1
|
Li K, Qian W, Zhang F, Zhang W, Lv H, Quan M, Sun W, Liu R, Cao X, Xian Z, Bao S, Jiang H, Du J, Zhang M, Chen Y, Zhang J, Han C, Ai D. Maternal high-fat diet exacerbates atherosclerosis development in offspring through epigenetic memory. NATURE CARDIOVASCULAR RESEARCH 2025; 4:362-379. [PMID: 40087523 DOI: 10.1038/s44161-025-00622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
Maternal exposure to a Western-type diet (WD) increases the susceptibility of adult offspring to atherosclerosis, partly because fetal endothelial cells (ECs) become dysfunctional and inflamed due to risk factors transmitted via maternal-fetal blood exchange. However, the underlying mechanisms remain unclear. Here we show that maternal WD accelerates atherogenesis in adult offspring mice by regulating chromatin dynamics through activator protein-1 (AP-1) in aortic ECs, inducing inflammatory memory at the chromatin level. We found that 27-hydroxycholesterol is involved in memory establishment and also acts as a secondary stimulator, amplifying the expression of inflammatory factors and enhancing the enrichment of AP-1/p300 and H3K27ac in ECs. Inhibiting AP-1 binding to chromatin reduced the inflammatory response in human umbilical vein ECs from mothers with hypercholesterolemia and decreased atherogenesis in offspring mice exposed to maternal WD. Our findings demonstrate that maternal WD exacerbates EC dysfunction and atherosclerosis in adult offspring by inducing AP-1-associated epigenetic memory, which increases chromatin accessibility to inflammatory genes.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Weiqi Qian
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Fangni Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenhui Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Huizhen Lv
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Meixi Quan
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Weiyan Sun
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ruixin Liu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xinyi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zhong Xian
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Suya Bao
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Pisek A, McKinney CM, Muktabhant B, Pitiphat W. Maternal Metabolic Status and Orofacial Cleft Risk: A Case-Control Study in Thailand. Int Dent J 2024; 74:1413-1423. [PMID: 38614877 PMCID: PMC11551577 DOI: 10.1016/j.identj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVES Metabolic syndrome (MetS) has been suggested to play a role in congenital defects. This study investigated the association of MetS and its components with orofacial clefts (OFCs). METHODS We conducted a case-control study in Northeast Thailand. Ninety-four cases with cleft lip, with or without cleft palate, were frequency matched with 94 controls on the infant's age and mother's education. We administered a mother's health questionnaire and collected anthropometric measurements and blood samples. Multiple logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were performed among infants without a family history of OFCs, mothers who were not currently breastfeeding, and mothers who were >6 months postpartum. RESULTS When compared to mothers of normal weight, the OR associated with OFCs were 2.44 (95% CI, 1.04-5.76, P = .04) in overweight mothers, and 3.30 (95% CI, 1.14-9.57, P = .03) in obese mothers. Low HDL-C raised the risk of OFCs 2.95 times (95% CI, 1.41-6.14, P = .004) compared to normal HDL-C levels. Mothers with 4 or 5 features of MetS were 2.77 times as likely to have the affected child than those who did not (95% CI, 0.43-17.76), but this difference was not statistically significant (P = .28). Subgroup analyses showed similar results, uncovering an additional significant association between underweight mothers and OFCs. CONCLUSIONS The results indicate a robust association between underweight and overweight/obese maternal body mass index and increased OFC risk. Additionally, low HDL-C in mothers is linked to an elevated risk of OFCs. Further research is needed to evaluate if promoting strategies to maintain optimal body weight and enhance HDL-C levels in reproductive-age and pregnant women icould contribute to a reduction of the risk of OFCs in their progeny.
Collapse
Affiliation(s)
- Araya Pisek
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Christy M McKinney
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benja Muktabhant
- Department of Public Health Administration, Health Promotion and Nutrition, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Waranuch Pitiphat
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
3
|
Rousseau-Ralliard D, Chavatte-Palmer P, Couturier-Tarrade A. The Effect of Maternal Exposure to a Diet High in Fats and Cholesterol on the Placental Function and Phenotype of the Offspring in a Rabbit Model: A Summary Review of About 15 Years of Research. Int J Mol Sci 2023; 24:14547. [PMID: 37834002 PMCID: PMC10572169 DOI: 10.3390/ijms241914547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
The rates of obesity and being overweight are increasing all around the world, especially among women of childbearing age, in part due to overconsumption of lipids. The aim of this summary review was to present the cellular and molecular effects of a hyperlipidic high-cholesterol (H) diet on the maternal and offspring phenotype at the early embryonic, neonatal, weaning and adult stages while considering the effects of sex and to identify the window(s) of vulnerability linked to this exposure in a rabbit model. Before breeding, the H diet induced dyslipidemia and aortic atherosclerosis lesions and increased the number of atretic follicles. In the offspring, the H diet disrupted the embryonic phenotype and induced fetal hypotrophy associated with sex-specific disturbances of the feto-placental unit. In adulthood, the offspring of the H dams were heavier and hyperphagic and had increased blood pressure associated with disturbed gonadal development in both sexes. Vulnerability windows were explored via embryo transfers. The maternal gestational diet was shown to play a key role in the feto-placental phenotype, and preconception programming was unquestionably also observed. These two periods could represent windows of intervention in the context of obesity or being overweight to limit fetal and placental consequences.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- BREED, INRAE, UVSQ, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (D.R.-R.); (P.C.-P.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- BREED, INRAE, UVSQ, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (D.R.-R.); (P.C.-P.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- BREED, INRAE, UVSQ, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (D.R.-R.); (P.C.-P.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
4
|
Si J, Meir AY, Hong X, Wang G, Huang W, Pearson C, Adams WG, Wang X, Liang L. Maternal pre-pregnancy BMI, offspring epigenome-wide DNA methylation, and childhood obesity: findings from the Boston Birth Cohort. BMC Med 2023; 21:317. [PMID: 37612641 PMCID: PMC10463574 DOI: 10.1186/s12916-023-03003-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Maternal pre-pregnancy obesity is an established risk factor for childhood obesity. Investigating epigenetic alterations induced by maternal obesity during fetal development could gain mechanistic insight into the developmental origins of childhood obesity. While obesity disproportionately affects underrepresented racial and ethnic mothers and children in the USA, few studies investigated the role of prenatal epigenetic programming in intergenerational obesity of these high-risk populations. METHODS This study included 903 mother-child pairs from the Boston Birth Cohort, a predominantly urban, low-income minority birth cohort. Mother-infant dyads were enrolled at birth and the children were followed prospectively to age 18 years. Infinium Methylation EPIC BeadChip was used to measure epigenome-wide methylation level of cord blood. We performed an epigenome-wide association study of maternal pre-pregnancy body mass index (BMI) and cord blood DNA methylation (DNAm). To quantify the degree to which cord blood DNAm mediates the maternal BMI-childhood obesity, we further investigated whether maternal BMI-associated DNAm sites impact birthweight or childhood overweight or obesity (OWO) from age 1 to age 18 and performed corresponding mediation analyses. RESULTS The study sample contained 52.8% maternal pre-pregnancy OWO and 63.2% offspring OWO at age 1-18 years. Maternal BMI was associated with cord blood DNAm at 8 CpG sites (genome-wide false discovery rate [FDR] < 0.05). After accounting for the possible interplay of maternal BMI and smoking, 481 CpG sites were discovered for association with maternal BMI. Among them 123 CpGs were associated with childhood OWO, ranging from 42% decrease to 87% increase in OWO risk for each SD increase in DNAm. A total of 14 identified CpG sites showed a significant mediation effect on the maternal BMI-child OWO association (FDR < 0.05), with mediating proportion ranging from 3.99% to 25.21%. Several of these 14 CpGs were mapped to genes in association with energy balance and metabolism (AKAP7) and adulthood metabolic syndrome (CAMK2B). CONCLUSIONS This prospective birth cohort study in a high-risk yet understudied US population found that maternal pre-pregnancy OWO significantly altered DNAm in newborn cord blood and provided suggestive evidence of epigenetic involvement in the intergenerational risk of obesity.
