1
|
Shah S, Li Y, Yan WH, Liu L, Gu T, Elgizawy KK, Wu G, Yang FL. Lipid surface droplet 2 (LSD2) regulates lipid metabolism and male reproductive physiology in adult Sitotroga cerealella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106417. [PMID: 40350237 DOI: 10.1016/j.pestbp.2025.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
Insect metabolism plays a critical role in shaping reproductive physiology, offering valuable insight for pest management strategies and ecological understanding. In this study, we investigated the regulation of the lipid surface droplet protein LSD2 and its impact on lipid metabolism and male reproductive events in Sitotroga cerealella. Using ScLSD2 RNAi, we assessed it effects on energy metabolism, sperm count, motility, oviposition, and hatchability in S. cerealella adults. Our results reveal tissue-specific expression of ScLSD2, predominantly in the fat body. Silencing ScLSD2 led to reduced mating rates, sperm motility parameters, oviposition, and hatchability, alongside alteration in energy metabolites, including decreased in lipid droplets, triglyceride and glycerol levels and increased diglyceride content. Additionally, sperm quantification revealed significant reductions in eupyrene sperm count following ScLSD2 silencing, indicating impaired reproductive function. These results show the pivotal role of LSD2 in linking lipid metabolism and reproductive physiology in S. cerealella, positioning it as a promising target for pest management strategies.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Yu Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Lianyun Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Tianyu Gu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Lin Y, Chen H, Wang L, Su J, Li J, Huang X. Lipase activated endocytosis-like behavior of oil-in-water emulsion. Nat Commun 2024; 15:8517. [PMID: 39353937 PMCID: PMC11445447 DOI: 10.1038/s41467-024-52802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Oil-in-water emulsion is a system with extensive applications in foods, cosmetics and coating industries, and it could also be designed into an artificial lipid droplet in recent works. However, the insights into the biophysical dynamic behaviors of such artificial lipid droplets are lacking. Here, we reveal an enzymatic reaction triggered endocytosis-like behavior in the oil-in-water emulsion lipid droplets. A thermodynamically favored recruitment of lipases onto the membrane of the droplets is demonstrated. We confirm that the hydrolysis of tributyrin by lipases can decrease the interfacial tension and increase the compressive force on the membrane, which are the two main driving forces for triggering the endocytosis-like behavior. The endocytosis-like behavior induced various emerging functionalities of the lipid droplets, including proteins, DNA or inorganic particles being efficiently sequestered into the oil droplet with reversible release as well as enhanced cascade enzymatic reaction. Overall, our studies are expected to open up a way to functionalize oil-in-water emulsions capable of life-inspired behaviors and tackle emerging challenges in bottom-up synthetic biology, revealing the unknown dynamic behaviors of lipid droplets in living organisms.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiaojiao Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
3
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
4
|
Zhang Q, Shen X, Yuan X, Huang J, Zhu Y, Zhu T, Zhang T, Wu H, Wu Q, Fan Y, Ni J, Meng L, He A, Shi C, Li H, Hu Q, Wang J, Chang C, Huang F, Li F, Chen M, Liu A, Ye S, Zheng M, Fang H. Lipopolysaccharide binding protein resists hepatic oxidative stress by regulating lipid droplet homeostasis. Nat Commun 2024; 15:3213. [PMID: 38615060 PMCID: PMC11016120 DOI: 10.1038/s41467-024-47553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Qilun Zhang
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xuting Shen
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Xin Yuan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Jing Huang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Yaling Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Tengteng Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Tao Zhang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qian Wu
- Department of pathology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Leilei Meng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Anyuan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230000, China
| | - Chaowei Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Hao Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fan Huang
- Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Meng Chen
- Graduate School of Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Shandong Ye
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Mao Zheng
- Laboratory of Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, 230000, China.
| |
Collapse
|
5
|
Verwee E, Van de Walle D, De Bruyne M, Mienis E, Sekulic M, Chaerle P, Vyverman W, Foubert I, Dewettinck K. Visualisation of microalgal lipid bodies through electron microscopy. J Microsc 2024; 293:118-131. [PMID: 38149687 DOI: 10.1111/jmi.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
In this study, transmission electron microscopy (TEM) and cryo-scanning electron microscopy (cryo-SEM) were evaluated for their ability to detect lipid bodies in microalgae. To do so, Phaeodactylum tricornutum and Nannochloropsis oculata cells were harvested in both the mid-exponential and early stationary growth phase. Two different cryo-SEM cutting methods were compared: cryo-planing and freeze-fracturing. The results showed that, despite the longer preparation time, TEM visualisation preceded by cryo-immobilisation allows a clear detection of lipid bodies and is preferable to cryo-SEM. Using freeze-fracturing, lipid bodies were rarely detected. This was only feasible if crystalline layers in the internal structure, most likely related to sterol esters or di-saturated triacylglycerols, were revealed. Furthermore, lipid bodies could not be detected using cryo-planing. Cryo-SEM is also not the preferred technique to recognise other organelles besides lipid bodies, yet it did reveal chloroplasts in both species and filament-containing organelles in cryo-planed Nannochloropsis oculata samples.
Collapse
Affiliation(s)
- Ellen Verwee
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Davy Van de Walle
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| | - Michiel De Bruyne
- VIB BioImaging Core VIB, Ghent, Belgium
- VIB Center for Inflammation Research VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Mienis
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mirna Sekulic
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology VIB, Ghent, Belgium
| | - Peter Chaerle
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- Department of Biology, BCCM/DCG Diatoms Collection, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Imogen Foubert
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Delmas D, Cotte AK, Connat JL, Hermetet F, Bouyer F, Aires V. Emergence of Lipid Droplets in the Mechanisms of Carcinogenesis and Therapeutic Responses. Cancers (Basel) 2023; 15:4100. [PMID: 37627128 PMCID: PMC10452604 DOI: 10.3390/cancers15164100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer shares common risk factors with cardiovascular diseases such as dyslipidemia, obesity and inflammation. In both cases, dysregulations of lipid metabolism occur, and lipid vesicles emerge as important factors that can influence carcinogenesis. In this review, the role of different lipids known to be involved in cancer and its response to treatments is detailed. In particular, lipid droplets (LDs), initially described for their role in lipid storage, exert multiple functions, from the physiological prevention of LD coalescence and regulation of endoplasmic reticulum homeostasis to pathological involvement in tumor progression and aggressiveness. Analysis of LDs highlights the importance of phosphatidylcholine metabolism and the diversity of lipid synthesis enzymes. In many cancers, the phosphatidylcholine pathways are disrupted, modifying the expression of genes coding for metabolic enzymes. Tumor microenvironment conditions, such as hypoxia, different types of stress or inflammatory conditions, are also important determinants of LD behavior in cancer cells. Therefore, LDs represent therapeutic targets in cancer, and many lipid mediators have emerged as potential biomarkers for cancer onset, progression, and/or resistance.
Collapse
Affiliation(s)
- Dominique Delmas
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
- Centre de Lutte Contre le Cancer Georges François Leclerc, 21000 Dijon, France
| | - Alexia K. Cotte
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - Jean-Louis Connat
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - François Hermetet
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - Florence Bouyer
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| | - Virginie Aires
- UFR of Heatlh Sciences, Université de Bourgogne, 21000 Dijon, France; (A.K.C.); (J.-L.C.); (F.H.); (F.B.); (V.A.)
