1
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
2
|
Nielsen G, Gondim DD, Cave MC, Heiger-Bernays WJ, Webster TF, Schlezinger JJ. Perfluorooctanoic acid increases serum cholesterol in a PPARα-dependent manner in female mice. Arch Toxicol 2025; 99:2087-2105. [PMID: 40021516 DOI: 10.1007/s00204-025-03984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of persistent chemicals that are pervasive in the environment leading to widespread exposure for humans. Perfluorooctanoic acid (PFOA), one of the most commonly measured PFAS in people, disrupts liver and serum lipid homeostasis as shown in animal toxicity and human epidemiological studies. We tested the hypothesis that the effects of PFOA exposure in mice expressing mouse PPARα (mPPARα) are driven largely through PPARα-dependent mechanisms while non-PPARα dependent mechanisms will be more apparent in mice expressing human PPARα (hPPARα). Female and male mPPARα, hPPARα, and PPARα null mice were exposed to PFOA (0.5, 1.4 or 6.2 mg PFOA/L) via drinking water for 14 weeks. Concurrently, mice consumed an American diet containing human diet-relevant amounts of fat and cholesterol. Here, we focused on the effects in female mice, given the dearth of data reported on PFAS-induced effects in females. Increasing the duration of PFOA exposure reduced weight gain in all genotypes of female mice while end-of-study body fat was lower in PFOA exposed hPPARα and PPARα null mice. Serum cholesterol, but not triacylglyceride, concentrations were increased by PFOA exposure in a PPARα-dependent manner. Hepatic triacylglycerides were higher in vehicle-exposed mPPARα and PPARα null mice than hPPARα mice, and PFOA significantly reduced concentrations in mPPARα and PPARα null mice only. In contrast, PFOA increased hepatic cholesterol content in a PPARα-dependent manner. Changes in liver and serum cholesterol may be explained by a strong, PPARα-dependent downregulation of Cyp7a1 expression. PFOA significantly increased PPARα target gene expression in mPPARα mice. Other nuclear receptors were examined: CAR target gene expression was only induced by PFOA in hPPARα and PPARα null mice. PXR target gene expression was induced by PFOA in all genotypes. Results were similar in male mice with two exceptions: (1) vehicle-exposed male mice of all genotypes were equally susceptible to diet-induced hepatic steatosis; (2) male mice drank less water, resulting in lower serum PFOA levels, which may explain the less significant changes in lipid endpoints. Overall, our results show that PFOA modifies triacylglyceride and cholesterol homeostasis independently and that PPARα plays an important role in PFOA-induced increases in liver and serum cholesterol.
Collapse
Affiliation(s)
- G Nielsen
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - D D Gondim
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - M C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - W J Heiger-Bernays
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - T F Webster
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - J J Schlezinger
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Attema B, Kummu O, Krutáková M, Pavek P, Hakkola J, Hooiveld GJEJ, Kersten S. The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity. Arch Toxicol 2025; 99:1203-1221. [PMID: 39718591 DOI: 10.1007/s00204-024-03942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mária Krutáková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Dusek J, Mejdrová I, Dohnalová K, Smutny T, Chalupsky K, Krutakova M, Skoda J, Rashidian A, Pavkova I, Škach K, Hricová J, Chocholouskova M, Smutna L, Kamaraj R, Hroch M, Leníček M, Mičuda S, Pijnenburg D, van Beuningen R, Holčapek M, Vítek L, Ingelman-Sundberg M, Burk O, Kronenberger T, Nencka R, Pavek P. The hypolipidemic effect of MI-883, the combined CAR agonist/ PXR antagonist, in diet-induced hypercholesterolemia model. Nat Commun 2025; 16:1418. [PMID: 39915454 PMCID: PMC11802874 DOI: 10.1038/s41467-025-56642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related nuclear receptors with overlapping regulatory functions in xenobiotic clearance but distinct roles in endobiotic metabolism. Car activation has been demonstrated to ameliorate hypercholesterolemia by regulating cholesterol metabolism and bile acid elimination, whereas PXR activation is associated with hypercholesterolemia and liver steatosis. Here we show a human CAR agonist/PXR antagonist, MI-883, which effectively regulates genes related to xenobiotic metabolism and cholesterol/bile acid homeostasis by leveraging CAR and PXR interactions in gene regulation. Through comprehensive analyses utilizing lipidomics, bile acid metabolomics, and transcriptomics in humanized PXR-CAR-CYP3A4/3A7 mice fed high-fat and high-cholesterol diets, we demonstrate that MI-883 significantly reduces plasma cholesterol levels and enhances fecal bile acid excretion. This work paves the way for the development of ligands targeting multiple xenobiotic nuclear receptors. Such ligands hold the potential for precise modulation of liver metabolism, offering new therapeutic strategies for metabolic disorders.
Collapse
Affiliation(s)
- Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Dohnalová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Krutakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Azam Rashidian
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ivona Pavkova
- Military Faculty of Medicine, University of Defence, Hradec Králové, Czech Republic
| | - Kryštof Škach
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Hricová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Chocholouskova
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | - Lucie Smutna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Miloš Hroch
- Department of Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Mičuda
- Institute of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Michal Holčapek
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
- 4th Department of Internal Medicine, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
5
|
Basaly V, Bhattacharya A, Guo GL. Insights of direct and indirect regulation of PXR through phosphorylation in fatty liver disease. Mol Pharmacol 2025; 107:100014. [PMID: 40023513 DOI: 10.1016/j.molpha.2024.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/13/2024] [Indexed: 03/04/2025] Open
Abstract
The pregnane X receptor (PXR), a ligand-activated nuclear receptor, regulates the transcription of several genes that encode many enzymes and transporters related to drug metabolism. PXR also performs an important role as a physiological sensor in the modulation of endobiotic metabolism for hormones, bile acids, cholesterol, fatty acids, and glucose. Dysregulation of these PXR-mediated pathways is implicated in the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributing to the complex interplay of factors involved in chronic liver disease development and exacerbation affecting millions worldwide. This review highlights the current knowledge of PXR expression and its role in endobiotic metabolism related to MASH development, which is associated with diverse causes and dire outcomes. This review focuses on elucidating the molecular pathways associated with PXR activation directly or indirectly and PXR interaction with other regulatory factors. Although there is still much to comprehend about the intricate details of these pathways, the conclusion is drawn that PXR exerts a crucial role in the pathological and physiological pathways of hepatic cellular processes, which holds promise as a potential pharmacological target for exploring novel therapeutic approaches for MASH treatment and/or prevention. SIGNIFICANCE STATEMENT: The pregnane X receptor (PXR) plays a fundamental role in regulating gene expression involved in xenobiotic and endobiotic metabolism. Dysregulation of PXR-mediated pathways is related to the development of metabolic dysfunction-associated steatohepatitis. The ligand-independent pathways regulating PXR hepatic functions through phosphorylation shed light on possible indirect molecular mechanisms and pathways that regulate PXR activity and function. Understanding these pathways may provide insight into new pharmaceutical interventions for metabolic dysfunction-associated steatohepatitis development.
Collapse
Affiliation(s)
- Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey.
| |
Collapse
|
6
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
7
|
Hernandez R, Li X, Shi J, Dave TR, Zhou T, Chen Q, Zhou C. Paternal hypercholesterolemia elicits sex-specific exacerbation of atherosclerosis in offspring. JCI Insight 2024; 9:e179291. [PMID: 39253968 PMCID: PMC11385100 DOI: 10.1172/jci.insight.179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR-/-) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR-/- offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA-derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis-related gene expression in the epididymis but not testis of LDLR-/- sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tejasvi R. Dave
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| |
Collapse
|
8
|
Yang Y, Yu S, Rong H, Lei Z, Yang C, Wu H, Zhang T, Yang F, Nie Y, Chen L, Hu Q, Song Q, Guo J. Sodium sulphate ameliorates hypercholesterolemia via the upregulation of Cyp7a1 in hepatocytes and alleviates hepatic insulin resistance via the downregulation of Trib3 in mice with high cholesterol diets. Exp Ther Med 2024; 28:361. [PMID: 39071912 PMCID: PMC11273247 DOI: 10.3892/etm.2024.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/06/2023] [Indexed: 07/30/2024] Open
Abstract
Amelioration of hypercholesterolemia is essential for the treatment of atherosclerotic cardiovascular disease. Sodium sulphate is the effective component of mirabilite, which has been used in traditional Chinese medicine for the treatment of various diseases. In the present study, C57BL/6 mice were fed with a high-cholesterol diet (HCD) for 7 weeks and were treated with sodium sulphate in the last three of those weeks. Sodium sulphate significantly reduced the total cholesterol level and the low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio in the serum of mice fed the HCD. In addition, cytochrome P450 7a1 and 39a1 were significantly upregulated in the livers of mice treated with sodium sulphate. Furthermore, tribbles pseudokinase 3 expression was significantly increased in the livers of mice fed the HCD, but was significantly reduced by sodium sulphate treatment. In terms of the insulin signaling pathway, the ratio of phosphorylated AKT to total AKT in the livers of mice fed the HCD was significantly lower compared with that of control mice fed a normal diet, but was significantly increased by sodium sulphate treatment. Sodium sulphate treatment also reduced the levels of fibroblast growth factor (FGF)15 in the ileum and inhibited the FGF15/FGF receptor 4-Klotho β/c-Jun N-terminal kinase/c-Jun signaling pathway in the livers of mice fed the HCD. In addition, sodium sulphate changed the composition of the gut microbiota of mice fed the HCD. In conclusion, sodium sulphate may mitigate hypercholesterolemia and hepatic insulin resistance in mice fed an HCD.