Collapse
Affiliation(s)
- Jiahui Si
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anat Yaskolka Meir
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiumei Hong
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wanyu Huang
- Department of Civil and Systems Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - William G Adams
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Xiaobin Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
5
|
The LDL receptor: Traffic and function in trophoblast cells under normal and pathological conditions. Placenta 2022; 127:12-19. [DOI: 10.1016/j.placenta.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
6
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
7
|
Sethuraman V, Pu Y, Gingrich J, Jing J, Long R, Olomu IN, Veiga-Lopez A. Expression of ABC transporters during syncytialization in preeclampsia. Pregnancy Hypertens 2022; 27:181-188. [PMID: 35124425 PMCID: PMC9017055 DOI: 10.1016/j.preghy.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia complicates 2-8% of pregnancies and is associated with prematurity and intrauterine growth restriction. Cholesterol and sterol transport is a key function of the placenta and it is elicited through ATP binding cassette (ABC) transporters. ABCA1 expression changes during trophoblast cell fusion, a process required to form the placental syncytium that enables maternal-fetal nutrient transfer. ABCA1 expression is dysregulated in preeclamptic placentas. But whether ABC transporters expression during trophoblast fusion is disrupted in preeclampsia remains unknown. We investigated if cholesterol and sterol ABC transporters are altered in term and preterm preeclampsia placentas and during human cytotrophoblast syncytialization. Human placental biopsies were collected from healthy term (≥37 weeks; n = 11) and term preeclamptic (≥36 6/7 weeks; n = 8) and pre-term preeclamptic (28-35 weeks; n = 8) pregnancies. Both, protein and mRNA expression for ABCA1, ABCG1, ABCG5, and ABCG8 were evaluated. Primary cytotrophoblasts isolated from a subset of placentas were induced to syncytialize for 96 h and ABCA1, ABCG1 and ABCG8 mRNA expression evaluated at 0 h and 96 h. Protein and gene expression of ABC transporters were not altered in preeclamptic placentas. In the healthy Term group, ABCA1 expression was similar before and after syncytialization. After 96 h of syncytialization, mRNA expression of ABCA1 and ABCG1 increased significantly, while ABCG8 decreased significantly in term-preeclampsia, but not pre-term preeclampsia. While placental expression of ABCA1 and ABCG1 remained unaltered in term preeclampsia, the disruption in their dynamic expression pattern during cytotrophoblast syncytialization suggests that cholesterol transport may contribute to the pathophysiologic role of the placenta in preeclampsia.
Collapse
Affiliation(s)
- Visalakshi Sethuraman
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago
| | - Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Jiongjie Jing
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Robert Long
- Department of Obstetrics and Gynecology, Sparrow Health System, East Lansing, Michigan, USA
| | - Isoken Nicholas Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, USA; Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Omaña-Guzmán LI, Ortiz-Hernández L, Ancira-Moreno M, Morales-Hernández V, O’Neill MS, Vadillo-Ortega F. Association of pre-pregnancy body mass index and rate of weight gain during pregnancy with maternal indicators of cardiometabolic risk. Nutr Diabetes 2021; 11:36. [PMID: 34824195 PMCID: PMC8616911 DOI: 10.1038/s41387-021-00178-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/OBJECTIVE Changes in metabolism and extensive hemodynamic adjustments occur during normal pregnancy. The presence of maternal obesity imposes an overload to these physiological adaptations that may result in increased risk for the development of cardiometabolic complications during and after pregnancy. The aim of this study is to describe total cholesterol (TC), triglycerides (TG), glucose, and arterial blood pressure (BP) trajectories and to analyze the association of these cardiometabolic risk indicators during pregnancy with pre-pregnancy body mass index (pBMI) and monthly gestational weight gain (MGWG). SUBJECTS/METHODS A prospective cohort study of pregnant women was conducted in Mexico City. Monthly samples of blood were taken during clinical follow-up and biochemical and blood pressure were measured during each visit. Adjusted linear mixed-effect regression models were fit to describe the trajectories of these biomarkers during pregnancy and to analyze the association with pBMI and MGWG. RESULTS Seven hundred and twenty women were included of which 16.6% had pre-gestational obesity, 33.2% had pre-gestational overweight, 45.8% had normal pBMI and 4.4% had pre-gestational underweight. Women with pre-gestational obesity had higher lipids concentrations in the beginning of pregnancy (TC: [Formula: see text] = 33.08, p = 0.010; TG: [Formula: see text] = 31.29, p = <0.001) but the concentrations increased less than in women with normal pBMI (TC: [Formula: see text] = -14.18, p = 0.001; TG: [Formula: see text] = -5.42, p < 0.001). By the end of pregnancy, women with pre-gestational obesity had lower concentrations of lipids than women with normal pBMI. By contrast, women with pre-gestational obesity had higher glucose concentrations and higher BP levels than women with normal pBMI over pregnancy. CONCLUSIONS pBMI is differentially associated with longitudinal trajectories of maternal biochemical markers of cardiometabolic risk. MGWG did not significantly affect the biochemical indicators or BP trajectories. Our results suggest that pBMI is more relevant to predicting adverse cardiometabolic markers trajectories during pregnancy than MGWG.
Collapse
Affiliation(s)
- Luz Isabel Omaña-Guzmán
- grid.7220.70000 0001 2157 0393Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico ,grid.452651.10000 0004 0627 7633Unidad de Vinculación Científica de la Facultad de Medicina UNAM, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Luis Ortiz-Hernández
- grid.7220.70000 0001 2157 0393Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Mónica Ancira-Moreno
- grid.441047.20000 0001 2156 4794Departamento de Salud, Universidad Iberoamericana, Mexico City, Mexico
| | - Vanesa Morales-Hernández
- grid.419218.70000 0004 1773 5302Biología de la Reproducción, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Marie S. O’Neill
- grid.214458.e0000000086837370Epidemiology and Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Felipe Vadillo-Ortega
- grid.452651.10000 0004 0627 7633Unidad de Vinculación Científica de la Facultad de Medicina UNAM, Instituto Nacional de Medicina Genómica, Mexico City, Mexico ,grid.214458.e0000000086837370Epidemiology and Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
9
|
Pregnancy is accompanied by larger high density lipoprotein particles and compositionally distinct subspecies. J Lipid Res 2021; 62:100107. [PMID: 34416270 PMCID: PMC8441201 DOI: 10.1016/j.jlr.2021.100107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Pregnancy is accompanied by significant physiological changes, which can impact the health and development of the fetus and mother. Pregnancy-induced changes in plasma lipoproteins are well documented, with modest to no impact observed on the generic measure of high density lipoprotein (HDL) cholesterol. However, the impact of pregnancy on the concentration and composition of HDL subspecies has not been examined in depth. In this prospective study, we collected plasma from 24 nonpregnant and 19 pregnant women in their second trimester. Using nuclear magnetic resonance (NMR), we quantified 11 different lipoprotein subspecies from plasma by size, including three in the HDL class. We observed an increase in the number of larger HDL particles in pregnant women, which were confirmed by tracking phospholipids across lipoproteins using high-resolution gel-filtration chromatography. Using liquid chromatography-mass spectrometry (LC-MS), we identified 87 lipid-associated proteins across size-speciated fractions. We report drastic shifts in multiple protein clusters across different HDL size fractions in pregnant females compared with nonpregnant controls that have major implications on HDL function. These findings significantly elevate our understanding of how changes in lipoprotein metabolism during pregnancy could impact the health of both the fetus and the mother.
Collapse
|
10
|
Macchi C, Iodice S, Persico N, Ferrari L, Cantone L, Greco MF, Ischia B, Dozio E, Corsini A, Sirtori CR, Ruscica M, Bollati V. Maternal exposure to air pollutants, PCSK9 levels, fetal growth and gestational age - An Italian cohort. ENVIRONMENT INTERNATIONAL 2021; 149:106163. [PMID: 33556817 DOI: 10.1016/j.envint.2020.106163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Exposure to airborne pollutants during pregnancy appears to be associated with uterine growth restriction and adverse neonatal outcome. Proprotein convertase subtilisin/kexin type (PCSK9), the key modulator of low-density lipoprotein (LDL) metabolism, increases following particulate matter (PM10) exposure. Because maternal cholesterol is required for fetal growth, PCSK9 levels could be used to evaluate the potential impact of airborne pollutants on fetal growth. DESIGN A cohort of 134 healthy women during early pregnancy (11-12 weeks of gestational age) was studied. RESULTS A significant association between circulating PCSK9 levels and three tested air pollutants (PM10, PM2.5, nitric oxide (NO2)) was found. Of importance, gestational age at birth was reduced by approximately 1 week for each 100 ng/mL rise in circulating PCSK9 levels, an effect that became more significant at the highest quartile of PM2.5 (with a 1.8 week advance in delivery date for every 100 ng/mL rise in circulating PCSK9; p for interaction = 0.026). This finding was supported by an elevation of the odds ratio for urgent cesarean delivery for each 100 ng/mL rise in PCSK9 (2.99, 95% CI, 1.22-6.57), similar trends being obtained for PM10 and NO2. CONCLUSIONS The association between exposure to air pollutants during pregnancy and elevation in PCSK9 advances our understanding of the unforeseen influences of environmental exposure in terms of pregnancy associated disorders.