- INSERM Research Center U1231—Bioactive Molecules and Health Research Group, Cancer and Adaptive Immune Response Team, 21000 Dijon, France
| |
Collapse
|
7
|
Ramlugon S, Levendal R, Frost CL. Effect of oral cannabis administration on the fat depots of obese and streptozotocin-induced diabetic rats. Phytother Res 2023; 37:1806-1822. [PMID: 36437580 PMCID: PMC10947483 DOI: 10.1002/ptr.7694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 11/29/2022]
Abstract
The prevalence of obesity and insulin-resistance is on the rise, globally. Cannabis have been shown to have anti-diabetic/obesity properties, however, the effect mediated at various fat depots remains to be clarified. The aim of this study was to (1) investigate the anti-diabetic property of an oral cannabis administration in an obese and streptozotocin-induced diabetic rat model and (2) to determine and compare the effect mediated at the peritoneal and intramuscular fat level. Cannabis concentration of 1.25 mg/kg body weight (relative to THC content) was effective in reversing insulin-resistance in the rat model, unlike the other higher cannabinoid concentrations. At the peritoneal fat level, gene expression of fat beigeing markers, namely Cidea and UCP1, were significantly increased compared to the untreated control. At the intramuscular fat level, on the other hand, CE1.25 treatment did not promote fat beigeing but instead significantly increased mitochondrial activity, relative to the untreated control. Therefore, these findings indicate that the mechanism of action of oral cannabis administration, where glucose and lipid homeostasis is restored, is not only dependent on the dosage but also on the type of fat depot investigated.
Collapse
Affiliation(s)
- Sonaal Ramlugon
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| | - Ruby‐Ann Levendal
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| | - Carminita L. Frost
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| |
Collapse
|
8
|
Mak KM, Wu C, Cheng CP. Lipid droplets, the Holy Grail of hepatic stellate cells: In health and hepatic fibrosis. Anat Rec (Hoboken) 2022; 306:983-1010. [PMID: 36516055 DOI: 10.1002/ar.25138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Lipid droplets (LDs) are distinct morphological markers of hepatic stellate cells (HSCs). They are composed of a core of predominantly retinyl esters and triacylglycerols surrounded by a phospholipid layer; the latter harbors perilipins 2, 3, and 5, which help control LD lipolysis. Electron microscopy distinguishes between Types I and II LDs. Type I LDs are surrounded by acid phosphatase-positive lysosomes, which likely digest LDs. LD count and retinoid concentration are modulated by vitamin A intake. Alcohol consumption depletes hepatic retinoids and HSC LDs, with concomitant transformation of HSCs to fibrogenic myofibroblast-like cells. LD loss and accompanying HSC activation occur in HSC cell culture models. Loss of LDs is a consequence of and not a prerequisite for HSC activation. LDs are endowed with enzymes for synthesizing retinyl esters and triacylglycerols as well as neutral lipases and lysosomal acid lipase for breaking down LDs. HSCs have two distinct metabolic LD pools: an "original" pool in quiescent HSCs and a "new" pool emerging in HSC activation; this two-pool model provides a platform for analyzing LD dynamics in HSC activation. Besides lipolysis, LDs are degraded by lipophagy; however, the coordination between and relative contributions of these two pathways to LD removal are unclear. While induction of autophagy accelerates LD loss in quiescent HSCs and promotes HSC activation, blocking autophagy impairs LD degradation and inhibits HSC activation and fibrosis. This article is a critique of five decades of investigations into the morphology, molecular structure, synthesis, and degradation of LDs associated with HSC activation and fibrosis.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catherine Wu
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher P Cheng
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Mirza AH. Study of trioleoylglycerol two-layer and adiposome cross-section mimicking four-layer systems through atomic-level simulations. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064701. [PMID: 36484071 PMCID: PMC9726221 DOI: 10.1063/4.0000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Adiposomes are artificially prepared lipid droplet (LD)-mimetic structures, which, unlike LDs, do not harbor proteins. The dynamics of interaction between triacylglycerols (TAGs), drug molecule, and phospholipids in adiposomes is currently not well-established. Trioleoylglycerol (TOG) molecule was divided into three parts: two oleoyl tails and one 2-monooleoylglycerol (MOG). Forcefield parameters for two oleoyl tails were adopted from the AMBER18 repository while that of the MOG forcefield was taken from the literature. Charge correction was performed on the MOG forcefield before its utilization. After charge correction, the resulting TOG molecule had zero charge. TOG bilayer (2L) and tetralayer (4L) systems were prepared and simulated. TOG bilayer (2L) systems-modeled from two different initial conformations, the TOG3 conformation and the TOG2:1 conformation-showed that TOG2:1 conformation was more prevailing irrespective of the starting conformation and was subsequently used in further simulations. The hydrated TOG 2L system showed TOG-water solution solubility of 0.051 mol L-1 which is near experimental values. This validated the correct parameterization of the TOG molecule. The simulations of 4L systems showed stable membrane behaviors toward the end of simulations. It was also observed that in the 4L system, the TOG molecules showed the formation of micelles with the drug molecule. Almost six TOGs remained continuously in contact with the drug molecule throughout the simulation. The availability of charge-corrected TOG parameterization is expected to equip future studies with a framework for molecular dynamics simulations of adiposomes and/or LDs at the atomic level.
Collapse
Affiliation(s)
- Ahmed Hammad Mirza
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| |
Collapse
|
10
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
11
|
Singh A, Sen P. Lipid droplet: A functionally active organelle in monocyte to macrophage differentiation and its inflammatory properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158981. [PMID: 34119681 DOI: 10.1016/j.bbalip.2021.158981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) perform several important functions like inflammatory responses, membrane trafficking, acts as secondary messengers, etc. rather than simply working as an energy reservoir. LDs have been implicated as a controlling factor in the progression of atherosclerosis followed by foam cell formation that derives from macrophages during the differentiation process. However, the role of LDs in monocyte differentiation or its further immunological function is still an area that mandates in-depth investigation. We report that LD dynamics is important for differentiation of monocytes and is absolutely required for sustained and prolonged functional activity of differentiated macrophages. In THP-1 cell line model system, we elucidated that increase in total LD content in monocyte by external lipid supplements, can induce monocyte differentiation independent of classical stimuli, PMA. Differential expression of PLIN2 and ATGL during the event, together with abrogation of de novo lipogenesis further confirmed the fact. Besides, an increase in LD content by free fatty acid supplement was able to exert a synergistic effect with PMA on differentiation and phagocytic activity compared to when they are used alone. Additionally, we have shown Rab5a to play a vital role in LDs biosynthesis/maturation in monocytes and thereby directly affecting differentiation of monocytes into macrophages via AKT pathway. Thus our study reveals the multi-faceted function of LDs during the process of monocyte to macrophage differentiation and thereby helping to maintain the functional activity.
