1
|
Chini A, Guha P, Rishi A, Bhat N, Covarrubias A, Martinez V, Devejian L, Nguyen BN, Mandal SS. HDLR-SR-BI Expression and Cholesterol Uptake are Regulated via Indoleamine-2,3-dioxygenase 1 in Macrophages under Inflammation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11253-11271. [PMID: 40309829 DOI: 10.1021/acs.langmuir.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Macrophages play crucial roles in inflammation, and their dysfunction is a contributing factor to various human diseases. Maintaining the balance of cholesterol and lipid metabolism is central to macrophage function, and any disruption in this balance increases the risk of conditions such as cardiovascular disease, atherosclerosis, and others. HDLR-SR-BI (SR-BI) is pivotal for reverse cholesterol transport and cholesterol homeostasis. Our studies demonstrate that the expression of SR-BI is reduced along with a decrease in cholesterol uptake in macrophages, both of which are regulated by the activation of NF-κB. Furthermore, we have discovered that indoleamine-2,3-dioxygenase 1 (IDO1), which is a critical player in tryptophan (Trp) catabolism, is crucial to the regulation of SR-BI expression. Inflammation leads to elevated levels of IDO1 and the associated Trp catabolite kynurenine (KYN) in macrophages. Interestingly, knockdown or inhibition of IDO1 results in the downregulation of LPS-induced inflammation, decreased KYN levels, and the restoration of SR-BI expression as well as cholesterol uptake in macrophages. Beyond LPS, stimulation with pro-inflammatory cytokine IFNγ exhibits similar trends in inflammatory response, IDO1 regulation, and cholesterol uptake in macrophages. These observations suggest that IDO1 plays a critical role in SR-BI expression and cholesterol uptake in macrophages under inflammation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nagashree Bhat
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Angel Covarrubias
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Valeria Martinez
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lucine Devejian
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Bao Nhi Nguyen
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Pollard RD, Blesso CN, Zabalawi M, Fulp B, Gerelus M, Zhu X, Lyons EW, Nuradin N, Francone OL, Li XA, Sahoo D, Thomas MJ, Sorci-Thomas MG. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake. J Biol Chem 2015; 290:15496-15511. [PMID: 25947382 DOI: 10.1074/jbc.m115.646240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.
Collapse
Affiliation(s)
- Ricquita D Pollard
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06268
| | - Manal Zabalawi
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Brian Fulp
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Mark Gerelus
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Xuewei Zhu
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Erica W Lyons
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Nebil Nuradin
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Omar L Francone
- Shire Human Genetic Therapies, Lexington, Massachusetts 02421
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky 40506
| | - Daisy Sahoo
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael J Thomas
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mary G Sorci-Thomas
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
4
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
5
|
Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells. PLoS One 2014; 9:e102026. [PMID: 25010412 PMCID: PMC4092120 DOI: 10.1371/journal.pone.0102026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Selective lipid uptake (SLU) is known to be a major pathway of lipoprotein cholesterol metabolism in experimental animals and humans, but remains poorly understood. This review provides a brief overview of SLU mediated by the HDL receptor scavenger receptor B-type I (SR-BI), and highlights several surprising new findings related to the impact of SLU pathways in cholesterol homeostasis. RECENT FINDINGS Under certain conditions, SR-BI-mediated SLU contributes to reverse cholesterol transport (RCT) independently of ABCG5/G8-mediated biliary cholesterol secretion, implying a novel trafficking mechanism. Hepatic SR-BI expression and RCT are decreased in diabetic mice. Farnesoid X receptor (FXR) and the microRNAs miR-185, miR-96 and miR-223 are emerging therapeutic targets for increasing SR-BI expression. SR-BI-independent selective cholesteryl ester uptake is a newly characterized pathway in macrophage foam cells. SUMMARY New findings underscore the importance of SR-BI-mediated SLU in hepatic SLU and RCT, while indicating that further investigation is needed to define SLU pathways, including SR-BI-independent macrophage selective cholesteryl ester uptake. The intracellular trafficking of cholesterol in these pathways appears to be critical to their normal function and is a major subject of ongoing studies.