Collapse
Affiliation(s)
- C Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - S Iodice
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - N Persico
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Obstetrics and Gynecology 'L. Mangiagalli', Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - L Ferrari
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - L Cantone
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - M F Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - B Ischia
- Department of Obstetrics and Gynecology 'L. Mangiagalli', Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - A Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - C R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| | - V Bollati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
11
|
Stadler JT, Wadsack C, Marsche G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021; 9:biomedicines9040349. [PMID: 33808220 PMCID: PMC8067099 DOI: 10.3390/biomedicines9040349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| |
Collapse
|
12
|
Materno-fetal cholesterol transport during pregnancy. Biochem Soc Trans 2021; 48:775-786. [PMID: 32369555 DOI: 10.1042/bst20190129] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Cholesterol is a major nutrient required for fetal growth. It is also a precursor for the synthesis of steroid hormones and essential for the development and maturation of fetal organs. During pregnancy, the placenta controls the transport of cholesterol from the mother to the fetus and vice versa. Cholesterol originating from the maternal circulation has to cross two main membrane barriers to reach the fetal circulation: Firstly, cholesterol is acquired by the apical side of the syncytiotrophoblast (STB) from the maternal circulation as high-density lipoprotein (HDL)-, low-density lipoprotein (LDL)- or very-low-density lipoprotein (VLDL)-cholesterol and secreted at the basal side facing the villous stroma. Secondly, from the villous stroma cholesterol is taken up by the endothelium of the fetal vasculature and transported to the fetal vessels. The proteins involved in the uptake of HDL-, LDL-, VLDL- or unesterified-cholesterol are scavenger receptor type B class 1 (SR-B1), cubulin, megalin, LDL receptor (LDLR) or Niemann-Pick-C1 (NPC1) which are localized at the apical and/or basal side of the STB or at the fetal endothelium. Through interaction with apolipoproteins (e.g. apoA1) cholesterol is effluxed either to the maternal or fetal circulation via the ATP-binding-cassette (ABC)-transporter A1 and ABCG1 localized at the apical/basal side of the STB or the endothelium. In this mini-review, we summarize the transport mechanisms of cholesterol across the human placenta, the expression and localization of proteins involved in the uptake and efflux of cholesterol, and the expression pattern of cholesterol transport proteins in pregnancy pathologies such as pre-eclampsia, gestational diabetes mellitus and intrauterine growth retardation.
Collapse
|
13
|
Dumolt JH, Ma M, Mathew J, Patel MS, Rideout TC. Gestational hypercholesterolemia alters fetal hepatic lipid metabolism and microRNA expression in Apo-E-deficient mice. Am J Physiol Endocrinol Metab 2019; 317:E831-E838. [PMID: 31453710 PMCID: PMC6879864 DOI: 10.1152/ajpendo.00138.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal hypercholesterolemia (MHC) is a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during gestation, which can alter offspring hepatic lipid metabolism. However, the extent that these maladaptations occur during gestation and the molecular mechanisms involved remain unknown. MicoRNAs (miRNA) are small, noncoding RNAs that contribute to the development and progression of nonalcoholic fatty liver disease. Therefore, we sought to determine the degree to which in utero exposure to excessive cholesterol affects fetal hepatic lipid metabolism and miRNA expression. Twelve female apoE-/- mice were randomly assigned to two different chow-based diets throughout gestation: control (CON) or the CON diet with cholesterol (0.15%). MHC reduced maternal fecundity and reduced litter size and weight. On gestational day 18, fetuses from MHC dams possessed increased placental cholesterol and hepatic triglycerides (TG), which were accompanied by a downregulation in the expression of hepatic lipogenic and TG synthesis and transport genes. Furthermore, fetal livers from MHC mothers showed increased miRNA-27a and reduced miRNA-200c expression. In summary, in utero exposure to MHC alters fetal lipid metabolism and lends mechanistic insight that implicates early changes in miRNA expression that may link to later-life programming of disease risk.
Collapse
Affiliation(s)
- Jerad H Dumolt
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Min Ma
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Joyce Mathew
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Mulchand S Patel
- Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
14
|
Pecks U, Bornemann V, Klein A, Segger L, Maass N, Alkatout I, Eckmann-Scholz C, Elessawy M, Lütjohann D. Estimating fetal cholesterol synthesis rates by cord blood analysis in intrauterine growth restriction and normally grown fetuses. Lipids Health Dis 2019; 18:185. [PMID: 31653257 PMCID: PMC6815065 DOI: 10.1186/s12944-019-1117-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholesterol is an essential component in human development. In fetuses affected by intrauterine growth restriction (IUGR), fetal blood cholesterol levels are low. Whether this is the result of a reduced materno-fetal cholesterol transport, or due to low fetal de novo synthesis rates, remains a matter of debate. By analyzing cholesterol interbolites and plant sterols we aimed at deeper insights into transplacental cholesterol transport and fetal cholesterol handling in IUGR with potential targets for future therapy. We hypothesized that placental insufficiency results in a diminished cholesterol supply to the fetus. METHODS Venous umbilical cord sera were sampled post-partum from fetuses delivered between 24 weeks of gestation and at full term. IUGR fetuses were matched to 49 adequate-for-age delivered preterm and term neonates (CTRL) according to gestational age at delivery. Cholesterol was measured by gas chromatography-flame ionization detection using 5a-cholestane as internal standard. Cholesterol precursors and synthesis markers, such as lanosterol, lathosterol, and desmosterol, the absorption markers, 5α-cholestanol and plant sterols, such as campesterol and sitosterol, as well as enzymatically oxidized cholesterol metabolites (oxysterols), such as 24S- or 27-hydroxycholesterol, were analyzed by gas chromatography-mass spectrometry, using epicoprostanol as internal standard for the non-cholesterol sterols and deuterium labeled oxysterols for 24S- and 27-hydroxycholesterol. RESULTS Mean cholesterol levels were 25% lower in IUGR compared with CTRL (p < 0.0001). Lanosterol and lathosterol to cholesterol ratios were similar in IUGR and CTRL. In relation to cholesterol mean, desmosterol, 24S-hydroxycholesterol, and 27-hydroxycholesterol levels were higher by 30.0, 39.1 and 60.7%, respectively, in IUGR compared to CTRL (p < 0.0001). Equally, 5α-cholestanol, campesterol, and β-sitosterol to cholesterol ratios were higher in IUGR than in CTRL (17.2%, p < 0.004; 33.5%, p < 0.002; 29.3%, p < 0.021). CONCLUSIONS Cholesterol deficiency in IUGR is the result of diminished fetal de novo synthesis rates rather than diminished maternal supply. However, increased oxysterol- and phytosterol to cholesterol ratios suggest a lower sterol elimination rate. This is likely caused by a restricted hepatobiliary function. Understanding the fetal cholesterol metabolism is important, not only for neonatal nutrition, but also for the development of strategies to reduce the known risk of future cardiovascular diseases in the IUGR fetus.
Collapse
Affiliation(s)
- Ulrich Pecks
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | - Verena Bornemann
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Anika Klein
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Laura Segger
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Nicolai Maass
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Christel Eckmann-Scholz
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Mohamed Elessawy
- Department of Obstetrics and Gynecology, University Hospital of Schleswig-Holstein Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Horne H, Holme AM, Roland MCP, Holm MB, Haugen G, Henriksen T, Michelsen TM. Maternal-fetal cholesterol transfer in human term pregnancies. Placenta 2019; 87:23-29. [PMID: 31541855 DOI: 10.1016/j.placenta.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The extent to which the human term fetus utilizes cholesterol released from the placenta has remained elusive. Our aims were to estimate the net mass of cholesterol taken up by the uteroplacental unit, released by the placenta and taken up by the fetus. Thereby we aimed to explore the maternal-fetal cholesterol transfer and hypothesized that maternal levels and uteroplacental uptake were correlated to the fetal uptake of cholesterol. METHODS A cross-sectional in vivo study of 179 fasting, healthy women with uncomplicated singleton pregnancies. Blood flow in the uterine artery (n = 70) and umbilical vein (n = 125) was measured by Doppler ultrasound. Blood samples from the maternal radial artery, antecubital vein and uterine vein, and the umbilical artery and vein were obtained during cesarean section. Cholesterol was determined enzymatically. RESULTS We found a significant uteroplacental uptake (median [Q1,Q3]) of total (3.50 [-36.8,61.1]) and HDL cholesterol (6.69 [-3.78,17.9]) μmol/min, and a fetal uptake of HDL (8.07 [4.48,12.59]), LDL (5.97 [2.77,8.92]) and total cholesterol (13.2 [8.06,21.58]) μmol/min. Maternal cholesterol levels were not correlated to fetal uptake of cholesterol. There was a correlation between uteroplacental uptake of total (rho 0.35, p 0.003) and LDL cholesterol (rho 0.25, p 0.03) and the fetal uptake of LDL cholesterol from the umbilical circulation. The fetal uptake of cholesterol from HDL was higher than from LDL (p < 0.001). CONCLUSION Fetal cholesterol uptake is independent of maternal cholesterol levels, but related to the uteroplacental uptake of cholesterol from LDL. This suggests that the placenta influences maternal-fetal cholesterol transfer at term.
