1
|
Zhao A, Zhang G, Wei H, Yan X, Gan J, Jiang X. Heat shock proteins in cerebral ischemia-reperfusion injury: Mechanisms and therapeutic implications. Exp Neurol 2025; 390:115284. [PMID: 40318821 DOI: 10.1016/j.expneurol.2025.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) remains a significant challenge in ischemic stroke treatment. Heat shock proteins (HSPs), a cadre of molecular chaperones, have emerged as pivotal regulators in this pathological cascade. This review synthesizes the latest research on HSPs in CIRI from 2013 to 2024 focusing on their multifaceted roles and therapeutic potential. We explore the diverse cellular functions of HSPs, including regulation of oxidative stress, apoptosis, necroptosis, ferroptosis, autophagy, neuroinflammation, and blood-brain barrier integrity. Key HSPs, such as HSP90, HSP70, HSP32, HSP60, HSP47, and small HSPs, are investigated for their specific mechanisms of action in CIRI. Potential therapeutic strategies targeting HSPs, including HSP inhibitors, traditional Chinese medicine components, and gene therapy, are discussed. This review provides a comprehensive understanding of HSPs in CIRI and offers insights into the development of innovative neuroprotective treatments.
Collapse
Affiliation(s)
- Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Seluzicki CM, Razavi-Mohseni M, Türker F, Patel P, Hua B, Beer MA, Goff L, Margolis SS. Regulation of translation elongation and integrated stress response in heat-shocked neurons. Cell Rep 2025; 44:115639. [PMID: 40286269 DOI: 10.1016/j.celrep.2025.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Neurons deviate from a canonical heat shock response (HSR). Here, we revealed that neuronal adaptation to heat shock accompanies a brake on mRNA translation, slowed elongating ribosomes, phosphorylation of eukaryotic elongation factor-2 (p-eEF2), and suppressed the integrated stress response (ISR). Returning neurons to control temperature within 1 h of starting heat shock was necessary for survival and allowed for restored translation following dephosphorylation of eEF2. Subsequent to recovery, neurons briefly activated the ISR and were sensitive to the ISR inhibitor ISRIB, which enhanced protein synthesis and survival. Ribosome profiling and RNA sequencing (RNA-seq) identified newly synthesized and existing transcripts associated with ribosomes during heat shock. Preservation of these transcripts for translation during recovery was in part mediated by p-eEF2 and slowed ribosomes. Our work supports a neuronal heat shock model of a partially suspended state of translation poised for rapid reversal if recovery becomes an option and provides insight into regulation between the HSR and the ISR.
Collapse
Affiliation(s)
- Caitlin M Seluzicki
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fulya Türker
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey
| | - Priyal Patel
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boyang Hua
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A Beer
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal Goff
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Ali S, Tian X, Meccia SA, Zhou J. Highlights on U.S. FDA-approved halogen-containing drugs in 2024. Eur J Med Chem 2025; 287:117380. [PMID: 39947048 PMCID: PMC11846695 DOI: 10.1016/j.ejmech.2025.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
This comprehensive review offers an update on the FDA-approved halogen-containing drugs in 2024. The agency approved a total of 50 drugs, including small molecules and macromolecules. Excitingly, 16 out of 50 are halogen-containing drugs, indicated to diagnose, mitigate and treat the various human diseases. Among halogens, fluorine and chlorine are highly prevalent in drug discovery and development. Therefore, the properties of fluorine and chlorine and their impact on the drug profile are briefly discussed. In addition, the specific role of halogens in these drugs has been discussed with the help of structure-activity relationships (SARs), co-crystal structures, and closely related literature precedents. This review also provides the additional information for each drug, such as trade name, active ingredients, route of administration, approval date, sponsors, indication, mode of action, major drug metabolizing enzyme(s), and route of elimination. We expect that the present review may garner the attention of drug discovery researchers and inspire them toward the potential applications of halogens to discover novel therapeutics in the future.
Collapse
Affiliation(s)
- Saghir Ali
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Xiaochen Tian
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Salvatore A Meccia
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, United States.
| |
Collapse
|
4
|
Pelaez MC, Fiore F, Larochelle N, Dabbaghizadeh A, Comaduran MF, Arbour D, Minotti S, Marcadet L, Semaan M, Robitaille R, Nalbantoglu JN, Sephton CF, Durham HD. Reversal of cognitive deficits in FUS R521G amyotrophic lateral sclerosis mice by arimoclomol and a class I histone deacetylase inhibitor independent of heat shock protein induction. Neurotherapeutics 2024; 21:e00388. [PMID: 38972779 PMCID: PMC11579874 DOI: 10.1016/j.neurot.2024.e00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
Protein misfolding and mislocalization are common to both familial and sporadic forms of amyotrophic lateral sclerosis (ALS). Maintaining proteostasis through induction of heat shock proteins (HSP) to increase chaperoning capacity is a rational therapeutic strategy in the treatment of ALS. However, the threshold for upregulating stress-inducible HSPs remains high in neurons, presenting a therapeutic obstacle. This study used mouse models expressing the ALS variants FUSR521G or SOD1G93A to follow up on previous work in cultured motor neurons showing varied effects of the HSP co-inducer, arimoclomol, and class I histone deacetylase (HDAC) inhibitors on HSP expression depending on the ALS variant being expressed. As in cultured neurons, neither expression of the transgene nor drug treatments induced expression of HSPs in cortex, spinal cord or muscle of FUSR521G mice, indicating suppression of the heat shock response. Nonetheless, arimoclomol, and RGFP963, restored performance on cognitive tests and improved cortical dendritic spine densities. In SOD1G93A mice, multiple HSPs were upregulated in hindlimb skeletal muscle, but not in lumbar spinal cord with the exception of HSPB1 associated with astrocytosis. Drug treatments improved contractile force but reduced the increase in HSPs in muscle rather than facilitating their expression. The data point to mechanisms other than amplification of the heat shock response underlying recovery of cognitive function in ALS-FUS mice by arimoclomol and class I HDAC inhibition and suggest potential benefits in counteracting cognitive impairment in ALS, frontotemporal dementia and related disorders.
Collapse
Affiliation(s)
- Mari Carmen Pelaez
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC Canada.
| | - Frédéric Fiore
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Nancy Larochelle
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Afrooz Dabbaghizadeh
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Mario Fernández Comaduran
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Danielle Arbour
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Sandra Minotti
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Laetitia Marcadet
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC Canada.
| | - Martine Semaan
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Richard Robitaille
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montréal, QC Canada.
| | - Josephine N Nalbantoglu
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC Canada.
| | - Heather D Durham
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada.
| |
Collapse
|
5
|
Waldron R, Rodriguez MDLAB, Williams JM, Ning Z, Ahmed A, Lindsay A, Moore T. JRK binds satellite III DNA and is necessary for the heat shock response. Cell Biol Int 2024; 48:1212-1222. [PMID: 38946594 DOI: 10.1002/cbin.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
JRK is a DNA-binding protein of the pogo superfamily of transposons, which includes the well-known centromere binding protein B (CENP-B). Jrk null mice exhibit epilepsy, and growth and reproductive disorders, consistent with its relatively high expression in the brain and reproductive tissues. Human JRK DNA variants and gene expression levels are implicated in cancers and neuropsychiatric disorders. JRK protein modulates β-catenin-TCF activity but little is known of its cellular functions. Based on its homology to CENP-B, we determined whether JRK binds centromeric or other satellite DNAs. We show that human JRK binds satellite III DNA, which is abundant at the chromosome 9q12 juxtacentromeric region and on Yq12, both sites of nuclear stress body assembly. Human JRK-GFP overexpressed in HeLa cells strongly localises to 9q12. Using an anti-JRK antiserum we show that endogenous JRK co-localises with a subset of centromeres in non-stressed cells, and with heat shock factor 1 following heat shock. Knockdown of JRK in HeLa cells proportionately reduces heat shock protein gene expression in heat-shocked cells. A role for JRK in regulating the heat shock response is consistent with the mouse Jrk null phenotype and suggests that human JRK may act as a modifier of diseases with a cellular stress component.