Collapse
Affiliation(s)
- Yanhong Yang
- School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Siping Yu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Hedong Rong
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Changyuan Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Huijuan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Tianle Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Fei Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Ya Nie
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Lei Chen
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Qing Hu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Qi Song
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
9
|
Wang W, Qiao J, Su Z, Wei H, Wu J, Liu Y, Lin R, Michael N. Serum metabolites and hypercholesterolemia: insights from a two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1410006. [PMID: 39171325 PMCID: PMC11337230 DOI: 10.3389/fcvm.2024.1410006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Background Hypercholesterolemia, a critical contributor to cardiovascular disease, is not fully understood in terms of its relationship with serum metabolites and their role in disease pathogenesis. Methods This study leveraged GWAS data to explore the relationship between serum metabolites and hypercholesterolemia, pinpointing significant metabolites via Mendelian Randomization (MR) and KEGG pathway enrichment analysis. Data on metabolites were sourced from a European population, with analysis focusing on individuals diagnosed with hypercholesterolemia. Results Out of 486 metabolites analyzed, ten showed significant associations with hypercholesterolemia, categorized into those enhancing risk and those with protective effects. Specifically, 2-methoxyacetaminophen sulfate and 1-oleoylglycerol (1-monoolein) were identified as risk-enhancing, with odds ratios (OR) of 1.545 (95% CI: 1.230-1.939; P_FDR = 3E-04) and 1.462 (95% CI: 1.036-2.063; P_FDR = 0.037), respectively. On the protective side, 3-(cystein-S-yl)acetaminophen, hydroquinone sulfate, and 2-hydroxyacetaminophen sulfate demonstrated ORs of 0.793 (95% CI: 0.735-0.856; P_FDR = 6.18E-09), 0.641 (95% CI: 0.423-0.971; P_FDR = 0.042), and 0.607 (95% CI: 0.541-0.681; P_FDR = 5.39E-17), respectively. In addition, KEGG pathway enrichment analysis further revealed eight critical pathways, comprising "biosynthesis of valine, leucine, and isoleucine", "phenylalanine metabolism", and "pyruvate metabolism", emphasizing their significant role in the pathogenesis of hypercholesterolemia. Conclusion This study underscores the potential causal links between particular serum metabolites and hypercholesterolemia, offering innovative viewpoints on the metabolic basis of the disease. The identified metabolites and pathways offer promising targets for therapeutic intervention and warrant further investigation.
Collapse
Affiliation(s)
- Weitao Wang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Jingwen Qiao
- Graduate Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyin Su
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Hui Wei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jincan Wu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yatao Liu
- Department of Anesthesia, First Hospital of Lanzhou University, Lanzhou, China
| | - Rubing Lin
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Nerich Michael
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Brown C, Kariuki W, Zhong HA, Kippes A, Sui Y. Cannabidiol promotes intestinal cholesterol uptake mediated by Pregnane X receptor. Front Endocrinol (Lausanne) 2024; 15:1398462. [PMID: 38957441 PMCID: PMC11217338 DOI: 10.3389/fendo.2024.1398462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Background Cannabidiol (CBD), a non-psychoactive phytocannabinoid of cannabis, is therapeutically used as an analgesic, anti-convulsant, anti-inflammatory, and anti-psychotic drug. There is a growing concern about the adverse side effects posed by CBD usage. Pregnane X receptor (PXR) is a nuclear receptor activated by a variety of dietary steroids, pharmaceutical agents, and environmental chemicals. In addition to the role in xenobiotic metabolism, the atherogenic and dyslipidemic effects of PXR have been revealed in animal models. CBD has a low affinity for cannabinoid receptors, thus it is important to elucidate the molecular mechanisms by which CBD activates cellular signaling and to assess the possible adverse impacts of CBD on pro-atherosclerotic events in cardiovascular system, such as dyslipidemia. Objective Our study aims to explore the cellular and molecular mechanisms by which exposure to CBD activates human PXR and increases the risk of dyslipidemia. Methods Both human hepatic and intestinal cells were used to test if CBD was a PXR agonist via cell-based transfection assay. The key residues within PXR's ligand-binding pocket that CBD interacted with were investigated using computational docking study together with site-directed mutagenesis assay. The C57BL/6 wildtype mice were orally fed CBD in the presence of PXR antagonist resveratrol (RES) to determine how CBD exposure could change the plasma lipid profiles in a PXR-dependent manner. Human intestinal cells were treated with CBD and/or RES to estimate the functions of CBD in cholesterol uptake. Results CBD was a selective agonist of PXR with higher activities on human PXR than rodents PXRs and promoted the dissociation of human PXR from nuclear co-repressors. The key amino acid residues Met246, Ser247, Phe251, Phe288, Trp299, and Tyr306 within PXR's ligand binding pocket were identified to be necessary for the agonistic effects of CBD. Exposure to CBD increased the circulating total cholesterol levels in mice which was partially caused by the induced expression levels of the key intestinal PXR-regulated lipogenic genes. Mechanistically, CBD induced the gene expression of key intestinal cholesterol transporters, which led to the increased cholesterol uptake by intestinal cells. Conclusion CBD was identified as a selective PXR agonist. Exposure to CBD activated PXR signaling and increased the atherogenic cholesterol levels in plasma, which partially resulted from the ascended cholesterol uptake by intestinal cells. Our study provides potential evidence for the future risk assessment of CBD on cardiovascular disease, such as dyslipidemia.
Collapse
Affiliation(s)
- Conner Brown
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Wangeci Kariuki
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Haizhen A. Zhong
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE, United States
| | - Audra Kippes
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Yipeng Sui
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|
11
|
Zhang L, Hu W, Guo H, Sun Q, Xu X, Li Z, Qiu Z, Bian J. Discovery of Highly Potent Solute Carrier 13 Member 5 (SLC13A5) Inhibitors for the Treatment of Hyperlipidemia. J Med Chem 2024; 67:6687-6704. [PMID: 38574002 DOI: 10.1021/acs.jmedchem.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In the face of escalating metabolic disease prevalence, largely driven by modern lifestyle factors, this study addresses the critical need for novel therapeutic approaches. We have identified the sodium-coupled citrate transporter (NaCT or SLC13A5) as a target for intervention. Utilizing rational drug design, we developed a new class of SLC13A5 inhibitors, anchored by the hydroxysuccinic acid scaffold, refining the structure of PF-06649298. Among these, LBA-3 emerged as a standout compound, exhibiting remarkable potency with an IC50 value of 67 nM, significantly improving upon PF-06649298. In vitro assays demonstrated LBA-3's efficacy in reducing triglyceride levels in OPA-induced HepG2 cells. Moreover, LBA-3 displayed superior pharmacokinetic properties and effectively lowered triglyceride and total cholesterol levels in diverse mouse models (PCN-stimulated and starvation-induced), without detectable toxicity. These findings not only spotlight LBA-3 as a promising candidate for hyperlipidemia treatment but also exemplify the potential of targeted molecular design in advancing metabolic disorder therapeutics.
Collapse
Affiliation(s)
- Li'ao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Wenjun Hu
- Departments of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Huimin Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, Nanjing 211100, P. R. China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Departments of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
12
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Sun Q, Guo Y, Hu W, Zhang M, Wang S, Lei Y, Meng H, Li N, Xu P, Li Z, Lin H, Huang F, Qiu Z. Bempedoic Acid Unveils Therapeutic Potential in Non-Alcoholic Fatty Liver Disease: Suppression of the Hepatic PXR-SLC13A5/ACLY Signaling Axis. Drug Metab Dispos 2023; 51:1628-1641. [PMID: 37684055 DOI: 10.1124/dmd.123.001449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatic SLC13A5/SLC25A1-ATP-dependent citrate lyase (ACLY) signaling pathway, responsible for maintaining the citrate homeostasis, plays a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Bempedoic acid (BA), an ACLY inhibitor commonly used for managing hypercholesterolemia, has shown promising results in addressing hepatic steatosis. This study aimed to elucidate the intricate relationships in processes of hepatic lipogenesis among SLC13A5, SLC25A1, and ACLY and to examine the therapeutic potential of BA in NAFLD, providing insights into its underlying mechanism. In murine primary hepatocytes and HepG2 cells, the silencing or pharmacological inhibition of SLC25A1/ACLY resulted in significant upregulation of SLC13A5 transcription and activity. This increase in SLC13A5 activity subsequently led to enhanced lipogenesis, indicating a compensatory role of SLC13A5 when the SLC25A1/ACLY pathway was inhibited. However, BA effectively counteracted this upregulation, reduced lipid accumulation, and ameliorated various biomarkers of NAFLD. The disease-modifying effects of BA were further confirmed in NAFLD mice. Mechanistic investigations revealed that BA could reverse the elevated transcription levels of SLC13A5 and ACLY, and the subsequent lipogenesis induced by PXR activation in vitro and in vivo. Importantly, this effect was diminished when PXR was knocked down, suggesting the involvement of the hepatic PXR-SLC13A5/ACLY signaling axis in the mechanism of BA action. In conclusion, SLC13A5-mediated extracellular citrate influx emerges as an alternative pathway to SLC25A1/ACLY in the regulation of lipogenesis in hepatocytes, BA exhibits therapeutic potential in NAFLD by suppressing the hepatic PXR-SLC13A5/ACLY signaling axis, while PXR, a key regulator in drug metabolism may be involved in the pathogenesis of NAFLD. SIGNIFICANCE STATEMENT: This work describes that bempedoic acid, an ATP-dependent citrate lyase (ACLY) inhibitor, ameliorates hepatic lipid accumulation and various hallmarks of non-alcoholic fatty liver disease. Suppression of hepatic SLC25A1-ACLY pathway upregulates SLC13A5 transcription, which in turn activates extracellular citrate influx and the subsequent DNL. Whereas in hepatocytes or the liver tissue challenged with high energy intake, bempedoic acid reverses compensatory activation of SLC13A5 via modulating the hepatic PXR-SLC13A5/ACLY axis, thereby simultaneously downregulating SLC13A5 and ACLY.
Collapse
Affiliation(s)
- Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yating Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Wenjun Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Mengdi Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Shijiao Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yuanyuan Lei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haitao Meng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Ning Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Pengfei Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhiyu Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haishu Lin
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhixia Qiu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| |
Collapse
|
14
|
Rakateli L, Huchzermeier R, van der Vorst EPC. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells 2023; 12:2752. [PMID: 38067179 PMCID: PMC10705969 DOI: 10.3390/cells12232752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Traditionally, xenobiotic receptors are known for their role in chemical sensing and detoxification, as receptor activation regulates the expression of various key enzymes and receptors. However, recent studies have highlighted that xenobiotic receptors also play a key role in the regulation of lipid metabolism and therefore function also as metabolic sensors. Since dyslipidemia is a major risk factor for various cardiometabolic diseases, like atherosclerosis and non-alcoholic fatty liver disease, it is of major importance to understand the molecular mechanisms that are regulated by xenobiotic receptors. In this review, three major xenobiotic receptors will be discussed, being the aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Specifically, this review will focus on recent insights into the metabolic functions of these receptors, especially in the field of lipid metabolism and the associated dyslipidemia.