Collapse
Affiliation(s)
- Jason M. Meyer
- Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory A. Graf
- Department Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Deneys R. van der Westhuyzen
- Department of Veterans Affairs Medical Center, University of Kentucky, Lexington, Kentucky, USA
- Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Röhrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1626-33. [PMID: 23939397 PMCID: PMC3795453 DOI: 10.1016/j.bbalip.2013.07.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Genoux A, Pons V, Radojkovic C, Roux-Dalvai F, Combes G, Rolland C, Malet N, Monsarrat B, Lopez F, Ruidavets JB, Perret B, Martinez LO. Mitochondrial inhibitory factor 1 (IF1) is present in human serum and is positively correlated with HDL-cholesterol. PLoS One 2011; 6:e23949. [PMID: 21935367 PMCID: PMC3173369 DOI: 10.1371/journal.pone.0023949] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mitochondrial ATP synthase is expressed as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein component in High Density Lipoproteins (HDL). On hepatocytes, apoA-I binds to cell surface ATP synthase (namely ecto-F(1)-ATPase) and stimulates its ATPase activity, generating extracellular ADP. This production of extracellular ADP activates a P2Y(13)-mediated HDL endocytosis pathway. Conversely, exogenous IF1, classically known as a natural mitochondrial specific inhibitor of F(1)-ATPase activity, inhibits ecto-F(1)-ATPase activity and decreases HDL endocytosis by both human hepatocytes and perfused rat liver. METHODOLOGY/PRINCIPAL FINDINGS Since recent reports also described the presence of IF1 at the plasma membrane of different cell types, we investigated whether IF1 is present in the systemic circulation in humans. We first unambiguously detected IF1 in human serum by immunoprecipitation and mass spectrometry. We then set up a competitive ELISA assay in order to quantify its level in human serum. Analyses of IF1 levels in 100 normolipemic male subjects evidenced a normal distribution, with a median value of 0.49 µg/mL and a 95% confidence interval of 0.22-0.82 µg/mL. Correlations between IF1 levels and serum lipid levels demonstrated that serum IF1 levels are positively correlated with HDL-cholesterol and negatively with triglycerides (TG). CONCLUSIONS/SIGNIFICANCE Altogether, these data support the view that, in humans, circulating IF1 might affect HDL levels by inhibiting hepatic HDL uptake and also impact TG metabolism.
Collapse
Affiliation(s)
- Annelise Genoux
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Véronique Pons
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Claudia Radojkovic
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Florence Roux-Dalvai
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | - Guillaume Combes
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Corinne Rolland
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Nicole Malet
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
| | - Frédéric Lopez
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| | | | - Bertrand Perret
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent O. Martinez
- INSERM, UMR1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
9
|
Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis 2011; 217:299-307. [DOI: 10.1016/j.atherosclerosis.2011.05.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/11/2011] [Accepted: 05/26/2011] [Indexed: 11/22/2022]
|
10
|
Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Rev Mol Med 2011; 13:e13. [PMID: 21489334 DOI: 10.1017/s1462399411001785] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease worldwide and represents a major public health problem. Viral attachment and entry - the first encounter of the virus with the host cell - are major targets of neutralising immune responses. Thus, a detailed understanding of the HCV entry process offers interesting opportunities for the development of novel therapeutic strategies. Different cellular or soluble host factors mediate HCV entry, and considerable progress has been made in recent years to decipher how they induce HCV attachment, internalisation and membrane fusion. Among these factors, the scavenger receptor class B type I (SR-BI/SCARB1) is essential for HCV replication in vitro, through its interaction with the HCV E1E2 surface glycoproteins and, more particularly, the HVR1 segment located in the E2 protein. SR-BI is an interesting receptor because HCV, whose replication cycle intersects with lipoprotein metabolism, seems to exploit some aspects of its physiological functions, such as cholesterol transfer from high-density lipoprotein (HDL), during cell entry. SR-BI is also involved in neutralisation attenuation and therefore could be an important target for therapeutic intervention. Recent results suggest that it should be possible to identify inhibitors of the interaction of HCV with SR-BI that do not impair its important physiological properties, as discussed in this review.
