1
|
Antoniazzi L, Miranda RC, Rauber F, Afonso C, Santos C, Lopes C, Rodrigues S, Levy RB. Inadequate intakes of fatty acids attributed to the ultra-processed foods consumed by Portuguese population: The upper project. Nutr Metab Cardiovasc Dis 2024; 34:2546-2554. [PMID: 39174431 DOI: 10.1016/j.numecd.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Population-based studies suggest an inverse relationship between the dietary share of ultra-processed foods (UPF), as defined by NOVA classification, and the overall dietary nutritional quality. However, few studies have evaluated the impact of ultra-processed foods on the fatty acid profile of the diet. The aim of this study was to assess the association between consumption of UPF and the fatty acids profile of the diet in Portugal. METHODS AND RESULTS Cross-sectional data from IAN-AF 2015-2016 were used for this study. Food consumption data were collected through two 24-h food recalls, and food items were classified according to the NOVA system. For both adults and elderly, the contents of total fatty acids (TFA), saturated fatty acids (SFA) and trans fatty (TRFA) were higher in the fraction of UPF, compared to the other three NOVA groups, while [monounsaturated fatty acids (MUFA)+, polyunsaturated fatty acids (PUFA)/SFA] ratio was lower. The UPF population attributable fraction (PAF) demonstrated that if the dietary contribution of UPF was reduced to levels observed in the first quintile, statistically significant reductions in the prevalence of inadequate intakes of fatty acids would be observed for adults [TRFA (PAF 98.37%, 95% CI 87.27-99.79) and SFA (PAF 37.26%, 95% CI 25.46-47.19)] and for elderly [TRFA (PAF 94.61%, 95% CI 77.59-98.71) and PUFA (PAF 98.28, 95% CI 48.22-99.94)]. CONCLUSIONS In this study the consumption of UPF was associated with a worse fatty acids profile in the Portuguese diet, adding evidence regarding the negative impact of UPF on diet quality.
Collapse
Affiliation(s)
- Luiza Antoniazzi
- Center for Epidemiological Research in Nutrition and Health, University of São Paulo, São Paulo, Brazil; Department of Preventive Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Renata C Miranda
- Center for Epidemiological Research in Nutrition and Health, University of São Paulo, São Paulo, Brazil; Department of Preventive Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil; Department of Nutrition, Institute of Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Rauber
- Center for Epidemiological Research in Nutrition and Health, University of São Paulo, São Paulo, Brazil; Department of Preventive Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil; Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Cláudia Afonso
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Associated Laboratory ITR, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, Porto, Portugal
| | - Cristina Santos
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Associate Laboratory RISE-Health Research Network, University of Porto, Porto, Portugal
| | - Carla Lopes
- Associated Laboratory ITR, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sara Rodrigues
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Associated Laboratory ITR, Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, Porto, Portugal
| | - Renata B Levy
- Center for Epidemiological Research in Nutrition and Health, University of São Paulo, São Paulo, Brazil; Department of Preventive Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Markey O, Garcimartín A, Vasilopoulou D, Kliem KE, Fagan CC, Humphries DJ, Todd S, Givens DI, Lovegrove JA, Jackson KG. Impact of dairy fat manipulation on endothelial function and lipid regulation in human aortic endothelial cells exposed to human plasma samples: an in vitro investigation from the RESET study. Eur J Nutr 2024; 63:539-548. [PMID: 38093120 PMCID: PMC10899290 DOI: 10.1007/s00394-023-03284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE Longer-term intake of fatty acid (FA)-modified dairy products (SFA-reduced, MUFA-enriched) was reported to attenuate postprandial endothelial function in humans, relative to conventional (control) dairy. Thus, we performed an in vitro study in human aortic endothelial cells (HAEC) to investigate mechanisms underlying the effects observed in vivo. METHODS This sub-study was conducted within the framework of the RESET study, a 12-week randomised controlled crossover trial with FA-modified and control dairy diets. HAEC were incubated for 24 h with post-intervention plasma samples from eleven adults (age: 57.5 ± 6.0 years; BMI: 25.7 ± 2.7 kg/m2) at moderate cardiovascular disease risk following representative sequential mixed meals. Markers of endothelial function and lipid regulation were assessed. RESULTS Relative to control, HAEC incubation with plasma following the FA-modified treatment increased postprandial NOx production (P-interaction = 0.019), yet up-regulated relative E-selectin mRNA gene expression (P-interaction = 0.011). There was no impact on other genes measured. CONCLUSION Incubation of HAEC with human plasma collected after longer-term dairy fat manipulation had a beneficial impact on postprandial NOx production. Further ex vivo research is needed to understand the impact of partial replacement of SFA with unsaturated fatty acids in dairy foods on pathways involved in endothelial function.
Collapse
Affiliation(s)
- Oonagh Markey
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Alba Garcimartín
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Dafni Vasilopoulou
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
| | - Kirsty E Kliem
- Department of Animal Sciences, University of Reading, Reading, RG6 6AR, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Colette C Fagan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - David J Humphries
- Department of Animal Sciences, University of Reading, Reading, RG6 6AR, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
| | - David I Givens
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK.
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK.
| |
Collapse
|
3
|
Ozen E, Mihaylova R, Weech M, Kinsella S, Lovegrove JA, Jackson KG. Association between dietary saturated fat with cardiovascular disease risk markers and body composition in healthy adults: findings from the cross-sectional BODYCON study. Nutr Metab (Lond) 2022; 19:15. [PMID: 35241101 PMCID: PMC8896371 DOI: 10.1186/s12986-022-00650-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Diets high in saturated fatty acids (SFAs) and greater abdominal obesity are both associated with raised low-density lipoprotein cholesterol (LDL-C) concentrations, an independent cardiovascular disease (CVD) risk marker. Although reducing SFA intake is a public health strategy for CVD prevention, the role of body fat distribution on the relationship between SFA and LDL-C is unclear. Therefore, our objective was to investigate whether the association between dietary SFAs and LDL-C concentrations is related to body composition.
Methods In the BODYCON (impact of physiological and lifestyle factors on body composition) study, 409 adults [mean age 42 ± 16 years and median BMI of 23.5 (21.5–25.9) kg/m2] underwent a measure of body composition by dual energy x-ray absorptiometry, assessment of habitual dietary intake using a 4-day weighed food diary and physical activity level using a tri-axial accelerometer. Blood pressure was measured, and a fasting blood sample was collected to determine cardiometabolic disease risk markers. Correlations between body composition, circulating risk markers and dietary macronutrients were assessed prior to multivariate regression analysis. The effect of increasing intakes of dietary SFA on outcome measures was assessed using ANCOVA after adjusting for covariates.
Results Abdominal visceral adipose tissue (VAT) mass was moderately positively correlated with total cholesterol (TC), LDL-C, systolic blood pressure (SBP), diastolic blood pressure and HOMA-IR (rs = 0.25–0.44, p < 0.01). In multiple regression analysis, 18.3% of the variability in LDL-C was explained by SFA intake [% total energy (TE)], abdominal VAT mass, carbohydrate%TE and fat%TE intakes. When data were stratified according to increasing SFA%TE intakes, fasting TC, LDL-C and non-high-density lipoprotein-cholesterol were higher in Q4 compared with Q2 (p ≤ 0.03). SBP was higher in Q4 versus Q3 (p = 0.01). Android lean mass was also higher in Q3 versus Q1 (p = 0.02). Other anthropometric and CVD risk markers were not different across quartile groups. Conclusions Although dietary SFA was found to explain 9% of the variability in LDL-C, stratification of data according to quartiles of SFA intake did not reveal a dose-dependent relationship with LDL-C concentration. Furthermore, this association appeared to be independent of abdominal obesity in this cohort. Clinical Trail registration: Trial registration: clinicaltrials.gov as NCT02658539. Registered 20 January 2016, https://clinicaltrials.gov/ct2/show/NCT02658539. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00650-y.