Collapse
Affiliation(s)
- Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
12
|
Huang J, Chen X, Zhang F, Lin M, Lin G, Zhang Z. Lipid Droplet Metabolism Across Eukaryotes: Evidence from Yeast to Humans. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ladinsky MS, Mardones GA, Orlicky DJ, Howell KE, McManaman JL. Electron Tomography Revels that Milk Lipids Originate from Endoplasmic Reticulum Domains with Novel Structural Features. J Mammary Gland Biol Neoplasia 2019; 24:293-304. [PMID: 31709487 PMCID: PMC7976053 DOI: 10.1007/s10911-019-09438-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Lipid droplets (LD) are dynamically-regulated organelles that originate from the endoplasmic reticulum (ER), and function in the storage, trafficking and metabolism of neutral lipids. In mammary epithelial cells (MEC) of lactating animals, intact LD are secreted intact into milk to form milk lipids by a novel apocrine mechanism. The secretion of intact LD and the relatively large amounts of lipid secreted by lactating MEC increase demands on the cellular processes responsible for lipid synthesis and LD formation. As yet these processes are poorly defined due to limited understanding of LD-ER interactions. To overcome these limitations, we used rapid-freezing and freeze-substitution methods in conjunction with 3D electron tomography and high resolution immunolocalization to define interactions between LD with ER in MEC of pregnant and lactating rats. Using these approaches, we identified distinct ER domains that contribute to lipid droplet formation and stabilization and which possess unique features previously unrecognized or not fully appreciated. Our results show nascent lipid droplets within the ER lumen and the association of both forming and mature droplets with structurally unique regions of ER cisternae, characterized by the presence of perilipin-2, a protein implicated in lipid droplet formation, and enzymes involved in lipid synthesis. These data demonstrate that milk lipids originate from LD-ER domains with novel structural features and suggest a mechanism for initial droplet formation in the ER lumen and subsequent maturation of the droplets in association with ER cisternae.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO, 80309, USA
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Gonzalo A Mardones
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Instituto de Fisiologia, Universidad Austral de Chile, Valdiva, Chile
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathryn E Howell
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James L McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Mather IH, Masedunskas A, Chen Y, Weigert R. Symposium review: Intravital imaging of the lactating mammary gland in live mice reveals novel aspects of milk-lipid secretion. J Dairy Sci 2019; 102:2760-2782. [PMID: 30471915 PMCID: PMC7094374 DOI: 10.3168/jds.2018-15459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Milk fat comprises membrane-coated droplets of neutral lipid, which constitute the predominant source of lipids for survival of the suckling neonate. From the perspective of the dairy industry, they are the basis for the manufacture of butter and essential ingredients in the production of cheese, yogurt, and specialty dairy produce. To provide mechanistic insight into the assembly and secretion of lipid droplets during lactation, we developed novel intravital imaging techniques using transgenic mice, which express fluorescently tagged marker proteins. The number 4 mammary glands were surgically prepared under a deep plane of anesthesia and the exposed glands positioned as a skin flap with intact vascular supply on the stage of a laser-scanning confocal microscope. Lipid droplets were stained by prior exposure of the glands to hydrophobic fluorescent BODIPY (boron-dipyrromethene) dyes and their formation and secretion monitored by time-lapse subcellular microscopy over periods of 1 to 2 h. Droplets were transported to the cell apex by directed (superdiffusive) motion at relatively slow and intermittent rates (0-2 µm/min). Regardless of size, droplets grew by numerous fusion events during transport and as they were budding from the cell enveloped by apical membranes. Surprisingly, droplet secretion was not constitutive but required an injection of oxytocin to induce contraction of the myoepithelium with subsequent release of droplets into luminal spaces. These novel results are discussed in the context of the current paradigm for milk fat synthesis and secretion and as a template for future innovations in the dairy industry.
Collapse
Affiliation(s)
- Ian H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742; National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892.
| | - Andrius Masedunskas
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21205
| | - Roberto Weigert
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Pezeshkian W, Chevrot G, Khandelia H. The role of caveolin-1 in lipid droplets and their biogenesis. Chem Phys Lipids 2018; 211:93-99. [DOI: 10.1016/j.chemphyslip.2017.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/03/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
|
17
|
Tang W, Ma W, Ding H, Lin M, Xiang L, Lin G, Zhang Z. Adenylyl cyclase 1 as a major isoform to generate cAMP signaling for apoA-1-mediated cholesterol efflux pathway. J Lipid Res 2018; 59:635-645. [PMID: 29444935 DOI: 10.1194/jlr.m082297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
HDL apoA-1-mediated cholesterol efflux pathway requires multiple cellular proteins and signal transduction processes, including adenylyl cyclase (AC)/cAMP signaling. Due to the existence of multiple transmembrane AC isoforms, it was not known how many AC isoforms are expressed and which ones are essential for cholesterol efflux in macrophage foam cells. These questions were investigated in THP-1 macrophages in this study. Quantitative RT-PCR detected mRNAs for all nine transmembrane AC isoforms, but only the mRNA and protein of the AC1 isoform were consistently upregulated by cholesterol loading and apoA-1. AC1 shRNA interference decreased AC1 mRNA and protein levels, resulting in reduction of apoA-1-mediated cAMP production and cholesterol efflux, while the intracellular cholesterol levels remained high. Confocal microscopy showed that apoA-1 promoted translocation of cholesterol and formation of cholesterol-apoA-1 complexes (protrusions) on the cholesterol-loaded macrophage surface. AC1 shRNA-interfered macrophages showed no translocation of cholesterol to the cell surface. AC1 shRNA interference also disrupted cellular localization of the intracellular cholesterol indicator protein adipophillin, and the expression as well as surface translocation of ABCA1. Together, our results show that AC1 is a major isoform for apoA-1-activated cAMP signaling to promote cholesterol transport and exocytosis to the surface of THP-1 macrophage foam cells.
Collapse
Affiliation(s)
- Wanze Tang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, China 523808
| | - Weilie Ma
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, China 523808
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, China 523808
| | - Margarita Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, China 523808
| | - Le Xiang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, China 523808
| | - Guorong Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, China 523808.
| | - Zhizhen Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, China 523808.
| |
Collapse
|
18
|
Dejgaard SY, Presley JF. New Method for Quantitation of Lipid Droplet Volume From Light Microscopic Images With an Application to Determination of PAT Protein Density on the Droplet Surface. J Histochem Cytochem 2018; 66:447-465. [PMID: 29361239 DOI: 10.1369/0022155417753573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Determination of lipid droplet (LD) volume has depended on direct measurement of the diameter of individual LDs, which is not possible when LDs are small or closely apposed. To overcome this problem, we describe a new method in which a volume-fluorescence relationship is determined from automated analysis of calibration samples containing well-resolved LDs. This relationship is then used to estimate total cellular droplet volume in experimental samples, where the LDs need not be individually resolved, or to determine the volumes of individual LDs. We describe quantitatively the effects of various factors, including image noise, LD crowding, and variation in LD composition on the accuracy of this method. We then demonstrate this method by utilizing it to address a scientifically interesting question, to determine the density of green fluorescent protein (GFP)-tagged Perilipin-Adipocyte-Tail (PAT) proteins on the LD surface. We find that PAT proteins cover only a minority of the LD surface, consistent with models in which they primarily serve as scaffolds for binding of regulatory proteins and enzymes, but inconsistent with models in which their major function is to sterically block access to the droplet surface.
