents an unprecedented opportunity for health officials to ameliorate the current worldwide increase in CKD prevalence. Nephrologists need more information about assessing and managing obesity in the setting of CKD. Specifically, more precise estimation of regional fat distribution and the amount of muscle mass should be introduced into regular clinical practice to complement more commonly used practical markers, such as body mass index. Studies examining the effects of obesity on kidney disease progression and other clinical outcomes along with weight management strategies are much needed in this orphan area of research.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
45
|
Identification of differentially expressed genes in American cockroach ovaries and testes by suppression subtractive hybridization and the prediction of its miRNAs. Mol Genet Genomics 2013; 288:627-38. [PMID: 23996145 DOI: 10.1007/s00438-013-0777-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Studies on the cockroach have contributed to our understanding of several important developmental processes, especially those that can be easily studied in the embryo. However, our knowledge on late events such as gonad differentiation in the cockroach is still limited. The major aim of the present study was to identify sex-specific genes between adult female and male Periplaneta americana. Two cDNA libraries were constructed using the suppression subtractive hybridization method; a total of 433 and 599 unique sequences were obtained from the forward library and the reverse library, respectively, by cluster assembly, and sequence alignment of 1,032 expressed sequence tags. The analysis of the differentially expressed gene functions allowed these genes to be categorized into three groups: biological process, molecular function, and cellular component. The differentially expressed genes were suggested to be related to the development of the gonads of P. americana. Twelve differentially expressed genes were randomly selected and verified using relative quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, by adopting a range of filtering criteria, we predicted two potential microRNA sequences for P. americana, pam-miR100-3p and pam-miR7. To confirm the expression of potential microRNAs (miRNAs) in American cockroach, a qRT-PCR approach was also employed. The data presented here offer the insights into the molecular foundation of sex differences in American cockroach, and the first report for the miRNAs in this species. In addition, the results can be used as a reference for unraveling candidate genes associated with the sex and reproduction of cockroaches.
Collapse
|
46
|
Intra-abdominal fat depots represent distinct immunomodulatory microenvironments: a murine model. PLoS One 2013; 8:e66477. [PMID: 23776677 PMCID: PMC3680422 DOI: 10.1371/journal.pone.0066477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
White adipose tissue (WAT) is a multi-faceted endocrine organ involved in energy storage, metabolism, immune function and disease pathogenesis. In contrast to subcutaneous fat, visceral fat (V-WAT) has been associated with numerous diseases and metabolic disorders, indicating specific functions related to anatomical location. Although visceral depots are often used interchangeably in V-WAT-associated disease studies, there has been a recent subdivision of V-WAT into "true visceral" and non-visceral intra-abdominal compartments. These were associated with distinct physiological roles, illustrating a need for depot-specific information. Here, we use FACS analysis to comparatively characterize the leukocyte and progenitor populations in the stromal vascular fraction (SVF) of peritoneal serous fluid (PSF), parametrial (pmWAT), retroperitoneal (rpWAT), and omental (omWAT) adipose tissue from seven-month old C57BL/6 female mice. We found significant differences in SVF composition between all four microenvironments. PSF SVF was comprised almost entirely of CD45(+) leukocytes (>99%), while omWAT contained less, but still almost two-fold more leukocytes than pmWAT and rpWAT (75%, 38% and 38% respectively; p<0.01). PmWAT was composed primarily of macrophages, whereas rpWAT more closely resembled omWAT, denoted by high levels of B1 B-cell and monocyte populations. Further, omWAT harbored significantly higher proportions of T-cells than the other tissues, consistent with its role as a secondary lymphoid organ. These SVF changes were also reflected in the gene expression profiles of the respective tissues. Thus, intra-abdominal fat pads represent independent immunomodulatory microenvironments and should be evaluated as distinct entities with unique contributions to physiological and pathological processes.
Collapse
|
47
|
Abstract
PURPOSE The incidence of renal cell carcinoma is increasing worldwide. Cited risk factors include obesity, smoking and hypertension but few others have been confirmed in prospective studies. We used a prospective cohort to validate established renal cell carcinoma risk factors and evaluate more controversial risk factors for incident renal cell carcinoma. MATERIALS AND METHODS A total of 77,260 residents of Washington 50 to 76 years old completed a questionnaire between 2000 and 2002 on demographic, lifestyle and health data. Incident renal cell carcinoma cases were determined by linkage to the regional cancer registry through December 31, 2009. Multivariate methods using covariates and cutoffs selected a priori were applied to analyze the association between renal cell carcinoma and previously studied factors related to lifestyle (body mass index, smoking and alcohol/fruit/vegetable consumption) and health (hypertension, diabetes, kidney disease and viral hepatitis). RESULTS There were 249 incident cases of renal cell carcinoma. Independent renal cell carcinoma risk factors in the fully adjusted model were body mass index (35 or greater vs less than 25 kg/m2 HR 1.71, 95% CI 1.06-2.79), smoking (greater than 37.5 pack-years vs never HR 1.58, 95% CI 1.09-2.29), hypertension (HR 1.70, 95% CI 1.30-2.22), kidney disease (HR 2.58, 95% CI 1.21-5.50) and viral hepatitis (HR 1.80, 95% CI 1.03-3.14). Diabetes was associated with renal cell carcinoma (HR 1.83, 95% CI 1.26-2.65) in a base model adjusting for age and gender but not in the multivariate model. We found no association between alcohol, fruit or vegetable intake and renal cell carcinoma. CONCLUSIONS We identified a significant association of renal cell carcinoma with obesity, smoking, hypertension, renal disease and viral hepatitis. Identifying risk factors offers an opportunity for targeted education and intervention.