Collapse
Affiliation(s)
- Ezgi Ozen
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Harry Nursten Building, Whiteknights, Pepper Lane, Reading, RG6 6DZ, UK
| | - Rada Mihaylova
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Harry Nursten Building, Whiteknights, Pepper Lane, Reading, RG6 6DZ, UK
| | - Michelle Weech
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Harry Nursten Building, Whiteknights, Pepper Lane, Reading, RG6 6DZ, UK
| | - Sam Kinsella
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Harry Nursten Building, Whiteknights, Pepper Lane, Reading, RG6 6DZ, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Harry Nursten Building, Whiteknights, Pepper Lane, Reading, RG6 6DZ, UK
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, University of Reading, Harry Nursten Building, Whiteknights, Pepper Lane, Reading, RG6 6DZ, UK.
| |
Collapse
|
4
|
Markey O, Vasilopoulou D, Kliem KE, Fagan CC, Grandison AS, Sutton R, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA. Effect of fat-reformulated dairy food consumption on postprandial flow-mediated dilatation and cardiometabolic risk biomarkers compared with conventional dairy: a randomized controlled trial. Am J Clin Nutr 2022; 115:679-693. [PMID: 35020795 PMCID: PMC8895219 DOI: 10.1093/ajcn/nqab428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Longer-term consumption of SFA-reduced, MUFA-enriched dairy products has been reported to improve fasting flow-mediated dilatation (FMD). Yet, their impact on endothelial function in the postprandial state warrants investigation. OBJECTIVES The aim was to compare the impact of a fatty acid (FA) modified with a conventional (control) dairy diet on the postprandial %FMD (primary outcome) and systemic cardiometabolic responses to representative meals, and retrospectively explore whether treatment effects differ by apolipoprotein E (APOE) or endothelial NO synthase (eNOS) Glu298Asp gene polymorphisms. METHODS In a crossover-design randomized controlled study, 52 adults with moderate cardiovascular disease risk consumed dairy products [38% of total energy intake (%TE) from fat: FA-modified (target: 16%TE SFAs; 14%TE MUFAs) or control (19%TE SFAs; 11%TE MUFAs)] for 12 wk, separated by an 8-wk washout. Blood sampling and FMD measurements (0-480 min) were performed pre- and postintervention after sequential mixed meals that were representative of the assigned dairy diets (0 min, ∼50 g fat; 330 min, ∼30 g fat). RESULTS Relative to preintervention (∆), the FA-modified dairy diet and meals (treatment) attenuated the increase in the incremental AUC (iAUC), but not AUC, for the %FMD response observed with the conventional treatment (-135 ± 69% vs. +199 ± 82% × min; P = 0.005). The ∆ iAUC, but not AUC, for the apoB response decreased after the FA-modified treatment yet increased after the conventional treatment (-4 ± 3 vs. +3 ± 3 mg/mL × min; P = 0.004). The ∆ iAUC decreased for plasma total SFAs (P = 0.003) and trans 18:1 (P < 0.0001) and increased for cis-MUFAs (P < 0.0001) following the conventional relative to the FA-modified treatment. No treatment × APOE or eNOS genotype interactions were evident for any outcome. CONCLUSIONS This study provides novel insights into the longer-term effects of FA-modified dairy food consumption on postprandial cardiometabolic responses.
Collapse
Affiliation(s)
- Oonagh Markey
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Dafni Vasilopoulou
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Kirsty E Kliem
- Animal, Dairy, and Food Chain Sciences, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Colette C Fagan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Alistair S Grandison
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Rachel Sutton
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - David J Humphries
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - David I Givens
- Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | | |
Collapse
|
5
|
Wang P, Zhang H, Wang Y, Zhang M, Zhou Y. Plasma cholesterol in Alzheimer's disease and frontotemporal dementia. Transl Neurosci 2020; 11:116-123. [PMID: 33312717 PMCID: PMC7705987 DOI: 10.1515/tnsci-2020-0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023] Open
Abstract
Background The relationship between the apolipoprotein E (APOE)-ε4 allele, triglyceride (TG) level, and cholesterol level and an increased risk of developing Alzheimer's disease (AD) has been well established, but their relationship with behavioral-variant frontotemporal dementia (bvFTD) is not well-known. Methodology The levels of TGs, total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein were measured in bvFTD and AD patients and in normal controls (NCs). DNA was extracted, and APOE was genotyped. Results The APOE-ε4 allele frequency was higher in the AD group than in the NC group, but no difference was found between the AD and the bvFTD groups. The bvFTD group had higher LDL than the AD group, and significant differences were also found for the cholesterol level in the dementia groups compared with the NC group. Elevated LDL level was positively correlated with appetite and eating score in the bvFTD group. Compared with the AD patients and NCs without the APOE-ε4 allele, those with the APOE-ε4 allele had higher TC, but its correlation with the bvFTD group was absent. Conclusions The bvFTD and the AD groups had higher cholesterol levels. The APOE-ε4 allele and eating behavior might modify lipid metabolism in dementia. TG and cholesterol analyses may offer a new opportunity for targeted treatments.
Collapse
Affiliation(s)
- Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| | - Huihong Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| | - Yan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| |
Collapse
|
6
|
Vasilopoulou D, Markey O, Kliem KE, Fagan CC, Grandison AS, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA. Reformulation initiative for partial replacement of saturated with unsaturated fats in dairy foods attenuates the increase in LDL cholesterol and improves flow-mediated dilatation compared with conventional dairy: the randomized, controlled REplacement of SaturatEd fat in dairy on Total cholesterol (RESET) study. Am J Clin Nutr 2020; 111:739-748. [PMID: 32020168 PMCID: PMC7138681 DOI: 10.1093/ajcn/nqz344] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Modifying dairy fat composition by increasing the MUFA content is a potential strategy to reduce dietary SFA intake for cardiovascular disease (CVD) prevention in the population. OBJECTIVES To determine the effects of consuming SFA-reduced, MUFA-enriched (modified) dairy products, compared with conventional dairy products (control), on the fasting cholesterol profile (primary outcome), endothelial function assessed by flow-mediated dilatation (FMD; key secondary outcome), and other cardiometabolic risk markers. METHODS A double-blind, randomized, controlled crossover 12-wk intervention was conducted. Participants with a 1.5-fold higher (moderate) CVD risk than the population mean replaced habitual dairy products with study products (milk, cheese, and butter) to achieve a high-fat, high-dairy isoenergetic daily dietary exchange [38% of total energy intake (%TE) from fat: control (dietary target: 19%TE SFA; 11%TE MUFA) and modified (16%TE SFA; 14%TE MUFA) diet]. RESULTS Fifty-four participants (57.4% men; mean ± SEM age: 52 ± 3 y; BMI: 25.8 ± 0.5 kg/m2) completed the study. The modified diet attenuated the rise in fasting LDL cholesterol observed with the control diet (0.03 ± 0.06 mmol/L and 0.19 ± 0.05 mmol/L, respectively; P = 0.03). Relative to baseline, the %FMD response increased after the modified diet (0.35% ± 0.15%), whereas a decrease was observed after the control diet (-0.51% ± 0.15%; P< 0.0001). In addition, fasting plasma nitrite concentrations increased after the modified diet, yet decreased after the control diet (0.02 ± 0.01 μmol/L and -0.03 ± 0.02 μmol/L, respectively; P = 0.01). CONCLUSIONS In adults at moderate CVD risk, consumption of a high-fat diet containing SFA-reduced, MUFA-enriched dairy products for 12 wk showed beneficial effects on fasting LDL cholesterol and endothelial function compared with conventional dairy products. Our findings indicate that fatty acid modification of dairy products may have potential as a public health strategy aimed at CVD risk reduction. This trial was registered at clinicaltrials.gov as NCT02089035.
Collapse
Affiliation(s)
- Dafni Vasilopoulou
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Oonagh Markey
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Present address for OM: School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Kirsty E Kliem
- Animal, Dairy and Food Chain Sciences, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom
| | - Colette C Fagan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom
| | - Alistair S Grandison
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - David J Humphries
- Animal, Dairy and Food Chain Sciences, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom
| | - David I Givens
- Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom,Address correspondence to JAL (e-mail: )
| |
Collapse
|
7
|
Impact of the Apolipoprotein E (epsilon) Genotype on Cardiometabolic Risk Markers and Responsiveness to Acute and Chronic Dietary Fat Manipulation. Nutrients 2019; 11:nu11092044. [PMID: 31480637 PMCID: PMC6770634 DOI: 10.3390/nu11092044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein (APO) E (ε) genotype is considered to play an important role in lipid responses to dietary fat manipulation but the impact on novel cardiometabolic risk markers is unclear. To address this knowledge gap, we investigated the relationship between the APOE genotype and cardiometabolic risk markers in response to acute and chronic dietary fat intakes. Associations with fasting (baseline) outcome measures (n = 218) were determined using data from the chronic DIVAS (n = 191/195 adults at moderate cardiovascular disease risk) and acute DIVAS-2 (n = 27/32 postmenopausal women) studies examining the effects of diets/meals varying in saturated, polyunsaturated and monounsaturated (MUFA) fatty acid composition. Participants were retrospectively genotyped for APOE (rs429358, rs7412). For baseline cardiometabolic outcomes, E4 carriers had higher fasting total and low-density lipoprotein-cholesterol (LDL-C), total cholesterol: high-density lipoprotein-cholesterol (HDL-C) and LDL-C: HDL-C ratios, but lower C-reactive protein (CRP) than E3/E3 and E2 carriers (p ≤ 0.003). Digital volume pulse stiffness index was higher in E2 carriers than the E3/E3 group (p = 0.011). Following chronic dietary fat intake, the significant diet × genotype interaction was found for fasting triacylglycerol (p = 0.010), with indication of a differential responsiveness to MUFA intake between the E3/E3 and E4 carriers (p = 0.006). Test fat × genotype interactions were observed for the incremental area under the curve for the postprandial apolipoprotein B (apoB; p = 0.022) and digital volume pulse reflection index (DVP-RI; p = 0.030) responses after the MUFA-rich meals, with a reduction in E4 carriers and increase in the E3/E3 group for the apoB response, but an increase in E4 carriers and decrease in the E3/E3 group for the DVP-RI response. In conclusion, baseline associations between the APOE genotype and fasting lipids and CRP confirm previous findings, although a novel interaction with digital volume pulse arterial stiffness was observed in the fasted state and differential postprandial apoB and DVP-RI responses after the MUFA-rich meals. The reported differential impact of the APOE genotype on cardiometabolic markers in the acute and chronic state requires confirmation.