Collapse
|
11
|
Camarota LM, Woollett LA, Howles PN. Reverse cholesterol transport is elevated in carboxyl ester lipase-knockout mice. FASEB J 2011; 25:1370-7. [PMID: 21212359 DOI: 10.1096/fj.10-169680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanisms to increase reverse cholesterol transport (RCT) and biliary sterol disposal are currently sought to prevent atherosclerosis. Previous work with HepG2 cells and primary hepatocytes showed that carboxyl ester lipase (CEL), a broad-spectrum lipase secreted by pancreas and liver, plays an important role in hydrolysis of high-density lipoprotein (HDL) cholesteryl esters (CEs) after selective uptake by hepatocytes. The effect of CEL on RCT of HDL cholesterol was assessed by measuring biliary and fecal disposal of radiolabeled HDL-CE in control and Cel(-/-) mice. Radiolabeled CE was increased 3-fold in hepatic bile of Cel(-/-) mice, and the mass of CE in gall bladder bile was elevated. Total radiolabeled transport from plasma to hepatic bile was more rapid in Cel(-/-) mice. Fecal disposal of radiolabel from HDL-CE, as well as total sterol mass, was markedly elevated for Cel(-/-) mice, primarily due to more CE. RCT of macrophage CE was also increased in Cel(-/-) mice, as measured by excretion of radiolabel from injected J774 cells. Increased sterol loss was compensated by increased cholesterol synthesis in Cel(-/-) mice. Together, the data demonstrate significantly increased RCT in the absence of CEL and suggest a novel mechanism by which to manipulate plasma cholesterol flux.
Collapse
Affiliation(s)
- Lisa M Camarota
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
12
|
Abstract
High density lipoprotein (HDL) possesses important anti-atherogenic properties and this review addresses the molecular mechanisms underlying these functions. The structures and cholesterol transport abilities of HDL particles are determined by the properties of their exchangeable apolipoprotein (apo) components. ApoA-I and apoE, which are the best characterized in structural terms, contain a series of amphipathic alpha-helical repeats. The helices located in the amino-terminal two-thirds of the molecule adopt a helix bundle structure while the carboxy-terminal segment forms a separately folded, relatively disorganized, domain. The latter domain initiates lipid binding and this interaction induces changes in conformation; the alpha-helix content increases and the amino-terminal helix bundle can open subsequently. These conformational changes alter the abilities of apoA-I and apoE to function as ligands for their receptors. The apoA-I and apoE molecules possess detergent-like properties and they can solubilize vesicular phospholipid to create discoidal HDL particles with hydrodynamic diameters of ~10 nm. In the case of apoA-I, such a particle is stabilized by two protein molecules arranged in an anti-parallel, double-belt, conformation around the edge of the disc. The abilities of apoA-I and apoE to solubilize phospholipid and stabilize HDL particles enable these proteins to be partners with ABCA1 in mediating efflux of cellular phospholipid and cholesterol, and the biogenesis of HDL particles. ApoA-I-containing nascent HDL particles play a critical role in cholesterol transport in the circulation whereas apoE-containing HDL particles mediate cholesterol transport in the brain. The mechanisms by which HDL particles are remodeled by lipases and lipid transfer proteins, and interact with SR-BI to deliver cholesterol to cells, are reviewed.
Collapse
|
13
|
Wiersma H, Gatti A, Nijstad N, Oude Elferink RPJ, Kuipers F, Tietge UJF. Scavenger receptor class B type I mediates biliary cholesterol secretion independent of ATP-binding cassette transporter g5/g8 in mice. Hepatology 2009; 50:1263-72. [PMID: 19637290 DOI: 10.1002/hep.23112] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Scavenger receptor class B type I (SR-BI) mediates selective uptake of cholesterol from high-density lipoprotein (HDL) particles by the liver and influences biliary cholesterol secretion. However, it is not clear, if this effect is direct or indirect. The aim of this study was to determine the impact of SR-BI on biliary cholesterol secretion, especially in a functional context with ATP-binding cassette transporter g5 (Abcg5)/Abcg8 and Abcb4. SR-BI was overexpressed by means of adenovirus (AdSR-BI) in livers of wild-type, liver X receptor-null (Lxr(-/-)), Abcg5(-/-), and Abcb4(-/-) mice. Consistent with previous reports, AdSR-BI decreased plasma HDL cholesterol levels in all models (P < 0.001). Hepatic cholesterol content increased (at least P < 0.05), whereas expression of sterol regulatory element binding protein 2 target genes was decreased (at least P < 0.05,) and established Lxr target genes were unaltered. Biliary cholesterol secretion was increased by AdSR-BI in wild-type as well as in Lxr(-/-) and Abcg5(-/-) mice, and considerably less in Abcb4(-/-) mice (each P < 0.001), independent of bile acid and phospholipid secretion. Immunogold electron microscopy and western blot showed a substantial increase of SR-BI protein localized to basolateral and canalicular membranes in response to SR-BI overexpression. Subcellular fractionation revealed a significantly higher cholesterol content of canalicular membranes (P < 0.001) upon SR-BI overexpression. Inhibition of microtubule function did not affect SR-BI-mediated biliary cholesterol secretion, indicating that transcytosis pathways are not involved. CONCLUSION Our data indicate that SR-BI mediates biliary cholesterol secretion independent of Abcg5, yet largely depends on Abcb4-mediated phospholipid secretion and mixed micelles as acceptors in bile. SR-BI-mediated biliary cholesterol secretion has a high capacity, can compensate for the absence of Abcg5, and does not require transcytosis pathways.