Collapse
Affiliation(s)
- Selma Y Dejgaard
- Department of Medical Biology, Near East University, Nicosia, Cyprus
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
19
|
Yang Y, Yang Q, Yang J, Ma Y, Ding G. Angiotensin II induces cholesterol accumulation and injury in podocytes. Sci Rep 2017; 7:10672. [PMID: 28878222 PMCID: PMC5587570 DOI: 10.1038/s41598-017-09733-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/28/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (Ang II) is a risk factor for the initiation and progression of chronic kidney disease (CKD), as elevated Ang II levels can lead to podocyte injury. However, there have been no studies on the role of Ang II in lipid metabolism or on podocyte injury caused by lipid dysfunction. Our study showed that Ang II induced lipid droplet (LD) accumulation and expression of the LD marker adipose differentiation-related protein (ADRP) in podocytes, and the extent of lipid deposition could be alleviated by losartan. Our study also demonstrated that Ang II increased the content of cholesterol in podocytes, which is an LD component, and this change was accompanied by decreased expression of the cholesterol efflux-related molecule ATP-binding cassette transporter-1 (ABCA1) and increased expression of the cholesterol uptake-related molecule LDL receptor (LDLR) and the cholesterol synthesis-related molecules sterol regulatory element-binding protein (SREBP1 and SREBP2) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Pretreating podocytes with methyl-β-cyclodextrin (CD), which induces cholesterol efflux, decreased Ang II-mediated cholesterol accumulation and Ang II-induced podocyte apoptosis and maintained the podocyte cytoskeleton and spreading. These results suggested that Ang II induced podocyte cholesterol accumulation by regulating the expression of cholesterol metabolism-related molecules and that the subsequent cholesterol metabolism dysfunction resulted in podocyte injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yiqiong Ma
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| |
Collapse
|
20
|
Bader CA, Shandala T, Carter EA, Ivask A, Guinan T, Hickey SM, Werrett MV, Wright PJ, Simpson PV, Stagni S, Voelcker NH, Lay PA, Massi M, Plush SE, Brooks DA. A Molecular Probe for the Detection of Polar Lipids in Live Cells. PLoS One 2016; 11:e0161557. [PMID: 27551717 PMCID: PMC4994960 DOI: 10.1371/journal.pone.0161557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/07/2016] [Indexed: 01/08/2023] Open
Abstract
Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments.
Collapse
Affiliation(s)
- Christie A. Bader
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Tetyana Shandala
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth A. Carter
- Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Angela Ivask
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Taryn Guinan
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Shane M. Hickey
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Melissa V. Werrett
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Phillip J. Wright
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Peter V. Simpson
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Bologna, Italy
| | - Nicolas H. Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Peter A. Lay
- Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Massimiliano Massi
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Sally E. Plush
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Douglas A. Brooks
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
21
|
Liangpunsakul S, Gao B. Alcohol and fat promote steatohepatitis: a critical role for fat-specific protein 27/CIDEC. J Investig Med 2016; 64:1078-81. [PMID: 27342423 DOI: 10.1136/jim-2016-000204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/20/2022]
Abstract
Alcoholic liver disease (ALD) is a major public health problem worldwide and is the leading cause of end-stage liver disease. While the ultimate control of ALD will require the prevention of alcohol abuse, better understanding of the mechanisms of alcohol-induced liver injury may lead to treatments of fatty liver, alcoholic hepatitis, and prevention or delay of occurrence of cirrhosis. The elucidation and the discovery of several new concepts in ALD pathogenesis have raised our understanding on the complex mechanisms and the potential in developing the new strategies for therapeutic benefits. In this review, we provide the most up-to-date information on the basic molecular mechanisms focusing on the role of fat-specific protein 27/CIDEC in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA Indiana University School of Medicine, Indianapolis, Indiana, USA Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute of Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
22
|
Ma W, Lin M, Ding H, Lin G, Zhang Z. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis. PLoS One 2016; 11:e0151767. [PMID: 26986486 PMCID: PMC4795675 DOI: 10.1371/journal.pone.0151767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media.
Collapse
Affiliation(s)
- Weilie Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Margarita Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Guorong Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- * E-mail: (GL); (ZZ)
| | - Zhizhen Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong, 523808, China
- * E-mail: (GL); (ZZ)
| |
Collapse
|
23
|
Padilla-Benavides T, Velez-delValle C, Marsch-Moreno M, Castro-Muñozledo F, Kuri-Harcuch W. Lipogenic Enzymes Complexes and Cytoplasmic Lipid Droplet Formation During Adipogenesis. J Cell Biochem 2016; 117:2315-26. [DOI: 10.1002/jcb.25529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/26/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Cristina Velez-delValle
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Meytha Marsch-Moreno
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Federico Castro-Muñozledo
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Walid Kuri-Harcuch
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| |
Collapse
|
24
|
Lopategi A, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Rius B, Titos E, Clària J. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol Cell Endocrinol 2016; 419:44-59. [PMID: 26433072 DOI: 10.1016/j.mce.2015.09.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phospholipids, and in particular fatty acids derived from phospholipids of the cell membrane. Special emphasis is given to polyunsaturated fatty acids of the omega-6 and omega-3 families and their conversion to bioactive lipid mediators through the cyclooxygenase and lipoxygenase pathways. The participation of omega-3-derived lipid autacoids in the resolution of adipose tissue inflammation and in the prevention of obesity-associated hepatic complications is also thoroughly discussed.
Collapse
Affiliation(s)
- Aritz Lopategi
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain.
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Verónica García-Alonso
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain; Department of Physiological Sciences I, University of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|
25
|
Urrutia RA, Kalinec F. Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of Corti. Hear Res 2015; 330:26-38. [PMID: 25987503 PMCID: PMC5391798 DOI: 10.1016/j.heares.2015.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
The current review article seeks to extend our understanding on the role of lipid droplets within the organ of Corti. In addition to presenting an overview of the current information about the origin, structure and function of lipid droplets we draw inferences from the collective body of knowledge about this cellular organelle to build a conceptual framework to better understanding their role in auditory function. This conceptual model considers that lipid droplets play a significant role in the synthesis, storage, and release of lipids and proteins for energetic use and/or modulating cell signaling pathways. We describe the role and mechanism by which LD play a role in human diseases, and we also review emerging data from our laboratory revealing the potential role of lipid droplets from Hensen cells in the auditory organ. We suggest that lipid droplets might help to develop rapidly and efficiently the resolution phase of inflammatory responses in the mammalian cochlea, preventing inflammatory damage of the delicate inner ear structures and, consequently, sensorineural hearing loss.
Collapse
Affiliation(s)
- Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo Clinic, Rochester, MN 55905, USA
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Turnover of the actomyosin complex in zebrafish embryos directs geometric remodelling and the recruitment of lipid droplets. Sci Rep 2015; 5:13915. [PMID: 26355567 PMCID: PMC4650301 DOI: 10.1038/srep13915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Lipid droplets (LDs), reservoirs of cholesterols and fats, are organelles that
hydrolyse lipids in the cell. In zebrafish embryos, the actomyosin complex and
filamentous microtubules control the periodic regulation of the LD geometry.
Contrary to the existing hypothesis that LD transport involves the
kinesin-microtubule system, we find that their recruitment to the blastodisc depends
on the actomyosin turnover and is independent of the microtubules. For the first
time we report the existence of two distinct states of LDs, an inactive and an
active state, that occur periodically, coupled weakly to the cleavage cycles. LDs
are bigger, more circular and more stable in the inactive state in which the
geometry of the LDs is maintained by actomyosin as well as microtubules. The active
state has smaller and irregularly shaped LDs that show shape fluctuations that are
linked to actin depolymerization. Because most functions of LDs employ surface
interactions, our findings on the LD geometry and its regulation bring new insights
to the mechanisms associated with specific functions of LDs, such as their storage
capacity for fats or proteins, lipolysis etc.