Collapse
|
8
|
Griffin BA, Walker CG, Jebb SA, Moore C, Frost GS, Goff L, Sanders TAB, Lewis F, Griffin M, Gitau R, Lovegrove JA. APOE4 Genotype Exerts Greater Benefit in Lowering Plasma Cholesterol and Apolipoprotein B than Wild Type (E3/E3), after Replacement of Dietary Saturated Fats with Low Glycaemic Index Carbohydrates. Nutrients 2018; 10:nu10101524. [PMID: 30336580 PMCID: PMC6213759 DOI: 10.3390/nu10101524] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
We examined the impact of APOE genotype on plasma lipids and glucose in a secondary analysis of data from a five-arm, randomised controlled, parallel dietary intervention trial ('RISCK' study), to investigate the impact of replacing saturated fatty acids (SFA) with either monounsaturated fat (MUFA) or carbohydrate of high or low glycaemic index (GI) on CVD risk factors and insulin sensitivity. We tested the impact of APOE genotype (carriage of E2 and E4 alleles versus E3/E3), determined retrospectively, on plasma lipids, lipoproteins and glucose homeostasis at baseline (n = 469), and on the change in these variables after 24 weeks of dietary intervention (n = 389). At baseline, carriers of E2 (n = 70), E4 (n = 125) and E3/E3 (n = 274) expressed marked differences in total plasma cholesterol (TC, p = 0.001), low density lipoprotein cholesterol (LDL-C, p < 0.0001), apolipoprotein B (apo B, p < 0.0001) and total to high density lipoprotein cholesterol ratio (TC:HDL-C, p = 0.002), with plasma concentrations decreasing in the order E4 > E3/E3 > E2. Following intervention, there was evidence of a significant diet x genotype interaction with significantly greater decreases in TC (p = 0.02) and apo B (p = 0.006) among carriers of E4 when SFA was replaced with low GI carbohydrate on a lower fat diet (TC -0.28 mmol/L p = 0.03; apo B -0.1 g/L p = 0.02), and a relative increase in TC (in comparison to E3/E3) when SFA was replaced with MUFA and high GI carbohydrates (TC 0.3 mmol/L, p = 0.03). Among carriers of E2 (compared with E3/E3) there was an increase in triacylglycerol (TAG) when SFA was replaced with MUFA and low GI carbohydrates 0.46 mmol/L p = 0.001). There were no significant interactions between APOE genotype and diet for changes in indices of glucose homeostasis. In conclusion, variations in APOE genotype led to differential effects on the lipid response to the replacement of SFA with MUFA and low GI carbohydrates.
Collapse
Affiliation(s)
- Bruce A Griffin
- Department of Nutritional Sciences, University of Surrey, Guildford GU2 7WG, UK.
| | - Celia G Walker
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge CB1 9NL, UK.
| | - Susan A Jebb
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge CB1 9NL, UK.
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK.
| | - Carmel Moore
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge CB1 9NL, UK.
| | - Gary S Frost
- Nutrition and Dietetic Research Group, Imperial College London, London W12 OHS, UK.
| | - Louise Goff
- Nutrition and Dietetic Research Group, Imperial College London, London W12 OHS, UK.
- Nutritional Sciences Division, Kings College London, London WC2R 2LS, UK.
| | - Tom A B Sanders
- Nutritional Sciences Division, Kings College London, London WC2R 2LS, UK.
| | - Fiona Lewis
- Nutritional Sciences Division, Kings College London, London WC2R 2LS, UK.
| | - Margaret Griffin
- Department of Nutritional Sciences, University of Surrey, Guildford GU2 7WG, UK.
| | - Rachel Gitau
- Hugh Sinclair Unit of Human Nutrition, University of Reading, Reading RG6 6AP, UK.
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, University of Reading, Reading RG6 6AP, UK.
| |
Collapse
|
9
|
Shatwan IM, Winther KH, Ellahi B, Elwood P, Ben-Shlomo Y, Givens I, Rayman MP, Lovegrove JA, Vimaleswaran KS. Association of apolipoprotein E gene polymorphisms with blood lipids and their interaction with dietary factors. Lipids Health Dis 2018; 17:98. [PMID: 29712557 PMCID: PMC5928585 DOI: 10.1186/s12944-018-0744-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/13/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several candidate genes have been identified in relation to lipid metabolism, and among these, lipoprotein lipase (LPL) and apolipoprotein E (APOE) gene polymorphisms are major sources of genetically determined variation in lipid concentrations. This study investigated the association of two single nucleotide polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common APOE haplotype (two SNPs) with blood lipids, and examined the interaction of these SNPs with dietary factors. METHODS The population studied for this investigation included 660 individuals from the Prevention of Cancer by Intervention with Selenium (PRECISE) study who supplied baseline data. The findings of the PRECISE study were further replicated using 1238 individuals from the Caerphilly Prospective cohort (CaPS). Dietary intake was assessed using a validated food-frequency questionnaire (FFQ) in PRECISE and a validated semi-quantitative FFQ in the CaPS. Interaction analyses were performed by including the interaction term in the linear regression model adjusted for age, body mass index, sex and country. RESULTS There was no association between dietary factors and blood lipids after Bonferroni correction and adjustment for confounding factors in either cohort. In the PRECISE study, after correction for multiple testing, there was a statistically significant association of the APOE haplotype (rs7412 and rs429358; E2, E3, and E4) and APOE tagSNP rs445925 with total cholesterol (P = 4 × 10- 4 and P = 0.003, respectively). Carriers of the E2 allele had lower total cholesterol concentration (5.54 ± 0.97 mmol/L) than those with the E3 (5.98 ± 1.05 mmol/L) (P = 0.001) and E4 (6.09 ± 1.06 mmol/L) (P = 2 × 10- 4) alleles. The association of APOE haplotype (E2, E3, and E4) and APOE SNP rs445925 with total cholesterol (P = 2 × 10- 6 and P = 3 × 10- 4, respectively) was further replicated in the CaPS. Additionally, significant association was found between APOE haplotype and APOE SNP rs445925 with low density lipoprotein cholesterol in CaPS (P = 4 × 10- 4 and P = 0.001, respectively). After Bonferroni correction, none of the cohorts showed a statistically significant SNP-diet interaction on lipid outcomes. CONCLUSION In summary, our findings from the two cohorts confirm that genetic variations at the APOE locus influence plasma total cholesterol concentrations, however, the gene-diet interactions on lipids require further investigation in larger cohorts.
Collapse
Affiliation(s)
- Israa M Shatwan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research (ICMR), Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK.,Food and Nutrition Department, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Basma Ellahi
- Faculty of Health and Social Care, University of Chester, Chester, CH1 1SL, UK
| | - Peter Elwood
- Department of Epidemiology, Statistics and Public Health, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol, BS8 2PS, UK
| | - Ian Givens
- Institute for Food, Nutrition and Health, University of Reading, Earley Gate, Reading, RG6 6AR, UK
| | - Margaret P Rayman
- Department of Nutritional Sciences Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research (ICMR), Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
| | - Karani S Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research (ICMR), Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK.