Collapse
Affiliation(s)
- Harmen Wiersma
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Robichaud JC, van der Veen JN, Yao Z, Trigatti B, Vance DE. Hepatic uptake and metabolism of phosphatidylcholine associated with high density lipoproteins. Biochim Biophys Acta Gen Subj 2009; 1790:538-51. [PMID: 19250958 DOI: 10.1016/j.bbagen.2009.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/11/2009] [Accepted: 02/17/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND Phosphatidylcholine (PC) is the predominant phospholipid associated with high density lipoproteins (HDL). Although the hepatic uptake of cholesteryl esters from HDL is well characterized, much less is known about the fate of PC associated with HDL. Thus, we investigated the uptake and subsequent metabolism of HDL-PC in primary mouse hepatocytes. METHODS AND RESULTS The absence of scavenger receptor-BI resulted in a 30% decrease in cellular incorporation of [(3)H]PC whereas [(3)H]cholesteryl ether uptake was almost completely abolished. Although endocytosis is not involved in the uptake of cholesteryl esters from HDL, we demonstrate that HDL internalization accounts for 40% of HDL-PC uptake. Extracellular remodeling of HDL by secretory phospholipase A(2) significantly enhances HDL lipid uptake. HDL-PC taken up by hepatocytes is partially converted to triacylglycerols via PC-phospholipase C-mediated hydrolysis of PC and incorporation of diacylglycerol into triacylglycerol. The formation of triacylglycerol is independent of scavenger receptor-BI and occurs in extralysosomal compartments. CONCLUSIONS AND GENERAL SIGNIFICANCE These findings indicate that HDL-associated PC is incorporated into primary hepatocytes via a pathway that differs significantly from that of HDL-cholesteryl ester, and shows that HDL-PC is more than a framework molecule, as evidenced by its partial conversion to hepatic triacylglycerol.
Collapse
Affiliation(s)
- Julie C Robichaud
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
15
|
Dreux M, Dao Thi VL, Fresquet J, Guérin M, Julia Z, Verney G, Durantel D, Zoulim F, Lavillette D, Cosset FL, Bartosch B. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog 2009; 5:e1000310. [PMID: 19229312 PMCID: PMC2636890 DOI: 10.1371/journal.ppat.1000310] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/23/2009] [Indexed: 12/11/2022] Open
Abstract
HCV entry into cells is a multi-step and slow process. It is believed that the
initial capture of HCV particles by glycosaminoglycans and/or lipoprotein
receptors is followed by coordinated interactions with the scavenger receptor
class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the
CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading
to uptake and cellular penetration of HCV via low-pH endosomes.