Collapse
Affiliation(s)
- Hildegunn Horne
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, PO BOX 1072, Blindern, 0316, Oslo, Norway.
| | - Ane Moe Holme
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Norwegian Advisory Unit on Women's Health, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Maia Blomhoff Holm
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Guttorm Haugen
- Institute of Clinical Medicine, University of Oslo, PO BOX 1072, Blindern, 0316, Oslo, Norway; Department of Fetal Medicine, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, PO BOX 1072, Blindern, 0316, Oslo, Norway.
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway; Norwegian Advisory Unit on Women's Health, Oslo University Hospital, PO BOX 4950, 0424, Oslo, Norway.
| |
Collapse
|
16
|
van Gorp C, de Lange IH, Spiller OB, Dewez F, Cillero Pastor B, Heeren RMA, Kessels L, Kloosterboer N, van Gemert WG, Beeton ML, Stock SJ, Jobe AH, Payne MS, Kemp MW, Zimmermann LJ, Kramer BW, Plat J, Wolfs TGAM. Protection of the Ovine Fetal Gut against Ureaplasma-Induced Chorioamnionitis: A Potential Role for Plant Sterols. Nutrients 2019; 11:E968. [PMID: 31035616 PMCID: PMC6566982 DOI: 10.3390/nu11050968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/29/2023] Open
Abstract
Chorioamnionitis, clinically most frequently associated with Ureaplasma, is linked to intestinal inflammation and subsequent gut injury. No treatment is available to prevent chorioamnionitis-driven adverse intestinal outcomes. Evidence is increasing that plant sterols possess immune-modulatory properties. Therefore, we investigated the potential therapeutic effects of plant sterols in lambs intra-amniotically (IA) exposed to Ureaplasma. Fetal lambs were IA exposed to Ureaplasma parvum (U. parvum, UP) for six days from 127 d-133 d of gestational age (GA). The plant sterols β-sitosterol and campesterol, dissolved with β-cyclodextrin (carrier), were given IA every two days from 122 d-131 d GA. Fetal circulatory cytokine levels, gut inflammation, intestinal injury, enterocyte maturation, and mucosal phospholipid and bile acid profiles were measured at 133 d GA (term 150 d). IA plant sterol administration blocked a fetal inflammatory response syndrome. Plant sterols reduced intestinal accumulation of proinflammatory phospholipids and tended to prevent mucosal myeloperoxidase-positive (MPO) cell influx, indicating an inhibition of gut inflammation. IA administration of plant sterols and carrier diminished intestinal mucosal damage, stimulated maturation of the immature epithelium, and partially prevented U. parvum-driven reduction of mucosal bile acids. In conclusion, we show that β-sitosterol and campesterol administration protected the fetus against adverse gut outcomes following UP-driven chorioamnionitis by preventing intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Ilse H de Lange
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Owen B Spiller
- Cardiff University School of Medicine, Cardiff CF10 3AT, Wales, UK.
| | - Frédéric Dewez
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Berta Cillero Pastor
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Lilian Kessels
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Nico Kloosterboer
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Wim G van Gemert
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Michael L Beeton
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF14 4XN, UK.
| | - Sarah J Stock
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Alan H Jobe
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Matthew S Payne
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley WA 6009, Australia.
| | - Matthew W Kemp
- School of Women's and Infant's Health, The University of Western Australia, Crawley WA 6009, Australia.
| | - Luc J Zimmermann
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Boris W Kramer
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Tim G A M Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands.
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands.
| |
Collapse
|
17
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Tanaka Y, Ikeda T, Yamamoto K, Masuda S, Ogawa H, Kamisako T. Gender-divergent expression of lipid and bile acid metabolism related genes in adult mice offspring of dams fed a high-fat diet. J Biosci 2018; 43:329-337. [PMID: 29872021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Maternal high-fat diet (HFD) consumption during pregnancy and lactation affects metabolic outcomes and lipid metabolism of offspring in later life in a gender-specific manner. However, it is not known whether maternal HFD alters bile acid metabolism in adult mice offspring. The purpose of this study was to elucidate the relationship between maternal HFDinduced metabolic diseases and bile acid metabolism in male and female adult mice offspring. Female mice were fed either standard chow (C) or HFD (H) for 10 weeks pre-pregnancy until lactation. After weaning, offspring were fed a chow diet until 11 weeks of age, then challenged with either C or H diet for 4 weeks, and divided into eight groups in accordance with mother's and offspring's diets: male(M) CC, MHC, MCH, MHH, female(F) CC, FHC, FCH, and FHH. MHH showed greater weight gain compared to FHH. Liver weight was higher in MHH than in FHH. Serum total cholesterol levels were higher in MHH than in MHC, and tended to be higher in MHH than in FHH. Serum glucose levels were higher in MHH than in MHC. Hepatic triglyceride levels were higher in MHH than in MHC. Hepatic mRNA expression of bile acid uptake transporters Oatp1a1 and Oatp1b2 was increased in MHH, compared to MCH. Hepatic mRNA expression of HMGCoAR, Cyp7a1, Sult2a1, and Oatp1a4 was increased in FHH, compared to FCH. In conclusion, maternal HFD consumption may promote bile acid synthesis, sulfation and excretion in female offspring fed a HFD, which may confer resistance to HFDinduced metabolic phenotypes.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Clinical Laboratory Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan,
| | | | | | | | | | | |
Collapse
|
19
|
Gender-divergent expression of lipid and bile acid metabolism-related genes in adult mice offspring of dams fed a high-fat diet. J Biosci 2018. [DOI: 10.1007/s12038-018-9750-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Winterhager E, Gellhaus A. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans. Front Physiol 2017; 8:951. [PMID: 29230179 PMCID: PMC5711821 DOI: 10.3389/fphys.2017.00951] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 01/12/2023] Open
Abstract
Although the causes of intrauterine growth restriction (IUGR) have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy concepts for IUGR will require the use of animal models for gathering robust data about mechanisms leading to IUGR and for testing the effectiveness and safety of the intervention among pregnant women.
Collapse
Affiliation(s)
- Elke Winterhager
- Electron Microscopy Unit, Imaging Center Essen, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Zwier MV, Baardman ME, van Dijk TH, Jurdzinski A, Wisse LJ, Bloks VW, Berger RMF, DeRuiter MC, Groen AK, Plösch T. Maternal-fetal cholesterol transport in the second half of mouse pregnancy does not involve LDL receptor-related protein 2. Acta Physiol (Oxf) 2017; 220:471-485. [PMID: 28024118 DOI: 10.1111/apha.12845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/25/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
AIM LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. METHODS Lrp2+/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1-13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. RESULTS The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. CONCLUSION Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta.
Collapse
Affiliation(s)
- M. V. Zwier
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. E. Baardman
- Department of Genetics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T. H. van Dijk
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- Department of Laboratory Medicine; University of Groningen, University Medical Center Groningen; Groningen the Netherlands
| | - A. Jurdzinski
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - L. J. Wisse
- Department of Anatomy and Embryology; Leiden University Medical Center; Leiden the Netherlands
| | - V. W. Bloks
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - R. M. F. Berger
- Center for Congenital Heart Diseases; Beatrix Children's Hospital; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. C. DeRuiter
- Department of Anatomy and Embryology; Leiden University Medical Center; Leiden the Netherlands
| | - A. K. Groen
- Department of Pediatrics; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T. Plösch
- Department of Obstetrics and Gynaecology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| |
Collapse
|
22
|
Formichi P, Battisti C, De Santi MM, Guazzo R, Tripodi SA, Radi E, Rossi B, Tarquini E, Federico A. Primary cilium alterations and expression changes of Patched1 proteins in niemann-pick type C disease. J Cell Physiol 2017; 233:663-672. [PMID: 28332184 DOI: 10.1002/jcp.25926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 01/07/2023]
Abstract
Niemann-Pick type C disease (NPC) is a disorder characterized by abnormal intracellular accumulation of unesterified cholesterol and glycolipids. Two distinct disease-causing genes have been isolated, NPC1 and NPC2. The NPC1 protein is involved in the sorting and recycling of cholesterol and glycosphingolipids in the late endosomal/lysosomal system. It has extensive homology with the Patched1 (Ptc1) receptor, a transmembrane protein localized in the primary cilium, and involved in the Hedgehog signaling (Shh) pathway. We assessed the presence of NPC1 and Ptc1 proteins and evaluated the relative distribution and morphology of primary cilia in fibroblasts from five NPC1 patients and controls, and in normal fibroblasts treated with 3-ß-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A), a cholesterol transport-inhibiting drug that is widely used to mimic NPC. Immunofluorescence and western blot analyses showed a significant decrease in expression of NPC1 and Ptc1 in NPC1 fibroblasts, while they were normally expressed in U18666A-treated fibroblasts. Moreover, fibroblasts from NPC1 patients and U18666A-treated cells showed a lower percentage distribution of primary cilia and a significant reduction in median cilia length with respect to controls. These are the first results demonstrating altered cytoplasmic expression of Ptc1 and reduced number and length of primary cilia, where Ptc1 is located, in fibroblasts from NPC1 patients. We suggest that the alterations in Ptc1 expression in cells from NPC1 patients are closely related to NPC1 expression deficit, while the primary cilia alterations observed in NPC1 and U18666A-treated fibroblasts may represent a secondary event derived from a defective metabolic pathway.
