1
|
Zemski Berry KA, Garfield A, Jambal P, Zarini S, Perreault L, Bergman BC. Oxidised phosphatidylcholine induces sarcolemmal ceramide accumulation and insulin resistance in skeletal muscle. Diabetologia 2024; 67:2819-2832. [PMID: 39347985 DOI: 10.1007/s00125-024-06280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
AIMS/HYPOTHESIS Intracellular ceramide accumulation in specific cellular compartments is a potential mechanism explaining muscle insulin resistance in the pathogenesis of type 2 diabetes. Muscle sarcolemmal ceramide accumulation negatively impacts insulin sensitivity in humans, but the mechanism explaining this localised accumulation is unknown. Previous reports revealed that circulating oxidised LDL is elevated in serum of individuals with obesity and type 2 diabetes. Oxidised phosphatidylcholine, which is present in oxidised LDL, has previously been linked to ceramide pathway activation, and could contribute to localised ceramide accumulation in skeletal muscle. We hypothesised that oxidised phosphatidylcholine inversely correlates with insulin sensitivity in serum, and induces sarcolemmal ceramide accumulation and decreases insulin sensitivity in muscle. METHODS We used LC-MS/MS to quantify specific oxidised phosphatidylcholine species in serum from a cross-sectional study of 58 well-characterised individuals spanning the physiological range of insulin sensitivity. We also performed in vitro experiments in rat L6 myotubes interrogating the role of specific oxidised phosphatidylcholine species in promoting sarcolemmal ceramide accumulation, inflammation and insulin resistance in skeletal muscle cells. RESULTS Human serum oxidised phosphatidylcholine levels are elevated in individuals with obesity and type 2 diabetes, inversely correlated with insulin sensitivity, and positively correlated with sarcolemmal C18:0 ceramide levels in skeletal muscle. Specific oxidised phosphatidylcholine species, particularly 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), increase total ceramide and dihydroceramide and decrease total sphingomyelin in the sarcolemma of L6 myotubes by de novo ceramide synthesis and sphingomyelinase activation. POVPC also increases inflammatory signalling and causes insulin resistance in L6 myotubes. CONCLUSIONS/INTERPRETATION These data suggest that circulating oxidised phosphatidylcholine species promote ceramide accumulation and decrease insulin sensitivity in muscle, help explain localised sphingolipid accumulation and muscle inflammatory response, and highlight oxidised phosphatidylcholine species as potential targets to combat insulin resistance.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Purevsuren Jambal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Karki P, Birukov KG. Oxidized Phospholipids in Control of Endothelial Barrier Function: Mechanisms and Implication in Lung Injury. Front Endocrinol (Lausanne) 2021; 12:794437. [PMID: 34887839 PMCID: PMC8649713 DOI: 10.3389/fendo.2021.794437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
Earlier studies investigating the pathogenesis of chronic vascular inflammation associated with atherosclerosis described pro-inflammatory and vascular barrier disruptive effects of lipid oxidation products accumulated in the sites of vascular lesion and atherosclerotic plaque. However, accumulating evidence including studies from our group suggests potent barrier protective and anti-inflammatory properties of certain oxidized phospholipids (OxPLs) in the lung vascular endothelium. Among these OxPLs, oxidized 1-palmitoyl-2-arachdonyl-sn-glycero-3-phosphocholine (OxPAPC) causes sustained enhancement of lung endothelial cell (EC) basal barrier properties and protects against vascular permeability induced by a wide variety of agonists ranging from bacterial pathogens and their cell wall components, endotoxins, thrombin, mechanical insults, and inflammatory cytokines. On the other hand, truncated OxPLs cause acute endothelial barrier disruption and potentiate inflammation. It appears that multiple signaling mechanisms triggering cytoskeletal remodeling are involved in OxPLs-mediated regulation of EC barrier. The promising vascular barrier protective and anti-inflammatory properties exhibited by OxPAPC and its particular components that have been established in the cellular and animal models of sepsis and acute lung injury has prompted consideration of OxPAPC as a prototype therapeutic molecule. In this review, we will summarize signaling and cytoskeletal mechanisms involved in OxPLs-mediated damage, rescue, and restoration of endothelial barrier in various pathophysiological settings and discuss a future potential of OxPAPC in treating lung disorders associated with endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Konstantin G. Birukov,
| |
Collapse
|
3
|
Karki P, Birukov KG. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Cells 2020; 9:cells9040981. [PMID: 32326516 PMCID: PMC7226969 DOI: 10.3390/cells9040981] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating and cell membrane phospholipids undergo oxidation caused by enzymatic and non-enzymatic mechanisms. As a result, a diverse group of bioactive oxidized phospholipids generated in these conditions have both beneficial and harmful effects on the human body. Increased production of oxidized phospholipid products with deleterious effects is linked to the pathogenesis of various cardiopulmonary disorders such as atherosclerosis, thrombosis, acute lung injury (ALI), and inflammation. It has been determined that the contrasting biological effects of lipid oxidation products are governed by their structural variations. For example, full-length products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) have prominent endothelial barrier protective and anti-inflammatory activities while most of the truncated oxidized phospholipids induce vascular leak and exacerbate inflammation. The extensive studies from our group and other groups have demonstrated a strong potential of OxPAPC in mitigating a wide range of agonist-induced lung injuries and inflammation in pulmonary endothelial cell culture and rodent models of ALI. Concurrently, elevated levels of truncated oxidized phospholipids are present in aged mice lungs that potentiate the inflammatory agents-induced lung injury. On the other hand, increased levels of full length OxPAPC products accelerate ALI recovery by facilitating production of anti-inflammatory lipid mediator, lipoxin A4, and other molecules with anti-inflammatory properties. These findings suggest that OxPAPC-assisted lipid program switch may be a promising therapeutic strategy for treatment of acute inflammatory syndromes. In this review, we will summarize the vascular-protective and deleterious aspects of oxidized phospholipids and discuss their therapeutic potential including engineering of stable analogs of oxidized phospholipids with improved anti-inflammatory and barrier-protective properties.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-(410)-706-2578; Fax: +1-(410)-706-6952
| |
Collapse
|
4
|
Nagano T, Katsurada M, Dokuni R, Hazama D, Kiriu T, Umezawa K, Kobayashi K, Nishimura Y. Crucial Role of Extracellular Vesicles in Bronchial Asthma. Int J Mol Sci 2019; 20:ijms20102589. [PMID: 31137771 PMCID: PMC6566667 DOI: 10.3390/ijms20102589] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are circulating vesicles secreted by various cell types. EVs are classified into three groups according to size, structural components, and generation process of vesicles: exosomes, microvesicles, and apoptotic bodies. Recently, EVs have been considered to be crucial for cell-to-cell communications and homeostasis because they contain intracellular proteins and nucleic acids. Epithelial cells from mice suffering from bronchial asthma (BA) secrete more EVs and suppress inflammation-induced EV production. Moreover, microarray analyses of bronchoalveolar lavage fluid have revealed that several microRNAs are useful novel biomarkers of BA. Mesenchymal stromal cell-derived EVs are possible candidates of novel BA therapy. In this review, we highlight the biologic roles of EVs in BA and review novel EV-targeted therapy to help understanding by clinicians and biologists.