| |
Collapse
|
10
|
Drouin-Chartier JP, Tremblay AJ, Lépine MC, Lemelin V, Lamarche B, Couture P. Substitution of dietary ω-6 polyunsaturated fatty acids for saturated fatty acids decreases LDL apolipoprotein B-100 production rate in men with dyslipidemia associated with insulin resistance: a randomized controlled trial. Am J Clin Nutr 2018; 107:26-34. [PMID: 29381796 PMCID: PMC5972657 DOI: 10.1093/ajcn/nqx013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background The substitution of omega (ω)-6 (n-6) polyunsaturated fatty acids (PUFAs) for saturated fatty acids (SFAs) is advocated in cardiovascular disease prevention. The impact of this substitution on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains unknown. Objective In men with dyslipidemia and IR, we evaluated the impact of substituting ω-6 PUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo) B-containing lipoproteins and on the intestinal expression of key genes involved in lipoprotein metabolism. Design Dyslipidemic and IR men (n = 36) were recruited for this double-blind, randomized, crossover, controlled trial. Subjects consumed, in a random order, a fully controlled diet rich in SFAs (SFAs: 13.4% of energy; ω-6 PUFAs: 4.0%) and a fully controlled diet rich in ω-6 PUFAs (SFAs: 6.0%; ω-6 PUFAs: 11.3%) for periods of 4 wk, separated by a 4-wk washout period. At the end of each diet, the in vivo kinetics of apoB-containing lipoproteins were measured and the intestinal expression of key genes involved in lipoprotein metabolism was quantified in duodenal biopsies taken from each participant. Results The substitution of ω-6 PUFAs for SFAs had no impact on TRL apoB-48 fractional catabolic rate (Δ = -3.8%, P = 0.7) and production rate (Δ = +1.2%, P = 0.9), although it downregulated the intestinal expression of the microsomal triglyceride transfer protein (Δ = -18.4%, P = 0.006) and apoB (Δ = -16.6%, P = 0.005). The substitution of ω-6 PUFAs for SFAs decreased the LDL apoB-100 pool size (Δ = -7.8%; P = 0.005). This difference was attributed to a reduction in the LDL apoB-100 production rate after the substitution of ω-6 PUFAs for SFAs (Δ = -10.0%; P = 0.003). Conclusions This study demonstrates that the substitution of dietary ω-6 PUFAs for SFAs decreases the production and number of LDL particles in men with dyslipidemia and IR. This trial was registered at clinicaltrials.gov as NCT01934543.
Collapse
Affiliation(s)
| | - André J Tremblay
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Marie-Claude Lépine
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Valéry Lemelin
- Department of Gastroenterology and Lipid Research Center, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada,Lipid Research Center, CHU de Québec-Université Laval, Quebec City, Quebec, Canada,Address correspondence to PC (e-mail: )
| |
Collapse
|
11
|
Fallaize R, Carvalho-Wells AL, Tierney AC, Marin C, Kieć-Wilk B, Dembińska-Kieć A, Drevon CA, DeFoort C, Lopez-Miranda J, Risérus U, Saris WH, Blaak EE, Roche HM, Lovegrove JA. APOE genotype influences insulin resistance, apolipoprotein CII and CIII according to plasma fatty acid profile in the Metabolic Syndrome. Sci Rep 2017; 7:6274. [PMID: 28740125 PMCID: PMC5524844 DOI: 10.1038/s41598-017-05802-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
Abstract
Metabolic markers associated with the Metabolic Syndrome (MetS) may be affected by interactions between the APOE genotype and plasma fatty acids (FA). In this study, we explored FA-gene interactions between the missense APOE polymorphisms and FA status on metabolic markers in MetS. Plasma FA, blood pressure, insulin sensitivity and lipid concentrations were determined at baseline and following a 12-week randomized, controlled, parallel, dietary FA intervention in 442 adults with MetS (LIPGENE study). FA-APOE gene interactions at baseline and following change in plasma FA were assessed using adjusted general linear models. At baseline E4 carriers had higher plasma concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (apo B) compared with E2 carriers; and higher TC, LDL-C and apo B compared with E3/E3. Whilst elevated plasma n-3 polyunsaturated FA (PUFA) was associated with a beneficially lower concentration of apo CIII in E2 carriers, a high proportion of plasma C16:0 was associated with insulin resistance in E4 carriers. Following FA intervention, a reduction in plasma long-chain n-3 PUFA was associated with a reduction in apo CII concentration in E2 carriers. Our novel data suggest that individuals with MetS may benefit from personalized dietary interventions based on APOE genotype.
Collapse
Affiliation(s)
- Rosalind Fallaize
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Andrew L Carvalho-Wells
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Audrey C Tierney
- Nutrigenomics Research Group, University College Dublin Conway Institute, University College Dublin, Dublin, Ireland
| | - Carmen Marin
- Lipids and Atherosclerosis Unit. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Beata Kieć-Wilk
- Department of Metabolic Diseases, University Medical College, Krakow, Poland
| | - Aldona Dembińska-Kieć
- Department of Clinical Biochemistry, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - José Lopez-Miranda
- Lipids and Atherosclerosis Unit. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Ulf Risérus
- Department of Public Health and Caring Sciences/Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Wim H Saris
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+) Maastricht, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+) Maastricht, Maastricht, The Netherlands
| | - Helen M Roche
- Nutrigenomics Research Group, University College Dublin Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
12
|
Effect of diets rich in either saturated fat or n-6 polyunsaturated fatty acids and supplemented with long-chain n-3 polyunsaturated fatty acids on plasma lipoprotein profiles. Eur J Clin Nutr 2017; 71:1297-1302. [PMID: 28488685 DOI: 10.1038/ejcn.2017.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/26/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Abnormalities in lipoprotein profiles (size, distribution and concentration) play an important role in the pathobiology of atherosclerosis and coronary artery disease. Dietary fat, among other factors, has been demonstrated to modulate lipoprotein profiles. We aimed to investigate if background dietary fat (saturated, SFA versus omega-6 polyunsaturated fatty acids, n-6PUFA) was a determinant of the effects of LCn-3PUFA supplementation on lipoprotein profiles. SUBJECTS/METHODS A randomized controlled clinical intervention trial in a parallel design was conducted. Healthy subjects (n=26) were supplemented with 400 mg eicosapentaenoic acid plus 2000 mg docosahexaenoic acid daily and randomized to consume diets rich in either SFA or n-6PUFA for a period of 6 weeks. Blood samples, collected at baseline and after 6 weeks of intervention, were assessed for plasma lipoprotein profiles (lipoprotein size, concentration and distribution in subclasses) determined using nuclear magnetic resonance spectroscopy. RESULTS Study participants receiving the SFA or the n-6PUFA enriched diets consumed similar percentage energy from fat (41 and 42% respectively, P=0.681). However, subjects on the SFA diet consumed 50% more energy as saturated fat and 77% less as linoleic acid than those consuming the n-6PUFA diet (P<0.001). The diets rich in SFA and n-6PUFA reduced the concentration of total very-low-density lipoprotein (VLDL) particles (P<0.001, both), and their subclasses and increased VLDL (P=0.042 and P=0.007, respectively) and LDL (P=0.030 and 0.027, respectively) particle size. In addition, plasma triglyceride concentration was significantly reduced by LCn-3PUFA supplementation irrespective of the dietary fat. CONCLUSIONS LCn-3PUFA modulated lipoprotein profiles in a similar fashion when supplemented in diets rich in either SFA or n-6PUFA.
Collapse
|
13
|
A randomized trial and novel SPR technique identifies altered lipoprotein-LDL receptor binding as a mechanism underlying elevated LDL-cholesterol in APOE4s. Sci Rep 2017; 7:44119. [PMID: 28276521 PMCID: PMC5343425 DOI: 10.1038/srep44119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/03/2017] [Indexed: 11/10/2022] Open
Abstract
At a population level APOE4 carriers (~25% Caucasians) are at higher risk of cardiovascular diseases. The penetrance of genotype is however variable and influenced by dietary fat composition, with the APOE4 allele associated with greater LDL-cholesterol elevation in response to saturated fatty acids (SFA). The etiology of this greater responsiveness is unknown. Here a novel surface plasmon resonance technique (SPR) is developed and used, along with hepatocyte (with the liver being the main organ modulating lipoprotein metabolism and plasma lipid levels) uptake studies to establish the impact of dietary fatty acid composition on, lipoprotein-LDL receptor (LDLR) binding, and hepatocyte uptake, according to APOE genotype status. In men prospectively recruited according to APOE genotype (APOE3/3 common genotype, or APOE3/E4), triglyceride-rich lipoproteins (TRLs) were isolated at fasting and 4–6 h following test meals rich in SFA, unsaturated fat and SFA with fish oil. In APOE4s a greater LDLR binding affinity of postprandial TRL after SFA, and lower LDL binding and hepatocyte internalization, provide mechanisms for the greater LDL-cholesterol raising effect. The SPR technique developed may be used for the future study of the impact of genotype, and physiological and behavioral variables on lipoprotein metabolism. Trial registration number NCT01522482.