Collapse
Affiliation(s)
- Rosalie Waldron
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - John M Williams
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Zhenfei Ning
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Abrar Ahmed
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Fernández Comaduran M, Minotti S, Jacob-Tomas S, Rizwan J, Larochelle N, Robitaille R, Sephton CF, Vera M, Nalbantoglu JN, Durham HD. Impact of histone deacetylase inhibition and arimoclomol on heat shock protein expression and disease biomarkers in primary culture models of familial ALS. Cell Stress Chaperones 2024; 29:359-380. [PMID: 38570009 PMCID: PMC11015512 DOI: 10.1016/j.cstres.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Protein misfolding and mislocalization are common themes in neurodegenerative disorders, including motor neuron disease, and amyotrophic lateral sclerosis (ALS). Maintaining proteostasis is a crosscutting therapeutic target, including the upregulation of heat shock proteins (HSP) to increase chaperoning capacity. Motor neurons have a high threshold for upregulating stress-inducible HSPA1A, but constitutively express high levels of HSPA8. This study compared the expression of these HSPs in cultured motor neurons expressing three variants linked to familial ALS: TAR DNA binding protein 43 kDa (TDP-43)G348C, fused in sarcoma (FUS)R521G, or superoxide dismutase I (SOD1)G93A. All variants were poor inducers of Hspa1a, and reduced levels of Hspa8 mRNA and protein, indicating multiple compromises in chaperoning capacity. To promote HSP expression, cultures were treated with the putative HSP coinducer, arimoclomol, and class I histone deacetylase inhibitors, to promote active chromatin for transcription, and with the combination. Treatments had variable, often different effects on the expression of Hspa1a and Hspa8, depending on the ALS variant expressed, mRNA distribution (somata and dendrites), and biomarker of toxicity measured (histone acetylation, maintaining nuclear TDP-43 and the neuronal Brm/Brg-associated factor chromatin remodeling complex component Brg1, mitochondrial transport, FUS aggregation). Overall, histone deacetylase inhibition alone was effective on more measures than arimoclomol. As in the FUS model, arimoclomol failed to induce HSPA1A or preserve Hspa8 mRNA in the TDP-43 model, despite preserving nuclear TDP-43 and Brg1, indicating neuroprotective properties other than HSP induction. The data speak to the complexity of drug mechanisms against multiple biomarkers of ALS pathogenesis, as well as to the importance of HSPA8 for neuronal proteostasis in both somata and dendrites.
Collapse
Affiliation(s)
- Mario Fernández Comaduran
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sandra Minotti
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nancy Larochelle
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Richard Robitaille
- Département de Neurosciences and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Montreal, Quebec, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Josephine N Nalbantoglu
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heather D Durham
- Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Demyanenko SV, Kalyuzhnaya YN, Bachurin SS, Khaitin AM, Kunitsyna AE, Batalshchikova SA, Evgen'ev MB, Garbuz DG. Exogenous Hsp70 exerts neuroprotective effects in peripheral nerve rupture model. Exp Neurol 2024; 373:114670. [PMID: 38158007 DOI: 10.1016/j.expneurol.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Hsp70 is the main molecular chaperone responsible for cellular proteostasis under normal conditions and for restoring the conformation or utilization of proteins damaged by stress. Increased expression of endogenous Hsp70 or administration of exogenous Hsp70 is known to exert neuroprotective effects in models of many neurodegenerative diseases. In this study, we have investigated the effect of exogenous Hsp70 on recovery from peripheral nerve injury in a model of sciatic nerve transection in rats. It was shown that recombinant Hsp70 after being added to the conduit connecting the ends of the nerve at the site of its extended severance, migrates along the nerve into the spinal ganglion and is retained there at least three days. In animals with the addition of recombinant Hsp70 to the conduit, a decrease in apoptosis in the spinal ganglion cells after nerve rupture, an increase in the level of PTEN-induced kinase 1 (PINK1), an increase in markers of nerve tissue regeneration and a decrease in functional deficit were observed compared to control animals. The obtained data indicate the possibility of using recombinant Hsp70 preparations to accelerate the recovery of patients after neurotrauma.
Collapse
Affiliation(s)
- Svetlana V Demyanenko
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; Department of General and Clinical Biochemistry no. 2, Rostov State Medical University, Rostov-on-Don, Russia
| | - Yuliya N Kalyuzhnaya
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Stanislav S Bachurin
- Department of General and Clinical Biochemistry no. 2, Rostov State Medical University, Rostov-on-Don, Russia
| | - Andrey M Khaitin
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Anastasia E Kunitsyna
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Svetlana A Batalshchikova
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Kang Z, Lin Y, Su C, Li S, Xie W, Wu X. Hsp70 ameliorates sleep deprivation-induced anxiety-like behavior and cognitive impairment in mice. Brain Res Bull 2023; 204:110791. [PMID: 37858682 DOI: 10.1016/j.brainresbull.2023.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Many neurobehavioral processes, including psychomotor, cognitive, and affection are negatively impacted by sleep deprivation (SD), which may be harmful to a person's physical and mental health. Heat shock proteins (Hsps) have been demonstrated to play a protective role in a number of neurodegenerative diseases and are essential for maintaining intracellular protein homeostasis, but their roles in SD remain elusive. METHODS A mouse SD model was constructed using a modified multi-platform water environment method. The cognitive function was tested by novel object recognition test and Y-maze test, and anxiety-like behaviors were assessed by open field test (OFT). Protein expression was determined by Western blotting assay and ELISA assay. RESULTS We found that SD could profoundly enhance anxiety levels and impair cognitive function in mice. SD also reduced the expression levels of p-cAMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) and increased microglial activation and neuroinflammatory response in the hippocampus of mice. The intranasal injection of human recombinant Hsp70 protein could alleviate SD-induced anxiety and cognitive impairment, as well as restore pCREB and BDNF levels and reduce microglia-induced neuroinflammation in the hippocampus of SD mice. CONCLUSIONS Hsp70 treatment might serve as a potential treatment for mitigating SD-related unfavorable symptoms.
Collapse
Affiliation(s)
- Zhenming Kang
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian, China; Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China.
| | - Yiqin Lin
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Changsheng Su
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Shunyuan Li
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Wenqin Xie
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China.
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian, China.
| |
Collapse
|
9
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Cruz-González S, Quesada-Díaz E, Miranda-Negrón Y, García-Rosario R, Ortiz-Zuazaga H, García-Arrarás JE. The Stress Response of the Holothurian Central Nervous System: A Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232113393. [PMID: 36362181 PMCID: PMC9657328 DOI: 10.3390/ijms232113393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Injury to the central nervous system (CNS) results in permanent damage and lack of function in most vertebrate animals, due to their limited regenerative capacities. In contrast, echinoderms can fully regenerate their radial nerve cord (RNC) following transection, with little to no scarring. Investigators have associated the regenerative capacity of some organisms to the stress response and inflammation produced by the injury. Here, we explore the gene activation profile of the stressed holothurian CNS. To do this, we performed RNA sequencing on isolated RNC explants submitted to the stress of transection and enzyme dissection and compared them with explants kept in culture for 3 days following dissection. We describe stress-associated genes, including members of heat-shock families, ubiquitin-related pathways, transposons, and apoptosis that were differentially expressed. Surprisingly, the stress response does not induce apoptosis in this system. Other genes associated with stress in other animal models, such as hero proteins and those associated with the integrated stress response, were not found to be differentially expressed either. Our results provide a new viewpoint on the stress response in the nervous system of an organism with amazing regenerative capacities. This is the first step in deciphering the molecular processes that allow echinoderms to undergo fully functional CNS regeneration, and also provides a comparative view of the stress response in other organisms.