Collapse
Affiliation(s)
- Leonida Rakateli
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Rosanna Huchzermeier
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (L.R.); (R.H.)
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
15
|
Itkonen A, Hakkola J, Rysä J. Adverse outcome pathway for pregnane X receptor-induced hypercholesterolemia. Arch Toxicol 2023; 97:2861-2877. [PMID: 37642746 PMCID: PMC10504106 DOI: 10.1007/s00204-023-03575-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Pharmaceuticals and environmental contaminants contribute to hypercholesterolemia. Several chemicals known to cause hypercholesterolemia, activate pregnane X receptor (PXR). PXR is a nuclear receptor, classically identified as a sensor of chemical environment and regulator of detoxification processes. Later, PXR activation has been shown to disrupt metabolic functions such as lipid metabolism and recent findings have shown PXR activation to promote hypercholesterolemia through multiple mechanisms. Hypercholesterolemia is a major causative risk factor for atherosclerosis and greatly promotes global health burden. Metabolic disruption by PXR activating chemicals leading to hypercholesterolemia represents a novel toxicity pathway of concern and requires further attention. Therefore, we constructed an adverse outcome pathway (AOP) by collecting the available knowledge considering the molecular mechanisms for PXR-mediated hypercholesterolemia. AOPs are tools of modern toxicology for systematizing mechanistic knowledge to assist health risk assessment of chemicals. AOPs are formalized and structured linear concepts describing a link between molecular initiating event (MIE) and adverse outcome (AO). MIE and AO are connected via key events (KE) through key event relationships (KER). We present a plausible route of how PXR activation (MIE) leads to hypercholesterolemia (AO) through direct regulation of cholesterol synthesis and via activation of sterol regulatory element binding protein 2-pathway.
Collapse
Affiliation(s)
- Anna Itkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
16
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
17
|
Wang F, Liu J, Hernandez R, Park SH, Lai YJ, Wang S, Blumberg B, Zhou C. Adipocyte-Derived PXR Signaling Is Dispensable for Diet-Induced Obesity and Metabolic Disorders in Mice. Drug Metab Dispos 2023; 51:1207-1215. [PMID: 37230767 PMCID: PMC10449100 DOI: 10.1124/dmd.123.001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Pregnane X receptor (PXR) is a xenobiotic receptor that can be activated by numerous chemicals including endogenous hormones, dietary steroids, pharmaceutical agents, and environmental chemicals. PXR has been established to function as a xenobiotic sensor to coordinately regulate xenobiotic metabolism by regulating the expression of many enzymes and transporters required for xenobiotic metabolism. Recent studies have implicated a potentially important role for PXR in obesity and metabolic disease beyond xenobiotic metabolism, but how PXR action in different tissues or cell types contributes to obesity and metabolic disorders remains elusive. To investigate the role of adipocyte PXR in obesity, we generated a novel adipocyte-specific PXR deficient mouse model (PXRΔAd). Notably, we found that loss of adipocyte PXR did not affect food intake, energy expenditure, and obesity in high-fat diet-fed male mice. PXRΔAd mice also had similar obesity-associated metabolic disorders including insulin resistance and hepatic steatosis as control littermates. PXR deficiency in adipocytes did not affect expression of key adipose genes in PXRΔAd mice. Our findings suggest that adipocyte PXR signaling may be dispensable in diet-induced obesity and metabolic disorders in mice. Further studies are needed to understand the role of PXR signaling in obesity and metabolic disorders in the future. SIGNIFICANCE STATEMENT: The authors demonstrate that deficiency of adipocyte pregnane X receptor (PXR) does not affect diet-induced obesity or metabolic disorders in mice and infers that adipocyte PXR signaling may not play a key role in diet-induced obesity. More studies are needed to understand the tissue-specific role of PXR in obesity.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Jingwei Liu
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Rebecca Hernandez
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Ying-Jing Lai
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Bruce Blumberg
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| |
Collapse
|
18
|
Yntema T, Koonen DPY, Kuipers F. Emerging Roles of Gut Microbial Modulation of Bile Acid Composition in the Etiology of Cardiovascular Diseases. Nutrients 2023; 15:nu15081850. [PMID: 37111068 PMCID: PMC10141989 DOI: 10.3390/nu15081850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite advances in preventive measures and treatment options, cardiovascular disease (CVD) remains the number one cause of death globally. Recent research has challenged the traditional risk factor profile and highlights the potential contribution of non-traditional factors in CVD, such as the gut microbiota and its metabolites. Disturbances in the gut microbiota have been repeatedly associated with CVD, including atherosclerosis and hypertension. Mechanistic studies support a causal role of microbiota-derived metabolites in disease development, such as short-chain fatty acids, trimethylamine-N-oxide, and bile acids, with the latter being elaborately discussed in this review. Bile acids represent a class of cholesterol derivatives that is essential for intestinal absorption of lipids and fat-soluble vitamins, plays an important role in cholesterol turnover and, as more recently discovered, acts as a group of signaling molecules that exerts hormonal functions throughout the body. Studies have shown mediating roles of bile acids in the control of lipid metabolism, immunity, and heart function. Consequently, a picture has emerged of bile acids acting as integrators and modulators of cardiometabolic pathways, highlighting their potential as therapeutic targets in CVD. In this review, we provide an overview of alterations in the gut microbiota and bile acid metabolism found in CVD patients, describe the molecular mechanisms through which bile acids may modulate CVD risk, and discuss potential bile-acid-based treatment strategies in relation to CVD.
Collapse
Affiliation(s)
- Tess Yntema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Debby P Y Koonen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
19
|
Hernandez R, Shi J, Liu J, Li X, Wu J, Zhao L, Zhou T, Chen Q, Zhou C. PANDORA-Seq unveils the hidden small noncoding RNA landscape in atherosclerosis of LDL receptor-deficient mice. J Lipid Res 2023; 64:100352. [PMID: 36871792 PMCID: PMC10119612 DOI: 10.1016/j.jlr.2023.100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR-/-) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR-/- mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR-/- mice, warrant further investigations.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jake Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
20
|
Zhang J, Jia Q, Li Y, He J. The Function of Xenobiotic Receptors in Metabolic Diseases. Drug Metab Dispos 2023; 51:237-248. [PMID: 36414407 DOI: 10.1124/dmd.122.000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Wang J, Lu P, Xie W. Atypical functions of xenobiotic receptors in lipid and glucose metabolism. MEDICAL REVIEW (2021) 2022; 2:611-624. [PMID: 36785576 PMCID: PMC9912049 DOI: 10.1515/mr-2022-0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022]
Abstract
Xenobiotic receptors are traditionally defined as xenobiotic chemical-sensing receptors, the activation of which transcriptionally regulates the expression of enzymes and transporters involved in the metabolism and disposition of xenobiotics. Emerging evidence suggests that "xenobiotic receptors" also have diverse endobiotic functions, including their effects on lipid metabolism and energy metabolism. Dyslipidemia is a major risk factor for cardiovascular disease, diabetes, obesity, metabolic syndrome, stroke, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Understanding the molecular mechanism by which transcriptional factors, including the xenobiotic receptors, regulate lipid homeostasis will help to develop preventive and therapeutic approaches. This review describes recent advances in our understanding the atypical roles of three xenobiotic receptors: aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), in metabolic disorders, with a particular focus on their effects on lipid and glucose metabolism. Collectively, the literatures suggest the potential values of AhR, PXR and CAR as therapeutic targets for the treatment of NAFLD, NASH, obesity and diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peipei Lu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Martín Giménez VM, Rukavina Mikusic NL, Lee HJ, García Menéndez S, Choi MR, Manucha W. Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochem Pharmacol 2022; 204:115213. [PMID: 35985404 DOI: 10.1016/j.bcp.2022.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota dysbiosis represents a triggering factor for cardiovascular diseases, including hypertension. In addition to the harmful impact caused by hypertension on different target organs, gut dysbiosis is capable of causing direct damage to critical organs such as the brain, heart, blood vessels, and kidneys. In this sense, it should be noted that pharmacological and nutritional interventions may influence gut microbiota composition, either inducing or preventing the development of hypertension. Some of the most important nutritional interventions at this level are represented by pro-, pre-, post- and/or syn-biotics, as well as polysaccharides, polyunsaturated fatty acids ω-3, polyphenols and fiber contained in different foods. Meanwhile, certain natural and synthetic active pharmaceutical ingredients, including antibiotics, antihypertensive and immunosuppressive drugs, vegetable extracts and vitamins, may also have a key role in the modulation of both gut microbiota and cardiovascular health. Additionally, gut microbiota may influence drugs and food-derived bioactive compounds metabolism, positively or negatively affecting their biological behavior facing established hypertension. The understanding of the complex interactions between gut microbiome and drug/food response results of great importance to developing improved pharmacological therapies for hypertension prevention and treatment. The purpose of this review is to critically outline the most relevant and recent findings on cardiovascular, renal and brain physiopathological mechanisms involved in the development of hypertension associated with changes in gut microbiota, besides the nutritional and pharmacological interventions potentially valuable for the prevention and treatment of this prevalent pathology. Finally, harmful food/drug interventions on gut microbiota are also described.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Hyun Jin Lee
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
23
|
Sun L, Sun Z, Wang Q, Zhang Y, Jia Z. Role of nuclear receptor PXR in immune cells and inflammatory diseases. Front Immunol 2022; 13:969399. [PMID: 36119030 PMCID: PMC9481241 DOI: 10.3389/fimmu.2022.969399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2), a prototypical member of the nuclear receptor superfamily, has been implicated in various processes including metabolism, immune response, and inflammation. The immune system is made up of many interdependent parts, including lymphoid organs, cells, and cytokines, which play important roles in identifying, repelling, and eliminating pathogens and other foreign chemicals. An impaired immune system could contribute to various physical dysfunction, including severe infections, allergic diseases, autoimmune disorders, and other inflammatory diseases. Recent studies revealed the involvement of PXR in the pathogenesis of immune disorders and inflammatory responses. Thus, the aim of this work is to review and discuss the advances in research associated with PXR on immunity and inflammatory diseases and to provide insights into the development of therapeutic interventions of immune disorders and inflammatory diseases by targeting PXR.