Collapse
|
14
|
de Figueiredo PRL, Oliveira IB, Neto JBS, de Oliveira JA, Ribeiro LB, de Barros Viana GS, Rocha TM, Leal LKAM, Kerntopf MR, Felipe CFB, Coutinho HDM, de Alencar Menezes IR. Caryocar coriaceum Wittm. (Pequi) fixed oil presents hypolipemic and anti-inflammatory effects in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:87-94. [PMID: 27321275 DOI: 10.1016/j.jep.2016.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Caryocar coriaceum Wittm. (Pequi) is found in southern Ceará, where the fruit is used as food and in folk medicine as an anti-inflammatory, and to promote healing. However, little is known about the effects of repeated administration of its oil on the biochemical parameters of the blood. This work aimed to evaluate the effects Caryocar coriaceum fixed oil (OFCC); on the lipid profiles of healthy mice, on dyslipidemia induced by tyloxapol, and to study its anti-inflammatory effect both in vivo and in vitro. The results revealed significant reduction in total serum cholesterol and triglycerides, and an increase in HDL-C. The paw edema (induced by carrageenan) and myeloperoxidase (MPO), in polymorphonuclear culture cells, was reduced at all dose levels. Results demonstrated that Caryocar coriaceum's fix oil present anti-inflammatory activity and, for the first time describe the hypolipidemic effects, supporting its traditional use and suggest that present a potential cardioprotective effect.
Collapse
Affiliation(s)
- Patrícia Rosane Leite de Figueiredo
- Laboratório de Biofisiologia e Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte - Estácio/FMJ, Avenida Tenente Raimundo Rocha s/n, CEP 63040-360 Juazeiro do Norte, Brazil
| | - Isabella Bezerra Oliveira
- Laboratório de Biofisiologia e Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte - Estácio/FMJ, Avenida Tenente Raimundo Rocha s/n, CEP 63040-360 Juazeiro do Norte, Brazil
| | - José Benício Santana Neto
- Laboratório de Biofisiologia e Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte - Estácio/FMJ, Avenida Tenente Raimundo Rocha s/n, CEP 63040-360 Juazeiro do Norte, Brazil
| | - Juliana Albuquerque de Oliveira
- Laboratório de Biofisiologia e Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte - Estácio/FMJ, Avenida Tenente Raimundo Rocha s/n, CEP 63040-360 Juazeiro do Norte, Brazil
| | - Larissa Bernardo Ribeiro
- Laboratório de Biofisiologia e Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte - Estácio/FMJ, Avenida Tenente Raimundo Rocha s/n, CEP 63040-360 Juazeiro do Norte, Brazil
| | - Glauce Socorro de Barros Viana
- Laboratório de Biofisiologia e Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte - Estácio/FMJ, Avenida Tenente Raimundo Rocha s/n, CEP 63040-360 Juazeiro do Norte, Brazil
| | - Talita Magalhães Rocha
- Laboratório de Farmacognosia, Universidade Federal do Ceará - UFC, Rua Capitão Francisco Pedro, 1210, Rodolfo Teófilo, CEP 60430-370 Fortaleza, Brazil
| | - Luzia Kalyne Almeida Moreira Leal
- Laboratório de Farmacognosia, Universidade Federal do Ceará - UFC, Rua Capitão Francisco Pedro, 1210, Rodolfo Teófilo, CEP 60430-370 Fortaleza, Brazil
| | - Marta Regina Kerntopf
- Laboratório de Farmacologia e Química Molecular - LFQM, Universidade Regional do Cariri - URCA, Rua Cel Antônio Luiz, 1161, Pimenta, CEP 63105-000 Crato, Brazil
| | - Cícero Francisco Bezerra Felipe
- Departamento de Biologia Molecular - DBM, Universidade Federal da Paraíba - UFPB, Campus I - Jardim Cidade Universitária, CEP 58059-900 João Pessoa, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratório de Microbiologia e Biologia Molecular - LMBM Universidade Regional do Cariri - URCA, Rua Cel Antônio Luiz, 1161, Pimenta, CEP 63105-000, Crato, Brazil
| | - Irwin Rose de Alencar Menezes
- Laboratório de Farmacologia e Química Molecular - LFQM, Universidade Regional do Cariri - URCA, Rua Cel Antônio Luiz, 1161, Pimenta, CEP 63105-000 Crato, Brazil.
| |
Collapse
|
15
|
Dias CB, Wood LG, Garg ML. Effects of dietary saturated and n-6 polyunsaturated fatty acids on the incorporation of long-chain n-3 polyunsaturated fatty acids into blood lipids. Eur J Clin Nutr 2016; 70:812-8. [PMID: 26757835 DOI: 10.1038/ejcn.2015.213] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/26/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND/OBJECTIVES Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. SUBJECTS/METHODS In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). RESULTS Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. CONCLUSIONS The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.
Collapse
Affiliation(s)
- C B Dias
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - L G Wood
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - M L Garg
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
16
|
Lovegrove JA, Commane DM, Jackson KG, Karani V, Kennedy OB, Kuhnle GG, Spencer JPE, Wagstaff C, Yaqoob P. The Hugh Sinclair Unit of Human Nutrition - 20 years of research 1995-2015. NUTR BULL 2015. [DOI: 10.1111/nbu.12176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - D. M. Commane
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - K. G. Jackson
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - V. Karani
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - O. B. Kennedy
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - G. G. Kuhnle
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - J. P. E. Spencer
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - C. Wagstaff
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| | - P. Yaqoob
- Hugh Sinclair Unit of Human Nutrition; Department of Food and Nutritional Sciences; University of Reading, Whiteknights; Reading UK
| |
Collapse
|
17
|
Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 2015; 16:3831-55. [PMID: 25674855 PMCID: PMC4346929 DOI: 10.3390/ijms16023831] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/19/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.
Collapse
|
18
|
Calabuig-Navarro MV, Jackson KG, Walden CM, Minihane AM, Lovegrove JA. Apolipoprotein E genotype has a modest impact on the postprandial plasma response to meals of varying fat composition in healthy men in a randomized controlled trial. J Nutr 2014; 144:1775-80. [PMID: 25332476 DOI: 10.3945/jn.114.197244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Apolioprotein E (APOE) genotype is reported to influence a person's fasting lipid profile and potentially the response to dietary fat manipulation. The impact of APOE genotype on the responsiveness to meals of varying fat composition is unknown. OBJECTIVE We examined the effect of meals containing 50 g of fat rich in saturated fatty acids (SFAs), unsaturated fatty acids (UNSATs), or SFAs with fish oil (SFA-FO) on postprandial lipemia. METHOD A randomized, controlled, test meal study was performed in men recruited according to the APOE genotype (n = 10 APOE3/3, n = 11 APOE3/E4). RESULTS For the serum apoE response (meal × genotype interaction P = 0.038), concentrations were on average 8% lower after the UNSAT than the SFA-FO meal in APOE4 carriers (P = 0.015) only. In the genotype groups combined, there was a delay in the time to reach maximum triacylglycerol (TG) concentration (mean ± SEM: 313 ± 25 vs. 266 ± 27 min) and higher maximum nonesterified fatty acid (0.73 ± 0.05 vs. 0.60 ± 0.03 mmol/L) and glucose (7.92 ± 0.22 vs. 7.25 ± 0.22 mmol/L) concentrations after the SFA than the UNSAT meal, respectively (P ≤ 0.05). In the Svedberg flotation rate 60-400 TG-rich lipoprotein fraction, meal × genotype interactions were observed for incremental area under the curve (IAUC) for the TG (P = 0.038) and apoE (P = 0.016) responses with a 58% lower apoE IAUC after the UNSAT than the SFA meal (P = 0.017) in the E4 carriers. CONCLUSIONS Our data indicate that APOE genotype had a modest impact on the postprandial response to meals of varying fat composition in normolipidemic men. The physiologic importance of greater apoE concentrations after the SFA-rich meals in APOE4 carriers may reflect an impact on TG-rich lipoprotein clearance from the circulation. This trial was registered at clinicaltrials.gov as NCT01522482.
Collapse
Affiliation(s)
- M Virtu Calabuig-Navarro
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK; and
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK; and
| | | | - Anne-Marie Minihane
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, and
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK; and
| |
Collapse
|
19
|
Vauzour D, Tejera N, O'Neill C, Booz V, Jude B, Wolf IMA, Rigby N, Silvan JM, Curtis PJ, Cassidy A, de Pascual-Teresa S, Rimbach G, Minihane AM. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans. J Nutr Biochem 2014; 26:211-8. [PMID: 25573539 PMCID: PMC4336242 DOI: 10.1016/j.jnutbio.2014.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/04/2014] [Accepted: 09/11/2014] [Indexed: 11/29/2022]
Abstract
Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status.