Collapse
Affiliation(s)
- Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
5
|
Gon Y, Maruoka S, Inoue T, Kuroda K, Yamagishi K, Kozu Y, Shikano S, Soda K, Lötvall J, Hashimoto S. Selective release of miRNAs via extracellular vesicles is associated with house-dust mite allergen-induced airway inflammation. Clin Exp Allergy 2018; 47:1586-1598. [PMID: 28859242 DOI: 10.1111/cea.13016] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) may facilitate cell-to-cell communication via extracellular vesicles (EVs). The biological roles of miRNAs in EVs on allergic airway inflammation are unclear. METHODS Airway-secreted EVs (AEVs) were isolated from bronchoalveolar lavage fluid (BALF) of control and house-dust mite (HDM) allergen-exposed HDM-sensitized mice. The expression of miRNAs in AEVs or miRNAs and mRNAs in lung tissue was analysed using miRNA microarray. RESULTS The amount of AEV increased 8.9-fold in BALF from HDM-exposed mice compared with that from sham-control mice. HDM exposure resulted in significant changes in the expression of 139 miRNAs in EVs and 175 miRNAs in lung tissues, with 54 miRNAs being common in both samples. Expression changes of these 54 miRNAs between miRNAs in AEVs and lung tissues after HDM exposure were inversely correlated. Computational analysis revealed that 31 genes, including IL-13 and IL-5Ra, are putative targets of the miRNAs up-regulated in AEVs but down-regulated in lung tissues after HDM exposure. The amount of AEV in BALF after HDM exposure was diminished by treatment with the sphingomyelinase inhibitor GW4869. The treatment with GW4869 also decreased Th2 cytokines and eosinophil counts in BALFs and reduced eosinophil accumulation in airway walls and mucosa. CONCLUSION These results indicate that selective sorting of miRNA including Th2 inhibitory miRNAs into AEVs and increase release to the airway after HDM exposure would be involved in the pathogenesis of allergic airway inflammation.
Collapse
Affiliation(s)
- Y Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - S Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - T Inoue
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - K Kuroda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - K Yamagishi
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama-shi, Fukushima, Japan
| | - Y Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - S Shikano
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - K Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - J Lötvall
- Department of Internal Medicine and Department of Respiratory Medicine and Allergology, The Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden.,Krefting Research Centre, University of Gothenburg, Sweden, and Codiak BioSciences, Cambridge, MA
| | - S Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Serbulea V, Upchurch CM, Ahern KW, Bories G, Voigt P, DeWeese DE, Meher AK, Harris TE, Leitinger N. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol Metab 2018; 7:23-34. [PMID: 29153923 PMCID: PMC5784323 DOI: 10.1016/j.molmet.2017.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Macrophages control tissue homeostasis and inflammation by sensing and responding to environmental cues. However, the metabolic adaptation of macrophages to oxidative tissue damage and its translation into inflammatory mechanisms remains enigmatic. METHODS Here we identify the critical regulatory pathways that are induced by endogenous oxidation-derived DAMPs (oxidized phospholipids, OxPL) in vitro, leading to formation of a unique redox-regulatory metabolic phenotype (Mox), which is strikingly different from conventional classical or alternative macrophage activation. RESULTS Unexpectedly, metabolomic analyses demonstrated that Mox heavily rely on glucose metabolism and the pentose phosphate pathway (PPP) to support GSH production and Nrf2-dependent antioxidant gene expression. While the metabolic adaptation of macrophages to OxPL involved transient suppression of aerobic glycolysis, it also led to upregulation of inflammatory gene expression. In contrast to classically activated (M1) macrophages, Hif1α mediated expression of OxPL-induced Glut1 and VEGF but was dispensable for Il1β expression. Mechanistically, we show that OxPL suppress mitochondrial respiration via TLR2-dependent ceramide production, redirecting TCA metabolites to GSH synthesis. Finally, we identify spleen tyrosine kinase (Syk) as a critical downstream signaling mediator that translates OxPL-induced effects into ceramide production and inflammatory gene regulation. CONCLUSIONS Together, these data demonstrate the metabolic and bioenergetic requirements that enable macrophages to translate tissue oxidation status into either antioxidant or inflammatory responses via sensing OxPL. Targeting dysregulated redox homeostasis in macrophages could therefore lead to novel therapies to treat chronic inflammation.
Collapse
Affiliation(s)
- Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Katelyn W Ahern
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Gael Bories
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Paxton Voigt
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Dory E DeWeese
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Akshaya K Meher
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
7
|
Liu F, Li X, Yue H, Ji J, You M, Ding L, Fan H, Hou Y. TLR-Induced SMPD3 Defects Enhance Inflammatory Response of B Cell and Macrophage in the Pathogenesis of SLE. Scand J Immunol 2017; 86:377-388. [PMID: 28889482 DOI: 10.1111/sji.12611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/30/2017] [Indexed: 12/30/2022]
Abstract
B lymphocyte and macrophages may contribute to SLE pathogenesis through cytokine production after TLR stimulation. Emerging evidences suggested that defects of sphingolipid metabolism were responsible for SLE pathogenesis. However, it is not clear whether these defects exist in B cells and macrophages under SLE condition and whether TLR signalling pathway was related to the dysfunction of sphingolipid metabolism in SLE. Here, we demonstrated that the enzymes involved in the sphingolipid metabolism expressed abnormally in B cells from SLE patients and lupus-prone mice. Moreover, we found that TLR signalling induced the abnormal expression of sphingomyelin phosphodiesterase 3 (SMPD3), sphingosine-1-phosphate phosphatase 2 (SGPP2), ceramide kinase (CERK) and UDP glycosyltransferase 8 (UGT8), which were involved in sphingolipid metabolism. TLR signalling also induced the transportation of SMPD3 from Golgi apparatus. Furthermore, the dysfunction of SMPD3 enhanced TLR-induced inflammatory response of B cells and macrophages in turn. Thus, these findings provide an innovative direction and a new target for research and treatment of SLE.