Collapse
Affiliation(s)
- Le Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| |
Collapse
|
24
|
Yan H, Chen Y, Zhu H, Huang WH, Cai XH, Li D, Lv YJ, Si-Zhao, Zhou HH, Luo FY, Zhang W, Li X. The Relationship Among Intestinal Bacteria, Vitamin K and Response of Vitamin K Antagonist: A Review of Evidence and Potential Mechanism. Front Med (Lausanne) 2022; 9:829304. [PMID: 35510250 PMCID: PMC9058076 DOI: 10.3389/fmed.2022.829304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
The vitamin K antagonist is a commonly prescribed effective oral anticoagulant with a narrow therapeutic range, and the dose requirements for different patients varied greatly. In recent years, studies on human intestinal microbiome have provided many valuable insights into disease development and drug reactions. A lot of studies indicated the potential relationship between microbiome and the vitamin K antagonist. Vitamin K is absorbed by the gut, and the intestinal bacteria are a major source of vitamin K in human body. A combined use of the vitamin K antagonist and antibiotics may result in an increase in INR, thus elevating the risk of bleeding, while vitamin K supplementation can improve stability of anticoagulation for oral vitamin K antagonist treatment. Recently, how intestinal bacteria affect the response of the vitamin K antagonist remains unclear. In this review, we reviewed the research, focusing on the physiology of vitamin K in the anticoagulation treatment, and investigated the potential pathways of intestinal bacteria affecting the reaction of the vitamin K antagonist.
Collapse
|
25
|
Zhang X, Gérard P. Diet-gut microbiota interactions on cardiovascular disease. Comput Struct Biotechnol J 2022; 20:1528-1540. [PMID: 35422966 PMCID: PMC8983311 DOI: 10.1016/j.csbj.2022.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels and remain the leading cause of morbidity and mortality worldwide. Over the past decades, accumulating studies indicated that the gut microbiota, an indispensable "invisible organ", plays a vital role in human metabolism and disease states including CVD. Among many endogenous and exogenous factors that can impact gut microbial communities, the dietary nutrients emerge as an essential component of host-microbiota relationships that can be involved in CVD susceptibility. In this review, we summarize the major concepts of dietary modulation of the gut microbiota and the chief principles of the involvement of this microbiota in CVD development. We also discuss the mechanisms of diet-microbiota crosstalk that regulate CVD progression, including endotoxemia, inflammation, gut barrier dysfunction and lipid metabolism dysfunction. In addition, we describe how metabolites produced by the microbiota, including trimethylamine-N-oxide (TMAO), secondary bile acids (BAs), short chain fatty acids (SCFAs) as well as aromatic amino acids (AAAs) derived metabolites play a role in CVD pathogenesis. Finally, we present the potential dietary interventions which interacted with gut microbiota as novel preventive and therapeutic strategies for CVD management.
Collapse
Affiliation(s)
- Xufei Zhang
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
26
|
Meng Z, Hernandez R, Liu J, Gwag T, Lu W, Hsiai TK, Kaul M, Zhou T, Zhou C. HIV Protein Tat Induces Macrophage Dysfunction and Atherosclerosis Development in Low-Density Lipoprotein Receptor-Deficient Mice. Cardiovasc Drugs Ther 2022; 36:201-215. [PMID: 33459922 PMCID: PMC8286272 DOI: 10.1007/s10557-021-07141-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE HIV infection is consistently associated with an increased risk of atherosclerotic cardiovascular disease, but the underlying mechanisms remain elusive. HIV protein Tat, a transcriptional activator of HIV, has been shown to activate NF-κB signaling and promote inflammation in vitro. However, the atherogenic effects of HIV Tat have not been investigated in vivo. Macrophages are one of the major cell types involved in the initiation and progression of atherosclerosis. We and others have previously revealed the important role of IκB kinase β (IKKβ), a central inflammatory coordinator through activating NF-κB, in the regulation of macrophage functions and atherogenesis. This study investigated the impact of HIV Tat exposure on macrophage functions and atherogenesis. METHODS To investigate the effects of Tat on macrophage IKKβ activation and atherosclerosis development in vivo, myeloid-specific IKKβ-deficient LDLR-deficient (IKKβΔMyeLDLR-/-) mice and their control littermates (IKKβF/FLDLR-/-) were exposed to recombinant HIV protein Tat. RESULTS Exposure to Tat significantly increased atherosclerotic lesion size and plaque vulnerability in IKKβF/FLDLR-/- but not IKKβΔMyeLDLR-/- mice. Deficiency of myeloid IKKβ attenuated Tat-elicited macrophage inflammatory responses and atherosclerotic lesional inflammation in IKKβΔMyeLDLR-/- mice. Further, RNAseq analysis demonstrated that HIV protein Tat affects the expression of many atherosclerosis-related genes in vitro in an IKKβ-dependent manner. CONCLUSIONS Our findings reveal atherogenic effects of HIV protein Tat in vivo and demonstrate a pivotal role of myeloid IKKβ in Tat-driven atherogenesis.
Collapse
Affiliation(s)
- Zhaojie Meng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Weiwei Lu
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Tzung K Hsiai
- Departments of Medicine and Bioengineering, David Geffen School of Medicine, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
27
|
Liu J, Hernandez R, Li X, Meng Z, Chen H, Zhou C. Pregnane X Receptor Mediates Atherosclerosis Induced by Dicyclohexyl Phthalate in LDL Receptor-Deficient Mice. Cells 2022; 11:1125. [PMID: 35406689 PMCID: PMC8997706 DOI: 10.3390/cells11071125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Plastic-associated endocrine disrupting chemicals (EDCs) have been implicated in the etiology of cardiovascular disease (CVD) in humans, but the underlying mechanisms remain elusive. Dicyclohexyl phthalate (DCHP) is a widely used phthalate plasticizer; whether and how exposure to DCHP elicits adverse effects in vivo is mostly unknown. We previously reported that DCHP is a potent ligand of the pregnane X receptor (PXR) which acts as a xenobiotic sensor to regulate xenobiotic metabolism. PXR also functions in macrophages to regulate atherosclerosis development in animal models. In the current study, LDL receptor-deficient mice with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) and their control littermates (PXRF/FLDLR-/-) were used to determine the impact of DCHP exposure on macrophage function and atherosclerosis. Chronic exposure to DCHP significantly increased atherosclerotic lesion area in the aortic root and brachiocephalic artery of PXRF/FLDLR-/- mice by 65% and 77%, respectively. By contrast, DCHP did not affect atherosclerosis development in PXRΔMyeLDLR-/- mice. Exposure to DCHP led to elevated expression of the scavenger receptor CD36 in macrophages and increased macrophage form cell formation in PXRF/FLDLR-/- mice. Our findings provide potential mechanisms underlying phthalate-associated CVD risk and will ultimately stimulate further investigations and mitigation of the adverse effects of plastic-associated EDCs on CVD risk in humans.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Zhaojie Meng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| |
Collapse
|
28
|
Anto L, Blesso CN. Interplay Between Diet, the Gut Microbiome, and Atherosclerosis: Role of Dysbiosis and Microbial Metabolites on Inflammation and Disordered Lipid Metabolism. J Nutr Biochem 2022; 105:108991. [DOI: 10.1016/j.jnutbio.2022.108991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
|
29
|
Sui Y, Meng Z, Chen J, Liu J, Hernandez R, Gonzales MB, Gwag T, Morris AJ, Zhou C. Effects of Dicyclohexyl Phthalate Exposure on PXR Activation and Lipid Homeostasis in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:127001. [PMID: 34851150 PMCID: PMC8634903 DOI: 10.1289/ehp9262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exposure to plastic-associated endocrine disrupting chemicals (EDCs) has been associated with an increased risk of cardiovascular disease (CVD) in humans. However, the underlying mechanisms for this association are unclear. Many EDCs have been shown to function as ligands of the nuclear receptor pregnane X receptor (PXR), which functions as xenobiotic sensor but also has pro-atherogenic effects in vivo. OBJECTIVE We sought to investigate the contribution of PXR to the adverse effects dicyclohexyl phthalate (DCHP), a widely used phthalate plasticizer, on lipid homeostasis and CVD risk factors. METHODS Cell-based assays, primary organoid cultures, and PXR conditional knockout and PXR-humanized mouse models were used to investigate the impact of DCHP exposure on PXR activation and lipid homeostasis in vitro and in vivo. Targeted lipidomics were performed to measure circulating ceramides, novel predictors for CVD. RESULTS DCHP was identified as a potent PXR-selective agonist that led to higher plasma cholesterol levels in wild-type mice. DCHP was then demonstrated to activate intestinal PXR to elicit hyperlipidemia by using tissue-specific PXR-deficient mice. Interestingly, DCHP exposure also led to higher circulating ceramides in a PXR-dependent manner. DCHP-mediated PXR activation stimulated the expression of intestinal genes mediating lipogenesis and ceramide synthesis. Given that PXR exhibits considerable species-specific differences in receptor pharmacology, PXR-humanized mice were also used to replicate these findings. DISCUSSION Although the adverse health effects of several well-known phthalates have attracted considerable attention, little is known about the potential impact of DCHP on human health. Our studies demonstrate that DCHP activated PXR to induce hypercholesterolemia and ceramide production in mice. These results indicate a potentially important role of PXR in contributing to the deleterious effects of plastic-associated EDCs on cardiovascular health in humans. Testing PXR activation should be considered for risk assessment of phthalates and other EDCs. https://doi.org/10.1289/EHP9262.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Zhaojie Meng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Jianzhong Chen
- Division of Cardiovascular Medicine, College of Medicine and Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, Kentucky
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Miko B. Gonzales
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, College of Medicine and Lexington Veterans Affairs Medical Center, University of Kentucky, Lexington, Kentucky
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
30
|
Ferrell JM, Chiang JY. Bile acid receptors and signaling crosstalk in the liver, gut and brain. LIVER RESEARCH 2021; 5:105-118. [PMID: 39957847 PMCID: PMC11791822 DOI: 10.1016/j.livres.2021.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Bile acids are physiological detergents derived from cholesterol that aid in digestion and nutrient absorption, and they play roles in glucose, lipid, and energy metabolism and in gut microbiome and metabolic homeostasis. Bile acids mediate crosstalk between the liver and gut through bactericidal modulation of the gut microbiome, while gut microbes influence the composition of the circulating bile acid pool. Recent research indicates bile acids may also be important mediators of neurological disease by acting as peripheral signaling molecules that activate bile acid receptors in the blood-brain barrier and in the brain itself. This review highlights the role of bile acids in maintaining liver and gut microbe homeostasis, as well as their function as mediators of cellular signaling in the liver-gut-brain axis.