Collapse
Affiliation(s)
- David Vauzour
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| | - Noemi Tejera
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Colette O'Neill
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Valeria Booz
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Baptiste Jude
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Insa M A Wolf
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University, D-24118 Kiel, Germany
| | - Neil Rigby
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Jose Manuel Silvan
- Deparment of Metabolism and Nutrition, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, 28040 Madrid, Spain
| | - Peter J Curtis
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Aedin Cassidy
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Sonia de Pascual-Teresa
- Deparment of Metabolism and Nutrition, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, José Antonio Novais 10, 28040 Madrid, Spain
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University, D-24118 Kiel, Germany
| | - Anne Marie Minihane
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
20
|
Noto FK, Determan MR, Cai J, Cayo MA, Mallanna SK, Duncan SA. Aneuploidy is permissive for hepatocyte-like cell differentiation from human induced pluripotent stem cells. BMC Res Notes 2014; 7:437. [PMID: 25002137 PMCID: PMC4105394 DOI: 10.1186/1756-0500-7-437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/30/2014] [Indexed: 12/25/2022] Open
Abstract
Background The characterization of induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) routinely includes analyses of chromosomal integrity. The belief is that pluripotent stem cells best suited to the generation of differentiated derivatives should display a euploid karyotype; although, this does not appear to have been formally tested. While aneuploidy is commonly associated with cell transformation, several types of somatic cells, including hepatocytes, are frequently aneuploid and variation in chromosomal content does not contribute to a transformed phenotype. This insight has led to the proposal that dynamic changes in the chromosomal environment may be important to establish genetic diversity within the hepatocyte population and such diversity may facilitate an adaptive response by the liver to various insults. Such a positive contribution of aneuploidy to liver function raises the possibility that, in contrast to existing dogma, aneuploid iPSCs may be capable of generating hepatocyte-like cells that display hepatic activities. Results We examined whether a human iPSC line that had multiple chromosomal aberrations was competent to differentiate into hepatocytes and found that loss of normal chromosomal content had little impact on the production of hepatocyte-like cells from iPSCs. Conclusions iPSCs that harbor an abnormal chromosomal content retain the capacity to generate hepatocyte–like cells with high efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
21
|
Sheu MJ, Hsieh YY, Lai CH, Chang CC, Wu CH. Antihyperlipidemic and Antioxidant Effects of C-phycocyanin in Golden Syrian Hamsters Fed with a Hypercholesterolemic Diet. J Tradit Complement Med 2014; 3:41-7. [PMID: 24716154 PMCID: PMC3924977 DOI: 10.4103/2225-4110.106545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyperlipidemia and oxidation play major roles upon cardiovascular diseases (CVDs). C-phycocyanin (CPC), the major component in blue-green algae, possesses antiinflammatory and radical scavenging properties. Herein we aimed to investigate the effect of CPC upon lipid metabolism and its antioxidant effects. Golden Syrian hamsters were randomly assigned to five groups: (1) control; (2) 0.2% cholesterol; (3) 0.2% cholesterol+ 1% lopid; (4) 0.2% cholesterol+ 0.25% CPC; and (5) 0.2% cholesterol+ 1.25% CPC. All animals were sacrificed after 8-week feeding. Serum cholesterol, triglyceride (TG), low-density lipoprotein (LDL), glutamate-oxaloacetate transaminase (GOT), and glutamate-pyruvate transaminase (GPT) were examined. The diene conjugation in the Cu2+-mediated oxidation of LDL was measured. The protein levels of several antioxidative enzymes including catalase (CAT), superoxide dismutases (SOD), and glutathione peroxidase (GPx) of liver were assayed. HepG2 cells were cultured in medium containing various concentrations of CPC (0, 1, 15, and 30 μM). The mRNA concentrations of LDL receptor, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA) reductase, SOD-1 and GPx of HepG2 cells in each group were analyzed. CPC was effective in lowering serum cholesterol, total cholesterol (TC), TG, LDL, GOT, and GPT. CPC was found to decrease the malondialdehyde (MDA) equivalents and delay the diene conjugation in the Cu2+-mediated oxidation of LDL. CPC increase the enzyme expressions of CAT, SOD, and GPx. CPC concentrations were positively correlated with the mRNA level of LDL receptor while the mRNA levels of HMG CoA reductase, SOD-1, and GPx in HepG2 cells were not affected. The lipid-lowering and antioxidation effects of CPC suggest its roles in prevention of CVD and atherosclerotic formation.
Collapse
Affiliation(s)
- Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung, Taiwan. ; Contributed equally
| | - Yao-Yuan Hsieh
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan. ; Contributed equally
| | - Ching-Hsiu Lai
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chi-Chen Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan. ; Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014; 54:86-112. [PMID: 24607340 DOI: 10.1016/j.plipres.2014.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Triacyglycerols are a major energy reserve of the body and are normally stored in adipose tissue as lipid droplets (LDs). The liver, however, stores energy as glycogen and digested triglycerides in the form of fatty acids. In stressed condition such as obesity, imbalanced nutrition and drug induced liver injury hepatocytes accumulate excess lipids in the form of LDs whose prolonged storage leads to disease conditions most notably non-alcoholic fatty liver disease (NAFLD). Fatty liver disease has become a major health burden with more than 90% of obese, nearly 70% of overweight and about 25% of normal weight patients being affected. Notably, research in recent years has shown LD as highly dynamic organelles for maintaining lipid homeostasis through fat storage, protein sorting and other molecular events studied in adipocytes and other cells of living organisms. This review focuses on the molecular events of LD formation in hepatocytes and the importance of cross talk between different cell types and their signalling in NAFLD as to provide a perspective on molecular mechanisms as well as possibilities for different therapeutic intervention strategies.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
23
|
Ooi EMM, Lichtenstein AH, Millar JS, Diffenderfer MR, Lamon-Fava S, Rasmussen H, Welty FK, Barrett PHR, Schaefer EJ. Effects of Therapeutic Lifestyle Change diets high and low in dietary fish-derived FAs on lipoprotein metabolism in middle-aged and elderly subjects. J Lipid Res 2012; 53:1958-67. [PMID: 22773687 PMCID: PMC3413235 DOI: 10.1194/jlr.p024315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/02/2012] [Indexed: 12/16/2022] Open
Abstract
The effects of Therapeutic Lifestyle Change (TLC) diets, low and high in dietary fish, on apolipoprotein metabolism were examined. Subjects were provided with a Western diet for 6 weeks, followed by 24 weeks of either of two TLC diets (10/group). Apolipoprotein kinetics were determined in the fed state using stable isotope methods and compartmental modeling at the end of each phase. Only the high-fish diet decreased median triglyceride-rich lipoprotein (TRL) apoB-100 concentration (-23%), production rate (PR, -9%), and direct catabolism (-53%), and increased TRL-to-LDL apoB-100 conversion (+39%) as compared with the baseline diet (all P < 0.05). This diet also decreased TRL apoB-48 concentration (-24%), fractional catabolic rate (FCR, -20%), and PR (-50%) as compared with the baseline diet (all P < 0.05). The high-fish and low-fish diets decreased LDL apoB-100 concentration (-9%, -23%), increased LDL apoB-100 FCR (+44%, +48%), and decreased HDL apoA-I concentration (-15%, -14%) and PR (-11%, -12%) as compared with the baseline diet (all P < 0.05). On the high-fish diet, changes in TRL apoB-100 PR were negatively correlated with changes in plasma eicosapentaenoic and docosahexaenoic acids. In conclusion, the high-fish diet decreased TRL apoB-100 and TRL apoB-48 concentrations chiefly by decreasing their PR. Both diets decreased LDL apoB-100 concentration by increasing LDL apoB-100 FCR and decreased HDL apoA-I concentration by decreasing HDL apoA-I PR.
Collapse
Affiliation(s)
- Esther M. M. Ooi
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
- Metabolic Research Centre, School of Medicine &
Pharmacology and Faculty of Engineering, Computing and Mathematics,
University of Western Australia, Perth, Western
Australia, Australia
| | - Alice H. Lichtenstein
- Cardiovascular Nutrition Laboratory,
Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA
| | - John S. Millar
- Institute for Translational Medicine and
Therapeutics, Institute for Diabetes, Obesity and Metabolism, University
of Pennsylvania, Philadelphia, PA; and
| | - Margaret R. Diffenderfer
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| | - Stefania Lamon-Fava
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| | - Helen Rasmussen
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| | - Francine K. Welty
- Division of Cardiology, Beth Israel
Deaconess Medical Center, Harvard Medical School, Boston,
MA
| | - P. Hugh R. Barrett
- Metabolic Research Centre, School of Medicine &
Pharmacology and Faculty of Engineering, Computing and Mathematics,
University of Western Australia, Perth, Western
Australia, Australia
| | - Ernst J. Schaefer
- Lipid Metabolism Laboratory, Jean
Mayer USDA Human Nutrition Research Center on Aging at Tufts
University, Boston, MA and
| |
Collapse
|
24
|
Lottenberg AM, Afonso MDS, Lavrador MSF, Machado RM, Nakandakare ER. The role of dietary fatty acids in the pathology of metabolic syndrome. J Nutr Biochem 2012; 23:1027-40. [PMID: 22749135 DOI: 10.1016/j.jnutbio.2012.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 01/21/2023]
Abstract
Dysfunctional lipid metabolism is a key component in the development of metabolic syndrome, a very frequent condition characterized by dyslipidemia, insulin resistance, abdominal obesity and hypertension, which are related to an elevated risk for type 2 diabetes mellitus. The prevalence of metabolic syndrome is strongly associated with the severity of obesity; its physiopathology is related to both genetics and food intake habits, especially the consumption of a high-caloric, high-fat and high-carbohydrate diet. With the progress of scientific knowledge in the field of nutrigenomics, it was possible to elucidate how the majority of dietary fatty acids influence plasma lipid metabolism and also the genes expression involved in lipolysis and lipogenesis within hepatocytes and adipocytes. The aim of this review is to examine the relevant mechanistic aspects of dietary fatty acids related to blood lipids, adipose tissue metabolism, hepatic fat storage and inflammatory process, all of them closely related to the genesis of metabolic syndrome.