Collapse
Affiliation(s)
- F Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - X Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - H Yue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - J Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - M You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - L Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - H Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Y Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
8
|
Huang FC. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection. Int J Mol Sci 2017; 18:1720. [PMID: 28783107 PMCID: PMC5578110 DOI: 10.3390/ijms18081720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella, a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
9
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Sun LN, Yang ZY, Lv SS, Liu XC, Guan GJ, Liu G. Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TLR4 activation. Int Immunopharmacol 2014; 23:236-46. [DOI: 10.1016/j.intimp.2014.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
|
11
|
Dias IHK, Mistry J, Fell S, Reis A, Spickett CM, Polidori MC, Lip GYH, Griffiths HR. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation. Free Radic Biol Med 2014; 75:48-59. [PMID: 25048970 PMCID: PMC4180009 DOI: 10.1016/j.freeradbiomed.2014.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022]
Abstract
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4μg oxLDL and 25µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells.
Collapse
Affiliation(s)
- Irundika H K Dias
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Jayna Mistry
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Shaun Fell
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Ana Reis
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Corinne M Spickett
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK
| | - Maria C Polidori
- Institute of Geriatrics, University of Cologne, Cologne, Germany
| | - Gregory Y H Lip
- Centre for Cardiovascular Sciences, City Hospital Birmingham, Birmingham B18 7QH, UK
| | - Helen R Griffiths
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, West Midlands B4 7ET, UK.
| |
Collapse
|
12
|
Davies SS, Guo L. Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chem Phys Lipids 2014; 181:1-33. [PMID: 24704586 DOI: 10.1016/j.chemphyslip.2014.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022]
Abstract
Peroxidation of membranes and lipoproteins converts "inert" phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States.
| | - Lilu Guo
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, United States
| |
Collapse
|
13
|
Erbilgin A, Siemers N, Kayne P, Yang WP, Berliner J, Lusis AJ. Gene expression analyses of mouse aortic endothelium in response to atherogenic stimuli. Arterioscler Thromb Vasc Biol 2013; 33:2509-17. [PMID: 23990205 DOI: 10.1161/atvbaha.113.301989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Endothelial cells are central to the initiation of atherosclerosis, yet there has been limited success in studying their gene expression in the mouse aorta. To address this, we developed a method for determining the global transcriptional changes that occur in the mouse endothelium in response to atherogenic conditions and applied it to investigate inflammatory stimuli. APPROACH AND RESULTS We characterized a method for the isolation of endothelial cell RNA with high purity directly from mouse aortas and adapted this method to allow for the treatment of aortas ex vivo before RNA collection. Expression array analysis was performed on endothelial cell RNA isolated from control and hyperlipidemic prelesion mouse aortas, and 797 differentially expressed genes were identified. We also examined the effect of additional atherogenic conditions on endothelial gene expression, including ex vivo treatment with inflammatory stimuli, acute hyperlipidemia, and age. Of the 14 most highly differentially expressed genes in endothelium from prelesion aortas, 8 were also perturbed significantly by ≥ 1 atherogenic conditions: 2610019E17Rik, Abca1, H2-Ab1, H2-D1, Pf4, Ppbp, Pvrl2, and Tnnt2. CONCLUSIONS We demonstrated that RNA can be isolated from mouse aortic endothelial cells after in vivo and ex vivo treatments of the murine vessel wall. We applied these methods to identify a group of genes, many of which have not been described previously as having a direct role in atherosclerosis, that were highly regulated by atherogenic stimuli and may play a role in early atherogenesis.
Collapse
Affiliation(s)
- Ayca Erbilgin
- From the Departments of Microbiology, Immunology, and Molecular Genetics (A.E., A.J.L.), Pathology and Laboratory Medicine (J.B.), Medicine (A.J.L.), and Human Genetics (A.J.L.), University of California, Los Angeles; and Bristol-Myers Squibb, Applied Genomics, Princeton, NJ (N.S., P.K., W.-p.Y.)
| | | | | | | | | | | |
Collapse
|
14
|
Halasiddappa LM, Koefeler H, Futerman AH, Hermetter A. Oxidized phospholipids induce ceramide accumulation in RAW 264.7 macrophages: role of ceramide synthases. PLoS One 2013; 8:e70002. [PMID: 23936132 PMCID: PMC3729465 DOI: 10.1371/journal.pone.0070002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Oxidized phospholipids (OxPLs), including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC) are among several biologically active derivatives that are generated during oxidation of low-density lipoproteins (LDLs). These OxPLs are factors contributing to pro-atherogenic effects of oxidized LDLs (OxLDLs), including inflammation, proliferation and death of vascular cells. OxLDL also elicits formation of the lipid messenger ceramide (Cer) which plays a pivotal role in apoptotic signaling pathways. Here we report that both PGPC and POVPC are cytotoxic to cultured macrophages and induce apoptosis in these cells which is associated with increased cellular ceramide levels after several hours. In addition, exposure of RAW 264.7 cells to POVPC and PGPC under the same conditions resulted in a significant increase in ceramide synthase activity, whereas, acid or neutral sphingomyelinase activities were not affected. PGPC is not only more toxic than POVPC, but also a more potent inducer of ceramide formation by activating a limited subset of CerS isoforms. The stimulated CerS activities are in line with the C16-, C22-, and C24:0-Cer species that are generated under the influence of the OxPL. Fumonisin B1, a specific inhibitor of CerS, suppressed OxPL-induced ceramide generation, demonstrating that OxPL-induced CerS activity in macrophages is responsible for the accumulation of ceramide. OxLDL elicits the same cellular ceramide and CerS effects. Thus, it is concluded that PGPC and POVPC are active components that contribute to the capacity of this lipoprotein to elevate ceramide levels in macrophages.