Collapse
|
27
|
Qiao Y, Guo D, Meng L, Liu Q, Liu X, Tang C, Yi G, Wang Z, Yin W, Tian G, Yuan Z. Oxidized-low density lipoprotein accumulates cholesterol esters via the PKCα-adipophilin-ACAT1 pathway in RAW264.7 cells. Mol Med Rep 2015; 12:3599-3606. [PMID: 26017812 DOI: 10.3892/mmr.2015.3864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Oxidized low‑density lipoprotein (ox‑LDL) can increase the expression of adipophilin and the accumulation of intracellular lipid droplets. However, the detailed mechanisms remain to be fully elucidated. The present study aimed to investigate the mechanism underlying the effect of ox‑LDL on the expression of adipophilin and the accumulation of intracellular cholesterol esters. The results revealed that ox‑LDL increased the activation of protein kinase C α (PKCα), expression of adipophilin and acyl‑coenzymeA: cholesterol acyltransferse 1 (ACAT1) and increased accumulation of intracellular cholesterol esters. In addition, PKCα siRNA abrogated ox‑LDL‑induced adipophilin, expression of ATAC1 and accumulation of cholesterol esters. Furthermore, ox‑LDL increased the accumulation of intracellular cholesterol esters and expression of ACAT1, and this effect were reversed by transfection with adipophilin siRNA. Taken together, these results demonstrated that ox‑LDL induces the accumulation of cholesterol esters, which is mediated by the PKCα‑adipophilin‑ACAT1 pathway.
Collapse
Affiliation(s)
- Yuncheng Qiao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dongming Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lei Meng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qingnan Liu
- Department of Basic Nursing, Yiyang Medical College, Yiyang, Hunan 413000, P.R. China
| | - Xiaohui Liu
- Cyrus Tang Hematology Center (Research Partnership), Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Chaoke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weidong Yin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guoping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhonghua Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
28
|
Varinli H, Osmond-McLeod MJ, Molloy PL, Vallotton P. LipiD-QuanT: a novel method to quantify lipid accumulation in live cells. J Lipid Res 2015; 56:2206-16. [PMID: 26330056 DOI: 10.1194/jlr.d059758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LDs) are the main storage organelles for triglycerides. Elucidation of lipid accumulation mechanisms and metabolism are essential to understand obesity and associated diseases. Adipogenesis has been well studied in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell lines. However, most techniques for measuring LD accumulation are either not quantitative or can be destructive to samples. Here, we describe a novel, label-free LD quantification technique (LipiD-QuanT) to monitor lipid dynamics based on automated image analysis of phase contrast microscopy images acquired during in vitro human adipogenesis. We have applied LipiD-QuanT to measure LD accumulation during differentiation of SGBS cells. We demonstrate that LipiD-QuanT is a robust, nondestructive, time- and cost-effective method compared with other triglyceride accumulation assays based on enzymatic digest or lipophilic staining. Further, we applied LipiD-QuanT to measure the effect of four potential pro- or antiobesogenic substances: DHA, rosiglitazone, elevated levels of D-glucose, and zinc oxide nanoparticles. Our results revealed that 2 µmol/l rosiglitazone treatment during adipogenesis reduced lipid production and caused a negative shift in LD diameter size distribution, but the other treatments showed no effect under the conditions used here.
Collapse
Affiliation(s)
- Hilal Varinli
- CSIRO Food and Nutrition Flagship, North Ryde, New South Wales, Australia Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Megan J Osmond-McLeod
- CSIRO Food and Nutrition Flagship, North Ryde, New South Wales, Australia CSIRO Advanced Materials TCP (Nanosafety), North Ryde, New South Wales, Australia
| | - Peter L Molloy
- CSIRO Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| | - Pascal Vallotton
- CSIRO Digital Productivity Flagship, North Ryde, New South Wales, Australia
| |
Collapse
|
29
|
Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, Thiruppathi S, Suzuki T, Hiroi S, Seki S, Sakamoto T. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res 2015; 59:1155-70. [PMID: 25677089 DOI: 10.1002/mnfr.201400564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Resveratrol reportedly improves fatty liver. This study purposed to elucidate the effect of resveratrol on fatty liver in mice fed a high-fat (HF) diet, and to investigate the role of liver macrophages (Kupffer cells). METHODS AND RESULTS C57BL/6 mice were divided into three groups, receiving either a control diet, HF diet (50% fat), or HF supplemented with 0.2% resveratrol (HF + res) diet, for 8 weeks. Compared with the HF group, the HF + res group exhibited markedly attenuated fatty liver, and reduced lipid droplets (LDs) in hepatocytes. Proteomic analysis demonstrated that the most downregulated protein in the livers of the HF + res group was adipose differentiation-related protein (ADFP), which is a major constituent of LDs and reflects lipid accumulation in cells. The HF + res group exhibited greatly increased numbers of CD68(+) Kupffer cells with phagocytic activity. Immunohistochemistry showed that several CD68(+) Kupffer cells were colocalized with ADFP immunoreaction in the HF + res group. Additionally, the HF + res group demonstrated markedly decreased TNF-alpha production, which confirmed by both liver mononuclear cells stimulated by LPS in vitro and in situ hybridization analysis, compared with the HF group. CONCLUSION Resveratrol ameliorated fatty liver and increased CD68-positive Kupffer cells with downregulating ADFP expression.
Collapse
Affiliation(s)
| | - Keiichi Iwaya
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Yoko Fujiwara
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mai Akao
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mariko Sonoda
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Sadayuki Hiroi
- Department of Laboratory Medicine, National Defense Medical College, Saitama, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Toshihisa Sakamoto
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
30
|
Ramos SV, MacPherson REK, Turnbull PC, Bott KN, LeBlanc P, Ward WE, Peters SJ. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol Rep 2014; 2:2/10/e12154. [PMID: 25318747 PMCID: PMC4254090 DOI: 10.14814/phy2.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Contraction-mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet-mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21; age, 52 days; weight = 317 ± 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10-20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red-O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6-fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction-induced lipolysis.
Collapse
Affiliation(s)
- Sofhia V Ramos
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Rebecca E K MacPherson
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Patrick C Turnbull
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Kirsten N Bott
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Paul LeBlanc
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| |
Collapse
|
31
|
Dias FF, Zarantonello VC, Parreira GG, Chiarini-Garcia H, Melo RCN. The intriguing ultrastructure of lipid body organelles within activated macrophages. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:869-878. [PMID: 24786359 DOI: 10.1017/s143192761400066x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Macrophages are widely distributed immune system cells with essential functions in tissue homeostasis, apoptotic cell clearance, and first defense in infections. A distinguishing feature of activated macrophages participating in different situations such as inflammatory and metabolic diseases is the presence of increased numbers of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in their cytoplasm. LBs are considered structural markers of activated macrophages and are involved in different functions such as lipid metabolism, intracellular trafficking, and synthesis of inflammatory mediators. In this review, we revisit the distinct morphology of LB organelles actively formed within macrophages in response to infections and cell clearance, taking into account new insights provided by ultrastructural studies. We also discuss the LB interactions within macrophages, revealed by transmission electron microscopy, with a focus on the remarkable LB-phagosome association and discuss potential links between structural aspects and function.