Collapse
|
25
|
Sage AT, Walter LA, Shi Y, Khan MI, Kaneto H, Capretta A, Werstuck GH. Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells. Am J Physiol Endocrinol Metab 2010; 298:E499-511. [PMID: 19952345 DOI: 10.1152/ajpendo.00507.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is increasing evidence that endoplasmic reticulum (ER) stress contributes to the development of atherosclerosis in diabetes mellitus. The purpose of this study was to determine the effects of increased hexosamine biosynthesis pathway (HBP) flux on ER stress levels and the complications of ER stress associated with diabetes and atherosclerosis in hepatic cells. Glutamine:fructose-6-phosphate amidotransferase (GFAT), the rate-limiting enzyme of the HBP, was overexpressed in HepG2 cells by use of an adenoviral expression system. The ER stress response and downstream effects, including activation of lipid and inflammatory pathways, were determined using real-time PCR, immunoblot analysis, and cell staining techniques. GFAT overexpression resulted in increased expression of ER stress markers, including Grp78, Grp94, calreticulin, and GADD153, relative to cells infected with an empty adenoviral vector. In addition, GFAT overexpression promoted lipid, but not cholesterol, accumulation in hepatic cells as well as inflammatory pathway activation. Treatment with 6-diazo-5-oxo-norleucine, a GFAT antagonist, blocked the effects of GFAT overexpression. Consistent with our in vitro data, hyperglycemic mice presented with elevated markers of hepatic ER stress, glucosamine and lipid accumulation. Together, these data suggest that HBP flux-induced ER stress plays a role in the development of hepatic steatosis and atherosclerosis under conditions of hyperglycemia.
Collapse
Affiliation(s)
- Andrew T Sage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Dietary fats, cerebrovasculature integrity and Alzheimer's disease risk. Prog Lipid Res 2009; 49:159-70. [PMID: 19896503 DOI: 10.1016/j.plipres.2009.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 10/30/2009] [Accepted: 10/30/2009] [Indexed: 01/08/2023]
Abstract
An emerging body of evidence is consistent with the hypothesis that dietary fats influence Alzheimer's disease (AD) risk, but less clear is the mechanisms by which this occurs. Alzheimer's is an inflammatory disorder, many consider in response to fibrillar formation and extracellular deposition of amyloid-beta (Abeta). Alternatively, amyloidosis could notionally be a secondary phenomenon to inflammation, because some studies suggest that cerebrovascular disturbances precede amyloid plaque formation. Hence, dietary fats may influence AD risk by either modulating Abeta metabolism, or via Abeta independent pathways. This review explores these two possibilities taking into consideration; (i) the substantial affinity of Abeta for lipids and its ordinary metabolism as an apolipoprotein; (ii) evidence that Abeta has potent vasoactive properties and (iii) studies which show that dietary fats modulate Abeta biogenesis and secretion. We discuss accumulating evidence that dietary fats significantly influence cerebrovascular integrity and as a consequence altered Abeta kinetics across the blood-brain barrier (BBB). Specifically, chronic ingestion of saturated fats or cholesterol appears to results in BBB dysfunction and exaggerated delivery from blood-to-brain of peripheral Abeta associated with lipoproteins of intestinal and hepatic origin. Interestingly, the pattern of saturated fat/cholesterol induced cerebrovascular disturbances in otherwise normal wild-type animal strains is analogous to established models of AD genetically modified to overproduce Abeta, consistent with a causal association. Saturated fats and cholesterol may exacerbate Abeta induced cerebrovascular disturbances by enhancing exposure of vessels of circulating Abeta. However, presently there is no evidence to support this contention. Rather, SFA and cholesterol appear to more broadly compromise BBB integrity with the consequence of plasma protein leakage into brain, including lipoprotein associated Abeta. The latter findings are consistent with the concept that AD is a dietary-fat induced phenotype of vascular dementia, reflecting the extraordinary entrapment of peripherally derived lipoproteins endogenously enriched in Abeta. Rather than being the initiating trigger for inflammation in AD, accumulation of extracellular lipoprotein-Abeta may be a secondary amplifier of dietary induced inflammation, or possibly, simply be consequential. Clearly, delineating the mechanisms by which dietary fats increase AD risk may be informative in developing new strategies for prevention and treatment of AD.
Collapse
|
27
|
Lausada N, de Gómez Dumm INT, Raimondi JC, de Alaniz MJT. Effect of cyclosporine and sirolimus on fatty acid desaturase activities in cultured HEPG2 cells. Transplant Proc 2009; 41:1865-70. [PMID: 19545746 DOI: 10.1016/j.transproceed.2009.03.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 02/13/2009] [Accepted: 03/09/2009] [Indexed: 11/30/2022]
Abstract
The aim of the present work was to evaluate the influence of cyclosporine (CsA) and sirolimus (SRL) on fatty acid (FA) desaturase activities. These enzymes (named Delta9, Delta6, and Delta5 desaturases) catalyze reactions leading to the biosynthesis of n-9, n-6, and n-3 FA families. n-3 FA family, derived from alpha-linolenic acid, is involved in the prevention of vascular events, which appear after successful kidney transplantation. Five groups of HepG(2) cells in culture were treated with either CsA (1 microg/microL and 2 microg/microL) or SRL (10 ng/mL and 20 ng/mL) for 3 days, including a control group without immunosuppressive treatment. We studied the incorporation and metabolic conversion of radioactive [1-(14)C]palmitic, linoleic, and eicosatrienoic acids. We also analyzed fatty acid composition. The distribution of radioactive metabolic products after incubation of these cells with [1-(14)C]palmitic acid revealed a decrease in Delta9 desaturase activity in the presence of each immunosuppressive drug: CsA = 0.61 +/- 0.01; SRL = 0.59 +/- 0.04 versus control = 0.79 +/- 0.05 (P < .01). We observed a significant increase in Delta6 and Delta5 desaturase activities under the influence of the immunosuppressive drugs: radiolabeled linoleic acid (CsA: 0.93 +/- 0.04; SRL: 1.02 +/- 0.03 vs control 0.60 +/- 0.03; P < .01) and eicosatrienoic acid (CsA: 1.12 +/- 0.02; SRL: 1.07 +/- 0.01 vs control 0.75 +/- 0.01; P < .01). In conclusion, CsA and SRL modulated the biosynthesis of polyunsaturated FAs, decreasing Delta9 desaturase and increasing Delta6 and Delta5 desaturase activities.
Collapse
Affiliation(s)
- N Lausada
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata, Universidad Nacional de La Plata.
| | | | | | | |
Collapse
|
28
|
Olano-Martin E, Anil E, Caslake MJ, Packard CJ, Bedford D, Stewart G, Peiris D, Williams CM, Minihane AM. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis 2009; 209:104-10. [PMID: 19748619 DOI: 10.1016/j.atherosclerosis.2009.08.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 08/09/2009] [Accepted: 08/14/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the impact of apolipoprotein E (apoE) genotype on the response of the plasma lipoprotein profile to eicosapentaenoic acid (EPA) versus docosahexaenoic acid (DHA) intervention in humans. METHODS AND RESULTS 38 healthy normolipidaemic males, prospectively recruited on the basis of apoE genotype (n=20 E3/E3 and n=18 E3/E4), completed a double-blind placebo-controlled cross-over trial, consisting of 3 x 4 week intervention arms of either control oil, EPA-rich oil (ERO, 3.3g EPA/day) or DHA-rich oil (DRO, 3.7g DHA/day) in random order, separated by 10 week wash-out periods. A significant genotype-independent 28% and 19% reduction in plasma triglycerides in response to ERO and DRO was observed. For total cholesterol (TC), no significant treatment effects were evident; however a significant genotype by treatment interaction emerged (P=0.045), with a differential response to ERO and DRO in E4 carriers. Although the genotype x treatment interaction for LDL-cholesterol (P=0.089) did not reach significance, within DRO treatment analysis indicated a 10% increase in LDL (P=0.029) in E4 carriers with a non-significant 4% reduction in E3/E3 individuals. A genotype-independent increase in LDL mass was observed following DRO intervention (P=0.018). Competitive uptake studies in HepG2 cells using plasma very low density lipoproteins (VLDL) from the human trial, indicated that following DRO treatment, VLDL(2) fractions obtained from E3/E4 individuals resulted in a significant 32% (P=0.002) reduction in LDL uptake relative to the control. CONCLUSIONS High dose DHA supplementation is associated with increases in total cholesterol in E4 carriers, which appears to be due to an increase in LDL-C and may in part negate the cardioprotective action of DHA in this population subgroup.