Collapse
Affiliation(s)
- Sebastián Cruz-González
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Eduardo Quesada-Díaz
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Yamil Miranda-Negrón
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Raúl García-Rosario
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
- Correspondence:
| |
Collapse
|
11
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Belity T, Horowitz M, Hoffman JR, Epstein Y, Bruchim Y, Todder D, Cohen H. Heat-Stress Preconditioning Attenuates Behavioral Responses to Psychological Stress: The Role of HSP-70 in Modulating Stress Responses. Int J Mol Sci 2022; 23:ijms23084129. [PMID: 35456946 PMCID: PMC9031159 DOI: 10.3390/ijms23084129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to high ambient temperature is a stressor that influences both biological and behavioral functions and has been previously shown to have an extensive impact on brain structure and function. Physiological, cellular and behavioral responses to heat-stress (HS) (40-41 °C, 2 h) were evaluated in adult male Sprague-Dawley rats. The effect of HS exposure before predator-scent stress (PSS) exposure (i.e., HS preconditioning) was examined. Finally, a possible mechanism of HS-preconditioning to PSS was investigated. Immunohistochemical analyses of chosen cellular markers were performed in the hippocampus and in the hypothalamic paraventricular nucleus (PVN). Plasma corticosterone levels were evaluated, and the behavioral assessment included the elevated plus-maze (EPM) and the acoustic startle response (ASR) paradigms. Endogenous levels of heat shock protein (HSP)-70 were manipulated using an amino acid (L-glutamine) and a pharmacological agent (Doxazosin). A single exposure to an acute HS resulted in decreased body mass (BM), increased body temperature and increased corticosterone levels. Additionally, extensive cellular, but not behavioral changes were noted. HS-preconditioning provided behavioral resiliency to anxiety-like behavior associated with PSS, possibly through the induction of HSP-70. Targeting of HSP-70 is an attractive strategy for stress-related psychopathology treatment.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel 40700, Israel;
| | - Yoram Epstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv and the Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan 52621, Israel;
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
- Intensive Care, Veterinary Emergency and Specialist Center, Youth Village Ben Shemen, Ben-Shemen 7311200, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
- Correspondence: ; Tel.: +972-8-6401743
| |
Collapse
|
13
|
Gao X, Zeb S, He YY, Guo Y, Zhu YM, Zhou XY, Zhang HL. Valproic Acid Inhibits Glial Scar Formation after Ischemic Stroke. Pharmacology 2022; 107:263-280. [PMID: 35316816 DOI: 10.1159/000514951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cerebral ischemia induces reactive proliferation of astrocytes (astrogliosis) and glial scar formation. As a physical and biochemical barrier, the glial scar not only hinders spontaneous axonal regeneration and neuronal repair but also deteriorates the neuroinflammation in the recovery phase of ischemic stroke. OBJECTIVES Previous studies have shown the neuroprotective effects of the valproic acid (2-n-propylpentanoic acid, VPA) against ischemic stroke, but its effects on the ischemia-induced formation of astrogliosis and glial scar are still unknown. As targeting astrogliosis has become a therapeutic strategy for ischemic stroke, this study was designed to determine whether VPA can inhibit the ischemic stroke-induced glial scar formation and to explore its molecular mechanisms. METHODS Glial scar formation was induced by an ischemia-reperfusion (I/R) model in vivo and an oxygen and glucose deprivation (OGD)-reoxygenation (OGD/Re) model in vitro. Animals were treated with an intraperitoneal injection of VPA (250 mg/kg/day) for 28 days, and the ischemic stroke-related behaviors were assessed. RESULTS Four weeks of VPA treatment could markedly reduce the brain atrophy volume and improve the behavioral deficits in rats' I/R injury model. The results showed that VPA administrated upon reperfusion or 1 day post-reperfusion could also decrease the expression of the glial scar makers such as glial fibrillary acidic protein, neurocan, and phosphacan in the peri-infarct region after I/R. Consistent with the in vivo data, VPA treatment showed a protective effect against OGD/Re-induced astrocytic cell death in the in vitro model and also decreased the expression of GFAP, neurocan, and phosphacan. Further studies revealed that VPA significantly upregulated the expression of acetylated histone 3, acetylated histone 4, and heat-shock protein 70.1B in the OGD/Re-induced glial scar formation model. CONCLUSION VPA produces neuroprotective effects and inhibits the glial scar formation during the recovery period of ischemic stroke via inhibition of histone deacetylase and induction of Hsp70.1B.
Collapse
Affiliation(s)
- Xue Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Salman Zeb
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Yuan-Yuan He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Xian-Yong Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Network Theoretical Approach to Explore Factors Affecting Signal Propagation and Stability in Dementia’s Protein-Protein Interaction Network. Biomolecules 2022; 12:biom12030451. [PMID: 35327643 PMCID: PMC8946103 DOI: 10.3390/biom12030451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia—a syndrome affecting human cognition—is a major public health concern given to its rising prevalence worldwide. Though multiple research studies have analyzed disorders such as Alzheimer’s disease and Frontotemporal dementia using a systems biology approach, a similar approach to dementia syndrome as a whole is required. In this study, we try to find the high-impact core regulating processes and factors involved in dementia’s protein–protein interaction network. We also explore various aspects related to its stability and signal propagation. Using gene interaction databases such as STRING and GeneMANIA, a principal dementia network (PDN) consisting of 881 genes and 59,085 interactions was achieved. It was assortative in nature with hierarchical, scale-free topology enriched in various gene ontology (GO) categories and KEGG pathways, such as negative and positive regulation of apoptotic processes, macroautophagy, aging, response to drug, protein binding, etc. Using a clustering algorithm (Louvain method of modularity maximization) iteratively, we found a number of communities at different levels of hierarchy in PDN consisting of 95 “motif-localized hubs”, out of which, 7 were present at deepest level and hence were key regulators (KRs) of PDN (HSP90AA1, HSP90AB1, EGFR, FYN, JUN, CELF2 and CTNNA3). In order to explore aspects of network’s resilience, a knockout (of motif-localized hubs) experiment was carried out. It changed the network’s topology from a hierarchal scale-free topology to scale-free, where independent clusters exhibited greater control. Additionally, network experiments on interaction of druggable genome and motif-localized hubs were carried out where UBC, EGFR, APP, CTNNB1, NTRK1, FN1, HSP90AA1, MDM2, VCP, CTNNA1 and GRB2 were identified as hubs in the resultant network (RN). We finally concluded that stability and resilience of PDN highly relies on motif-localized hubs (especially those present at deeper levels), making them important therapeutic intervention candidates. HSP90AA1, involved in heat shock response (and its master regulator, i.e., HSF1), and EGFR are most important genes in pathology of dementia apart from KRs, given their presence as KRs as well as hubs in RN.
Collapse
|
15
|
Kowalczyk M, Owczarek A, Suchanek-Raif R, Kucia K, Kowalski J. An association study of the HSPA8 gene polymorphisms with schizophrenia in a Polish population. Cell Stress Chaperones 2022; 27:71-82. [PMID: 34932194 PMCID: PMC8821755 DOI: 10.1007/s12192-021-01249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 10/27/2022] Open
Abstract
Heat shock cognate 70 (HSC70/HSPA8) is considered to be a promising candidate gene for schizophrenia (SCZ) due to its many essential functions and potential neuroprotective properties in the CNS (e.g., HSC70 is involved in the turnover of the synaptic proteins, synaptic vesicle recycling, and neurotransmitter homeostasis). An alteration in the expression of HSPA8 in SCZ has been reported. This implies that the genetic variants of HSPA8 might contribute to schizophrenia pathogenesis. The present study attempted to determine whether HSPA8 polymorphisms are associated with a susceptibility to schizophrenia or whether they have an impact on the clinical parameters of the disease in a Polish population. A total of 1066 participants (406 patients and 660 controls) were recruited for the study. Five SNPs of the HSPA8 gene (rs2236659, rs1136141, rs10892958, rs1461496, and rs4936770) were genotyped using TaqMan assays. There were no differences in the allele or genotype distribution in any of the SNPs in the entire sample. We also did not find any HSPA8 haplotype-specific associations with SCZ. A gender stratification analysis revealed that an increasing risk of schizophrenia was associated with the rs1461496 genotype in females (OR: 1.68, p < 0.05) in the recessive model. In addition, we found novel associations between HSPA8 SNPs (rs1136141, rs1461496, and rs10892958) and the severity of the psychiatric symptoms as measured by the PANSS. Further studies with larger samples from various ethnic groups are necessary to confirm our findings. Furthermore, studies that explore the functional contribution of the HSPA8 variants to schizophrenia pathogenesis are also needed.