Collapse
Affiliation(s)
- Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John Y.L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
31
|
Karpale M, Käräjämäki AJ, Kummu O, Gylling H, Hyötyläinen T, Orešič M, Tolonen A, Hautajärvi H, Savolainen MJ, Ala-Korpela M, Hukkanen J, Hakkola J. Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br J Pharmacol 2021; 178:2461-2481. [PMID: 33687065 DOI: 10.1111/bph.15433] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Many drugs and environmental contaminants induce hypercholesterolemia and promote the risk of atherosclerotic cardiovascular disease. We tested the hypothesis that pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, regulates the level of circulating atherogenic lipids in humans and utilized mouse experiments to identify the mechanisms involved. EXPERIMENTAL APPROACH We performed serum NMR metabolomics in healthy volunteers administered rifampicin, a prototypical human PXR ligand or placebo in a crossover setting. We used high-fat diet fed wild-type and PXR knockout mice to investigate the mechanisms mediating the PXR-induced alterations in cholesterol homeostasis. KEY RESULTS Activation of PXR induced cholesterogenesis both in pre-clinical and clinical settings. In human volunteers, rifampicin increased intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and total cholesterol and lathosterol-cholesterol ratio, a marker of cholesterol synthesis, suggesting increased cholesterol synthesis. Experiments in mice indicated that PXR activation causes widespread induction of the cholesterol synthesis genes including the rate-limiting Hmgcr and upregulates the intermediates in the Kandutsch-Russell cholesterol synthesis pathway in the liver. Additionally, PXR activation induced plasma proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of hepatic LDL uptake, in both mice and humans. We propose that these effects were mediated through increased proteolytic activation of sterol regulatory element-binding protein 2 (SREBP2) in response to PXR activation. CONCLUSION AND IMPLICATIONS PXR activation induces cholesterol synthesis, elevating LDL and total cholesterol in humans. The PXR-SREBP2 pathway is a novel regulator of the cholesterol and PCSK9 synthesis and a molecular mechanism for drug- and chemical-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aki Juhani Käräjämäki
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of gastroenterology, Clinics of Internal Medicine, Vaasa Central Hospital, Vaasa, Finland.,Abdominal Center, Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helena Gylling
- Heart and Lung Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | - Markku J Savolainen
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Mika Ala-Korpela
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Janne Hukkanen
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
32
|
Fiorucci S, Biagioli M, Baldoni M, Ricci P, Sepe V, Zampella A, Distrutti E. The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opin Drug Discov 2021; 16:1193-1208. [PMID: 33849361 DOI: 10.1080/17460441.2021.1916465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The farnesoid-x-receptor (FXR) is a ubiquitously expressed nuclear receptor selectively activated by primary bile acids. AREA COVERED FXR is a validated pharmacological target. Herein, the authors review preclinical and clinical data supporting the development of FXR agonists in the treatment of nonalcoholic fatty liver disease. EXPERT OPINION Development of systemic FXR agonists to treat the metabolic liver disease has been proven challenging because the side effects associated with these agents including increased levels of cholesterol and LDL-c and reduced HDL-c raising concerns over their long-term cardiovascular safety. Additionally, pruritus has emerged as a common, although poorly explained, dose-related side effect with all FXR ligands, but is especially common with OCA. FXR agonists that are currently undergoing phase 2/3 trials are cilofexor, tropifexor, nidufexor and MET409. Some of these agents are currently being developed as combination therapies with other agents including cenicriviroc, a CCR2/CCR5 inhibitor, or firsocostat an acetyl CoA carboxylase inhibitor. Additional investigations are needed to evaluate the beneficial effects of combination of these agents with statins. It is expected that in the coming years, FXR agonists will be developed as a combination therapy to minimize side effects and increase likelihood of success by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Monia Baldoni
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Patrizia Ricci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Angela Zampella
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Eleonora Distrutti
- SC Di Gastroenterologia Ed Epatologia, Azienda Ospedaliera Di Perugia, Perugia, Italy
| |
Collapse
|
33
|
Jin W, Zhao Y, Zhai B, Li Y, Fan S, Yuan P, Sun G, Jiang R, Wang Y, Liu X, Tian Y, Kang X, Li G. Characteristics and expression profiles of circRNAs during abdominal adipose tissue development in Chinese Gushi chickens. PLoS One 2021; 16:e0249288. [PMID: 33857153 PMCID: PMC8049301 DOI: 10.1371/journal.pone.0249288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) play important roles in adipogenesis. However, studies on circRNA expression profiles associated with the development of abdominal adipose tissue are lacking in chickens. In this study, 12 cDNA libraries were constructed from the abdominal adipose tissue of Chinese domestic Gushi chickens at 6, 14, 22, and 30 weeks. A total of 1,766 circRNAs were identified by Illumina HiSeq 2500 sequencing. These circRNAs were primarily distributed on chr1 through chr10 and sex chromosomes, and 84.95% of the circRNAs were from gene exons. Bioinformatic analysis showed that each circRNA has 35 miRNA binding sites on average, and 62.71% have internal ribosome entry site (IRES) elements. Meanwhile, these circRNAs were primarily concentrated in TPM < 0.1 and TPM > 60, and their numbers accounted for 18.90% and 80.51%, respectively, exhibiting specific expression patterns in chicken abdominal adipose tissue. In addition, 275 differentially expressed (DE) circRNAs were identified by comparison analysis. Functional enrichment analysis showed that the parental genes of DE circRNAs were primarily involved in biological processes and pathways related to lipid metabolism, such as regulation of fat cell differentiation, fatty acid homeostasis, and triglyceride homeostasis, as well as fatty acid biosynthesis, fatty acid metabolism, and glycerolipid metabolism. Furthermore, ceRNA regulatory networks related to abdominal adipose development were constructed. The results of this study indicated that circRNAs can regulate lipid metabolism, adipocyte proliferation and differentiation, and cell junctions during abdominal adipose tissue development in chickens through complex ceRNA networks between circRNAs, miRNAs, genes, and pathways. The results of this study may help to expand the number of known circRNAs in abdominal adipose tissue and provide a valuable resource for further research on the function of circRNAs in chicken abdominal adipose tissue.
Collapse
Affiliation(s)
- Wenjiao Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan Province, P.R. China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yanbin Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail:
| |
Collapse
|
34
|
Role of Gut Microbiota and Their Metabolites on Atherosclerosis, Hypertension and Human Blood Platelet Function: A Review. Nutrients 2021; 13:nu13010144. [PMID: 33401598 PMCID: PMC7824497 DOI: 10.3390/nu13010144] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging data have demonstrated a strong association between the gut microbiota and the development of cardiovascular disease (CVD) risk factors such as atherosclerosis, inflammation, obesity, insulin resistance, platelet hyperactivity, and plasma lipid abnormalities. Several studies in humans and animal models have demonstrated an association between gut microbial metabolites such as trimethylamine-N-oxide (TMAO), short-chain fatty acids, and bile acid metabolites (amino acid breakdown products) with CVD. Human blood platelets are a critical contributor to the hemostatic process. Besides, these blood cells play a crucial role in developing atherosclerosis and, finally, contribute to cardiac events. Since the TMAO, and other metabolites of the gut microbiota, are asociated with platelet hyperactivity, lipid disorders, and oxidative stress, the diet-gut microbiota interactions have become an important research area in the cardiovascular field. The gut microbiota and their metabolites may be targeted for the therapeutic benefit of CVD from a clinical perspective. This review's main aim is to highlight the complex interactions between microbiota, their metabolites, and several CVD risk factors.
Collapse
|
35
|
Lipidomic profiling reveals triacylglycerol accumulation in the liver during pregnane X receptor activation-induced hepatomegaly. J Pharm Biomed Anal 2020; 195:113851. [PMID: 33387840 DOI: 10.1016/j.jpba.2020.113851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
Pregnane X receptor (PXR) is highly expressed in the liver and plays an integral role in the control of xenobiotic and endobiotic metabolism to maintain homeostasis. We previously reported that activation of PXR significantly induced liver enlargement. But the lipid profiling during PXR-induced hepatomegaly remains unclear. This study aimed to characterize the effect of PXR activation on hepatic lipid homeostasis by lipidomics analysis. Mice were intraperitoneally administered with the typical mPXR agonist, pregnenolone 16α-carbonitrile (PCN, 100 mg/kg/d), for 5 days. Liver and serum were collected for further analysis. The results confirmed that PXR activation can significantly induce liver enlargement. An obvious hepatic lipid accumulation was observed in PCN-treated mice, as determined by H&E and Oil Red O staining. Ultra-high performance liquid chromatography-Q Exactive Orbitrap high-resolution mass spectrometer (UHPLC-Q Exactive Orbitrap HRMS)-based lipidomics was performed to characterize the change in lipid species. A total of 20 potential lipid biomarkers were significantly perturbed. The most significant change was found in the triacylglycerol (TG), which constituted with the lower number of carbon atoms and double bonds. Moreover, the mRNA expression levels showed that PCN-induced PXR activation significantly regulated the expression of genes involved in the uptake, synthesis and metabolism of TG, which was consistent with increased TG levels. Collectively, these findings demonstrated that lipids such as TG were significantly accumulated during PXR-induced hepatomegaly.