Collapse
Affiliation(s)
- Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - Elena Radi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Ermelinda Tarquini
- Unit of Clinic Neurology and Neurometabolic Diseases, AOU Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Kamper M, Mittermayer F, Cabuk R, Gelles K, Ellinger I, Hermann M. Estrogen-enhanced apical and basolateral secretion of apolipoprotein B-100 by polarized trophoblast-derived BeWo cells. Biochimie 2017; 138:116-123. [PMID: 28487135 DOI: 10.1016/j.biochi.2017.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
Cholesterol is an important nutrient for fetal development and transplacental transport occurs at all stages of human pregnancy. Furthermore, cholesterol is required for membrane building as well as steroid hormone synthesis. Therefore, all placental cell types require cholesterol for proper function. In human term placenta, the syncytiotrophoblast (STB) faces the maternal circulation. Uptake of maternal-derived cholesterol at the apical membrane of the STB is well understood, but the route by which cholesterol exits at the basal side for subsequent transfer across the fetal endothelial cells (FEC) or to other placental cell types remains not well characterized. Our aim was to provide evidence for basal secretion of apolipoprotein B-100 (apoB) containing lipoproteins. Furthermore, we investigated the placental localization of apolipoprotein receptors (LRP2, LDLR and LRP1) to identify cell targets of lipoprotein particles secreted in a polarized fashion by the STB. In trophoblast-derived BeWo cells grown on permeable filter supports, we demonstrate by immunoprecipitation apical as well as basolateral apoB secretion, which was significantly upregulated by estrogen-treatment for 24 or 48 h. Furthermore, we showed by immunofluorescence microscopy apoB and microsomal triglyceride transfer protein subunits localization in the STB and placental stromal cells in situ. All investigated receptors were detected by RT-qPCR and western blot in BeWo cells, but only expression of LRP2 was estrogen-inducible. In situ, the multi-ligand receptor LRP2 was expressed exclusively in the cytotrophoblast (CTB), the STB precursor cell type. LDLR and LRP1 localized to trophoblasts as well as stromal cells in situ. In summary, basal apoB secretion by BeWo cells supports the concept of basal lipoprotein particle secretion by placental STB. These lipoprotein particles may serve as cholesterol source for STB precursor cells, the CTBs, as well as all stromal cells of the chorionic villi including FECs, which were herein demonstrated to express apoB receptors, LRP2 and LDLR, respectively.
Collapse
Affiliation(s)
- Miriam Kamper
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Florian Mittermayer
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Rosalinda Cabuk
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Marcela Hermann
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Zhang R, Dong S, Ma WW, Cai XP, Le ZY, Xiao R, Zhou Q, Yu HL. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS One 2017; 12:e0171934. [PMID: 28199412 PMCID: PMC5310867 DOI: 10.1371/journal.pone.0171934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/29/2017] [Indexed: 02/06/2023] Open
Abstract
The significance of maternal cholesterol transporting to the fetus under normal as well as pathological circumstances is less understood. The objective of this study was to observe the effects of maternal hypercholesterolemia on placental cholesterol transportation. Human full-time placenta, maternal and venous cord blood were sampled at delivery from the pregnant women with serum total cholesterol (TC) concentrations at third trimester higher than 7.25 mM (n = 19) and the pregnant women with normal TC concentrations (n = 19). Serum lipids and expression of genes related to cholesterol transportation were measured by western blot or real-time PCR. The results indicated that serum TC, high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) levels were significantly increased, in pregnancies, but decreased in cord blood in hypercholesterolemic group compared to the matched control group. All the subjects were no-drinking, non-smoker, and gestational disease free. The mRNA expression of lipoprotein receptors, including LDLR and VLDLR were significantly increased, while the protein expression of PCSK9 was significantly increased in hypercholesterolemic placenta. In conclusion, maternal hypercholesterolemia might decrease the transportation of cholesterol from mother to fetus because of the high levels of PCSK9 protein expression.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Adult
- Case-Control Studies
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Female
- Fetal Blood/metabolism
- Humans
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Liver X Receptors/genetics
- Liver X Receptors/metabolism
- Placenta/metabolism
- Pregnancy
- Pregnancy Trimester, Third
- Proprotein Convertase 9/metabolism
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/metabolism
Collapse
Affiliation(s)
- Ran Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Shan Dong
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Wei-wei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Xue-ping Cai
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhi-yin Le
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
- * E-mail: (HY); (RX); (QZ)
| | - Qi Zhou
- Xuanwu hospital, Capital Medical University, Beijing, People's Republic of China
- * E-mail: (HY); (RX); (QZ)
| | - Huan-ling Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
- * E-mail: (HY); (RX); (QZ)
| |
Collapse
|
25
|
Relationship of Liver X Receptors α and Endoglin Levels in Serum and Placenta with Preeclampsia. PLoS One 2016; 11:e0163742. [PMID: 27736929 PMCID: PMC5063368 DOI: 10.1371/journal.pone.0163742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Background Liver X receptor alpha (LXRα) and endoglin have been postulated to play roles in trophoblast invasion and lipid metabolic disturbances. However, the relationship between LXRα and endoglin levels in serum and placenta of patients with preeclampsia remains poorly understood. The objective of this study was to identify correlations between LXRα, endoglin and preeclampsia and provide new feasible methods of clinical prediction and treatment for preeclampsia. Methods We enrolled 45 patients with preeclampsia (24 with moderate preeclampsia and 21 with severe preeclampsia) and 15 normal pregnant women (control group) who were admitted to the Department of Obstetrics of the General Hospital of Beijing Command between October 2012 and July 2013 in this study. Serum and placental LXRα and endoglin levels were analyzed by enzyme-linked immunosorbent assay, real-time quantitative PCR, tissue microarray and immunohistochemistry. Results Serum and placental LXRα and endoglin levels were significantly higher in patients with preeclampsia than those in control group (P<0.05, each). Moreover, patients with severe preeclampsia displayed significantly higher LXRα and endoglin levels than those with moderate preeclampsia (P<0.05, each). The LXRα sensitivity, specificity and positive and negative predictive values were 66.00%, 80.00%, 89.19% and 48.48%, respectively, while those of endoglin levels were 62.00%, 85.00%, 91.18% and 47.22%, respectively. LXRα and endoglin levels in serum and placenta from patients with preeclampsia were positively correlated (serum: r = 0.486, P<0.01; placenta: r = 0.569, P<0.01). Conclusions Elevated LXRα and endoglin levels may be associated with preeclampsia pathogenesis and development and could be used as potential predictors for this disorder.
Collapse
|
26
|
Reyna-Villasmil E, Navarro-Briceño Y, Mejía-Montilla J, Reyna-Villasmil N, Torres-Cepeda D, Santos-Bolívar J, Fernández-Ramírez A. Lípidos y lipoproteínas en restricción intrauterina del crecimiento con velocimetría Doppler anormal de la arteria umbilical. PERINATOLOGÍA Y REPRODUCCIÓN HUMANA 2016. [DOI: 10.1016/j.rprh.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
27
|
Liu J, Iqbal A, Raslawsky A, Browne RW, Patel MS, Rideout TC. Influence of maternal hypercholesterolemia and phytosterol intervention during gestation and lactation on dyslipidemia and hepatic lipid metabolism in offspring of Syrian golden hamsters. Mol Nutr Food Res 2016; 60:2151-2160. [PMID: 27213832 DOI: 10.1002/mnfr.201600116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/15/2016] [Accepted: 05/11/2016] [Indexed: 01/29/2023]
Abstract
SCOPE Although there is a normal physiological rise in maternal lipids during pregnancy, excessive maternal hyperlipidemia during pregnancy increases cardiovascular disease risk for both the mother and offspring. There are limited safe lipid-lowering treatment options for use during pregnancy, therefore, we evaluated the influence of maternal phytosterol (PS) supplementation on lipid and lipoprotein metabolism in mothers and progeny. METHODS AND RESULTS Female Syrian golden hamsters were randomly assigned to three diets throughout prepregnancy, gestation, and lactation (n = 6/group): (i) Chow (Chow), (ii) chow with 0.5% cholesterol (CH), and (iii) chow with 0.5% CH and 2% PS (CH/PS). Compared with newly weaned pups from Chow dams, pups from dams fed the CH-enriched diet demonstrated increases (p < 0.05) in total-C, LDL-C, HDL-C, and total LDL and VLDL particle number. Pups from CH-fed mothers also exhibited higher hepatic CH concentration and differential mRNA expression pattern of CH regulatory genes. Pups from PS-supplemented dams demonstrated reductions (p < 0.05) in serum total-C, non-HDL-C, and LDL-C but also increased triglycerides compared with pups from CH-fed dams. Maternal PS supplementation reduced (p < 0.05) hepatic CH and increased the abundance of HMG-CoAr and LDLr protein in newly weaned pups compared with the CH group. CONCLUSION Results suggest that maternal PS supplementation is largely effective in normalizing CH in pups born to mothers with hypercholesterolemia, however, the cause and long-term influence of increased triglyceride is not known.