Collapse
Affiliation(s)
- Malgorzata Kowalczyk
- Department of Medical Genetics, School of Pharmaceutical Sciences, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Aleksander Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 15, 40-752, Katowice, Poland
| | - Renata Suchanek-Raif
- Department of Medical Genetics, School of Pharmaceutical Sciences, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Krzysztof Kucia
- Department of Psychiatry and Psychotherapy, School of Medical Sciences, Medical University of Silesia, Katowice, Ziolowa 45, 40-635, Katowice, Poland
| | - Jan Kowalski
- Department of Medical Genetics, School of Pharmaceutical Sciences, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| |
Collapse
|
16
|
Calderwood SK, Borges TJ, Eguchi T, Lang BJ, Murshid A, Okusha Y, Prince TL. Extracellular Hsp90 and protection of neuronal cells through Nrf2. Biochem Soc Trans 2021; 49:2299-2306. [PMID: 34415306 DOI: 10.1042/bst20210370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023]
Abstract
Heat shock protein 90 (Hsp90), although one of the most essential intracellular chaperones, can also play key roles in the extracellular milieu. Here, we review the properties of extracellular Hsp90 in cellular homeostasis in the heat shock response (HSR), focusing on cells of the central nervous system. Hsp90 can be secreted by microglia as well as other cell types by non-canonical pathways of secretion. The chaperone may then influence the behavior of distant cells and can for instance protect neuronal cells from the oxidative burst accompanying phagocytosis by microglia of beta-amyloid fibrils. A mechanism involving activation of the transcription factor Nrf2, and induction of the antioxidant response is reported. We review the potential role of extracellular Hsp90, Nrf2 and transcellular chaperone signaling in the non-cell-intrinsic HSR.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Thiago J Borges
- Center for Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, U.S.A
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
- Acrivon Therapeutics, 480 Arsenal Way, Watertown, MA 02472, U.S.A
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
- Ranok Therapeutics, Waltham, MA 02451, U.S.A
| |
Collapse
|
17
|
Santos AM, Wong A, Ferreira LM, Soares FL, Fatibello-Filho O, Moraes FC, Vicentini FC. Multivariate optimization of a novel electrode film architecture containing gold nanoparticle-decorated activated charcoal for voltammetric determination of levodopa levels in pre-therapeutic phase of Parkinson`s disease. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Sahib S, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Castellani RJ, Nozari A, Patnaik R, Menon PK, Wiklund L, Sharma HS. Nanodelivery of traditional Chinese Gingko Biloba extract EGb-761 and bilobalide BN-52021 induces superior neuroprotective effects on pathophysiology of heat stroke. PROGRESS IN BRAIN RESEARCH 2021; 265:249-315. [PMID: 34560923 DOI: 10.1016/bs.pbr.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Schiavone S, Morgese MG, Tucci P, Trabace L. The Therapeutic Potential of Celastrol in Central Nervous System Disorders: Highlights from In Vitro and In Vivo Approaches. Molecules 2021; 26:molecules26154700. [PMID: 34361850 PMCID: PMC8347599 DOI: 10.3390/molecules26154700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.
Collapse
|
20
|
Zhou G, Wang T, Zha XM. RNA-Seq analysis of knocking out the neuroprotective proton-sensitive GPR68 on basal and acute ischemia-induced transcriptome changes and signaling in mouse brain. FASEB J 2021; 35:e21461. [PMID: 33724568 PMCID: PMC7970445 DOI: 10.1096/fj.202002511r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Tao Wang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
21
|
Kimura H, Kanahara N, Iyo M. Rationale and neurobiological effects of treatment with antipsychotics in patients with chronic schizophrenia considering dopamine supersensitivity. Behav Brain Res 2021; 403:113126. [PMID: 33460681 DOI: 10.1016/j.bbr.2021.113126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The long-term treatment of patients with schizophrenia often involves the management of relapses for most patients and the development of treatment resistance in some patients. To stabilize the clinical course and allow as many patients as possible to recover, clinicians need to recognize dopamine supersensitivity, which can be provoked by administration of high dosages of antipsychotics, and deal with it properly. However, no treatment guidelines have addressed this issue. The present review summarized the characteristics of long-acting injectable antipsychotics, dopamine partial agonists, and clozapine in relation to dopamine supersensitivity from the viewpoints of receptor profiles and pharmacokinetics. The potential merits and limitations of these medicines are discussed, as well as the risks of treating patients with established dopamine supersensitivity with these classes of drugs. Finally, the review discussed the biological influence of antipsychotic treatment on the human brain based on findings regarding the relationship between the hippocampus and antipsychotics.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Chiba, Japan; Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan.
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
22
|
Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV. An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 2020; 10:E1279. [PMID: 32899709 PMCID: PMC7563917 DOI: 10.3390/biom10091279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke serves as a life-threatening disease and continues to face many challenges in the development of safe and effective therapeutic options. The use of hyperbaric oxygen therapy (HBOT) demonstrates pre-clinical effectiveness for the treatment of acute ischemic stroke and reports reductions in oxidative stress, inflammation, and neural apoptosis. These pathophysiological benefits contribute to improved functional recovery. Current pre-clinical and clinical studies are testing the applications of HBOT for stroke neuroprotection, including its use as a preconditioning regimen. Mild oxidative stress may be able to prime the brain to tolerate full extensive oxidative stress that occurs during a stroke, and HBOT preconditioning has displayed efficacy in establishing such ischemic tolerance. In this review, evidence on the use of HBOT following an ischemic stroke is examined, and the potential for HBOT preconditioning as a neuroprotective strategy. Additionally, HBOT as a stem cell preconditioning is also discussed as a promising strategy, thus maximizing the use of HBOT for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.C.); (N.S.); (B.G.-P.); (M.S.); (J.C.); (Y.J.P.)
| |
Collapse
|
23
|
Kim JY, Barua S, Huang MY, Park J, Yenari MA, Lee JE. Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury. Cells 2020; 9:2020. [PMID: 32887360 PMCID: PMC7563654 DOI: 10.3390/cells9092020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury. Through the use of mutant animal models, gene transfer, or heat stress, a number of studies have now reported positive outcomes of HSP70 induction. However, these approaches are not practical for clinical translation. Thus, pharmaceutical compounds that can induce HSP70, mostly by inhibiting HSP90, have been investigated as potential therapies to mitigate neurological disease and lead to neuroprotection. This review summarizes the neuroprotective mechanisms of HSP70 and discusses potential ways in which this endogenous therapeutic molecule could be practically induced by pharmacological means to ultimately improve neurological outcomes in acute neurological disease.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Mei Ying Huang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
24
|
Dhande IS, Kneedler SC, Zhu Y, Joshi AS, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Natural genetic variation in Stim1 creates stroke in the spontaneously hypertensive rat. Genes Immun 2020; 21:182-192. [PMID: 32300198 PMCID: PMC7274944 DOI: 10.1038/s41435-020-0097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Abstract
Similar to humans, the risk of cerebrovascular disease in stroke-prone spontaneously hypertensive rats (SHR-A3/SHRSP) arises from naturally occurring genetic variation. In the present study, we show the involvement of genetic variation affecting the store-operated calcium signaling gene, Stim1, in the pathogenesis of stroke in SHR. Stim1 is a key lymphocyte activation signaling molecule and contains functional variation in SHR-A3 that diverges from stroke-resistant SHR-B2. We created a SHR-A3 congenic line in which Stim1 was substituted with the corresponding genomic segment from SHR-B2. Compared with SHR-A3 rats, Stim1 congenic SHR-A3 (SHR-A3(Stim1-B2)) have reduced cerebrovascular disease in response to salt loading including lower neurological deficit scores and cerebral edema. Microbleeds and major hemorrhages occurred in over half of SHR-A3 rats. These lesions were absent in SHR-A3(Stim1-B2) rats. Loss of Stim1 function in mice and humans is associated with antibody-mediated autoimmunity due to defects in T lymphocyte helper function to B cells. We investigated autoantibody formation using a high-density protein array to detect the presence of IgG and IgM autoantibodies in SHR-A3. Autoantibodies to key cerebrovascular stress proteins were detected that were reduced in the congenic line.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sterling C Kneedler
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaming Zhu
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Aniket S Joshi
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Scott E Wenderfer
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Michael C Braun
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Peter A Doris
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Biomarker Exploration in Human Peripheral Blood Mononuclear Cells for Monitoring Sulforaphane Treatment Responses in Autism Spectrum Disorder. Sci Rep 2020; 10:5822. [PMID: 32242086 PMCID: PMC7118069 DOI: 10.1038/s41598-020-62714-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is one of the most common neurodevelopmental disorders with no drugs treating the core symptoms and no validated biomarkers for clinical use. The multi-functional phytochemical sulforaphane affects many of the biochemical abnormalities associated with ASD. We investigated potential molecular markers from three ASD-associated physiological pathways that can be affected by sulforaphane: redox metabolism/oxidative stress; heat shock response; and immune dysregulation/inflammation, in peripheral blood mononuclear cells (PBMCs) from healthy donors and patients with ASD. We first analyzed the mRNA levels of selected molecular markers in response to sulforaphane ex vivo treatment in PBMCs from healthy donors by real-time quantitative PCR. All of the tested markers showed quantifiability, accuracy and reproducibility. We then compared the expression levels of those markers in PBMCs taken from ASD patients in response to orally-delivered sulforaphane. The mRNA levels of cytoprotective enzymes (NQO1, HO-1, AKR1C1), and heat shock proteins (HSP27 and HSP70), increased. Conversely, mRNA levels of pro-inflammatory markers (IL-6, IL-1β, COX-2 and TNF-α) decreased. Individually none is sufficiently specific or sensitive, but when grouped by function as two panels, these biomarkers show promise for monitoring pharmacodynamic responses to sulforaphane in both healthy and autistic humans, and providing guidance for biomedical interventions.