Collapse
Affiliation(s)
- Lingaraju M. Halasiddappa
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Harald Koefeler
- Core Facility for Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Anthony H. Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
15
|
Allen D, Hasanally D, Ravandi A. Role of oxidized phospholipids in cardiovascular pathology. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Kim MJ, Choi NY, Koo JE, Kim SY, Joung SM, Jeong E, Lee JY. Suppression of Toll-like receptor 4 activation by endogenous oxidized phosphatidylcholine, KOdiA-PC by inhibiting LPS binding to MD2. Inflamm Res 2013; 62:571-80. [PMID: 23474920 DOI: 10.1007/s00011-013-0609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/30/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Activation of Toll-like receptor 4 (TLR4) triggers immune and inflammatory events by sensing endogenous danger signals as well as invading pathogens and contributes to the development of chronic inflammatory diseases. In this study, we investigated effect of 1-palmitoyl-2-(5-keto-6-octenedioyl)-sn-glycero-3-phosphocholine (KOdiA-PC), an oxidized phosphatidylcholine, on TLR4 activation and the underlying regulatory mechanism. METHODS RAW264.7 macrophages were used for the study. The levels of TNF-α, IFN-β, and COX-2 mRNA and protein were determined by quantitative PCR and ELISA, respectively. Activation of TLR4-signaling was examined by immunoblot and luciferase reporter assays. In vitro binding assay was performed to determine LPS binding to MD2. Macrophage migration was analyzed using a transwell-culture system. RESULTS KOdiA-PC prevented the activation of TLR4-signaling components including ERK, JNK, p38, NF-κB, and IRF3 leading to decrease of TNF-α, IFN-β, and COX-2 expression. In vitro binding assay revealed that KOdiA-PC interrupted LPS binding to MD2, a TLR4 co-receptor. Consistently, KOdiA-PC suppressed LPS-induced macrophage migration. CONCLUSION The results demonstrate that KOdiA-PC can modulate TLR4 activation by regulating ligand-receptor interaction. Therefore, endogenously generated, oxidized phospholipids may play a role in resolving inflammation by terminating TLR activation and macrophage recruitment to the inflamed site.
Collapse
Affiliation(s)
- Min Jin Kim
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Free radical-induced oxidation of membrane phospholipids generates complex mixtures of oxidized phospholipids (oxPLs). The combinatorial operation of a few dozen reaction types on a few dozen phospholipid structures results in the production of a dauntingly vast diversity of oxPL molecular species. Structural identification of the individual oxPL in these mixtures is a redoubtable challenge that is absolutely essential to allow determination of the biological activities of individual species. With an emphasis on cardiovascular consequences, this Review focuses on biological activities of oxPLs whose molecular structures are known and highlights 2 diametrically opposite approaches that were used to determine those structures, that is, (1) the classic approach from bioactivity of a complex mixture to isolation and structural characterization of the active molecule followed by confirmation of the structure by unambiguous chemical synthesis and (2) hypothesis of products that are likely to be generated by lipid oxidation, followed by synthesis, and then detection in vivo guided by the availability of authentic standards, and last, characterization of biological activities. Especially important for the application of the second paradigm is the capability of LC-MS/MS and derivatizations to selectively detect and quantify specific oxPL in complex mixtures, without the need for their isolation or complete separation. This technology can provide strong evidence for identity by comparisons with pure, well-characterized samples available by chemical syntheses. Those pure samples are critical for determining the biological activities attributable to specific molecular species of oxPLs in the complex mixtures generated in vivo as a consequence of oxidative stress.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
High-density lipoprotein phospholipids interfere with dendritic cell Th1 functional maturation. Immunobiology 2012; 217:91-9. [DOI: 10.1016/j.imbio.2011.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 02/03/2023]
|
19
|
Salomon RG, Gu X. Critical insights into cardiovascular disease from basic research on the oxidation of phospholipids: the γ-hydroxyalkenal phospholipid hypothesis. Chem Res Toxicol 2011; 24:1791-802. [PMID: 21870852 DOI: 10.1021/tx200207z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Basic research, exploring the hypothesis that γ-hydroxyalkenal phospholipids are generated in vivo through oxidative cleavage of polyunsaturated phospholipids, is delivering a bonanza of molecular mechanistic insights into cardiovascular disease. Rather than targeting a specific pathology, these studies were predicated on the presumption that a fundamental understanding of lipid oxidation is likely to provide critical insights into disease processes. This investigational approach, from the chemistry of biomolecules to disease phenotype, that complements the more common opposite paradigm, is proving remarkably productive.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA.
| | | |
Collapse
|
20
|
Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. THE JOURNAL OF IMMUNOLOGY 2011; 187:1529-35. [PMID: 21810617 DOI: 10.4049/jimmunol.1100253] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid rafts and caveolae play a pivotal role in organization of signaling by TLR4 and several other immune receptors. Beyond the simple cataloguing of signaling events compartmentalized by these membrane microdomains, recent studies have revealed the surprisingly central importance of dynamic remodeling of membrane lipid domains to immune signaling. Simple interventions upon membrane lipid, such as changes in cholesterol loading or crosslinking of raft lipids, are sufficient to induce micrometer-scale reordering of membranes and their protein cargo with consequent signal transduction. In this review, using TLR signaling in the macrophage as a central focus, we discuss emerging evidence that environmental and genetic perturbations of membrane lipid regulate protein signaling, illustrate how homeostatic flow of cholesterol and other lipids through rafts regulates the innate immune response, and highlight recent attempts to harness these insights toward therapeutic development.
Collapse
Affiliation(s)
- Michael B Fessler
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
21
|
Impact of oxLDL on Cholesterol-Rich Membrane Rafts. J Lipids 2011; 2011:730209. [PMID: 21490811 PMCID: PMC3066652 DOI: 10.1155/2011/730209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022] Open
Abstract
Numerous studies have demonstrated that cholesterol-rich membrane rafts play critical roles in multiple cellular functions. However, the impact of the lipoproteins on the structure, integrity and cholesterol composition of these domains is not well understood. This paper focuses on oxidized low-density lipoproteins (oxLDLs) that are strongly implicated in the development of the cardiovascular disease and whose impact on membrane cholesterol and on membrane rafts has been highly controversial. More specifically, we discuss three major criteria for the impact of oxLDL on membrane rafts: distribution of different membrane raft markers, changes in membrane cholesterol composition, and changes in lipid packing of different membrane domains. We also propose a model to reconcile the controversy regarding the relationship between oxLDL, membrane cholesterol, and the integrity of cholesterol-rich membrane domains.
Collapse
|
22
|
Wang SH, Yang WB, Liu YC, Chiu YH, Chen CT, Kao PF, Lin CM. A potent sphingomyelinase inhibitor from Cordyceps mycelia contributes its cytoprotective effect against oxidative stress in macrophages. J Lipid Res 2011; 52:471-9. [PMID: 21217100 DOI: 10.1194/jlr.m011015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel water-soluble polysaccharide fraction, CME-1, with a molecular mass of 27.6 kDa and containing mannose and galactose in a respective ratio of 4:6, was prepared from Cordyceps sinensis mycelia and identified by NMR and GC-MS. In the current study, we examined whether CME-1 has anti-inflammatory effects in RAW264.7 cells. The ability of CME-1 to inhibit H(2)O(2)-induced cell death in RAW264.7 cells was assessed by using an MTT assay and annexin V/propidium iodide double staining; we found that CME-1 protected cells against H(2)O(2)-induced injury. H(2)O(2)-induced intracellular oxidative stress and mitochondrial membrane depolarization were also diminished with CME-1 treatment. We evaluated the hydroxyl radical scavenging ability of CME-1 by using the DMPO-electron spin resonance technique, which indicated that CME-1 acts as an intracellular antioxidant in a concentration-dependent manner through a mechanism other than its scavenging activity. Activities of both neutral and acid sphingomyelinases (SMases) were assessed in vitro, and results showed that the CME-1 inhibited activities of both neutral and acid SMases in a concentration-dependent manner. CME-1 reduced H(2)O(2) treatment-elevated C16- and C18-ceramide levels measured by LC/MS/MS in RAW264.7 cells. Results suggest that CME-1 protects RAW264.7 cells against oxidative stress through inhibition of SMase activity and reduction of C16- and C18-ceramide levels.