Collapse
Affiliation(s)
- Jie Liu
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Aadil Iqbal
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Amy Raslawsky
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY, USA
| | - Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
28
|
Abdala-Valencia H, Soveg F, Cook-Mills JM. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol 2016; 310:L759-71. [PMID: 26801566 DOI: 10.1152/ajplung.00301.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b(+) subsets of CD11c(+) dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b(+)CD11c(+) dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frank Soveg
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
29
|
Rideout TC, Movsesian C, Tsai YT, Iqbal A, Raslawsky A, Patel MS. Maternal Phytosterol Supplementation during Pregnancy and Lactation Modulates Lipid and Lipoprotein Response in Offspring of apoE-Deficient Mice. J Nutr 2015; 145:1728-34. [PMID: 26084365 PMCID: PMC4516775 DOI: 10.3945/jn.115.215061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In utero exposure to excessive cholesterol has been shown to increase fetal plasma cholesterol concentration and predispose adult offspring to cardiovascular disease (CVD) risk. Because lipid-lowering drugs are contraindicated during pregnancy, natural cholesterol-lowering compounds may be a safe and effective alternative to reduce CVD risk in offspring born to hypercholesterolemic mothers. OBJECTIVE This study used the hypercholesterolemic apolipoprotein E-deficient (apoE(-/-)) mouse model to test the hypothesis that mothers supplemented with phytosterols during gestation and lactation would produce offspring with a more favorable lipid profile than offspring from unsupplemented mothers, despite having a genetic predisposition toward hypercholesterolemia. METHODS Sixteen female apoE(-/-) mice were randomly assigned to 2 diets fed throughout the gestation and lactation periods: a cholesterol-enriched diet (CH) (0.15%) or the cholesterol-enriched diet supplemented with phytosterols (CH/PS) (2%). Serum lipids and lipoproteins were measured by enzyme assay and nuclear magnetic resonance spectroscopy, respectively, and liver cholesterol was analyzed by GC. RESULTS Compared with the CH-fed dams at the end of lactation, phytosterol-supplemented dams displayed lower (P < 0.05) serum total cholesterol (-55%), non-HDL cholesterol (-56%), and LDL cholesterol (-47%), but no change (P > 0.05) in HDL cholesterol and triacylglycerol (TG) concentrations. Pups from phytosterol-fed dams demonstrated lower (P < 0.05) total cholesterol (-25%), non-HDL cholesterol (-25%), LDL cholesterol (-47%), and TGs (-41%), without any change (P > 0.05) in HDL cholesterol compared with pups from CH-fed dams. Furthermore, compared with pups from CH-fed dams, pups from phytosterol-supplemented dams displayed a lower (P < 0.05) number of total LDL particles (-34%), VLDL particles (-31%), and HDL particles (-30%). CONCLUSION Our results in apoE(-/-) mice suggest that even under strong genetic predisposition to hypercholesterolemia, pups born to mothers supplemented with phytosterols during gestation and lactation exhibit favorable liver and serum lipid responses compared with pups from unsupplemented mothers.
Collapse
Affiliation(s)
- Todd C Rideout
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Cheryl Movsesian
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Yi-Ting Tsai
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Aadil Iqbal
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Amy Raslawsky
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Mulchand S Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
30
|
Abdala-Valencia H, Berdnikovs S, Soveg FW, Cook-Mills JM. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am J Physiol Lung Cell Mol Physiol 2014; 307:L482-96. [PMID: 25015974 DOI: 10.1152/ajplung.00132.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b(+) dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b(+) dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sergejs Berdnikovs
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Frank W Soveg
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
31
|
Affiliation(s)
- Wulf Palinski
- From the Department of Medicine, University of California San Diego, La Jolla, CA.
| |
Collapse
|
32
|
El-Sayyad HIH, Al-Haggar MMS, El-Ghawet HA, Bakr IHM. Effect of maternal diabetes and hypercholesterolemia on fetal liver of albino Wistar rats. Nutrition 2014; 30:326-336. [PMID: 24484682 DOI: 10.1016/j.nut.2013.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this study was to predict the development of hepatic lesions and impairment of function during the development of fetuses (13-, 15-, 17-, and 19-d-old embryos) of diabetic and hypercholesterolemic mothers. METHODS Eighty virgin and fertile male rats (one male/three females) of Wistar strain with an average body weight of 150 to 180 g were used. Mating was carried out, and pregnancy was determined by examining sperm in vaginal smears. Pregnant rats were arranged into three groups; control, diabetic (single intraperitoneal injection [i.p.] of 60 mg streptozotocin/kg) and hypercholesterolemic groups (fed on a diet containing 3% cholesterol for 6 wk before conception and throughout gestation) (n = 20). Pregnant rats were sacrificed and 13-, 15-, 17-, and 19-d-old embryos and livers were incised and subjected to histological and transmission electronic microscopical (TEM) investigations, assessments of alkaline phosphatase (Al-Pase) isoenzymes electrophoresis, DNA fragmentation, and comet assay. Flow cytometric analysis of apoptosis and caspases 3 and 9 in the livers of mother rats and their 19-d-old fetuses was determined. RESULTS Histologic findings of diabetic and hypercholesterolemic mothers revealed apparent damage of hepatocytes, accumulation of lipid-laden cells, and vascular steatosis, while the 13-, 15-, 17- or 19-d-old fetuses of either diabetic or hypercholesterolemic mothers revealed disorganized hepatic architecture and massive cell damage. TEM of diseased mothers and their fetuses possessed increased incidence of pyknotic hepatocytes with massive vesicuolation of rough endoplasmic reticulum and degeneration of mitochondria. Al-Pase isoenzymes were altered and genomic DNA of both double and single helical structures were markedly damaged, especially in fetuses of maternally diabetic and hypercholesterolemic mothers. Flow cytometry revealed an increase in apoptosis and caspases 3 and 9 in diabetic and hypercholesterolemic mothers and their 19-d-old fetuses. CONCLUSION These results suggested that maternal diabetes and hypercholesterolemia predicted early hepatitis and increased apoptosis in mothers and their fetuses as a result of oxidative stress and elevated apoptic markers caspases 3 and 9.
Collapse
Affiliation(s)
- Hassan I H El-Sayyad
- Department of Zoology, Department of Zoology, Faculty of Science, Mansoura University, Dakahlea, Egypt.
| | - Mohamed M S Al-Haggar
- Pediatric and Genetic Department, Faculty of Medicine, Mansoura University, Dakahlea, Egypt
| | - Heba A El-Ghawet
- Department of Zoology, Department of Zoology, Faculty of Science, Mansoura University, Dakahlea, Egypt
| | - Iman H M Bakr
- Department of Zoology, Department of Zoology, Faculty of Science, Mansoura University, Dakahlea, Egypt
| |
Collapse
|
33
|
Tarrade A, Rousseau-Ralliard D, Aubrière MC, Peynot N, Dahirel M, Bertrand-Michel J, Aguirre-Lavin T, Morel O, Beaujean N, Duranthon V, Chavatte-Palmer P. Sexual dimorphism of the feto-placental phenotype in response to a high fat and control maternal diets in a rabbit model. PLoS One 2013; 8:e83458. [PMID: 24386205 PMCID: PMC3873307 DOI: 10.1371/journal.pone.0083458] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/03/2013] [Indexed: 12/18/2022] Open
Abstract
Maternal environment during early developmental stages plays a seminal role in the establishment of adult phenotype. Using a rabbit model, we previously showed that feeding dams with a diet supplemented with 8% fat and 0.2% cholesterol (HH diet) from the prepubertal period and throughout gestation induced metabolic syndrome in adult offspring. Here, we examined the effects of the HH diet on feto-placental phenotype at 28 days post-coïtum (term = 31 days) in relation to earlier effects in the blastocyst (Day 6). At 28 days, both male and female HH fetuses were intrauterine growth retarded and dyslipidemic, with males more affected than females. Lipid droplets accumulated in the HH placentas' trophoblast, consistent with the increased concentrations in cholesteryl esters (3.2-fold), triacylglycerol (2.5-fold) and stored FA (2.12-fold). Stored FA concentrations were significantly higher in female compared to male HH placentas (2.18-fold, p<0.01), whereas triacylglycerol was increased only in HH males. Trophoblastic lipid droplet accumulation was also observed at the blastocyst stage. The expression of numerous genes involved in lipid pathways differed significantly according to diet both in term placenta and at the blastocyst stage. Among them, the expression of LXR-α in HH placentas was reduced in HH males but not females. These data demonstrate that maternal HH diet affects the blastocyst and induces sex-dependent metabolic adaptations in the placenta, which appears to protect female fetuses from developing severe dyslipidemia.