Collapse
|
26
|
Glaubitz S, Zeng R, Schmidt J. New insights into the treatment of myositis. Ther Adv Musculoskelet Dis 2020; 12:1759720X19886494. [PMID: 31949477 PMCID: PMC6950531 DOI: 10.1177/1759720x19886494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
The myositis syndromes include polymyositis, dermatomyositis (DM), necrotizing myopathy, inclusion body myositis (IBM), antisynthetase syndrome and overlap syndromes with myositis. These syndromes mostly occur in middle-aged patients, while juvenile DM occurs in children and adolescents. Patients mostly show a subacute weakness and myalgia in the upper and lower limbs, the diagnosis is based upon these clinical findings in combination with muscle biopsy results and specific serum autoantibodies. In recent years, research achieved a better understanding about the molecular mechanism underlying the myositis syndromes, as well as disease progress and extramuscular organ manifestations, such as interstitial lung disease and association with neoplasias. Treatment mainly consists of glucocorticosteroids and immunosuppressants. IBM is usually refractory to treatments. This review provides an overview of the current standards of treatment and new treatment options like monoclonal antibodies and new molecular therapies and their first results from clinical trials.
Collapse
Affiliation(s)
- Stefanie Glaubitz
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - Rachel Zeng
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Robert-Koch-Sr. 40, 37075 Göttingen, Germany
| |
Collapse
|
27
|
Heat shock protein signaling in brain ischemia and injury. Neurosci Lett 2019; 715:134642. [PMID: 31759081 DOI: 10.1016/j.neulet.2019.134642] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
Abstract
Heat shock proteins (HSPs) are chaperones that catalyze the refolding of denatured proteins. In addition to their ability to prevent protein denaturation and aggregation, the HSPs have also been shown to modulate many signaling pathways. Among HSPs, the inducible 70 kDa HSP (HSP70) has especially been shown to improve neurological outcome in experimental models of brain ischemia and injury. HSP70 can modulate various aspects of the programmed cell death pathways and inflammation. This review will focus on potential mechanisms of the neuroprotective effects of HSP70 in stroke and brain trauma models. We also comment on potential ways in which HSP70 could be translated into clinical therapies.
Collapse
|
28
|
Effect of thermal preconditioning on Hsp70 expression in the medulla oblongata and on hemodynamics during passive hyperthermia. Brain Res 2019; 1723:146404. [PMID: 31454515 DOI: 10.1016/j.brainres.2019.146404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
A short-term episode of elevated core body temperature that induces Hsp70 expression (thermal preconditioning) may protect against heatstroke during subsequent hyperthermia. The protective effects of thermal preconditioning may involve several cellular and immunological mechanisms and improvements in baroreflex sensitivity. To substantiate the hypothesis that the protective effect of thermal preconditioning also occurs in conditions with intact thermoregulation, we examined the evolution of spontaneous cardiovagal baroreflex sensitivity and the protective effect of Hsp70 expression after thermal preconditioning in nonanesthetized Wistar-Kyoto rats with implanted telemetric transmitters. In the baroreflex centers of the medulla oblongata, thermal preconditioning induced Hsp70 in perineuronal and perivascular oligodendrocytes, microglia, and endothelial cells but not in neurons. The maximal Hsp70 expression was detected 4 h after preconditioning, but a significant number of Hsp70-positive cells was still present 72 h after preconditioning. Increased c-Fos expression in the neurons of baroreflex centers was detectable only 4 h after preconditioning. The mean values of cardiovagal baroreflex sensitivity did not show significant differences during the 72-hour follow-up period after thermal preconditioning. Similarly, cardiovascular variability measures of the autonomic nervous system activity were also not significantly affected by thermal preconditioning. During passive hyperthermia, thermal preconditioning had no statistically significant effect on thermoregulation and the onset of arterial pressure decline. Our data suggest that thermal preconditioning induces a glial type of Hsp70 expression in the baroreflex centers of the medulla oblongata. However, this response was not associated with cardiovagal baroreflex sensitization and protection against hemodynamic instability during passive hyperthermia.
Collapse
|
29
|
Schiavone S, Tucci P, Trabace L, Morgese MG. Early Celastrol Administration Prevents Ketamine-Induced Psychotic-Like Behavioral Dysfunctions, Oxidative Stress and IL-10 Reduction in The Cerebellum of Adult Mice. Molecules 2019; 24:molecules24213993. [PMID: 31694174 PMCID: PMC6864687 DOI: 10.3390/molecules24213993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Administration of subanesthetic doses of ketamine during brain maturation represents a tool to mimic an early insult to the central nervous system (CNS). The cerebellum is a key player in psychosis pathogenesis, to which oxidative stress also contributes. Here, we investigated the impact of early celastrol administration on behavioral dysfunctions in adult mice that had received ketamine (30 mg/kg i.p.) at postnatal days (PNDs) 7, 9, and 11. Cerebellar levels of 8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase (NOX) 1 and NOX2, as well as of the calcium-binding protein parvalbumin (PV), were also assessed. Furthermore, celastrol effects on ketamine-induced alterations of proinflammatory (TNF-α, IL-6 and IL-1β) and anti-inflammatory (IL-10) cytokines in this brain region were evaluated. Early celastrol administration prevented ketamine-induced discrimination index decrease at adulthood. The same was found for locomotor activity elevations and increased close following and allogrooming, whereas no beneficial effects on sniffing impairment were detected. Ketamine increased 8-OHdG in the cerebellum of adult mice, which was also prevented by early celastrol injection. Cerebellar NOX1 levels were enhanced at adulthood following postnatal ketamine exposure. Celastrol per se induced NOX1 decrease in the cerebellum. This effect was more significant in animals that were early administered with ketamine. NOX2 levels did not change. Ketamine administration did not affect PV amount in the cerebellum. TNF-α levels were enhanced in ketamine-treated animals; however, this was not prevented by early celastrol administration. While no changes were observed for IL-6 and IL-1β levels, ketamine determined a reduction of cerebellar IL-10 expression, which was prevented by early celastrol treatment. Our results suggest that NOX inhibition during brain maturation prevents the development of psychotic-like behavioral dysfunctions, as well as the increased cerebellar oxidative stress and the reduction of IL-10 in the same brain region following ketamine exposure in postnatal life. This opens novel neuroprotective opportunities against early detrimental insults occurring during brain development.