Collapse
|
48
|
Oliva K, Barker G, Rice GE, Bailey MJ, Lappas M. 2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue. J Endocrinol 2013; 218:165-78. [PMID: 23709000 DOI: 10.1530/joe-13-0010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gestational diabetes mellitus (GDM) is a significant risk factor for the type 2 diabetes epidemic in many populations. Maternal adipose tissue plays a central role in the pathophysiology of GDM. Thus, the aim of this study was to determine the effect of GDM on the proteome of adipose tissue. Omental adipose tissue was obtained at the time of term Caesarean section from women with normal glucose tolerance (NGT) or GDM. 2D-difference gel electrophoresis (DIGE), followed by mass spectrometry, was used to identify protein spots (n = 6 patients per group). Western blotting was used for confirmation of six of the spot differences (n = 6 patients per group). We found 14 proteins that were differentially expressed between NGT and GDM adipose tissue (≥ 1.4-fold, P < 0.05). GDM was associated with an up-regulation of four proteins: collagen alpha-2(VI) chain (CO6A2 (COL6A2)), fibrinogen beta chain (FIBB (FGB)), lumican (LUM) and S100A9. On the other hand, a total of ten proteins were found to be down-regulated in adipose tissue from GDM women. These were alpha-1-antitrypsin (AIAT (SERPINA 1)), annexin A5 (ANXA5), fatty acid-binding protein, adipocyte (FABP4), glutathione S-transferase P (GSTP (GSTP1)), heat-shock protein beta-1 (HSP27 (HSPB1)), lactate dehydrogenase B chain (LDHB), perilipin-1 (PLIN1), peroxiredoxin-6 (PRX6 (PRDX6)), selenium-binding protein 1 (SBP1) and vinculin (VINC (VCL)). In conclusion, proteomic analysis of omental fat reveals differential expression of several proteins in GDM patients and NGT pregnant women. This study revealed differences in expression of proteins that are involved in inflammation, lipid and glucose metabolism and oxidative stress and added further evidence to support the role of visceral adiposity in the pathogenesis of GDM.
Collapse
Affiliation(s)
- Karen Oliva
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | | | | | | | | |
Collapse
|
49
|
Human adipose tissue stem cells: relevance in the pathophysiology of obesity and metabolic diseases and therapeutic applications. Expert Rev Mol Med 2012; 14:e19. [PMID: 23302474 DOI: 10.1017/erm.2012.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells are unique cells exhibiting self-renewing properties and the potential to differentiate into multiple specialised cell types. Totipotent or pluripotent stem cells are generally abundant in embryonic or fetal tissues, but the use of discarded embryos as sources of these cells raises challenging ethical problems. Adult stem cells can also differentiate into a wide variety of cell types. In particular, adult adipose tissue contains a pool of abundant and accessible multipotent stem cells, designated as adipose-derived stem cells (ASCs), that are able to replicate as undifferentiated cells, to develop as mature adipocytes and to differentiate into multiple other cell types along the mesenchymal lineage, including chondrocytes, myocytes and osteocytes, and also into cells of endodermal and neuroectodermal origin, including beta-cells and neurons, respectively. An impairment in the differentiation potential and biological functions of ASCs may contribute to the development of obesity and related comorbidities. In this review, we summarise different aspects of the ASCs with special reference to the isolation and characterisation of these cell populations, their relation to the biochemical features of the adipose tissue depot of origin and to the metabolic characteristics of the donor subject and discuss some prospective therapeutic applications.
Collapse
|
50
|
Sales V, Patti ME. The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 7:46-59. [PMID: 23459395 DOI: 10.1007/s12170-012-0283-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We are in the midst of a worldwide epidemic of type 2 diabetes (T2D) and obesity. Understanding the mechanisms underlying these diseases is critical if we are to halt their progression and ultimately prevent their development. The advent and widespread implementation of microarray technology has allowed analysis of small samples of human skeletal muscle, adipose, liver, pancreas and blood. While patterns differ in each tissue, several dominant themes have emerged from these studies, including altered expression of genes indicating increased inflammation and altered lipid and mitochondrial oxidative metabolism and insulin signaling in patients with T2D, and in some cases, in those at risk for disease. Unraveling which changes in gene expression are primary, and which are secondary to an insulin resistant or diabetes metabolic milieu remains a scientific challenge but we are one step closer.
Collapse
Affiliation(s)
- Vicencia Sales
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School ; Department of Biophysics, Federal University of São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | | |
Collapse
|