Collapse
Affiliation(s)
- Felipe F Dias
- 1Laboratory of Cellular Biology,Department of Biology,Federal University of Juiz de Fora (UFJF),Juiz de Fora,MG 36036-900,Brazil
| | - Victor C Zarantonello
- 1Laboratory of Cellular Biology,Department of Biology,Federal University of Juiz de Fora (UFJF),Juiz de Fora,MG 36036-900,Brazil
| | - Gleydes G Parreira
- 2Laboratory of Structural Biology and Reproduction,Federal University of Minas Gerais (UFMG),Belo Horizonte,MG 31270-901,Brazil
| | - Hélio Chiarini-Garcia
- 2Laboratory of Structural Biology and Reproduction,Federal University of Minas Gerais (UFMG),Belo Horizonte,MG 31270-901,Brazil
| | - Rossana C N Melo
- 1Laboratory of Cellular Biology,Department of Biology,Federal University of Juiz de Fora (UFJF),Juiz de Fora,MG 36036-900,Brazil
| |
Collapse
|
32
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
33
|
Arrese EL, Saudale FZ, Soulages JL. Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions. Lipid Insights 2014; 7:7-16. [PMID: 25221429 PMCID: PMC4161058 DOI: 10.4137/lpi.s11128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globules of fat to highly dynamic organelles of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Fredy Z Saudale
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| |
Collapse
|
34
|
Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-secreted phospholipase A2 from snake venom. PLoS One 2014; 9:e93741. [PMID: 24718259 PMCID: PMC3981733 DOI: 10.1371/journal.pone.0093741] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/06/2014] [Indexed: 01/10/2023] Open
Abstract
The snake venom MT-III is a group IIA secreted phospholipase A2 (sPLA2) enzyme with functional and structural similarities with mammalian pro-inflammatory sPLA2s of the same group. Previously, we demonstrated that MT-III directly activates the innate inflammatory response of macrophages, including release of inflammatory mediators and formation of lipid droplets (LDs). However, the mechanisms coordinating these processes remain unclear. In the present study, by using TLR2−/− or MyD88−/− or C57BL/6 (WT) male mice, we report that TLR2 and MyD88 signaling have a critical role in MT-III-induced inflammatory response in macrophages. MT-III caused a marked release of PGE2, PGD2, PGJ2, IL-1β and IL-10 and increased the number of LDs in WT macrophages. In MT-III-stimulated TLR2−/− macrophages, formation of LDs and release of eicosanoids and cytokines were abrogated. In MyD88−/− macrophages, MT-III-induced release of PGE2, IL-1β and IL-10 was abrogated, but release of PGD2 and PGJ2 was maintained. In addition, COX-2 protein expression seen in MT-III-stimulated WT macrophages was abolished in both TLR2−/− and MyD88−/− cells, while perilipin 2 expression was abolished only in MyD88−/− cells. We further demonstrated a reduction of saturated, monounsaturated and polyunsaturated fatty acids and a release of the TLR2 agonists palmitic and oleic acid from MT-III-stimulated WT macrophages compared with WT control cells, thus suggesting these fatty acids as major messengers for MT-III-induced engagement of TLR2/MyD88 signaling. Collectively, our findings identify for the first time a TLR2 and MyD88-dependent mechanism that underlies group IIA sPLA2-induced inflammatory response in macrophages.
Collapse
|
35
|
Li ZJ, Guo WJ, Tian YD, Han RL, Sun YJ, Xue J, Lan XY, Chen H. Characterisation of the genetic effects of the ADFP gene and its association with production traits in dairy goats. Gene 2014; 538:244-50. [PMID: 24487056 DOI: 10.1016/j.gene.2014.01.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/18/2022]
Abstract
Adipose differentiation-related protein (ADFP) is important for regulation of lipid metabolism and insulin secretion in beta-cells. In this study, we investigated polymorphisms within the caprine ADFP gene and determined its relationship with production traits. As there was no sequence information available for the caprine ADFP gene, we generated DNA sequence data and examined the genomic organisation. The caprine ADFP gene is organised into 7 exons and 6 introns that span approximately 8.7 kbp and is transcribed into mRNA containing 1,353 bp of sequence coding for a protein of 450 amino acids. The protein sequences showed substantial similarity (71-99%) to orthologues from cattle, human and mouse. We identified polymorphisms in the sequences using DNA sequencing, PCR-RFLP and forced PCR-RFLP methods. Seven single nucleotide polymorphisms (SNPs) were identified using samples from 4 different goat populations consisting of 1408 healthy and unrelated individuals. Six haplotypes involving the 7 SNPs from the caprine ADFP gene were identified and their effects on production traits were analysed. Haplotype 6 had the highest haplotype frequency and was highly significantly associated with chest circumference and milk yield in the analysed populations. The results of this study suggest that the ADFP gene is a strong candidate gene affecting production traits and may be used for marker-assisted selection and management in Chinese dairy goat breeding programmes.
Collapse
Affiliation(s)
- Zhuan-Jian Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Wen-Jiao Guo
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Ya-Dong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Rui-Li Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 45002, China
| | - Yu-Jia Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jing Xue
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Abstract
Lipid droplets are intracellular organelles that are found in most cells, where they have fundamental roles in metabolism. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Lipid droplets are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells, and the importance of basic biophysical principles of emulsions for lipid droplet biology is now being appreciated. Because of their unique architecture, with an interface between the dispersed oil phase and the aqueous cytosol, specific mechanisms underlie their formation, growth and shrinkage. Such mechanisms enable cells to use emulsified oil when the demands for metabolic energy or membrane synthesis change. The regulation of the composition of the phospholipid surfactants at the surface of lipid droplets is crucial for lipid droplet homeostasis and protein targeting to their surfaces.
Collapse
|
37
|
Boussahmain C, Mochel MC, Hoang MP. Perilipin and adipophilin expression in sebaceous carcinoma and mimics. Hum Pathol 2013; 44:1811-6. [PMID: 23642680 DOI: 10.1016/j.humpath.2013.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/16/2022]
Abstract
Although adipophilin has been reported to be a sensitive marker for sebaceous carcinoma, others have noted its expression in squamous cell carcinoma and a variety of noncutaneous tumors, suggesting that lipid droplet accumulation is a frequent feature of neoplastic cells. We investigated the expression of adipophilin and perilipin in 101 cutaneous carcinomas. They included 30 cases of sebaceous carcinoma, 28 squamous cell carcinoma with clear cell change (18 invasive and 10 in situ tumors), 8 hidradenocarcinomas, 1 spiradenocarcinoma, 10 porocarcinomas, 4 malignant chondroid syringomas, 1 malignant cylindroma, 7 apocrine carcinomas, 6 eccrine carcinomas, 5 aggressive digital papillary adenocarcinomas, and 1 pilomatrical carcinoma. Adipophilin stained the rim of cytoplasmic lipid droplets in various tumor types, including sebaceous carcinomas (30/30, 100%), squamous cell carcinoma with clear cell change (21/28, 75%), and eccrine-apocrine carcinomas (25/43, 58%). On the other hand, perilipin expression was seen in 13 (43%) of 30 sebaceous carcinoma and only 1 hidradenocarcinoma. The remaining 28 squamous cell carcinomas with clear cell change and 42 eccrine-apocrine carcinomas were negative. Although specific for invasive sebaceous carcinoma, perilipin expression was not helpful in distinguishing sebaceous carcinoma in situ from squamous cell carcinoma in situ with clear cell change. The expression of adipophilin seen in variety of cutaneous tumors suggests that the biosynthesis of lipid is altered in these neoplasms.