Collapse
|
30
|
Kowalczyk M, Kucia K, Owczarek A, Suchanek-Raif R, Merk W, Fila-Danilow A, Paul-Samojedny M, Choreza P, Kowalski J. Association of HSPA1B Polymorphisms with Paranoid Schizophrenia in a Polish Population. Neuromolecular Med 2019; 22:159-169. [PMID: 31642026 PMCID: PMC7021735 DOI: 10.1007/s12017-019-08575-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/04/2019] [Indexed: 12/28/2022]
Abstract
This study aimed to find the potential association between HSPA1B polymorphisms and risk of paranoid schizophrenia, clinical variables of the disease, and suicidal behavior. A total of 901 unrelated Polish subjects of Caucasian origin (377 schizophrenia patients and 524 controls) were recruited. Four single-nucleotide polymorphisms (SNP) were genotyped using PCR–RFLP (rs539689, rs9281590) and TaqMan assays (rs263979, rs6547452). A strong tendency towards statistical significance (p = 0.051) was observed in rs539689 allele distribution between patients and controls in overall study subjects. After stratification according to gender, we found that rs539689 was significantly associated with schizophrenia in males, but not in females. The minor allele C had a protective effect in males [OR 0.73 (95% CI 0.61–0.88, p < 0.05)]. In addition, two SNPs (rs539689, rs9281590) were significantly associated with PANSS scores. Another important finding was a strong significant association between the HSPA1B rs539689 polymorphism and attempted suicide in schizophrenic patients. The C/C genotype and C allele were protective against suicidal behavior in entire sample (p < 0.001), in males (p < 001), and in females (p < 0.05), although associations were weaker than in males. Our findings support that HSPA1B gene may be involved in susceptibility to schizophrenia and clinical presentation of the disease in a sex-dependent manner, and may play a role in suicidal behavior in the Polish population of schizophrenic patients. Further independent analyses in different populations should be performed to clarify the role of HSPA1B in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malgorzata Kowalczyk
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Krzysztof Kucia
- Department of Psychiatry and Psychotherapy, School of Medicine, Medical University of Silesia, Katowice, Ziolowa 45, 40-635, Katowice, Poland
| | - Aleksander Owczarek
- Division of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Ostrogorska 30, 41-200, Sosnowiec, Poland
| | - Renata Suchanek-Raif
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Wojciech Merk
- Department of Psychiatry and Psychotherapy, School of Medicine, Medical University of Silesia, Katowice, Ziolowa 45, 40-635, Katowice, Poland
| | - Anna Fila-Danilow
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Piotr Choreza
- Division of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Ostrogorska 30, 41-200, Sosnowiec, Poland
| | - Jan Kowalski
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| |
Collapse
|
31
|
Pignataro L. Alcohol protects the CNS by activating HSF1 and inducing the heat shock proteins. Neurosci Lett 2019; 713:134507. [PMID: 31541723 DOI: 10.1016/j.neulet.2019.134507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Although alcohol abuse and dependence have profound negative health consequences, emerging evidence suggests that exposure to low/moderate concentrations of ethanol protects multiple organs and systems. In the CNS, moderate drinking decreases the risk of dementia and Alzheimer's disease. This neuroprotection correlates with an increased expression of the heat shock proteins (HSPs). Multiple epidemiological studies revealed an inverse association between ethanol intoxication and traumatic brain injury mortality. In this case, ethanol-induced HSPs limit the inflammatory immune response diminishing cell death and improving the neurobehavioural outcome. Ethanol also protects the brain against ischemic injuries via the HSPs. In our laboratory, we demonstrated that ethanol increased the expression of several HSP genes in neurons and astrocytes by activating the transcription factor, heat shock factor 1 (HSF1). HSF1 induces HSPs that target misfolded proteins for refolding or degradation, increasing the survival chances of the cells. These data indicate that ethanol neuroprotection is mediated by the activation HSF1 and the induction of HSPs.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Columbia University, Department of Anesthesiology, 622 West 168th St., PH 511, New York, NY, 10032, USA; College of Staten Island - City University of New York, 2800 Victory Blvd., Building 1A - 101, Staten Island, NY, 10314, USA.
| |
Collapse
|
32
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
33
|
Arispe N, De Maio A. Memory Loss and the Onset of Alzheimer's Disease Could Be Under the Control of Extracellular Heat Shock Proteins. J Alzheimers Dis 2019; 63:927-934. [PMID: 29689729 DOI: 10.3233/jad-180161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is a major contemporary and escalating malady in which amyloid-β (Aβ) peptides are the most likely causative agent. Aβ peptides spontaneously tend to aggregate in extracellular fluids following a progression from a monomeric state, through intermediate forms, ending in amyloid fibers and plaques. It is generally accepted now that the neurotoxic agents leading to cellular death, memory loss, and other AD characteristics are the Aβ intermediate aggregated states. However, Aβ peptides are continuously produced, released into the extracellular space, and rapidly cleared from healthy brains. Coincidentally, members of the heat shock proteins (hsp) family are present in the extracellular medium of healthy cells and body fluids, opening the possibility that hsps and Aβ could meet and interact in the extracellular milieu of the brain. In this perspective and reflection article, we place our investigation showing that the presence of Hsp70s mitigate the formation of low molecular weight Aβ peptide oligomers resulting in a reduction of cellular toxicity, in context of the current understanding of the disease. We propose that it may be an inverse relationship between the presence of Hsp70, the stage of Aβ oligomers, neurotoxicity, and the incidence of AD, particularly since the expression and circulating levels of hsp decrease with aging. Combining these observations, we propose that changes in the dynamics of Hsp70s and Aβ concentrations in the circulating brain fluids during aging defines the control of the formation of Aβ toxic aggregates, thus determining the conditions for neuron degeneration and the incidence of AD.
Collapse
Affiliation(s)
- Nelson Arispe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Antonio De Maio
- Department of Surgery and Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
34
|
Man H, Bi Y, Yu Y, Wang S, Zhao Z, Qiao X, Ju W. Associated factors of early neurological deterioration in isolated acute lacunar infarction in basal ganglia. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
35
|
Kim W, Kwon HJ, Jung HY, Yoo DY, Moon SM, Kim DW, Hwang IK. Tat-HSP70 protects neurons from oxidative damage in the NSC34 cells and ischemic damage in the ventral horn of rabbit spinal cord. Neurochem Int 2019; 129:104477. [PMID: 31145969 DOI: 10.1016/j.neuint.2019.104477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 05/26/2019] [Indexed: 02/06/2023]
Abstract
Heat shock protein 70 (HSP70) is an ATP-dependent molecular chaperone, and it has been shown that its levels increase after exposure to various types of stress, including ischemia. In the present study, we investigated the effects of HSP70 against H2O2-induced neuronal stress in NSC34 cells and against spinal cord ischemia in rabbits. Tat-HSP70 proteins facilitated the intracellular delivery of HSP70 into the NSC34 cells and enabled them to cross the blood-brain barrier in the rabbit spinal cord. Tat-HSP70 was effectively transduced into NSC34 cells in a concentration- and time-dependent manner, while control-HSP70 protein could not be delivered intracellularly at any concentration or time after treatment. Treatment with Tat-HSP70 reduced the generation of reactive oxygen species and cell death induced by H2O2, while the control-HSP70 did not show any significant effect on the NSC34 cells exposed to H2O2. In rabbit spinal cord, the administration of Tat-HSP70 showed significant amelioration of neurological defects and neuronal death in the ventral horn of spinal cord. In addition, Tat-HSP70 treatment significantly reduced lipid peroxidation and increased Cu, Zn-superoxide dismutase activities in the spinal cord, but glutathione peroxidase and Mn-superoxide dismutase activities remained unchanged. These results suggest that Tat-HSP70, not control-HSP70, decreases cell damage by reducing oxidative stress in NSC34 cells and rabbit spinal cord, and it can be employed for the reduction of neuronal damage caused after spinal cord ischemia.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, 31151, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
36
|
Lothian A, Lago L, Mukherjee S, Connor AR, Fowler C, McLean CA, Horne M, Masters CL, Cappai R, Roberts BR. Characterization of the metal status of natively purified alpha-synuclein from human blood, brain tissue, or recombinant sources using size exclusion ICP-MS reveals no significant binding of Cu, Fe or Zn. Metallomics 2019; 11:128-140. [DOI: 10.1039/c8mt00223a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of Cu, Fe or Zn to alpha-synuclein has been implicated in neurodegenerative disease, such as Parkinson's.