Collapse
|
36
|
Schlezinger JJ, Puckett H, Oliver J, Nielsen G, Heiger-Bernays W, Webster TF. Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an American diet. Toxicol Appl Pharmacol 2020; 405:115204. [PMID: 32822737 PMCID: PMC7503133 DOI: 10.1016/j.taap.2020.115204] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 01/09/2023]
Abstract
Humans are exposed to per- and polyfluoroalkyl substances (PFAS) in their drinking water, food, air, dust, and by direct use of consumer products. Increased concentrations of serum total cholesterol and low density lipoprotein cholesterol are among the endpoints best supported by epidemiology. The objectives of this study were to generate a new model for examining PFAS-induced dyslipidemia and to conduct molecular studies to better define mechanism(s) of action. We tested the hypothesis that perfluorooctanoic acid (PFOA) exposure at a human-relevant level dysregulates expression of genes controlling cholesterol homeostasis in livers of mice expressing human PPARα (hPPARα). Female and male hPPARα and PPARα null mice were fed a diet based on the "What we eat in America" analysis and exposed to PFOA in drinking water (8 μM) for 6 weeks. This resulted in a serum PFOA concentration of 48 μg/ml. PFOA increased liver mass, which was associated with histologically-evident lipid accumulation. Pooled analyses of serum lipoprotein cholesterol suggest that PFOA increased serum cholesterol, particularly in male mice. PFOA induced PPARα and constitutive androstane receptor target gene expression in liver. Expression of genes in four pathways regulating cholesterol homeostasis were also measured. PFOA decreased expression of Hmgcr in a PPARα-dependent manner. PFOA decreased expression of Ldlr and Cyp7a1 in a PPARα-independent manner. Apob expression was not changed. Sex differences were evident. This novel study design (hPPARα mice, American diet, long term exposure) generated new insight on the effects of PFOA on cholesterol regulation in the liver and the role of hPPARα.
Collapse
Affiliation(s)
- J J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA.
| | - H Puckett
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - J Oliver
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - G Nielsen
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - W Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - T F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| |
Collapse
|
37
|
Hsu CS, Liu WL, Li Q, Lowey B, Hertz L, Chao YC, Liang TJ, Chen DS, Kao JH. Hepatitis C virus genotypes 1-3 infections regulate lipogenic signaling and suppress cholesterol biosynthesis in hepatocytes. J Formos Med Assoc 2020; 119:1382-1395. [PMID: 32284164 PMCID: PMC11492201 DOI: 10.1016/j.jfma.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Patients with different hepatitis C virus (HCV) genotype infections are associated with varying metabolic disorders. Although alteration of lipid metabolism has been confirmed as a virus-induced metabolic derangement in chronic hepatitis C patients, the impact of various HCV genotypes on hepatic cholesterol metabolism remains elusive. In this study, we thus investigated the HCV genotype-specific lipogenic and cholesterol metabolism profiles in an in vitro cell culture system. METHODS We first conducted HCV cell culture system (HCVcc) assays by infecting Huh7.5.1 cells with multiple infection-competent HCV strains, including the genotype 2a JFH1 and JFH1-based intergenotypic recombinants 1b and 3a. We then examined the expression levels of various lipid and cholesterol-related genes. RESULTS The data showed that infection with individual HCV genotypes exerted unique gene expression regulatory effects on lipoproteins and cholesterol metabolism genes. Of note, all HCV strains suppressed cholesterol biosynthesis in hepatocytes through downregulating the expression of HMG-CoA reductase (HMGCR) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1) - two essential enzymes for cholesterol biosynthesis. These HCV-mediated inhibitory effects could be reversed by treatment with sofosbuvir, a pangenotypic NS5B inhibitor. In addition, overexpression of HCV genotype 1b, 2a or 3a core protein significantly suppressed HMGCR mRNA transcription and translation, thus diminished cellular cholesterol biosynthesis. Nonetheless, the core protein had no effect on FDFT1 expression. CONCLUSION Although HCV infection regulates host lipid metabolism in a genotype-specific manner, its inhibition on hepatocellular cholesterogenic gene expression and total cholesterol biosynthesis is a common effect among HCV genotype 1b, 2a and 3a.
Collapse
Affiliation(s)
- Ching-Sheng Hsu
- Liver Diseases Research Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Qisheng Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brianna Lowey
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura Hertz
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - You-Chen Chao
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Nankang, 11549, Taiwan
| | - Jia-Horng Kao
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
38
|
Zeng C, Tan H. Gut Microbiota and Heart, Vascular Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:107-141. [PMID: 32323183 DOI: 10.1007/978-981-15-2385-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiota plays an important role in maintaining human health. Accumulating evidence has indicated an intimate relationship between gut microbiota and cardiovascular diseases (CVD) which has become the leading cause of death worldwide. The alteration of gut microbial composition (gut dysbiosis) has been proven to contribute to atherosclerosis, the basic pathological process of CVD. In addition, the metabolites of gut microbiota have been found to be closely related to the development of CVD. For example, short-chain fatty acids are widely acclaimed beneficial effect against CVD, whereas trimethylamine-N-oxide is considered as a contributing factor in the development of CVD. In this chapter, we mainly discuss the gut microbial metabolite-involved mechanisms of CVD focusing on atherosclerosis, hypertension, diabetes, obesity, and heart failure. Targeting gut microbiota and related metabolites are novel and promising strategies for the treatment of CVD.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
39
|
Kappel BA, De Angelis L, Heiser M, Ballanti M, Stoehr R, Goettsch C, Mavilio M, Artati A, Paoluzi OA, Adamski J, Mingrone G, Staels B, Burcelin R, Monteleone G, Menghini R, Marx N, Federici M. Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Mol Metab 2020; 36:100976. [PMID: 32251665 PMCID: PMC7183232 DOI: 10.1016/j.molmet.2020.100976] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 12/24/2022] Open
Abstract
Objective The metabolic influence of gut microbiota plays a pivotal role in the pathogenesis of cardiometabolic diseases. Antibiotics affect intestinal bacterial diversity, and long-term usage has been identified as an independent risk factor for atherosclerosis-driven events. The aim of this study was to explore the interaction between gut dysbiosis by antibiotics and metabolic pathways with the impact on atherosclerosis development. Methods We combined oral antibiotics with different diets in an Apolipoprotein E-knockout mouse model linking gut microbiota to atherosclerotic lesion development via an integrative cross-omics approach including serum metabolomics and cecal 16S rRNA targeted metagenomic sequencing. We further investigated patients with carotid atherosclerosis compared to control subjects with comparable cardiovascular risk. Results Here, we show that increased atherosclerosis by antibiotics was connected to a loss of intestinal diversity and alterations of microbial metabolic functional capacity with a major impact on the host serum metabolome. Pathways that were modulated by antibiotics and connected to atherosclerosis included diminished tryptophan and disturbed lipid metabolism. These pathways were related to the reduction of certain members of Bacteroidetes and Clostridia by antibiotics in the gut. Patients with atherosclerosis presented a similar metabolic signature as those induced by antibiotics in our mouse model. Conclusion Taken together, this work provides insights into the complex interaction between intestinal microbiota and host metabolism. Our data highlight that detrimental effects of antibiotics on the gut flora are connected to a pro-atherogenic metabolic phenotype beyond classical risk factors. Antibiotics exacerbate atherosclerosis independently of diet. Gut microbiota and metabolic alpha diversity are reduced by antibiotics. Pathways connected to atherogenesis are tryptophan and lipid metabolism. Metabolic changes are linked to reduced Clostridia and Bacteroidetes in the gut.
Collapse
Affiliation(s)
- Ben Arpad Kappel
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Internal Medicine 1, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Lorenzo De Angelis
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Michael Heiser
- Metabolomic discoveries GmbH, Potsdam, Germany; Metabolon Inc., Morrisville, NC, USA
| | - Marta Ballanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy
| | - Robert Stoehr
- Department of Internal Medicine 1, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Claudia Goettsch
- Department of Internal Medicine 1, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Artati
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technical University of Munich, Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London, United Kingdom
| | - Bart Staels
- Université Lille, INSERM, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Remy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Toulouse, France; Université Paul Sabatier, Toulouse, France
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Gastroenterology Unit, Policlinico Tor Vergata, Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolaus Marx
- Department of Internal Medicine 1, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
40
|
Sui Y, Meng Z, Park SH, Lu W, Livelo C, Chen Q, Zhou T, Zhou C. Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice. J Lipid Res 2020; 61:696-706. [PMID: 32170024 DOI: 10.1194/jlr.ra119000122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRΔMyeLDLR-/- mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRΔMyeLDLR-/- mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Zhaojie Meng
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Weiwei Lu
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Christopher Livelo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521. mailto:
| |
Collapse
|
41
|
Zhang YM, Wang T, Yang XS. An in vitro and in silico investigation of human pregnane X receptor agonistic activity of poly- and perfluorinated compounds using the heuristic method-best subset and comparative similarity indices analysis. CHEMOSPHERE 2020; 240:124789. [PMID: 31561157 DOI: 10.1016/j.chemosphere.2019.124789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Poly- and perfluorinated compounds (PFCs) may induce potential endocrine-disrupting hormonal effects. However, the molecular mechanism of the toxicology of PFCs remains unclear, and the insufficient information is available on the biological activities of PFCs at present. In this study, the cell-based reporter gene assays were used to determine the agonistic activity of PFCs on the human pregnane X receptor (hPXR). The heuristic method combined with best subset modeling (HM-BSM) based on Dragon descriptors and comparative similarity indices analysis (CoMSIA) were employed to build classical quantitative structure-activity relationship (QSAR) and three-dimensional QSAR models, respectively. The applicability domain (AD) of the classical QSAR model was assessed. Both the HM-BSM and CoMSIA approaches demonstrated good robustness, predictive ability, and mechanistic interpretability. The r2 and leave-one-out cross-validation squared correlated coefficient (q2LOO) values were 0.872 and 0.759 for the HM-BSM, and 0.976 and 0.751 for the CoMSIA model, respectively. The hPXR agonistic activity of the PFCs predicted by the built HM-BSM and CoMSIA agreed well with experimental activity, with root mean square error (RMSE) values of 0.0803 and 0.117, respectively, and external validation squared correlated coefficients (q2EXT) of 0.972 and 0.932, respectively. The hPXR agonistic activity of PFCs was related to their molecular polarizability, charge and atomic mass. Hydrogen bonding and hydrophobic interactions constituted the primary intermolecular forces between PFCs and the hPXR. The developed models were used to screen the PFCs with high hPXR agonistic activity.