Collapse
Affiliation(s)
- Shwu-Huey Wang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Tabatadze N, Savonenko A, Song H, Bandaru VVR, Chu M, Haughey NJ. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J Neurosci Res 2010; 88:2940-51. [PMID: 20629193 DOI: 10.1002/jnr.22438] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sphingolipid ceramide is a bioactive signaling lipid that is thought to play important roles in modulating synaptic activity, in part by regulating the function of excitatory postsynaptic receptors. However, the molecular mechanisms by which ceramide exerts its effects on synaptic activity remain largely unknown. We recently demonstrated that a rapid generation of ceramide by neutral sphingomyelinase-2 (nSMase2; also known as "sphingomyelin phosphodiesterase-3") played a key role in modulating excitatory postsynaptic currents by controlling the insertion and clustering of NMDA receptors (Wheeler et al. [2009] J. Neurochem. 109:1237-1249). We now demonstrate that nSMase2 plays a role in memory. Inhibition of nSMase2 impaired spatial and episodic-like memory in mice. At the molecular level, inhibition of nSMase2 decreased ceramide, increased PSD-95, increased the number of AMPA receptors, and altered the subunit composition of NMDA receptors. Our study identifies nSMase2 as an important component for efficient memory formation and underscores the importance of ceramide in regulating synaptic events related to learning and memory.
Collapse
Affiliation(s)
- Nino Tabatadze
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Oxidized phospholipids (OxPLs) are abundantly found at sites of inflammation and are considered to play an active role in the modulation of the immune response. Whereas most studies attributed a proinflammatory role to OxPLs, recent studies demonstrate that some products of phospholipid oxidation may in fact exhibit anti-inflammatory properties. This study summarizes the proinflammatory and anti-inflammatory properties of OxPLs and sheds light on the therapeutic potential of OxPL derivatives or analogs for treatment of chronic inflammatory disorders. RECENT FINDINGS OxPLs may inhibit activation of several Toll-like receptors and can epigenetically reduce the capacity of dendritic cells to function as mature, fully functional immunostimulatory cells. These data demonstrate that OxPLs can induce anti-inflammatory effects. Moreover, VB-201, an orally available synthetic phospholipid analog of the Lecinoxoid family, was found to attenuate inflammation in various preclinical animal models and is currently employed in a phase II clinical trial in psoriasis. SUMMARY Chemical or biological modifications of phospholipids yield various products, some of which may exhibit anti-inflammatory properties. Identification of such species and generation of more stable/potent anti-inflammatory OxPL variants may represent a novel approach for the treatment of immune-mediated diseases such as psoriasis, atherosclerosis, multiple sclerosis and rheumatoid arthritis.
Collapse
|
25
|
Oskolkova OV, Afonyushkin T, Preinerstorfer B, Bicker W, von Schlieffen E, Hainzl E, Demyanets S, Schabbauer G, Lindner W, Tselepis AD, Wojta J, Binder BR, Bochkov VN. Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 185:7706-12. [PMID: 21068406 DOI: 10.4049/jimmunol.0903594] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyunsaturated fatty acids are precursors of multiple pro- and anti-inflammatory molecules generated by enzymatic stereospecific and positionally specific insertion of oxygen, which is a prerequisite for recognition of these mediators by cellular receptors. However, nonenzymatically oxidized free and esterified polyunsaturated fatty acids also demonstrate activities relevant to inflammation. In particular, phospholipids containing oxidized fatty acid residues (oxidized phospholipids; OxPLs) were shown to induce proinflammatory changes in endothelial cells but paradoxically also to inhibit inflammation induced via TLR4. In this study, we show that half-maximal inhibition of LPS-induced elevation of E-selectin mRNA in endothelial cells developed at concentrations of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) 10-fold lower than those required to induce proinflammatory response. Similar concentration difference was observed for other classes and molecular species of OxPLs. Upon injection into mice, OxPAPC did not elevate plasma levels of IL-6 and keratinocyte chemoattractant but strongly inhibited LPS-induced upregulation of these inflammatory cytokines. Thus, both in vitro and in vivo, anti-LPS effects of OxPLs are observed at lower concentrations than those required for their proinflammatory action. Quantification of the most abundant oxidized phosphatidylcholines by HPLC/tandem mass spectrometry showed that circulating concentrations of total oxidized phosphatidylcholine species are close to the range where they demonstrate anti-LPS activity but significantly lower than that required for induction of inflammation. We hypothesize that low levels of OxPLs in circulation serve mostly anti-LPS function and protect from excessive systemic response to TLR4 ligands, whereas proinflammatory effects of OxPLs are more likely to develop locally at sites of tissue deposition of OxPLs (e.g., in atherosclerotic vessels).
Collapse
Affiliation(s)
- Olga V Oskolkova
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Józefowski S, Czerkies M, Łukasik A, Bielawska A, Bielawski J, Kwiatkowska K, Sobota A. Ceramide and Ceramide 1-Phosphate Are Negative Regulators of TNF-α Production Induced by Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2010; 185:6960-73. [DOI: 10.4049/jimmunol.0902926] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Shentu TP, Titushkin I, Singh DK, Gooch KJ, Subbaiah PV, Cho M, Levitan I. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 2010; 299:C218-29. [PMID: 20410437 DOI: 10.1152/ajpcell.00383.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-keto-cholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDL-induced changes in endothelial biomechanics.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care and Sleep Medicine, Dept. of Medicine, University of Illinois, Chicago, Illinois 60612-7323, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 2010; 12:1009-59. [PMID: 19686040 PMCID: PMC3121779 DOI: 10.1089/ars.2009.2597] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of "modified-self" type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators.