Collapse
Affiliation(s)
- Amber Lothian
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Larissa Lago
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Soumya Mukherjee
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Andrea R. Connor
- Department of Pathology
- The University of Melbourne
- Parkville
- Australia
| | - Chris Fowler
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Catriona A. McLean
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
- Department of Anatomical Pathology
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Roberto Cappai
- Department of Pathology
- The University of Melbourne
- Parkville
- Australia
- Department of Pharmacology and Therapeutics
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| |
Collapse
|
37
|
Kowalczyk M, Kucia K, Owczarek A, Suchanek-Raif R, Merk W, Paul-Samojedny M, Kowalski J. Association Studies of HSPA1A and HSPA1L Gene Polymorphisms With Schizophrenia. Arch Med Res 2018; 49:342-349. [PMID: 30342847 DOI: 10.1016/j.arcmed.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disorder with a strong genetic component. The HSP70 chaperones are particularly interesting in terms of schizophrenia, especially with regard to neurodevelopmental hypothesis, because they are critical regulators in normal neural physiological function as well as in cell stress responses. AIM OF THE STUDY The present study aimed to determine whether genetic variants in the HSPA1A (rs1008438, rs562047) and HSPA1L (rs2075800) genes are associated with the risk of paranoid schizophrenia and the clinical presentation of the disease. METHODS A total of 1080 unrelated Polish subjects of Caucasian origin (401 schizophrenia cases and 679 healthy controls) were recruited. Three single nucleotide polymorphisms (SNP) were genotyped using PCR-RFLP (rs562047) or TaqMan (rs1008438, rs2075800) assays. All analyses were conducted for the full sample and within subgroups stratified by gender. RESULTS There were no statistically significant differences in genotype or allele distributions of all polymorphisms tested between the schizophrenia and control groups. We also failed to find any schizophrenia predisposing haplotype in the whole group. A sex-stratified analysis revealed haplotypic association with paranoid schizophrenia in men, albeit the risk effect was contributed only by a rare haplotypes. More importantly, rs562047 variant was significantly associated with PANSS total and PANSS negative scores in schizophrenia. CONCLUSIONS Our results support previously reported associations between HSPA1A and HSPA1B SNPs and schizophrenia symptomatology. Further population-based prospective studies with larger sample sizes from different ethnic groups should be performed to clarify the role of different HSP70 genes in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malgorzata Kowalczyk
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland.
| | - Krzysztof Kucia
- Department of Psychiatry and Psychotherapy, School of Medicine, Medical University of Silesia, Katowice, Ziolowa 45, 40-635, Katowice, Poland
| | - Aleksander Owczarek
- Division of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Ostrogorska 30, 41-200 Sosnowiec, Poland
| | - Renata Suchanek-Raif
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| | - Wojciech Merk
- Department of Psychiatry and Psychotherapy, School of Medicine, Medical University of Silesia, Katowice, Ziolowa 45, 40-635, Katowice, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| | - Jan Kowalski
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
38
|
Naddaf E, Barohn RJ, Dimachkie MM. Inclusion Body Myositis: Update on Pathogenesis and Treatment. Neurotherapeutics 2018; 15:995-1005. [PMID: 30136253 PMCID: PMC6277289 DOI: 10.1007/s13311-018-0658-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inclusion body myositis is the most common acquired myopathy after the age of 50. It is characterized by progressive asymmetric weakness predominantly affecting the quadriceps and/or finger flexors. Loss of ambulation and dysphagia are major complications of the disease. Inclusion body myositis can be associated with cytosolic 5'-nucleotidase 1A antibodies. Muscle biopsy usually shows inflammatory cells surrounding and invading non-necrotic muscle fibers, rimmed vacuoles, congophilic inclusions, and protein aggregates. Disease pathogenesis remains poorly understood and consists of an interplay between inflammatory and degenerative pathways. Antigen-driven, clonally restricted, cytotoxic T cells represent a main feature of the inflammatory component, whereas abnormal protein homeostasis with protein misfolding, aggregation, and dysfunctional protein disposal is the hallmark of the degenerative component. Inclusion body myositis remains refractory to treatment. Better understanding of the disease pathogenesis led to the identification of novel therapeutic targets, addressing both the inflammatory and degenerative pathways.
Collapse
Affiliation(s)
- Elie Naddaf
- Neuromuscular Medicine Division, Department of Neurology, Mayo Clinic, Rochester, Minnesota, 55905, USA
| | - Richard J Barohn
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA
| | - Mazen M Dimachkie
- Neuromuscular Medicine Division, Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, 66103, USA.
| |
Collapse
|
39
|
Jin L, Yu JP, Yang ZJ, Merilä J, Liao WB. Modulation of Gene Expression in Liver of Hibernating Asiatic Toads ( Bufo gargarizans). Int J Mol Sci 2018; 19:E2363. [PMID: 30103470 PMCID: PMC6121651 DOI: 10.3390/ijms19082363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Hibernation is an effective energy conservation strategy that has been widely adopted by animals to cope with unpredictable environmental conditions. The liver, in particular, plays an important role in adaptive metabolic adjustment during hibernation. Mammalian studies have revealed that many genes involved in metabolism are differentially expressed during the hibernation period. However, the differentiation in global gene expression between active and torpid states in amphibians remains largely unknown. We analyzed gene expression in the liver of active and torpid Asiatic toads (Bufo gargarizans) using RNA-sequencing. In addition, we evaluated the differential expression of genes between females and males. A total of 1399 genes were identified as differentially expressed between active and torpid females. Of these, the expressions of 395 genes were significantly elevated in torpid females and involved genes responding to stresses, as well as contractile proteins. The expression of 1004 genes were significantly down-regulated in torpid females, most which were involved in metabolic depression and shifts in the energy utilization. Of the 715 differentially expressed genes between active and torpid males, 337 were up-regulated and 378 down-regulated. A total of 695 genes were differentially expressed between active females and males, of which 655 genes were significantly down-regulated in males. Similarly, 374 differentially expressed genes were identified between torpid females and males, with the expression of 252 genes (mostly contractile proteins) being significantly down-regulated in males. Our findings suggest that expression of many genes in the liver of B. gargarizans are down-regulated during hibernation. Furthermore, there are marked sex differences in the levels of gene expression, with females showing elevated levels of gene expression as compared to males, as well as more marked down-regulation of gene-expression in torpid males than females.
Collapse
Affiliation(s)
- Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China.
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, China.
| | - Jian Ping Yu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China.
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, China.
| | - Zai Jun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, 00100 Helsinki, Finland.
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China.
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
40
|
Oxidative stress evoked damages leading to attenuated memory and inhibition of NMDAR–CaMKII–ERK/CREB signalling on consumption of aspartame in rat model. J Food Drug Anal 2018; 26:903-916. [PMID: 29567262 PMCID: PMC9322224 DOI: 10.1016/j.jfda.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposes to investigate whether long term (90 days) aspartame (40 mg/kg b.wt) administration could induce oxidative stress and alter the memory in Wistar strain male albino rats. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included as a model to study the effects of aspartame. Wistar strain albino rats were administered with aspartame (40 mg/kg b.wt) orally and studied along with controls and MTX-treated controls. Aspartame interfered in the body weight and corticosterone levels in the rats. A marked increase in the mRNA and protein expression of neuronal nitric oxide synthase (nNOS) and induced nitric oxide synthase (iNOS) which resulted in the increased nitric oxide radical’s level indicating that aspartame is a stressor. These reactive nitrogen species could be responsible for the altered cell membrane integrity and even cause death of neurons by necrosis or apoptosis. The animals showed a marked decrease in learning, spatial working and spatial recognition memory deficit in the Morris water maze and Y-maze performance task which could have resulted due to reduced hippocampal acetylcholine esterase (AChE) activity. The animal brain homogenate also revealed the decrease in the phosphorylation of NMDAR1–CaMKII–ERK/CREB signalling pathway, which well documents the inhibition of phosphorylation leads to the excitotoxicity of the neurons and memory decline. This effect may be due to methanol which may also activate the NOS levels, microglia and astrocytes, inducing neurodegeneration in brain. Neuronal shrinkage of hippocampal layer due to degeneration of pyramidal cells revealed the abnormal neuronal morphology of pyramidal cell layers in the aspartame treated animals. These findings demonstrate that aspartame metabolites could be a contributing factor for the development of oxidative stress in the brain.