Collapse
Affiliation(s)
- Yi-Ming Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Tao Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xu-Shu Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
42
|
Flora GD, Sahli KA, Sasikumar P, Holbrook LM, Stainer AR, AlOuda SK, Crescente M, Sage T, Unsworth AJ, Gibbins JM. Non-genomic effects of the Pregnane X Receptor negatively regulate platelet functions, thrombosis and haemostasis. Sci Rep 2019; 9:17210. [PMID: 31748641 PMCID: PMC6868193 DOI: 10.1038/s41598-019-53218-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 01/30/2023] Open
Abstract
The pregnane X receptor (PXR) is a nuclear receptor (NR), involved in the detoxification of xenobiotic compounds. Recently, its presence was reported in the human vasculature and its ligands were proposed to exhibit anti-atherosclerotic effects. Since platelets contribute towards the development of atherosclerosis and possess numerous NRs, we investigated the expression of PXR in platelets along with the ability of its ligands to modulate platelet activation. The expression of PXR in human platelets was confirmed using immunoprecipitation analysis. Treatment with PXR ligands was found to inhibit platelet functions stimulated by a range of agonists, with platelet aggregation, granule secretion, adhesion and spreading on fibrinogen all attenuated along with a reduction in thrombus formation (both in vitro and in vivo). The effects of PXR ligands were observed in a species-specific manner, and the human-specific ligand, SR12813, was observed to attenuate thrombus formation in vivo in humanised PXR transgenic mice. PXR ligand-mediated inhibition of platelet function was found to be associated with the inhibition of Src-family kinases (SFKs). This study identifies acute, non-genomic regulatory effects of PXR ligands on platelet function and thrombus formation. In combination with the emerging anti-atherosclerotic properties of PXR ligands, these anti-thrombotic effects may provide additional cardio-protective benefits.
Collapse
Affiliation(s)
- Gagan D Flora
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Khaled A Sahli
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,General Directorate of Medical Services, Ministry of Interior, Riyadh, Kingdom of Saudi Arabia
| | - Parvathy Sasikumar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,Centre for Haematology, Imperial College London, London, UK
| | - Lisa-Marie Holbrook
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Alexander R Stainer
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Sarah K AlOuda
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Marilena Crescente
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Amanda J Unsworth
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.,School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
43
|
Hudson G, Flannigan KL, Venu VKP, Alston L, Sandall CF, MacDonald JA, Muruve DA, Chang TKH, Mani S, Hirota SA. Pregnane X Receptor Activation Triggers Rapid ATP Release in Primed Macrophages That Mediates NLRP3 Inflammasome Activation. J Pharmacol Exp Ther 2019; 370:44-53. [PMID: 31004077 PMCID: PMC6542184 DOI: 10.1124/jpet.118.255679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor that acts as a xenobiotic sensor, responding to compounds of foreign origin, including pharmaceutical compounds, environmental contaminants, and natural products, to induce transcriptional events that regulate drug detoxification and efflux pathways. As such, the PXR is thought to play a key role in protecting the host from xenobiotic exposure. More recently, the PXR has been reported to regulate the expression of innate immune receptors in the intestine and modulate inflammasome activation in the vasculature. In the current study, we report that activation of the PXR in primed macrophages triggers caspase-1 activation and interleukin-1β release. Mechanistically, we show that this response is nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3-dependent and is driven by the rapid efflux of ATP and P2X purinoceptor 7 activation following PXR stimulation, an event that involves pannexin-1 gating, and is sensitive to inhibition of Src-family kinases. Our findings identify a mechanism whereby the PXR drives innate immune signaling, providing a potential link between xenobiotic exposure and the induction of innate inflammatory responses.
Collapse
Affiliation(s)
- Grace Hudson
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Kyle L Flannigan
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Vivek Krishna Pulakazhi Venu
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Laurie Alston
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Christina F Sandall
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Justin A MacDonald
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Daniel A Muruve
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Thomas K H Chang
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Sridhar Mani
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Simon A Hirota
- Departments of Physiology and Pharmacology (G.H., K.L.F., V.K.P.V., L.A., S.A.H.), Biochemistry and Molecular Biology (C.F.S., J.A.M.), Medicine (D.A.M.), and Immunology, Microbiology, and Infectious Diseases (S.A.H.), University of Calgary, Calgary, Alberta, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada (T.K.H.C.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| |
Collapse
|
44
|
Lu W, Park SH, Meng Z, Wang F, Zhou C. Deficiency of Adipocyte IKKβ Affects Atherosclerotic Plaque Vulnerability in Obese LDLR Deficient Mice. J Am Heart Assoc 2019; 8:e012009. [PMID: 31203708 PMCID: PMC6645619 DOI: 10.1161/jaha.119.012009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Obesity‐associated chronic inflammation has been known to contribute to atherosclerosis development, but the underlying mechanisms remain elusive. Recent studies have revealed novel functions of IKKβ (inhibitor of NF‐κB [nuclear factor κB] kinase β), a key coordinator of inflammation through activation of NF‐κB, in atherosclerosis and adipose tissue development. However, it is not clear whether IKKβ signaling in adipocytes can also affect atherogenesis. This study aims to investigate the impact of adipocyte IKKβ expression on atherosclerosis development in lean and obese LDLR (low‐density lipoprotein receptor)–deficient (LDLR−/−) mice. Methods and Results To define the role of adipocyte IKKβ in atherogenesis, we generated adipocyte‐specific IKKβ‐deficient LDLR−/− (IKKβΔAdLDLR−/−) mice. Targeted deletion of IKKβ in adipocytes did not affect adiposity and atherosclerosis in lean LDLR−/− mice when fed a low‐fat diet. In response to high‐fat feeding, however, IKKβΔAdLDLR−/− mice had defective adipose remodeling and increased adipose tissue and systemic inflammation. Deficiency of adipocyte IKKβ did not affect atherosclerotic lesion sizes but resulted in enhanced lesional inflammation and increased plaque vulnerability in obese IKKβΔAdLDLR−/− mice. Conclusions These data demonstrate that adipocyte IKKβ signaling affects the evolution of atherosclerosis plaque vulnerability in obese LDLR−/− mice. This study suggests that the functions of IKKβ signaling in atherogenesis are complex, and IKKβ in different cell types or tissues may have different effects on atherosclerosis development.
Collapse
Affiliation(s)
- Weiwei Lu
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Se-Hyung Park
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Zhaojie Meng
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Fang Wang
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY
| | - Changcheng Zhou
- 1 Department of Pharmacology and Nutritional Sciences University of Kentucky Lexington KY.,2 Saha Cardiovascular Research Center University of Kentucky Lexington KY
| |
Collapse
|
45
|
Gwag T, Meng Z, Sui Y, Helsley RN, Park SH, Wang S, Greenberg RN, Zhou C. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J Hepatol 2019; 70:930-940. [PMID: 30677459 PMCID: PMC6462244 DOI: 10.1016/j.jhep.2018.12.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The most prescribed non-nucleoside reverse transcriptase inhibitor, efavirenz, has been associated with elevated risk of dyslipidemia and hepatic steatosis in HIV-infected patients but the underlying mechanisms remain elusive. Herein, we investigated the role of pregnane X receptor (PXR) in mediating the adverse effects of efavirenz on lipid homeostasis. METHODS Cell-based reporter assays, primary cell culture, and multiple mouse models including conditional knockout and humanized mice were combined to study the impact of efavirenz on PXR activities and lipid homeostasis in vitro and in vivo. A novel liver-specific Pxr knockout mouse model was also generated to determine the contribution of hepatic PXR signaling to efavirenz-elicited dyslipidemia and hepatic steatosis. RESULTS We found that efavirenz is a potent PXR-selective agonist that can efficiently activate PXR and induce its target gene expression in vitro and in vivo. Treatment with efavirenz-induced hypercholesterolemia and hepatic steatosis in mice but deficiency of hepatic PXR abolished these adverse effects. Interestingly, efavirenz-mediated PXR activation regulated the expression of several key hepatic lipogenic genes including fatty acid transporter CD36 and cholesterol biosynthesis enzyme squalene epoxidase (SQLE), leading to increased lipid uptake and cholesterol biosynthesis in hepatic cells. While CD36 is a known PXR target gene, we identified a DR-2-type of PXR-response element in the SQLE promoter and established SQLE as a direct transcriptional target of PXR. Since PXR exhibits considerable differences in its pharmacology across species, we also confirmed these findings in PXR-humanized mice and human primary hepatocytes. CONCLUSIONS The widely prescribed antiretroviral drug efavirenz induces hypercholesterolemia and hepatic steatosis by activating PXR signaling. Activation of PXR should be taken into consideration for patients undergoing long-term treatment with PXR agonistic antiretroviral drugs. LAY SUMMARY Efavirenz is widely prescribed for HIV-infected patients but has some side effects. It can increase lipid levels in patients' blood and liver. Here we show that efavirenz can activate a unique liver protein called PXR which mediates the adverse effects of efavirenz on lipid levels in mouse models.
Collapse
Affiliation(s)
- Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Zhaojie Meng
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Yipeng Sui
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Robert N. Helsley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
46
|
Meng Z, Gwag T, Sui Y, Park SH, Zhou X, Zhou C. The atypical antipsychotic quetiapine induces hyperlipidemia by activating intestinal PXR signaling. JCI Insight 2019; 4:125657. [PMID: 30728326 DOI: 10.1172/jci.insight.125657] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
Quetiapine, one of the most prescribed atypical antipsychotics, has been associated with hyperlipidemia and an increased risk for cardiovascular disease in patients, but the underlying mechanisms remain unknown. Here, we identified quetiapine as a potent and selective agonist for pregnane X receptor (PXR), a key nuclear receptor that regulates xenobiotic metabolism in the liver and intestine. Recent studies have indicated that PXR also plays an important role in lipid homeostasis. We generated potentially novel tissue-specific PXR-KO mice and demonstrated that quetiapine induced hyperlipidemia by activating intestinal PXR signaling. Quetiapine-mediated PXR activation stimulated the intestinal expression of cholesterol transporter Niemann-Pick C1-Like 1 (NPC1L1) and microsomal triglyceride transfer protein (MTP), leading to increased intestinal lipid absorption. While NPC1L1 is a known PXR target gene, we identified a DR-1-type PXR-response element in the MTP promoter and established MTP as a potentially novel transcriptional target of PXR. Quetiapine's effects on PXR-mediated gene expression and cholesterol uptake were also confirmed in cultured murine enteroids and human intestinal cells. Our findings suggest a potential role of PXR in mediating adverse effects of quetiapine in humans and provide mechanistic insights for certain atypical antipsychotic-associated dyslipidemia.