Several reports have indicated that HDL promotes HCV entry through interaction
with SR-BI. This pathway remains largely elusive, although it was shown that HDL
neither associates with HCV particles nor modulates HCV binding to SR-BI. In
contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed
indirectly because of lack of cells in which functional complementation assays
with mutant receptors could be performed. Here we identified for the first time
two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI
expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma
cells allowed unambiguous investigation of human SR-BI functions during HCV
entry. By expressing different SR-BI mutants in either cell line, our results
revealed features of SR-BI intracellular domains that influence HCV infectivity
without affecting receptor binding and stimulation of HCV entry induced by
HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain
that, by altering HCV binding, inhibit entry. Finally, we characterized
alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake
and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we
demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results
highlight specific SR-BI determinants required during HCV entry and
physiological lipid transfer functions hijacked by HCV to favor infection. More than 180 million people are chronically infected by hepatitis C virus (HCV),
a leading cause of liver failure and cancer, stimulating the need to fully
define the biology of HCV infection for developing novel and effective
therapeutics. During the first steps of infection, the virus is taken up and
penetrates hepatocytes. HCV entry is thought to be a coordinated multi-step
process mediated by specific factors, including CD81, Claudin-1, and the
scavenger receptor BI (SR-BI). Whereas the involvement of CD81 and Claudin-1 was
demonstrated by rendering susceptible cells that are otherwise refractory, SR-BI
complementation assays were lacking, raising questions as to its functions
during HCV entry. Here, we identify one hepatoma rat cell line, in which SR-BI
complementation assay and targeted mutagenesis could be performed. We therefore
demonstrate that SR-BI is an essential HCV entry factor. Our results shed light
on SR-BI intracellular domain functions in HCV entry, and, further, emphasize
the remarkable capacity of HCV to hijack the lipid transfer function of SR-BI,
hence favoring infection.
Collapse
Affiliation(s)
- Marlène Dreux
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Viet Loan Dao Thi
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - Judith Fresquet
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | | | | | - Géraldine Verney
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - David Durantel
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Fabien Zoulim
- Université de Lyon, UCB-Lyon1, IFR62; INSERM, U871; Hospices
civils de Lyon (HCL), Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| | - François-Loïc Cosset
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Birke Bartosch
- Université de Lyon, UCB-Lyon1, IFR128; INSERM, U758; Ecole
Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
16
|
Ahras M, Naing T, McPherson R. Scavenger receptor class B type I localizes to a late endosomal compartment. J Lipid Res 2008; 49:1569-76. [DOI: 10.1194/jlr.m800055-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Ouimet M, Wang MD, Cadotte N, Ho K, Marcel YL. Epoxycholesterol Impairs Cholesteryl Ester Hydrolysis in Macrophage Foam Cells, Resulting in Decreased Cholesterol Efflux. Arterioscler Thromb Vasc Biol 2008; 28:1144-50. [DOI: 10.1161/atvbaha.107.157115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Strategies to inhibit or reverse cholesterol accumulation in macrophages have been shown to be atheroprotective. Notably, the administration of LXR agonists upregulates key players in the reverse cholesterol transport pathway, including the ABCA1 and ABCG1 transporters. However, the effects of natural LXR activators, oxysterols, on lipid-laden macrophages remains elusive.
Methods and Results—
We assessed the ability of 2 oxysterols, 22(R)-hydroxycholesterol (22-OH) and 24(S),25-epoxycholesterol (epoxycholesterol), to promote cholesterol efflux to apoA-I from LDL- and modified LDL-labeled and loaded macrophages and thus rescue the phenotype associated with the accumulation of cellular cholesterol in these cells. In macrophages labeled with LDL-derived cholesterol, epoxycholesterol treatment enhances ABCA1-mediated cholesterol efflux. In contrast, in AcLDL-loaded macrophages, epoxycholesterol treatment decreases cholesterol efflux to apoA-I, despite a dramatic increase in the expression of ABCA1 in response to epoxycholesterol treatment. We show that the decreased efflux is attributable to impaired cholesterol mobilization from lipid droplets, resulting from decreased cholesteryl ester hydrolase activity.
Conclusion—
Epoxycholesterol impairs cholesteryl ester hydrolysis activity in macrophage foam cells, thus reducing the availability of cholesterol for efflux to cholesterol acceptors.