Collapse
Affiliation(s)
- Anne Tarrade
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- PremUp Foundation, Paris, France
| | - Delphine Rousseau-Ralliard
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- PremUp Foundation, Paris, France
| | - Marie-Christine Aubrière
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- PremUp Foundation, Paris, France
| | - Nathalie Peynot
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Michèle Dahirel
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- PremUp Foundation, Paris, France
| | | | - Tiphaine Aguirre-Lavin
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Olivier Morel
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- PremUp Foundation, Paris, France
| | - Nathalie Beaujean
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Véronique Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Pascale Chavatte-Palmer
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- PremUp Foundation, Paris, France
| |
Collapse
|
34
|
Pecks U, Rath W, Caspers R, Sosnowsky K, Ziems B, Thiesen HJ, Maass N, Huppertz B. Oxidatively modified LDL particles in the human placenta in early and late onset intrauterine growth restriction. Placenta 2013; 34:1142-9. [DOI: 10.1016/j.placenta.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Changes in LDL and HDL subclasses in normal pregnancy and associations with birth weight, birth length and head circumference. Matern Child Health J 2013; 17:556-65. [PMID: 22527773 DOI: 10.1007/s10995-012-1031-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pregnancy is associated with alterations in low-density lipoprotein (LDL) and high-density lipoprotein (HDL) subclasses, but the exact pattern of these variations remains controversial. This study investigates longitudinal changes of plasma LDL and HDL particles distributions during the course of normal pregnancy, as well as associations of maternal LDL and HDL subclasses distributions before delivery with parameters of newborn size. Blood samples were collected from 41 healthy pregnant women throughout entire pregnancy, before delivery and 7 weeks postpartum. LDL and HDL subclasses were determined by gradient gel electrophoresis, while other biochemical parameters were measured by standard laboratory methods. During gestation LDL size significantly decreased (P < 0.001), due to reduction in relative proportion of LDL I (P < 0.01) and increase of LDL II (P < 0.001) and IIIA (P < 0.05) subclasses. In the same time, HDL size and proportions of HDL 2a particles significantly decreased (P < 0.001), with concomitant increase of HDL 3b and 3c subclasses (P < 0.05). Observed alterations were associated with changes in serum triglyceride levels. Rearrangement in LDL subclasses distribution during gestation was transient, while postpartum HDL subclasses distribution remained shifted toward smaller particles. Higher proportion of LDL IVB in maternal plasma before delivery was an independent predictor of smaller birth weights and lengths, while higher proportions of LDL IVB and HDL 2a subclasses were independent determinants of newborns' smaller head circumferences. Routine gestational and prenatal care in otherwise normal pregnancy could be complemented with evaluation of LDL and HDL particles distribution in order to ensure an adequate size of the newborn.
Collapse
|
36
|
Amir D, Fessler DMT. Boots for Achilles: progesterone's reduction of cholesterol is a second-order adaptation. QUARTERLY REVIEW OF BIOLOGY 2013; 88:97-116. [PMID: 23909226 DOI: 10.1086/670528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Progesterone and cholesterol are both vital to pregnancy. Among other functions, progesterone downregulates inflammatory responses, allowing for maternal immune tolerance of the fetal allograft. Cholesterol a key component of cell membranes, is important in intracellular transport, cell signaling, nerve conduction, and metabolism Despite the importance of each substance in pregnancy, one exercises an antagonistic effect on the other, as periods of peak progesterone correspond with reductions in cholesterol availability, a consequence of progesterone's negative effects on cholesterol biosynthesis. This arrangement is understandable in light of the threat posed by pathogens early in pregnancy. Progesterone-induced immunomodulation entails increased vulnerability to infection, an acute problem in the first trimester, when fetal development is highly susceptible to insult. Many pathogens rely on cholesterol for cell entry, egress, and replication. Progesterone's antagonistic effects on cholesterol thus partially compensate for the costs entailed by progesterone-induced immunomodulation. Among pathogens to which the host's vulnerability is increased by progesterone's effects, approximately 90% utilize cholesterol, and this is notably true of pathogens that pose a risk during pregnancy. In addition to having a number of possible clinical applications, our approach highlights the potential importance of second-order adaptations, themselves a consequence of the lack of teleology in evolutionary processes.
Collapse
Affiliation(s)
- Dorsa Amir
- Center for Behavior, Evolution, and Culture, Department of Anthropology, University of California, Los Angeles Los Angeles, California 90095-1553, USA.
| | | |
Collapse
|
37
|
Mouzat K, Baron S, Marceau G, Caira F, Sapin V, Volle DH, Lumbroso S, Lobaccaro JM. Emerging roles for LXRs and LRH-1 in female reproduction. Mol Cell Endocrinol 2013; 368:47-58. [PMID: 22750099 DOI: 10.1016/j.mce.2012.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/05/2023]
Abstract
Nutritional status is known to control female reproductive physiology. Many reproductive pathologies such as anorexia nervosa, dystocia and preeclampsia, have been linked to body mass index and to metabolic syndrome. Lipid metabolism has also been associated with ovarian, uterine and placental functions. Among the regulators of lipid homeostasis, the Liver X Receptors (LXRs) and the Liver Receptor Homolog-1 (LRH-1), two members of the nuclear receptor superfamily, play a central role. LXRs are sensitive to intracellular cholesterol concentration and decrease plasma cholesterol, allowing to considering them as "cholesterol sensors". LRH-1 shares many target-genes with LXRs and has been considered for a long time as a real orphan nuclear receptor, but recent findings showed that phospholipids are ligands for this nuclear receptor. Acting in concert, LXRs and LRH-1 could thus be sensitive to slight modifications in cellular lipid balance, tightly maintaining their cellular concentrations. These last years, the use of transgenic mice clarified the roles of these nuclear receptors in many physiological functions. This review will be focused on the roles of LXRs and LRH-1 on female reproduction. Their contribution to ovarian endocrine and exocrine functions, as well as uterine and placental physiology will be discussed. The future challenge will thus be to target these nuclear receptors to prevent lipid-associated reproductive diseases in women.
Collapse
Affiliation(s)
- Kevin Mouzat
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Nîmes, Hôpital Carémeau, Place du Pr. Robert Debré, F-30029 Nimes, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cortes VA, Busso D, Mardones P, Maiz A, Arteaga A, Nervi F, Rigotti A. Retracted: Advances in the physiological and pathological implications of cholesterol. Biol Rev Camb Philos Soc 2013; 88:825-43. [DOI: 10.1111/brv.12025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Victor A. Cortes
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Dolores Busso
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Pablo Mardones
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Alberto Maiz
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Antonio Arteaga
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Flavio Nervi
- Department of Gastroenterology; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - Attilio Rigotti
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| |
Collapse
|
39
|
Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plösch T. The Role of Maternal-Fetal Cholesterol Transport in Early Fetal Life: Current Insights1. Biol Reprod 2013; 88:24. [DOI: 10.1095/biolreprod.112.102442] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Kang J, Rivest S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr Rev 2012; 33:715-46. [PMID: 22766509 DOI: 10.1210/er.2011-1049] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver X receptors (LXR) are nuclear receptors that have emerged as key regulators of lipid metabolism. In addition to their functions as cholesterol sensors, LXR have also been found to regulate inflammatory responses in macrophages. Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive cognitive decline associated with inflammation. Evidence indicates that the initiation and progression of AD is linked to aberrant cholesterol metabolism and inflammation. Activation of LXR can regulate neuroinflammation and decrease amyloid-β peptide accumulation. Here, we highlight the role of LXR in orchestrating lipid homeostasis and neuroinflammation in the brain. In addition, diabetes mellitus is also briefly discussed as a significant risk factor for AD because of the appearing beneficial effects of LXR on glucose homeostasis. The ability of LXR to attenuate AD pathology makes them potential therapeutic targets for this neurodegenerative disease.