Collapse
Affiliation(s)
- Zhaojie Meng
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Yipeng Sui
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Xiangping Zhou
- Department of Neurology, SUNY Upstate Medical College, Syracuse, New York, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
47
|
Lin YN, Wang CCN, Chang HY, Chu FY, Hsu YA, Cheng WK, Ma WC, Chen CJ, Wan L, Lim YP. Ursolic Acid, a Novel Liver X Receptor α (LXRα) Antagonist Inhibiting Ligand-Induced Nonalcoholic Fatty Liver and Drug-Induced Lipogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11647-11662. [PMID: 30359008 DOI: 10.1021/acs.jafc.8b04116] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a very common liver disease, and its incidence has significantly increased worldwide. The liver X receptor α (LXRα) is a multifunctional nuclear receptor that controls lipid homeostasis. Inhibition of LXRα transactivation may be beneficial for NAFLD and hyperlipidemia treatment. Ursolic acid (UA) is a plant triterpenoid with many beneficial effects; however, the mechanism of its action on LXRα remains elusive. We evaluated the effects of UA on T0901317 (T090)-induced LXRα activation and steatosis. UA significantly decreased the LXR response element and sterol regulatory element-binding protein-1c ( SREBP-1c) gene promoter activities, mRNA, protein expression of LXRα target genes, and hepatic cellular lipid content in a T090-induced mouse model. A molecular docking study indicated that UA bound competitively with T090 at the LXRα ligand binding domain. UA stimulated AMP-activated protein kinase (AMPK) phosphorylation in hepatic cells and increased corepressor, small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased coactivator, steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. In contrast, UA induced SRC-1 binding but decreased SMILE binding to reverse cholesterol transport-related gene promoters in intestinal cells, increasing lipid excretion from intestinal cells. Additionally, UA reduced valproate-induced LXRα mediated and rifampin-induced pregnane X receptor mediated lipogenesis, offering potential treatments for drug-induced hepatic steatosis. Thus, UA displays liver specificity and can be selectively repressed while RCT stimulation by LXRα is preserved and enhanced. This is a novel therapeutic option to treat NAFLD and may be helpful in developing LXR agonists to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yen-Ning Lin
- Department of Pharmacy, College of Pharmacy , China Medical University , No. 91, Hsueh-Shih Road , Taichung 40402 , Taiwan
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering , Asia University , Taichung , Taiwan
| | - Hsiao-Yun Chang
- Department of Biotechnology , Asia University , Taichung , Taiwan
| | - Fang-Yi Chu
- Department of Pharmacy, College of Pharmacy , China Medical University , No. 91, Hsueh-Shih Road , Taichung 40402 , Taiwan
| | - Yu-An Hsu
- School of Chinese Medicine , China Medical University , Taichung , Taiwan
| | - Wai-Kok Cheng
- Department of Pharmacy, College of Pharmacy , China Medical University , No. 91, Hsueh-Shih Road , Taichung 40402 , Taiwan
| | - Wei-Chih Ma
- Department of Pharmacy, College of Pharmacy , China Medical University , No. 91, Hsueh-Shih Road , Taichung 40402 , Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine , China Medical University , Taichung , Taiwan
- Proteomics Core Laboratory, Department of Medical Research , China Medical University Hospital , Taichung , Taiwan
| | - Lei Wan
- Department of Medical Research , China Medical University Hospital , Taichung , Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy , China Medical University , No. 91, Hsueh-Shih Road , Taichung 40402 , Taiwan
- Department of Medical Research , China Medical University Hospital , Taichung , Taiwan
- Department of Internal Medicine , China Medical University Hospital , Taichung , Taiwan
| |
Collapse
|
48
|
Lin YN, Chang HY, Wang CCN, Chu FY, Shen HY, Chen CJ, Lim YP. Oleanolic Acid Inhibits Liver X Receptor Alpha and Pregnane X Receptor to Attenuate Ligand-Induced Lipogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10964-10976. [PMID: 30351048 DOI: 10.1021/acs.jafc.8b03372] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liver X receptor α (LXRα) controls important biological and pathophysiological processes such as lipid homeostasis. Inhibiting LXRα transactivation may beneficial in the treatment of nonalcoholic fatty liver disease (NAFLD), which is one of the main causes of liver diseases and hyperlipidemia. Oleanolic acid (OA) is a naturally occurring triterpenoid found in many plants. It has several beneficial effects on biological pathways; however, the mechanisms underlying its effects on LXRα are unclear. Therefore, we evaluated the effects of OA on T0901317-induced LXRα activation and explored whether OA can attenuate hepatic lipogenesis. The results showed that OA significantly decreased the promoter activities of LXR response element and sterol regulatory element binding protein-1c (SREBP-1c). It also decreased the mRNA and protein expression of LXRα target genes. These resulted in reduced hepatocellular lipid content. Our results also revealed that the overall binding pose of OA is similar to the X-ray pose of T0901317. Furthermore, OA stimulated AMP-activated protein kinase phosphorylation in hepatic cells. Additionally, it increased small heterodimer partner-interacting leucine zipper protein (SMILE) but decreased steroid receptor coactivator-1 (SRC-1) recruitment to the SREBP-1c promoter region. OA also enhanced LXRα-mediated induction of reverse cholesterol transport (RCT)-related gene, ATP-binding cassette transporter (ABC) A1, and ABCG1 expression in intestinal cells. It was found that OA increased the binding of SRC-1 but decreased SMILE recruitment to the ABCG1 gene promoter region. Furthermore, it reduced valproate- and rifampin-induced LXRα- and pregnane X receptor-mediated lipogenesis, respectively, which indicates its potential benefit in treating drug-induced hepatic steatosis. The results also show that OA is liver-specific and can be selectively repressed of lipogenesis. Moreover, it preserves and enhances LXRα-induced RCT stimulation. The results show that OA may be a promising treatment for NAFLD. Additionally, it can be used in the development of LXRα agonists to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yen-Ning Lin
- Department of Pharmacy, College of Pharmacy , China Medical University , Taichung , Taiwan
| | - Hsiao-Yun Chang
- Department of Biotechnology , Asia University , Taichung , Taiwan
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering , Asia University , Taichung , Taiwan
| | - Fang-Yi Chu
- Department of Pharmacy, College of Pharmacy , China Medical University , Taichung , Taiwan
| | - Hsin-Yi Shen
- Department of Pharmacy, College of Pharmacy , China Medical University , Taichung , Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research , China Medical University Hospital , Taichung , Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy , China Medical University , Taichung , Taiwan
- Department of Internal Medicine , China Medical University Hospital , Taichung , Taiwan
- Department of Medical Research , China Medical University Hospital , Taichung , Taiwan
| |
Collapse
|
49
|
Ma J, Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol 2018; 9:1082. [PMID: 30319417 PMCID: PMC6167910 DOI: 10.3389/fphar.2018.01082] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, accumulating evidence has indicated the importance of gut microbiota in maintaining human health. Gut dysbiosis is associated with the pathogenesis of a number of metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVDs). Indeed, CVD has become the leading cause of death worldwide, especially in developed countries. In this review, we mainly discuss the gut microbiota-involved mechanisms of CVD focusing on atherosclerosis and hypertension, two major risk factors for serious CVD. Then, we briefly discuss the prospects of gut microbiota-targeted therapeutic strategies for the treatment of CVD in the future.
Collapse
Affiliation(s)
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Zhang M, Zhang Z, Xie X, Yao Q, Liu J, Lai B, Xiao L, Wang N. Xenobiotic pregnane X receptor promotes neointimal formation in balloon-injured rat carotid arteries. J Cell Physiol 2018; 234:4342-4351. [PMID: 30132884 DOI: 10.1002/jcp.27215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
Pregnane X receptor (PXR) is a member of nuclear receptor superfamily and responsible for the detoxification of xenobiotics. Recent studies demonstrated that PXR was also expressed in the vasculature and protected the vessels from endogenous and exogenous insults, thus representing a novel gatekeeper in vascular defense. In this study, we examined the potential function of PXR in the neointimal formation following vascular injury. In the rat carotid artery after balloon injury, overexpression of a constitutively active PXR increased the intima-to-media ratio in the injured region. PXR increased cell proliferation and migration in cultured rat aortic smooth muscle cells (SMCs) by inducing the expressions of cyclins (cyclin A, D1, and E) and cyclin-dependent kinase 2. In addition, PXR increased the phosphorylation and activation of extracellular-signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Inactivation of ERK1/2 and p38 MAPK pathways using selective inhibitors (U0126 and SB203580) abrogated PXR-induced SMC proliferation and migration. Furthermore, cigarette smoke particles (CSP) activated PXR in SMCs. Knockdown of PXR by small interfering RNA suppressed the cell proliferation, migration, and activation of the MAPK pathways by CSP. These findings suggested a novel role for PXR in promoting SMC proliferation and migration, and neointimal hyperplasia. Therefore, PXR may be a potential therapeutic target for vascular disease related to xenobiotics such as cigarette smoking and other environmental pollutants.
Collapse
Affiliation(s)
- Meiqian Zhang
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Zihui Zhang
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xinya Xie
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qinyu Yao
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jia Liu
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Baochang Lai
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lei Xiao
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Nanping Wang
- Laboratory of Vascular Molecular Biology and Bioengineering, Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Laboratory of Vascular Molecular Biology and Bioengineering, The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|