Collapse
Affiliation(s)
- Mireille Ouimet
- From the Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, and Departments of Biochemistry, Microbiology, and Immunology, and Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| | - Ming-Dong Wang
- From the Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, and Departments of Biochemistry, Microbiology, and Immunology, and Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| | - Natalie Cadotte
- From the Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, and Departments of Biochemistry, Microbiology, and Immunology, and Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| | - Kenneth Ho
- From the Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, and Departments of Biochemistry, Microbiology, and Immunology, and Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| | - Yves L. Marcel
- From the Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, and Departments of Biochemistry, Microbiology, and Immunology, and Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Nieland TJF, Shaw JT, Jaipuri FA, Duffner JL, Koehler AN, Banakos S, Zannis VI, Kirchhausen T, Krieger M. Identification of the molecular target of small molecule inhibitors of HDL receptor SR-BI activity. Biochemistry 2007; 47:460-72. [PMID: 18067275 DOI: 10.1021/bi701277x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Scavenger receptor, class B, type I (SR-BI), controls high-density lipoprotein (HDL) metabolism by mediating cellular selective uptake of lipids from HDL without the concomitant degradation of the lipoprotein particle. We previously identified in a high-throughput chemical screen of intact cells five compounds (BLT-1-5) that inhibit SR-BI-dependent lipid transport from HDL, but do not block HDL binding to SR-BI on the cell surface. Although these BLTs are widely used to examine the diverse functions of SR-BI, their direct target(s), SR-BI itself or some other component of the SR-BI pathway, has not been identified. Here we show that SR-BI in the context of a membrane lipid environment is the target of BLT-1, -3, -4, and -5. The analysis using intact cells and an in vitro system of purified SR-BI reconstituted into liposomes was aided by information derived from structure-activity relationship (SAR) analysis of the most potent of these BLTs, the thiosemicarbazone BLT-1. We found that the sulfur atom of BLT-1 was crucially important for its inhibitory activity, because changing it to an oxygen atom resulted in the isostructural, but essentially inactive, semicarbazone derivative BLT-1sc. SAR analysis also established the importance of BLT-1's hydrophobic tail. BLTs and their corresponding inactive compounds can be used to explore the mechanism and function of SR-BI-mediated selective lipid uptake in diverse mammalian experimental models. Consequently, BLTs may help determine the therapeutic potential of SR-BI-targeted pharmaceutical drugs.
Collapse
Affiliation(s)
- Thomas J F Nieland
- Department of Biology, Massachusetts Institute of Technology, Room 68-483, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Ahmed AM, Tran TL, Lin J, McFarlane N, Boreham DR, Igdoura SA, Truant R, Trigatti BL. The inhibition of endocytosis affects HDL-lipid uptake mediated by the human scavenger receptor class B type I. Mol Membr Biol 2007; 24:442-54. [PMID: 17710648 DOI: 10.1080/09687680701300410] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The scavenger receptor SR-BI plays an important role in the hepatic clearance of HDL cholesterol and other lipids, driving reverse cholesterol transport and contributing to protection against atherosclerosis in mouse models. We characterized the role of endocytosis in lipid uptake from HDL, mediated by the human SR-BI, using a variety of approaches to inhibit endocytosis, including hypertonic shock, potassium or energy depletion and disassembly of the actin cytoskeleton. Our studies revealed that unlike mouse SR-BI, human SR-BI-mediated HDL-lipid uptake was reduced by inhibition of endocytosis. This was not dependent on the cytoplasmic C-terminus of SR-BI. Monitoring the uptake of both the protein and lipid components of HDL revealed that although overall lipid uptake was decreased, the degree of selective lipid uptake was increased. These data suggest that that endocytosis is a dynamic regulator of SR-BI's selective lipid uptake activity.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Catanese MT, Graziani R, von Hahn T, Moreau M, Huby T, Paonessa G, Santini C, Luzzago A, Rice CM, Cortese R, Vitelli A, Nicosia A. High-avidity monoclonal antibodies against the human scavenger class B type I receptor efficiently block hepatitis C virus infection in the presence of high-density lipoprotein. J Virol 2007; 81:8063-71. [PMID: 17507483 PMCID: PMC1951280 DOI: 10.1128/jvi.00193-07] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human scavenger class B type 1 receptor (SR-B1/Cla1) was identified as a putative receptor for hepatitis C virus (HCV) because it binds to soluble recombinant HCV envelope glycoprotein E2 (sE2). High-density lipoprotein (HDL), a natural SR-B1 ligand, was shown to increase the in vitro infectivity of retroviral pseudoparticles bearing HCV envelope glycoproteins and of cell culture-derived HCV (HCVcc), suggesting that SR-B1 promotes viral entry in an HDL-dependent manner. To determine whether SR-B1 participates directly in HCV infection or facilitates HCV entry through lipoprotein uptake, we generated a panel of monoclonal antibodies (MAbs) against native human SR-B1. Two of them, 3D5 and C167, bound to conformation-dependent SR-B1 determinants and inhibited the interaction of sE2 with SR-B1. These antibodies efficiently blocked HCVcc infection of Huh-7.5 hepatoma cells in a dose-dependent manner. To examine the role of HDL in SR-B1-mediated HCVcc infection, we set up conditions for HCVcc production and infection in serum-free medium. HCVcc efficiently infected Huh-7.5 cells in the absence of serum lipoproteins, and addition of HDL led to a twofold increase in infectivity. However, the HDL-induced enhancement of infection had no impact on the neutralization potency of MAb C167, despite its ability to inhibit both HDL binding to cells and SR-B1-mediated lipid transfer. Of note, MAb C167 also potently blocked Huh-7.5 infection by an HCV strain recovered from HCVcc-infected chimpanzees. These results demonstrate that SR-B1 is essential for infection with HCV produced in vitro and in vivo and suggest the possible use of anti-SR-B1 antibodies as therapeutic agents.