Collapse
Affiliation(s)
- Jihong Kang
- Department of Physiology and Pathophysiology and Key Laboratory of Molecular Cardiovascular Sciences, State Education Ministry, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
41
|
Eberle C, Merki E, Yamashita T, Johnson S, Armando AM, Quehenberger O, Napoli C, Palinski W. Maternal immunization affects in utero programming of insulin resistance and type 2 diabetes. PLoS One 2012; 7:e45361. [PMID: 23028961 PMCID: PMC3445481 DOI: 10.1371/journal.pone.0045361] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/14/2012] [Indexed: 12/05/2022] Open
Abstract
Maternal immunization with oxidized lipoproteins prior to pregnancy protects against atherogenic in utero programming by gestational hypercholesterolemia and enhances beneficial lymphocyte-dependent immune responses in offspring. To determine whether in utero programming and immunomodulation also affect insulin resistance (IR) and type 2 diabetes, we investigated the effects of immunization on glucose and insulin responses in LDL receptor-deficient mice fed regular or 60% sucrose diets, as well as in offspring fed 0.5% cholesterol or 60% sucrose diets. IR was assessed by fasting glucose and insulin levels, oral glucose tolerance tests, glucose clamps, pancreatic immunohistochemistry and plasma free fatty acid concentrations. Immunizations improved glucose responses in both genders and protected both immunized mice and their offspring against IR and type 2 diabetes. Protection occurred even under euglycemic conditions, but was greatest in obese males exposed to very obesogenic/diabetogenic conditions. Hyperinsulinemic euglycemic clamps confirmed that maternal immunization protected mainly by reducing IR, but pancreatic immunocytochemistry also indicated some protection against beta cell damage. Maternal immunization was associated with marked regulation in offspring of 4 genes relevant to diabetes and 19 genes of importance for oxidative stress, as well as increased hepatic activities of key antioxidant enzymes. These findings establish that targeted immunomodulation may be used to protect immunized subjects and their offspring against IR and type 2 diabetes, and thus to reduce cardiovascular risk. They also support the notion that in utero programming influences offspring disease not by a single mechanism, but by multiple systemic effects.
Collapse
Affiliation(s)
- Claudia Eberle
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Esther Merki
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Tomoya Yamashita
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | - Susie Johnson
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Aaron M. Armando
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Oswald Quehenberger
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Claudio Napoli
- Department of General Pathology and Excellence Research Center on Cardiovascular Disease, First School of Medicine, Second University of Naples, Naples, Italy
| | - Wulf Palinski
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|
43
|
Rebholz SL, Burke KT, Yang Q, Tso P, Woollett LA. Dietary fat impacts fetal growth and metabolism: uptake of chylomicron remnant core lipids by the placenta. Am J Physiol Endocrinol Metab 2011; 301:E416-25. [PMID: 21586694 PMCID: PMC3154537 DOI: 10.1152/ajpendo.00619.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fetus requires significant energy for growth and development. Although glucose is a major source of energy for the fetus, other maternal nutrients also appear to promote growth. Thus, the goal of these studies was to determine whether triglyceride-rich remnants are taken up by the placenta and whether maternal dietary lipids, independently of adiposity, can impact fetal growth. To accomplish our first goal, chylomicron particles were duallly labeled with cholesteryl ester and triglycerides. The placenta took up remnant particles/core lipids at rates greater than adipose tissue and skeletal muscle but less than the liver. Although the placenta expresses apoE receptors, uptake of chylomicron remnants and/or core lipids can occur independently of apoE. To determine the impact of dietary lipid on fetal growth, independent of maternal adiposity, females were fed high-fat diets (HFD) for 1 mo; there was no change in adiposity or leptin levels prior to or during pregnancy of dams fed HFD. Fetal masses were greater in dams fed HFD, and mRNA levels of proteins involved in fatty acid oxidation (CPT I, PPARα), but not glucose oxidation (pyruvate kinase) or other regulatory processes (HNF-4α, LXR), were increased with maternal dietary fat. There was also no change in mRNA levels of proteins involved in placental glucose and fatty acid transport, and GLUT1 protein levels in microvillous membranes were similar in placentas of dams fed either diet. Thus, the ability of the placenta to take up chylomicron remnant core lipids likely contributes to accelerated fetal growth in females fed high fat diets.
Collapse
Affiliation(s)
- Sandra L Rebholz
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical School, 2180 E. Galbraith Rd., Cincinnati, OH 45237, USA
| | | | | | | | | |
Collapse
|
44
|
Woollett LA. Review: Transport of maternal cholesterol to the fetal circulation. Placenta 2011; 32 Suppl 2:S218-21. [PMID: 21300403 PMCID: PMC4699659 DOI: 10.1016/j.placenta.2011.01.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/19/2022]
Abstract
Data obtained from recent studies in humans, rodents, and cell culture demonstrate that circulating maternal cholesterol can be transported to the fetus. The two major cell types responsible for the transport are trophoblasts and endothelial cells of the fetoplacental vasculature. Maternal lipoprotein-cholesterol is initially taken up by trophoblasts via receptor-mediated and receptor-independent processes, is transported by any number of the sterol transport proteins expressed by cells, and is effluxed or secreted out of the basal side via protein-mediated processes or by aqueous diffusion. This cholesterol is then taken up by the endothelium and effluxed to acceptors within the fetal circulation. The ability to manipulate the mass of maternal cholesterol that is taken up by the placenta and crosses to the fetus could positively impact development of fetuses affected with the Smith-Lemli-Opitz Syndrome (SLOS) that have reduced ability to synthesize cholesterol and possibly impact growth of fetuses unaffected by SLOS but with low birthweights.
Collapse
Affiliation(s)
- L A Woollett
- University of Cincinnati, Metabolic Diseases Institute, Department of Pathology, Cincinnati, OH 45236-507, USA.
| |
Collapse
|
45
|
Horvat S, Mcwhir J, Rozman D. Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. Drug Metab Rev 2011; 43:69-90. [DOI: 10.3109/03602532.2010.540580] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Herrera E, Ortega-Senovilla H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.64] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Weedon-Fekjær M, Johnsen G, Anthonisen E, Sugulle M, Nebb H, Duttaroy A, Staff A. Expression of Liver X Receptors in Pregnancies Complicated by Preeclampsia. Placenta 2010; 31:818-24. [DOI: 10.1016/j.placenta.2010.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 05/27/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
48
|
Amaral C, Gallardo E, Rodrigues R, Pinto Leite R, Quelhas D, Tomaz C, Cardoso M. Quantitative analysis of five sterols in amniotic fluid by GC–MS: Application to the diagnosis of cholesterol biosynthesis defects. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2130-6. [DOI: 10.1016/j.jchromb.2010.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/31/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
|
49
|
van Meer H, van Straten EME, Baller JFW, van Dijk TH, Plösch T, Kuipers F, Verkade HJ. The effects of intrauterine malnutrition on maternal-fetal cholesterol transport and fetal lipid synthesis in mice. Pediatr Res 2010; 68:10-5. [PMID: 20386142 DOI: 10.1203/pdr.0b013e3181e1219b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intrauterine malnutrition is associated with increased susceptibility to chronic diseases in adulthood. Growth-restricted infants display a less favorable lipid profile already shortly postnatal. Maternal low protein diet (LPD) during gestation is a well-defined model of fetal programming in rodents and affects lipid metabolism of the offspring. Effects of LPD throughout gestation on physiologic relevant parameters of lipid metabolism are unclear. We aimed to determine effects of LPD on maternal-fetal cholesterol fluxes and fetal lipid synthesis in mice. Pregnant mice (dams) were fed with a control (18% casein) or an LPD (9% casein) from E0.5 onward. We quantified maternal-fetal cholesterol transport and maternal cholesterol absorption at E19.5 using stable isotopes. We determined fetal lipid biosynthesis at E19.5, after administration of (1-C)-acetate from E17.5 onward. LPD did not change fetal and maternal plasma and hepatic concentrations of cholesterol and triglycerides. LPD affected neither the magnitudes of maternal-fetal cholesterol flux, maternal cholesterol absorption, nor fetal synthesis of cholesterol and palmitate (both groups, approximately 14% and approximately 13%, respectively). We conclude that LPD throughout gestation in mice does not affect maternal-fetal cholesterol transport, fetal cholesterol or fatty acid synthesis, indicating that programming effects of LPD are not mediated by short-term changes in maternal-fetal lipid metabolism.
Collapse
Affiliation(s)
- Hester van Meer
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 BN Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Freeman DJ. Effects of maternal obesity on fetal growth and body composition: implications for programming and future health. Semin Fetal Neonatal Med 2010; 15:113-8. [PMID: 19853544 DOI: 10.1016/j.siny.2009.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Since the hypothesis linking low birth weight and poor fetal growth with future risk of cardiovascular disease was first proposed, there has been much interest in the early origins of disease. As rates of obesity increase and as maternal obesity has become common, interest has been directed towards the early origins of obesity. It is likely that a complex interaction of inherited gene effects and in-utero environment may interact in the developing fetus to programme pathways leading to future obesity. It is clear that maternal metabolism is disturbed in pregnancy in obese women, and that offspring of obese mothers have a higher percentage of body fat and are insulin resistant. This review discusses the ideas contributing to the current working concept of obesity programming, and discusses several potential mechanisms that may underlie obesity programming and susceptibility to future metabolic and vascular disease.
Collapse
Affiliation(s)
- Dilys J Freeman
- Developmental Medicine, Faculty of Medicine, University of Glasgow, 2nd Floor McGregor Building, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK.
| |
Collapse
|