Collapse
Affiliation(s)
- Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
29
|
Lee S, Gharavi NM, Honda H, Chang I, Kim B, Jen N, Li R, Zimman A, Berliner JA. A role for NADPH oxidase 4 in the activation of vascular endothelial cells by oxidized phospholipids. Free Radic Biol Med 2009; 47:145-51. [PMID: 19375500 PMCID: PMC2712234 DOI: 10.1016/j.freeradbiomed.2009.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 03/04/2009] [Accepted: 04/10/2009] [Indexed: 12/31/2022]
Abstract
Previous studies from our group have demonstrated that oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC) activates over 1000 genes in human aortic endothelial cells (HAECs). Prominent among these are genes regulating inflammation, cholesterol homeostasis, antioxidant enzymes, and the unfolded protein response. Previous studies from our lab and others suggested that transcriptional regulation by Ox-PAPC may be controlled, at least in part, by reactive oxygen species. We now present evidence that Ox-PAPC activation of NADPH oxidase 4 (NOX4) is responsible for the regulation of two of these important groups of genes: those controlling inflammation and those involved in sterol regulation. Our data demonstrate that Ox-PAPC increases reactive oxygen species formation in HAECs as seen by DCF fluorescence. NOX4 is the major molecule responsible for this increase because downregulation of NOX4 and its components (p22(phox) and rac1) blocked the Ox-PAPC effect. Our data show that Ox-PAPC did not change NOX4 transcription levels but did induce recruitment of rac1 to the membrane for NOX4 activation. We present evidence that vascular endothelial growth factor receptor 2 (VEGFR2) activation is responsible for rac1 recruitment to the membrane. Finally, we demonstrate that knockdown of NOX4 and its components rac1 and p22(phox) decreases Ox-PAPC induction of inflammatory and sterol regulatory genes, but does not affect Ox-PAPC transcriptional regulation of other genes for antioxidants and the unfolded protein response. In summary, we have identified a VEGFR2/NOX4 regulatory pathway by which Ox-PAPC controls important endothelial functions.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Nima M. Gharavi
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
- Division of Cardiology, Department of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Henry Honda
- Division of Cardiology, Department of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Irene Chang
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Brandon Kim
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Nelson Jen
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Rongsong Li
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Alejandro Zimman
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
| | - Judith A. Berliner
- Department of Pathology, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
- Division of Cardiology, Department of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095
- Address correspondence and requests for materials to Dr. Judith A. Berliner, MRL 4760, 675, Charles E. Young Dr. S., Los Angeles, CA 90095. Tel.: 310-825-2436. Fax: 310-794-7345. E-mail:
| |
Collapse
|
30
|
Qin J, Testai FD, Dawson S, Kilkus J, Dawson G. Oxidized phosphatidylcholine formation and action in oligodendrocytes. J Neurochem 2009; 110:1388-99. [PMID: 19545281 DOI: 10.1111/j.1471-4159.2009.06231.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species play a major role in neurodegeneration. Increasing concentrations of peroxide induce neural cell death through activation of pro-apoptotic pathways. We now report that hydrogen peroxide generated sn-2 oxidized phosphatidylcholine (OxPC) in neonatal rat oligodendrocytes and that synthetic OxPC [1-palmitoyl-2-(5'-oxo)valeryl-sn-glycero-3 phosphorylcholine, POVPC] also induced apoptosis in neonatal rat oligodendrocytes. POVPC activated caspases 3 and 8, and neutral sphingomyelinase (NSMase) but not acid sphingomyelinase. Downstream pro-apoptotic pathways activated by POVPC treatment included the Jun N-terminal kinase proapoptotic cascade and the degradation of phospho-Akt. Activation of NSMase occurred within 1 h, was blocked by inhibitors of caspase 8, increased mainly C18 and C24:1 ceramides, and appeared to be concentrated in detergent-resistant microdomains (Rafts). We concluded that OxPC initially activated NSMase and converted sphingomyelin into ceramide to mediate a series of downstream pro-apoptotic events in oligodendrocytes.
Collapse
Affiliation(s)
- Jingdong Qin
- Departments of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
OBJECTIVES Carbon monoxide (CO) can confer anti-inflammatory protection in rodent models of ventilator-induced lung injury (VILI). Caveolin-1 exerts a critical role in cellular responses to mechanical stress and has been shown to mediate cytoprotective effects of CO in vitro. We sought to determine the role of caveolin-1 in lung susceptibility to VILI in mice. Furthermore, we assessed the role of caveolin-1 in the tissue-protective effects of CO in the VILI model. DESIGN Prospective experimental study. SETTING University laboratory. SUBJECTS Wild type (wt) and caveolin-1 deficient (cav-1) mice. INTERVENTIONS Mice were subjected to tracheostomy and arterial cannulation. Wt and cav-1 mice were ventilated with a tidal volume of 12 mL/kg body weight and a frequency of 80/minute for 5 minutes as control or for 8 hours with air in the absence or presence of CO (250 parts per million). Bronchoalveolar lavage and histology were used to determine lung injury. Lung sections or homogenates were analyzed for caveolin-1 expression by immunohistochemical staining or Western blotting, respectively. MEASUREMENTS AND MAIN RESULTS Ventilation led to an increase in bronchoalveolar lavage protein concentration, cell count, neutrophil recruitment, and edema formation, which was prevented in the presence of CO. Although ventilation alone slightly induced caveolin-1 expression in epithelial cells, the application of CO during the ventilation significantly increased the expression of caveolin-1. In comparison with wt mice, mechanical ventilation of cav-1 mice led to a significantly higher degree of lung injury when compared with wt mice. In contrast to its effectiveness in wt mice, CO administration failed to reduce lung-injury markers in cav-1 mice. CONCLUSIONS Caveolin-1 null mice are more susceptible to VILI. CO executes lung-protective effects during mechanical ventilation that are dependent, in part, on caveolin-1 expression.