Collapse
Affiliation(s)
- Maria Teresa Catanese
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fabre ACS, Vantourout P, Champagne E, Tercé F, Rolland C, Perret B, Collet X, Barbaras R, Martinez LO. Cell surface adenylate kinase activity regulates the F(1)-ATPase/P2Y (13)-mediated HDL endocytosis pathway on human hepatocytes. Cell Mol Life Sci 2006; 63:2829-37. [PMID: 17103109 PMCID: PMC2020515 DOI: 10.1007/s00018-006-6325-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated on human hepatocytes that apolipoprotein A-I binding to an ecto-F(1)-ATPase stimulates the production of extracellular ADP that activates a P2Y(13)-mediated high-density lipoprotein (HDL) endocytosis pathway. Therefore, we investigated the mechanisms controlling the extracellular ATP/ADP level in hepatic cell lines and primary cultures to determine their impact on HDL endocytosis. Here we show that addition of ADP to the cell culture medium induced extracellular ATP production that was due to adenylate kinase [see text] and nucleoside diphosphokinase [see text] activities, but not to ATP synthase activity. We further observed that in vitro modulation of both ecto-NDPK and AK activities could regulate the ADP-dependent HDL endocytosis. But interestingly, only AK appeared to naturally participate in the pathway by consuming the ADP generated by the ecto-F(1)-ATPase. Thus controlling the extracellular ADP level is a potential target for reverse cholesterol transport regulation.
Collapse
Affiliation(s)
- A. C. S. Fabre
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - P. Vantourout
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - E. Champagne
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - F. Tercé
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - C. Rolland
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - B. Perret
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - X. Collet
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - R. Barbaras
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - L. O. Martinez
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| |
Collapse
|
22
|
Abstract
This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
23
|
Harder CJ, Meng A, Rippstein P, McBride HM, McPherson R. SR-BI undergoes cholesterol-stimulated transcytosis to the bile canaliculus in polarized WIF-B cells. J Biol Chem 2006; 282:1445-55. [PMID: 17105723 DOI: 10.1074/jbc.m604627200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scavenger receptor BI (SR-BI) is highly expressed in hepatocytes, where it mediates the uptake of lipoprotein cholesterol, promotes the secretion of cholesterol into bile, and protects against atherosclerosis. Despite a strong correlation between the hepatic expression of SR-BI and biliary cholesterol secretion, little is known about SR-BI trafficking in response to changes in sterol availability. Using a well characterized polarized hepatocyte cell model, WIF-B, we determine that in cholesterol-depleted cells, SR-BI is extensively located on the basolateral surface, where it can access circulating lipoproteins. However, in response to cholesterol loading, SR-BI undergoes a slow transcytosis to the apical bile canaliculus independently of lipoprotein binding and new protein synthesis. In cholesterol-replete WIF-B cells, SR-BI that resides on the canalicular membrane is dynamically associated with defined microdomains and does not rapidly recycle to and from the subapical or basolateral regions. Taken together, these data demonstrate that hepatic SR-BI transcytosis is regulated by cholesterol and suggest that SR-BI has a stationary function on the bile canaliculus.