Collapse
Affiliation(s)
- Chakib Boussahmain
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
38
|
Melo RCN, Paganoti GF, Dvorak AM, Weller PF. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography. PLoS One 2013; 8:e59578. [PMID: 23555714 PMCID: PMC3608657 DOI: 10.1371/journal.pone.0059578] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 01/04/2023] Open
Abstract
Lipid bodies (LBs), also known as lipid droplets, are complex organelles of all eukaryotic cells linked to a variety of biological functions as well as to the development of human diseases. In cells from the immune system, such as eosinophils, neutrophils and macrophages, LBs are rapidly formed in the cytoplasm in response to inflammatory and infectious diseases and are sites of synthesis of eicosanoid lipid mediators. However, little is known about the structural organization of these organelles. It is unclear whether leukocyte LBs contain a hydrophobic core of neutral lipids as found in lipid droplets from adipocytes and how diverse proteins, including enzymes involved in eicosanoid formation, incorporate into LBs. Here, leukocyte LB ultrastructure was studied in detail by conventional transmission electron microscopy (TEM), immunogold EM and electron tomography. By careful analysis of the two-dimensional ultrastructure of LBs from human blood eosinophils under different conditions, we identified membranous structures within LBs in both resting and activated cells. Cyclooxygenase, a membrane inserted protein that catalyzes the first step in prostaglandin synthesis, was localized throughout the internum of LBs. We used fully automated dual-axis electron tomography to study the three-dimensional architecture of LBs in high resolution. By tracking 4 nm-thick serial digital sections we found that leukocyte LBs enclose an intricate system of membranes within their “cores”. After computational reconstruction, we showed that these membranes are organized as a network of tubules which resemble the endoplasmic reticulum (ER). Our findings explain how membrane-bound proteins interact and are spatially arranged within LB “cores” and support a model for LB formation by incorporating cytoplasmic membranes of the ER, instead of the conventional view that LBs emerge from the ER leaflets. This is important to understand the functional capabilities of leukocyte LBs in health and during diverse diseases in which these organelles are functionally involved.
Collapse
Affiliation(s)
- Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guillherme F. Paganoti
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
| | - Ann M. Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter F. Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
|
40
|
Falchi AM, Sogos V, Saba F, Piras M, Congiu T, Piludu M. Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP. Histochem Cell Biol 2012; 139:221-31. [PMID: 23108569 DOI: 10.1007/s00418-012-1045-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2012] [Indexed: 12/24/2022]
Abstract
Various cells types, including stem and progenitor cells, can exchange complex information via plasma membrane-derived vesicles, which can carry signals both in their limiting membrane and lumen. Astrocytes, traditionally regarded as mere supportive cells, play previously unrecognized functions in neuronal modulation and are capable of releasing signalling molecules of different functional significance. In the present study, we provide direct evidence that human fetal astrocytes in culture, expressing the same feature as immature and reactive astrocytes, release membrane vesicles larger than the microvesicles described up to now. We found that these large vesicles, ranging from 1-5 to 8 μm in diameter and expressing on their surface β1-integrin proteins, contain mitochondria and lipid droplets together with ATP. We documented vesicle content with fluorescent-specific dyes and with the immunocytochemistry technique we confirmed that mitochondria and lipid droplets were co-localized in the same vesicle. Scanning electron microscopy and transmission electron microscopy confirmed that astrocytes shed from surface membrane vesicles of the same size as the ones detected by fluorescence microscopy. Our results report for the first time that cultured astrocytes, activated by repetitive stimulation of ATP released from neighboring cells, shed from their surface large membrane vesicles containing mitochondria and lipid droplets.
Collapse
Affiliation(s)
- Angela Maria Falchi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, 09042 Monserrato, CA, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Ambrosio MR, Piccaluga PP, Ponzoni M, Rocca BJ, Malagnino V, Onorati M, De Falco G, Calbi V, Ogwang M, Naresh KN, Pileri SA, Doglioni C, Leoncini L, Lazzi S. The alteration of lipid metabolism in Burkitt lymphoma identifies a novel marker: adipophilin. PLoS One 2012; 7:e44315. [PMID: 22952953 PMCID: PMC3432109 DOI: 10.1371/journal.pone.0044315] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/01/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent evidence suggests that lipid pathway is altered in many human tumours. In Burkitt lymphoma this is reflected by the presence of lipid droplets which are visible in the cytoplasm of neoplastic cells in cytological preparations. These vacuoles are not identifiable in biopsy section as lipids are "lost" during tissue processing. METHODS AND RESULTS In this study we investigated the expression of genes involved in lipid metabolism, at both RNA and protein level in Burkitt lymphoma and in other B-cell aggressive lymphoma cases. Gene expression profile indicated a significant over-expression of the adipophilin gene and marked up-regulation of other genes involved in lipid metabolism in Burkitt lymphoma. These findings were confirmed by immunohistochemistry on a series od additional histological samples: 45 out of 47 BL cases showed strong adipophilin expression, while only 3 cases of the 33 of the not-Burkitt lymphoma category showed weak adipophilin expression (p<0.05). CONCLUSIONS Our preliminary results suggest that lipid metabolism is altered in BL, and this leads to the accumulation of lipid vacuoles. These vacuoles may be specifically recognized by a monoclonal antibody against adipophilin, which may therefore be a useful marker for Burkitt lymphoma because of its peculiar expression pattern. Moreover this peptide might represent an interesting candidate for interventional strategies.
Collapse
Affiliation(s)
- Maria R. Ambrosio
- Department of Human Pathology and Oncology, Anatomical Pathology Section, University of Siena, Siena, Italy
| | - Pier P. Piccaluga
- Molecular Pathology Laboratory, Haematopathology Unit, Department of Haematology and Oncology "L. and A. Seràgnoli", S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maurilio Ponzoni
- Pathology Unit, Department of Oncology, University Scientific Institute San Raffaele, Milan, Italy
| | - Bruno J. Rocca
- Department of Human Pathology and Oncology, Anatomical Pathology Section, University of Siena, Siena, Italy
| | - Valeria Malagnino
- Department of Human Pathology and Oncology, Anatomical Pathology Section, University of Siena, Siena, Italy
| | - Monica Onorati
- Department of Human Pathology and Oncology, Anatomical Pathology Section, University of Siena, Siena, Italy
| | - Giulia De Falco
- Department of Human Pathology and Oncology, Anatomical Pathology Section, University of Siena, Siena, Italy
| | | | | | - Kikkeri N. Naresh
- Department of Histopathology, Hammersmith Hospital Campus, Imperial College, London, United Kingdom
| | - Stefano A. Pileri
- Molecular Pathology Laboratory, Haematopathology Unit, Department of Haematology and Oncology "L. and A. Seràgnoli", S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Claudio Doglioni
- Pathology Unit, Department of Oncology, University Scientific Institute San Raffaele, Milan, Italy
| | - Lorenzo Leoncini
- Department of Human Pathology and Oncology, Anatomical Pathology Section, University of Siena, Siena, Italy
| | - Stefano Lazzi
- Department of Human Pathology and Oncology, Anatomical Pathology Section, University of Siena, Siena, Italy
| |
Collapse
|
42
|
Ye J. Hepatitis C virus: a new class of virus associated with particles derived from very low-density lipoproteins. Arterioscler Thromb Vasc Biol 2012; 32:1099-103. [PMID: 22517369 DOI: 10.1161/atvbaha.111.241448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infects 3% of the world population and is the leading cause of liver failure in the United States. A unique feature of HCV is that the viral particles are integral to very low-density lipoprotein (VLDL)-derived lipoprotein particles. The virus is assembled into VLDL in hepatocytes and released out of the cells together with VLDL. The virus then infects more hepatocytes by entering the cells through the low-density lipoprotein receptor, which mediates uptake of majorities of VLDL-derived lipoprotein particles. These observations suggest that HCV may belong to a novel class of viruses that is associated with VLDL. Understanding the relationship between HCV and VLDL metabolism may reveal new strategies to treat HCV infection.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
43
|
Melo RCN, Dvorak AM. Lipid body-phagosome interaction in macrophages during infectious diseases: host defense or pathogen survival strategy? PLoS Pathog 2012; 8:e1002729. [PMID: 22792061 PMCID: PMC3390411 DOI: 10.1371/journal.ppat.1002729] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis of invading microorganisms by specialized cells such as macrophages and neutrophils is a key component of the innate immune response. These cells capture and engulf pathogens and subsequently destroy them in intracellular vacuoles—the phagosomes. Pathogen phagocytosis and progression and maturation of pathogen-containing phagosomes, a crucial event to acquire microbicidal features, occurs in parallel with accentuated formation of lipid-rich organelles, termed lipid bodies (LBs), or lipid droplets. Experimental and clinical infections with different pathogens such as bacteria, parasites, and viruses induce LB accumulation in cells from the immune system. Within these cells, LBs synthesize and store inflammatory mediators and are considered structural markers of inflammation. In addition to LB accumulation, interaction of these organelles with pathogen-containing phagosomes has increasingly been recognized in response to infections and may have implications in the outcome or survival of the microorganism within host cells. In this review, we summarize our current knowledge on the LB-phagosome interaction within cells from the immune system, with emphasis on macrophages, and discuss the functional meaning of this event during infectious diseases.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil.