Collapse
Affiliation(s)
- Estibaliz Olano-Martin
- Hugh Sinclair Unit of Nutrition, School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Reading, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lottenberg AMP. Importância da gordura alimentar na prevenção e no controle de distúrbios metabólicos e da doença cardiovascular. ACTA ACUST UNITED AC 2009; 53:595-607. [DOI: 10.1590/s0004-27302009000500012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
A Organização Mundial da Saúde (OMS) reiterou recentemente que o consumo de dietas inadequadas e a inatividade física estão entre os dez principais fatores de mortalidade. Diversos ensaios aleatorizados demonstram que intervenções alimentares adequadas podem diminuir ou prevenir significativamente o aparecimento de várias doenças crônicas não transmissíveis. Neste contexto, o papel da dieta vem sendo exaustivamente avaliado em estudos clínicos e epidemiológicos. Assim, já foi bem estabelecido na literatura que a quantidade e o tipo de gordura alimentar exercem influência direta sobre fatores de risco cardiovascular, tais como a concentração de lípides e de lipoproteínas plasmáticas, bem como sua associação a processos inflamatórios. Os ácidos graxos participam de complexos sistemas de sinalização intracelular, função que vem sendo bastante explorada. Os ácidos graxos poli-insaturados não somente influenciam a composição das membranas, metabolismo celular e sinais de tradução, mas também modulam a expressão de genes, regulando a atividade e a produção de diversos fatores de transcrição. A proposta deste artigo é rever tópicos relevantes referentes ao metabolismo de lípides e os relacionar a terapias nutricionais que possam contribuir para a prevenção e o tratamento de doenças associadas.
Collapse
|
30
|
Tindall M, Wattis J, O’Malley B, Pickersgill L, Jackson K. A continuum receptor model of hepatic lipoprotein metabolism. J Theor Biol 2009; 257:371-84. [DOI: 10.1016/j.jtbi.2008.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
|
31
|
Wattis JAD, O'Malley B, Blackburn H, Pickersgill L, Panovska J, Byrne HM, Jackson KG. Mathematical model for low density lipoprotein (LDL) endocytosis by hepatocytes. Bull Math Biol 2008; 70:2303-33. [PMID: 18716843 PMCID: PMC2784520 DOI: 10.1007/s11538-008-9347-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/16/2008] [Indexed: 12/12/2022]
Abstract
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.
Collapse
Affiliation(s)
- J A D Wattis
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Pearson T, Wattis JAD, O'Malley B, Pickersgill L, Blackburn H, Jackson KG, Byrne HM. Mathematical modelling of competitive LDL/VLDL binding and uptake by hepatocytes. J Math Biol 2008; 58:845-80. [PMID: 18704423 PMCID: PMC2798995 DOI: 10.1007/s00285-008-0205-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/16/2008] [Indexed: 11/24/2022]
Abstract
Elevated levels of low-density-lipoprotein cholesterol (LDL-C) in the plasma are a well-established risk factor for the development of coronary heart disease. Plasma LDL-C levels are in part determined by the rate at which LDL particles are removed from the bloodstream by hepatic uptake. The uptake of LDL by mammalian liver cells occurs mainly via receptor-mediated endocytosis, a process which entails the binding of these particles to specific receptors in specialised areas of the cell surface, the subsequent internalization of the receptor-lipoprotein complex, and ultimately the degradation and release of the ingested lipoproteins' constituent parts. We formulate a mathematical model to study the binding and internalization (endocytosis) of LDL and VLDL particles by hepatocytes in culture. The system of ordinary differential equations, which includes a cholesterol-dependent pit production term representing feedback regulation of surface receptors in response to intracellular cholesterol levels, is analysed using numerical simulations and steady-state analysis. Our numerical results show good agreement with in vitro experimental data describing LDL uptake by cultured hepatocytes following delivery of a single bolus of lipoprotein. Our model is adapted in order to reflect the in vivo situation, in which lipoproteins are continuously delivered to the hepatocyte. In this case, our model suggests that the competition between the LDL and VLDL particles for binding to the pits on the cell surface affects the intracellular cholesterol concentration. In particular, we predict that when there is continuous delivery of low levels of lipoproteins to the cell surface, more VLDL than LDL occupies the pit, since VLDL are better competitors for receptor binding. VLDL have a cholesterol content comparable to LDL particles; however, due to the larger size of VLDL, one pit-bound VLDL particle blocks binding of several LDLs, and there is a resultant drop in the intracellular cholesterol level. When there is continuous delivery of lipoprotein at high levels to the hepatocytes, VLDL particles still out-compete LDL particles for receptor binding, and consequently more VLDL than LDL particles occupy the pit. Although the maximum intracellular cholesterol level is similar for high and low levels of lipoprotein delivery, the maximum is reached more rapidly when the lipoprotein delivery rates are high. The implications of these results for the design of in vitro experiments is discussed.
Collapse
Affiliation(s)
- T Pearson
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Fish oil fatty acids improve postprandial vascular reactivity in healthy men. Clin Sci (Lond) 2008; 114:679-86. [PMID: 18052925 DOI: 10.1042/cs20070277] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic fish oil intervention had been shown to have a positive impact on endothelial function. Although high-fat meals have often been associated with a loss of postprandial vascular reactivity, studies examining the effects of fish oil fatty acids on vascular function in the postprandial phase are limited. The aim of the present study was to examine the impact of the addition of fish oil fatty acids to a standard test meal on postprandial vascular reactivity. A total of 25 men received in a random order either a placebo oil meal (40 g of mixed fat; fatty acid profile representative of the U.K. diet) or a fish oil meal (31 g of mixed fat and 9 g of fish oil) on two occasions. Vascular reactivity was measured at baseline (0 h) and 4 h after the meal by laser Doppler iontophoresis, and blood samples were taken for the measurement of plasma lipids, total nitrite, glucose and insulin. eNOS (endothelial NO synthase) and NADPH oxidase gene expression were determined in endothelial cells after incubation with TRLs (triacylglycerol-rich lipoproteins) isolated from the plasma samples taken at 4 h. Compared with baseline, sodium nitroprusside (an endothelium-independent vasodilator)-induced reactivity (P=0.024) and plasma nitrite levels (P=0.001) were increased after the fish oil meal. In endothelial cells, postprandial TRLs isolated after the fish oil meal increased eNOS and decreased NADPH oxidase gene expression compared with TRLs isolated following the placebo oil meal (P</=0.03). In conclusion, meal fatty acids appear to be an important determinant of vascular reactivity, with fish oils significantly improving postprandial endothelium-independent vasodilation.
Collapse
|
34
|
Minihane AM, Jofre-Monseny L, Olano-Martin E, Rimbach G. ApoE genotype, cardiovascular risk and responsiveness to dietary fat manipulation. Proc Nutr Soc 2007; 66:183-97. [PMID: 17466101 DOI: 10.1017/s0029665107005435] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiovascular risk is determined by the complex interactions between genetic and environmental factors. The apoE genotype represents the most-widely-studied single nucleotide polymorphism in relation to CVD risk, with >3600 publications cited in PubMed. Although originally described as a mediator of lipoprotein metabolism, the lipoprotein-independent functions of apoE are being increasingly recognised, with limited data available on the potential impact of genotype on these metabolic processes. Furthermore, although meta-analyses suggest that apoE4 carriers may have a 40-50% increased CVD risk, the associations reported in individual studies are highly heterogeneous and it is recognised that environmental factors such as smoking status and dietary fat composition influence genotype-phenotype associations. However, information is often derived from observational studies or small intervention trials in which retrospective genotyping of the cohort results in small group sizes in the rarer E2 and E4 subgroups. Either larger well-standardised intervention trials or smaller trials with prospective recruitment according to apoE genotype are needed to fully establish the impact of diet on genotype-CVD associations and to establish the potential of dietary strategies such as reduced total fat, saturated fat, or increased antioxidant intakes to counteract the increased CVD burden in apoE4 carriers.
Collapse
Affiliation(s)
- A M Minihane
- Hugh Sinclair Unit of Human Nutrition, School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|