Collapse
|
32
|
Singleton PA, Chatchavalvanich S, Fu P, Xing J, Birukova AA, Fortune JA, Klibanov AM, Garcia JGN, Birukov KG. Akt-mediated transactivation of the S1P1 receptor in caveolin-enriched microdomains regulates endothelial barrier enhancement by oxidized phospholipids. Circ Res 2009; 104:978-86. [PMID: 19286607 DOI: 10.1161/circresaha.108.193367] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, leading to increased mass transport across the vessel wall and leukocyte extravasation, the key mechanisms in pathogenesis of tissue inflammation and edema. We have previously demonstrated that OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine) significantly enhances vascular endothelial barrier properties in vitro and in vivo and attenuates endothelial hyperpermeability induced by inflammatory and edemagenic agents via Rac and Cdc42 GTPase dependent mechanisms. These findings suggested potential important therapeutic value of barrier-protective oxidized phospholipids. In this study, we examined involvement of signaling complexes associated with caveolin-enriched microdomains (CEMs) in barrier-protective responses of human pulmonary ECs to OxPAPC. Immunoblotting from OxPAPC-treated ECs revealed OxPAPC-mediated rapid recruitment (5 minutes) to CEMs of the sphingosine 1-phosphate receptor (S1P(1)), the serine/threonine kinase Akt, and the Rac1 guanine nucleotide exchange factor Tiam1 and phosphorylation of caveolin-1, indicative of signaling activation in CEMs. Abolishing CEM formation (methyl-beta-cyclodextrin) blocked OxPAPC-mediated Rac1 activation, cytoskeletal reorganization, and EC barrier enhancement. Silencing (small interfering RNA) Akt expression blocked OxPAPC-mediated S1P(1) activation (threonine phosphorylation), whereas silencing S1P(1) receptor expression blocked OxPAPC-mediated Tiam1 recruitment to CEMs, Rac1 activation, and EC barrier enhancement. To confirm our in vitro results in an in vivo murine model of acute lung injury with pulmonary vascular hyperpermeability, we observed that selective lung silencing of caveolin-1 or S1P(1) receptor expression blocked OxPAPC-mediated protection from ventilator-induced lung injury. Taken together, these results suggest Akt-dependent transactivation of S1P(1) within CEMs is important for OxPAPC-mediated cortical actin rearrangement and EC barrier protection.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Division of Biomedical Sciences, Section of Pulmonary and Critical Medicine, University of Chicago, Ill 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Erridge C. Oxidized phospholipid inhibition of LPS-signaling: a good side to the bad guys? Arterioscler Thromb Vasc Biol 2009; 29:337-8. [PMID: 19228608 DOI: 10.1161/atvbaha.108.181909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Wang XM, Kim HP, Nakahira K, Ryter SW, Choi AMK. The Heme Oxygenase-1/Carbon Monoxide Pathway Suppresses TLR4 Signaling by Regulating the Interaction of TLR4 with Caveolin-1. THE JOURNAL OF IMMUNOLOGY 2009; 182:3809-18. [DOI: 10.4049/jimmunol.0712437] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Katsargyris A, Klonaris C, Bastounis E, Theocharis S. Toll-like receptor modulation: a novel therapeutic strategy in cardiovascular disease? Expert Opin Ther Targets 2009; 12:1329-46. [PMID: 18851691 DOI: 10.1517/14728222.12.11.1329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) have been recently recognised as primary receptors in the innate immune system. Apart from initiating a prompt immune response against invading pathogens, TLRs are also considered to be an important link between innate immunity, inflammation and a variety of clinical disorders, including cardiovascular diseases. TLR signalling manipulation with novel drugs could offer important opportunities for cardiovascular disease modification. OBJECTIVE To present the latest knowledge supporting the involvement of TLRs in the pathogenesis and progress of cardiovascular diseases and explore the role of TLRs as potential targets for therapeutic intervention in cardiovascular territory. METHODS A review of the literature documenting implication of TLR signalling in cardiovascular disorders. Current progress in TLR-targeting drug development and the potential role of such a treatment strategy in cardiovascular disorders are discussed. CONCLUSIONS A growing body of evidence supports a role for TLRs in cardiovascular disease initiation and progression. Altering TLR signalling with novel drugs could be a beneficial therapeutic strategy for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Athanasios Katsargyris
- National and Kapodistrian University of Athens, School of Medicine, LAIKON Hospital, Vascular Division, 1st Department of Surgery, 75, Mikras Asias street, Goudi, 11527 Athens, Greece
| | | | | | | |
Collapse
|
36
|
von Schlieffen E, Oskolkova OV, Schabbauer G, Gruber F, Blüml S, Genest M, Kadl A, Marsik C, Knapp S, Chow J, Leitinger N, Binder BR, Bochkov VN. Multi-hit inhibition of circulating and cell-associated components of the toll-like receptor 4 pathway by oxidized phospholipids. Arterioscler Thromb Vasc Biol 2008; 29:356-62. [PMID: 19112167 DOI: 10.1161/atvbaha.108.173799] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidized phospholipids (OxPLs) that are abundant in atherosclerotic lesions are increasingly recognized as context-dependent lipid mediators demonstrating both pro- and antiinflammatory activities. Molecular mechanisms of their effects are largely unknown. Here we present novel information on the mechanisms whereby OxPLs modulate activation of TLR4 by lipopolysaccharide (LPS). METHODS AND RESULTS We show, using several cell types and various inflammatory genes as readouts, that different classes and molecular species of OxPLs do not stimulate TLR4 but exert prominent inhibitory effects on LPS-induced reactions. Our data demonstrate that binding of OxPLs to the LPS-binding protein (LBP) and CD14 prevents recognition of LPS by these proteins, thus impairing activation of TLR4. In addition, OxPLs inhibited LBP- and CD14-independent activation of TLR4 by the synthetic TLR4 agonist E6020 indicating that in parallel with LBP and CD14, OxPLs target cell-associated steps in TLR4 cascade. CONCLUSIONS Our data suggest that OxPLs inhibit action of LPS via a multi-hit mechanism. These results support the notion that OxPLs are endogenous inhibitors of TLR4 produced in response to oxidative stress.
Collapse
Affiliation(s)
- Elena von Schlieffen
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cheng Y, Lee C, Lin Y, Huang J, Su C, Chang W, Yang B. Caspase‐3 enhances lung metastasis and cell migration in a protease‐independent mechanism through the ERK pathway. Int J Cancer 2008; 123:1278-85. [DOI: 10.1002/ijc.23592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Berliner JA, Gharavi NM. Endothelial cell regulation by phospholipid oxidation products. Free Radic Biol Med 2008; 45:119-23. [PMID: 18460347 PMCID: PMC2895487 DOI: 10.1016/j.freeradbiomed.2008.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/05/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
Oxidized phospholipids accumulate in atherosclerotic lesions, on lipoproteins, in other states of chronic inflammation, on apoptotic cells, necrotic cells and cells exposed to oxidative stress. These lipids regulate the transcription of over 1000 gene, regulating many endothelial functions, by activating several different cell surface receptors and multiple signaling pathways. These lipids also have important effects not involving transcription that regulate cell junctions and leukocyte binding. Thus these lipids are potent regulators of endothelial cell function with broad effects comparable in extent but differing from those of cytokines.
Collapse
Affiliation(s)
- Judith A Berliner
- Department of Pathology, University of California at Los Angeles 13-229 CHS, Pathology, 650 Charles Young Dr. South, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
39
|
Erridge C, Kennedy S, Spickett CM, Webb DJ. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem 2008; 283:24748-59. [PMID: 18559343 DOI: 10.1074/jbc.m800352200] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.