| | | |
Collapse
|
44
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
45
|
Greineisen WE, Shimoda LMN, Maaetoft-Udsen K, Turner H. Insulin-containing lipogenic stimuli suppress mast cell degranulation potential and up-regulate lipid body biogenesis and eicosanoid secretion in a PPARγ-independent manner. J Leukoc Biol 2012; 92:653-65. [PMID: 22706316 DOI: 10.1189/jlb.0811406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lipid bodies are most studied in adipocytes, where the lipogenic action of insulin initiates their formation. Here, we test the hypothesis that insulin may regulate lipid body content in mast cells and hence, modify their proinflammatory potential. Our data show that insulin causes lipid body accumulation in RBL2H3 and BMMCs. Lipid body accumulation in mast cells is associated with enhanced levels of leukotriene-synthesizing enzymes (LTC4S and 5-LO). Increased basal and antigen-stimulated release of LTC4 is observed in insulin-treated mast cells. Concomitantly, the insulin-containing lipogenic stimulus induces a phenotypic change in mast cells, where this enhancement in leukotriene levels is accompanied by a marked down-regulation in secretory granule content and release in response to stimulus. Mast cells exposed to insulin exhibit altered scatter and fluorescence properties, accumulating in a SSC(lo)FSC(hi) population that exhibits decreased BS staining and degranulation responses and is enriched in NR-positive lipid bodies and eicosanoid synthesis enzymes. Lipid body accumulation in mast cells is mechanistically distinct from the process in adipocytes; for example, it is independent of PPARγ up-regulation and does not involve significant accumulation of conjugated glycerides. Thus, chronic exposure to metabolic stimuli, such as insulin, may be a determinant of the proinflammatory potential of the mast cell.
Collapse
Affiliation(s)
- William E Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI 96816, USA
| | | | | | | |
Collapse
|
46
|
Hynson RMG, Jeffries CM, Trewhella J, Cocklin S. Solution structure studies of monomeric human TIP47/perilipin-3 reveal a highly extended conformation. Proteins 2012; 80:2046-55. [PMID: 22508559 DOI: 10.1002/prot.24095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/11/2012] [Indexed: 11/12/2022]
Abstract
Tail-interacting protein of 47 kDa (TIP47) has two putative functions: lipid biogenesis and mannose 6-phosphate receptor recycling. Progress in understanding the molecular details of these two functions has been hampered by the lack of structural data on TIP47, with a crystal structure of the C-terminal domain of the mouse homolog constituting the only structural data in the literature so far. Our studies have first provided a strategy to obtain pure monodisperse preparations of the full-length TIP47/perilipin-3 protein, as well as a series of N-terminal truncation mutants with no exogenous sequences. These constructs have then enabled us to obtain the first structural characterization of the full-length protein in solution. Our work demonstrates that the N-terminal region of TIP47/perilipin-3, in contrast to the largely helical C-terminal region, is predominantly β-structure with turns and bends. Moreover, we show that full-length TIP47/perilipin-3 adopts an extended conformation in solution, with considerable spatial separation of the N- and C-termini that would likely translate into a separation of functional domains.
Collapse
Affiliation(s)
- Robert M G Hynson
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
47
|
Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 2012; 28:411-37. [PMID: 22578141 DOI: 10.1146/annurev-cellbio-092910-153958] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to eukaryotic cells. It is increasingly recognized that LDs interact extensively with other organelles and that they perform functions beyond passive lipid storage and lipid homeostasis. One emerging function for LDs is the coordination of immune responses, as these organelles participate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. We here review recent findings that link LDs to the regulation and execution of immune responses in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Hector Alex Saka
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
48
|
Yuan Y, Li P, Ye J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 2012; 3:173-81. [PMID: 22447659 DOI: 10.1007/s13238-012-2025-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/04/2012] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | |
Collapse
|
49
|
Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids 2011; 85:205-13. [PMID: 21565480 DOI: 10.1016/j.plefa.2011.04.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eicosanoids (prostaglandins, leukotrienes and lipoxins) are signaling lipids derived from arachidonic acid metabolism that have important roles in physiological and pathological processes. Lately, intracellular compartmentalization of eicosanoid-synthetic machinery has emerged as a key component in the regulation of eicosanoid synthesis and functions. Over the past years substantial progresses have been made demonstrating that precursors and enzymes involved in eicosanoid synthesis localize at lipid bodies (also known as lipid droplets) and lipid bodies are distinct sites for eicosanoid generation. Here we will review the current knowledge on the functions of lipid bodies as specialized intracellular sites of compartmentalization of signaling with major roles in eicosanoid formation within cells engaged in inflammatory, infectious and neoplastic process.
Collapse
Affiliation(s)
- Patricia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Brazil.
| | | | | | | |
Collapse
|
50
|
Storey SM, McIntosh AL, Senthivinayagam S, Moon KC, Atshaves BP. The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure. Am J Physiol Endocrinol Metab 2011; 301:E991-E1003. [PMID: 21846905 PMCID: PMC3213997 DOI: 10.1152/ajpendo.00109.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The significance of lipid droplets (LD) in lipid metabolism, cell signaling, and membrane trafficking is increasingly recognized, yet the role of the LD phospholipid monolayer in LD protein targeting and function remains unknown. To begin to address this issue, two populations of LD were isolated by ConA sepharose affinity chromatography: 1) functionally active LD enriched in perilipin, caveolin-1, and several lipolytic proteins, including ATGL and HSL; and 2) LD enriched in ADRP and TIP47 that contained little to no lipase activity. Coimmunoprecipitation experiments confirmed the close association of caveolin and perilipin and lack of interaction between caveolin and ADRP, in keeping with the separation observed with the ConA procedure. The phospholipid monolayer structure was evaluated to reveal that the perilipin-enriched LD exhibited increased rigidity (less fluidity), as shown by increased cholesterol/phospholipid, Sat/Unsat, and Sat/MUFA ratios. These results were confirmed by DPH-TMA, NBD-cholesterol, and NBD-sphingomyelin fluorescence polarization studies. By structure and organization, the perilipin-enriched LD most closely resembled the adipocyte PM. In contrast, the ADRP/TIP47-enriched LD contained a more fluid monolayer membrane, reflecting decreased polarizations and lipid order based on phospholipid fatty acid analysis. Taken together, results indicate that perilipin and associated lipolytic enzymes target areas in the phospholipid monolayer that are highly organized and rigid, similar in structure to localized areas of the PM where cholesterol and fatty acid uptake and efflux occur.
Collapse
Affiliation(s)
- Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, Texas Veterinary Medical Center, College Station, Texas, USA
| | | | | | | | | |
Collapse
|