Collapse
Affiliation(s)
- Christopher J Harder
- Lipoprotein and Atherosclerosis Group, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
24
|
Shetty S, Eckhardt ERM, Post SR, van der Westhuyzen DR. Phosphatidylinositol-3-kinase regulates scavenger receptor class B type I subcellular localization and selective lipid uptake in hepatocytes. Arterioscler Thromb Vasc Biol 2006; 26:2125-31. [PMID: 16794223 DOI: 10.1161/01.atv.0000233335.26362.37] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The high-density lipoprotein (HDL) receptor scavenger receptor Class B type I (SR-BI) plays a key role in mediating the final step of reverse cholesterol transport. This study examined the possible regulation of hepatic SR-BI by phosphatidylinositol-3-kinase (PI3K), a well known regulator of endocytosis and membrane protein trafficking. METHODS AND RESULTS SR-BI-dependent HDL selective cholesterol ester uptake in human HepG2 hepatoma cells was decreased (approximately 50%) by the PI3K inhibitors wortmannin and LY294002. Insulin increased selective uptake (approximately 30%), and this increase was blocked by PI3K inhibitors. Changes in SR-BI activity could be accounted for by pronounced changes in the subcellular localization and cell surface expression of SR-BI as determined by HDL cell surface binding, receptor biotinylation studies, and confocal fluorescence microscopy of HepG2 cells expressing green fluorescent protein-tagged SR-BI. Thus, under conditions of PI3K activation by insulin, and to a lesser extent by the SR-BI ligand HDL, cell surface expression of SR-BI was promoted, resulting in increased SR-BI-mediated HDL selective lipid uptake. CONCLUSIONS Our data indicate that PI3K activation stimulates hepatic SR-BI function post-translationally by regulating the subcellular localization of SR-BI in a P13K-dependent manner. Decreased hepatocyte PI3K activity in insulin-resistant states, such as type 2 diabetes, obesity, or metabolic syndrome, may impair reverse cholesterol transport by reducing cell surface expression of SR-BI.
Collapse
Affiliation(s)
- Shoba Shetty
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
25
|
Sun B, Eckhardt ERM, Shetty S, van der Westhuyzen DR, Webb NR. Quantitative analysis of SR-BI-dependent HDL retroendocytosis in hepatocytes and fibroblasts. J Lipid Res 2006; 47:1700-13. [PMID: 16705213 DOI: 10.1194/jlr.m500450-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous studies have suggested that HDL retroendocytosis may play a role in scavenger receptor class B type I (SR-BI)-dependent selective lipid uptake in a cell-specific manner. To investigate this possibility, we developed methods to quantitatively measure HDL uptake and resecretion in fibroblast (COS-7) and hepatocyte (HepG2) cells expressing exogenous SR-BI. Approximately 17% and 24% of HDL associated in an SR-BI-dependent manner with COS-7 and HepG2 cells, respectively, accumulates intracellularly after a 10 min incubation. To determine whether this intracellular HDL undergoes retroendocytosis, we developed a pulse-chase assay whereby internalized biotinylated (125)I-HDL(3) secreted from cells is quantitatively precipitated from cell supernatants using immobilized streptavidin. Our results show a rapid secretion of a portion of intracellular HDL from both cell types (representing 4-7% of the total cell-associated HDL) that is almost complete within 30 min (half-life approximately 10 min). In COS-7 cells, the calculated rate of HDL secretion ( approximately 0.5 ng HDL/mg/min) was >30-fold slower than the rate of SR-BI-dependent selective cholesteryl ester (CE) uptake ( approximately 17 ng HDL/mg/min), whereas the rate of release of HDL from the cell surface ( approximately 19 ng HDL/mg/min) was similar to the rate of selective CE uptake. Notably, the rate of SR-BI-dependent HDL resecretion in COS-7 and HepG2 cells was similar. BLT1, a compound that inhibits selective CE uptake, does not alter the amount of SR-BI-mediated HDL retroendocytosis in COS-7 cells. From these data, we conclude that HDL retroendocytosis in COS-7 and HepG2 cells is similar and that the vast majority of SR-BI-dependent selective uptake occurs at the cell surface in both cell types.
Collapse
Affiliation(s)
- Bing Sun
- Department of Internal Medicine, Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, Lexington, 40536, USA
| | | | | | | | | |
Collapse
|