Collapse
Affiliation(s)
- Clett Erridge
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Univesity of Strathclyde, 204 George St., Glasgow G1 1XW, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Perrin-Cocon L, Agaugué S, Diaz O, Vanbervliet B, Dollet S, Guironnet-Paquet A, André P, Lotteau V. Th1 disabled function in response to TLR4 stimulation of monocyte-derived DC from patients chronically-infected by hepatitis C virus. PLoS One 2008; 3:e2260. [PMID: 18509450 PMCID: PMC2377338 DOI: 10.1371/journal.pone.0002260] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 04/17/2008] [Indexed: 02/06/2023] Open
Abstract
Background Lack of protective antibodies and inefficient cytotoxic responses are characteristics of chronic hepatitis C infection. A defect in dendritic cell (DC) function has thus been suspected, but this remains a controversial issue. Methods and Findings Here we show that monocyte-derived DC (MoDC) from chronically-infected patients can mature in response to TLR1/2, TLR2/6 or TLR3 ligands. In contrast, when stimulated with the TLR4 ligand LPS, MoDC from patients show a profound defect in inducing IFNγ secretion by allogeneic T cells. This defect is not due to defective phenotypic maturation or to the presence of HCV-RNA in DC or monocytes but is correlated to reduced IL-12 secretion by DC. Restoration of DC ability to stimulate IFNγ secretion can be obtained by blocking MEK activation in DC, indicating that MEK/ERK pathway is involved in the Th1 defect of MoDC. Monocytes from HCV patients present increased spontaneous secretion of cytokines and chemokines, especially MIP-1β. Addition of MIP-1β on healthy monocytes during differentiation results in DC that have Th1 defect characteristic of MoDC from HCV patients, suggesting that MIP-1β secretion by HCV monocytes participates in the Th1 defect of DC. Conclusions Our data indicate that monocytes from HCV patients are activated in vivo. This interferes with their differentiation into DC, leading to deficient TLR4 signaling in these cells that are enable to induce a Th1 response. This specific defect is linked to the activation of the MEK/ERK pathway.
Collapse
|
41
|
Sun Y, Fox T, Adhikary G, Kester M, Pearlman E. Inhibition of corneal inflammation by liposomal delivery of short-chain, C-6 ceramide. J Leukoc Biol 2008; 83:1512-21. [PMID: 18372342 DOI: 10.1189/jlb.0108076] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ceramide is recognized as an antiproliferative and proapoptotic sphingolipid metabolite; however, the role of ceramide in inflammation is not well understood. To determine the role of C6-ceramide in regulating inflammatory responses, human corneal epithelial cells were treated with C6-ceramide in 80 nm diameter nanoliposome bilayer formulation (Lip-C6) prior to stimulation with UV-killed Staphylococcus aureus. Lip-C6 (5 muM) inhibited the phosphorylation of proinflammatory and proapoptotic MAP kinases JNK and p38 and production of neutrophil chemotactic cytokines CXCL1, CXCL5, and CXCL8. Lip-C6 also blocked CXC chemokine production by human and murine neutrophils. To determine the effect of Lip-C6 in vivo, a murine model of corneal inflammation was used in which LPS or S. aureus added to the abraded corneal surface induces neutrophil infiltration to the corneal stroma, resulting in increased corneal haze. Mice were treated topically with 2 nMoles (811 ng) Lip-C6 or with control liposomes prior to, or following, LPS or S. aureus stimulation. We found that corneal inflammation was significantly inhibited by Lip-C6 but not control liposomes given prior to, or following, activation by LPS or S. aureus. Furthermore, Lip-C6 did not induce apoptosis of corneal epithelial cells in vitro or in vivo, nor did it inhibit corneal wound healing. Together, these findings demonstrate a novel, anti-inflammatory, nontoxic, therapeutic role for liposomally delivered short-chain ceramide.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
42
|
Levitan I, Gooch KJ. Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL. Antioxid Redox Signal 2007; 9:1519-34. [PMID: 17576163 DOI: 10.1089/ars.2007.1686] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane-cytoskeleton coupling is known to play major roles in a plethora of cellular responses, such as cell growth, differentiation, polarization, motility, and others. In this review, the authors discuss the growing amount of evidence indicating that membrane-cytoskeleton interactions are regulated by the lipid composition of the plasma membrane, suggesting that cholesterol-rich membrane domains (lipid rafts), including caveolae, are essential for membrane-cytoskeleton coupling. Several models for raft-cytoskeleton interactions are discussed. Also described is the evidence suggesting that raft-cytoskeleton interactions play key roles in several cytoskeleton-dependent processes, particularly in the regulation of cellular biomechanical properties. To address further the physiological significance of raft-cytoskeleton coupling, the authors focus on the impact of oxidized low density lipoproteins, one of the major cholesterol carriers and proatherogenic factors, on the integrity of lipid rafts/caveolae, and on the organization of the cytoskeleton. Finally, the authors review the recent studies showing that oxLDL and cholesterol depletion have similar impacts on the biomechanical properties of vascular endothelial cells, which in turn affect endothelial angiogenic potential.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
43
|
Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:718-36. [PMID: 17570293 DOI: 10.1016/j.bbadis.2007.04.009] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/21/2022]
Abstract
Oxidized lipids are generated from (poly)unsaturated diacyl- and alk(en)ylacyl glycerophospholipids under conditions of oxidative stress. The great variety of reaction products is defined by the degree of modification, hydrophobicity, chemical reactivity, physical properties and biological activity. The biological activities of these compounds may depend on both, the recognition of the particular molecular structures by specific receptors and on the unspecific physical and chemical effects on their target systems (membranes, proteins). In this review, we aim at highlighting the molecular features that are essential for the understanding of the biological actions of pure oxidized phospholipids. Firstly, their chemical structures are described as a basis for an understanding of their physical and (bio)chemical properties in membrane- and protein-bound form. Secondly, the biological activities of oxidized phospholipids are discussed in terms of their unspecific effects on the membrane level as well as their potential interactions with specific targets (receptors) affecting a large set of (signaling) molecules. Finally, the role of oxidized phospholipids as important mediators in pathophysiology is discussed with emphasis on atherosclerosis.
Collapse
Affiliation(s)
- Gilbert O Fruhwirth
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | |
Collapse
|
44
|
Berliner JA, Zimman A. Future of ToxicologyLipidomics, an Important Emerging Area for Toxicologists: Focus on Lipid Oxidation Products. Chem Res Toxicol 2007; 20:849-53. [PMID: 17489606 DOI: 10.1021/tx7000652] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Judith A Berliner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 13-229 CHS, 650 Charles Young South, Los Angeles, California 90095-1732, USA. jberliner@ mednet.ucla.edu
| | | |
Collapse
|