Collapse
|
41
|
Ondruschka B, Rosinsky F, Trauer H, Schneider E, Dreßler J, Franke H. Drug- and/or trauma-induced hyperthermia? Characterization of HSP70 and myoglobin expression. PLoS One 2018; 13:e0194442. [PMID: 29566034 PMCID: PMC5864017 DOI: 10.1371/journal.pone.0194442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Heat shock protein 70 (HSP70) expression could be discussed as an adaption that promotes repair and counteracts cell damage. Myoglobin is released upon muscle damage of several pathways. The purpose of the present study was to determine whether the expression of HSP70 in kidney, heart and brain and of myoglobin in the kidney were associated with the cause of death and the survival times after lethal intoxications with three of the drugs most widely used in our local area (Saxony, Germany) as well as after fatal traumatic brain injury (TBI). Methods We retrospectively collected kidney, heart and brain samples of 50 autopsy cases with toxicological proved lethal intoxication (main drugs methamphetamine, morphine, alcohol), 14 TBI cases and 15 fatalities with acute myocardial injury in age- and gender-matched compilations. Results Our main findings suggest that HSP70 is associated with hyperthermal and other stress factors of most cell populations. HSP70 expressions in kidney and heart muscle are useful for a differentiation between fatal intoxications and cases without toxicological influence (p < 0.05). There were significant differences in the cerebral expression patterns between methamphetamine- and morphine-associated deaths compared to alcohol fatalities (p < 0.05). An intensive staining of HSP70 in the pericontusional zone and the hippocampus after TBI (especially neuronal and vascular) was shown even after short survival times and may be useful as an additional marker in questions of vitality or wound age. A relevant myoglobin decoration of renal tubules was only shown for methamphetamine abuse in the study presented. Conclusion In sum, the immunohistochemical characteristics presented can be supportive for determining final death circumstances and minimal trauma survival times but are not isolated usefully for the detection of drug- or trauma-induced hyperthermia.
Collapse
Affiliation(s)
- Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Franziska Rosinsky
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heiner Trauer
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Rivera I, Capone R, Cauvi DM, Arispe N, De Maio A. Modulation of Alzheimer's amyloid β peptide oligomerization and toxicity by extracellular Hsp70. Cell Stress Chaperones 2018; 23:269-279. [PMID: 28956268 PMCID: PMC5823807 DOI: 10.1007/s12192-017-0839-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia caused by advanced neuronal dysfunction and death. The most significant symptoms of AD are observed at late stages of the disease when interventions are most likely too late to ameliorate the condition. Currently, the predominant theory for AD is the "amyloid hypothesis," which states that abnormally increased levels of amyloid β (Aβ) peptides result in the production of a variety of aggregates that are neurotoxic. The specific mechanisms for Aβ peptide-induced cytotoxicity have not yet been completely elucidated. However, since the majority of Aβ is released into the extracellular milieu, it is reasonable to assume that toxicity begins outside the cells and makes its way inside where it disrupts the basic cellular process resulting in cell death. There is increasing evidence that hsp, particularly Hsp70, are exported into the extracellular milieu by an active export mechanism independent of cell death. Therefore, both Aβ peptides and Hsp70 may coexist in a common environment during pathological conditions. We observed that Hsp70 affected the Aβ assembling process in vitro preventing oligomer formation. Moreover, the presence of Hsp70 reduced the Aβ peptide-induced toxicity of cultured neurons (N2A cells). These results suggest a potential mechanism for the reduction of the detrimental effects of Aβ peptides in AD.
Collapse
Affiliation(s)
- Isabel Rivera
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery and Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, 92093-0739, CA, USA
- Initiative for Maximizing Student Development (IMSD) Program, University of California San Diego, La Jolla, CA, USA
| | - Ricardo Capone
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery and Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, 92093-0739, CA, USA
| | - David M Cauvi
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery and Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, 92093-0739, CA, USA
| | - Nelson Arispe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery and Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, 92093-0739, CA, USA.
| |
Collapse
|
43
|
Global gene expression profile of cerebral ischemia-reperfusion injury in rat MCAO model. Oncotarget 2017; 8:74607-74622. [PMID: 29088811 PMCID: PMC5650366 DOI: 10.18632/oncotarget.20253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
It is well-established that reperfusion following cerebral ischemic injury gives rise to secondary injury accompanied by structural and functional damage. However, it remains unclear how global genes changes in cerebral ischemia-reperfusion injury (IRI). This study investigated global gene expression in the hippocampi of Wistar rats following transient cerebral IRI using an RNA-sequencing strategy. The results revealed ≥2-fold up-regulation of 156 genes and ≥2-fold down-regulation of 26 genes at 24 h post-reperfusion. Fifteen differentially expressed genes were selected to confirm the RNA-sequencing results. Gene expression levels were dynamic, with the peak expression level of each gene occurring at different time points post-reperfusion. Gene Ontology (GO) analysis classified the differentially expressed genes as mainly involved in inflammation, stress and immune response, glucose metabolism, proapoptosis, antiapoptosis, and biological processes. KEGG pathway analysis suggested that IRI activated different signaling pathways, including focal adhesion, regulation of actin cytoskeleton, cytokine-cytokine receptor interaction, MAPK signaling, and Jak-STAT signaling. This study describes global gene expression profiles in the hippocampi of Wistar rats using the middle cerebral artery occlusion (MCAO) model. These findings provide new insights into the molecular pathogenesis of IRI and potential drug targets for the prevention and treatment of IRI in the future.
Collapse
|
44
|
Neurons Export Extracellular Vesicles Enriched in Cysteine String Protein and Misfolded Protein Cargo. Sci Rep 2017; 7:956. [PMID: 28424476 PMCID: PMC5430488 DOI: 10.1038/s41598-017-01115-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse. In this study we report that exported vesicles from neurons contain CSPα. Extracellular vesicles (EV’s) have been implicated in a wide range of functions. However, the functional significance of neural EV’s remains to be established. Here we demonstrate that co-expression of CSPα with the disease-associated proteins, polyglutamine expanded protein 72Q huntingtinex°n1 or superoxide dismutase-1 (SOD-1G93A) leads to the cellular export of both 72Q huntingtinex°n1 and SOD-1G93A via EV’s. In contrast, the inactive CSPαHPD-AAA mutant does not facilitate elimination of misfolded proteins. Furthermore, CSPα-mediated export of 72Q huntingtinex°n1 is reduced by the polyphenol, resveratrol. Our results indicate that by assisting local lysosome/proteasome processes, CSPα-mediated removal of toxic proteins via EVs plays a central role in synaptic proteostasis and CSPα thus represents a potential therapeutic target for neurodegenerative diseases.
Collapse
|
45
|
Kalinnikova TB, Kolsanova RR, Belova EB, Shagidullin RR, Gainutdinov MK. Opposite effects of moderate heat stress and hyperthermia on cholinergic system of soil nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Therm Biol 2016; 62:37-49. [PMID: 27839548 DOI: 10.1016/j.jtherbio.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 10/20/2022]
Abstract
Cholinergic system plays important role in all functions of organisms of free-living soil nematodes C. elegans and C. briggsae. Using pharmacological analysis we showed the existence of two opposite responses of nematodes cholinergic system to moderate and extreme heat stress. Short-term (15min) noxious heat (31-32°C) caused activation of cholinergic synaptic transmission in C. elegans and C. briggsae organisms by sensitization of nicotinic ACh receptors. In contrast, hyperthermia blocked cholinergic synaptic transmission by inhibition of ACh secretion by neurons. The resistance of behavior to extreme high temperature (36-37°C) was significantly higher in C. briggsae than in C. elegans, and thermostability of cholinergic transmission correlated with resistance of behavior to hyperthermia. Activation of cholinergic transmission by moderate heat stress can be the reason of movement speed increase in such adaptive behavior as noxious heat escape. Inhibition of ACh release is one of reasons for behavior failure caused by extreme high temperature since partial inhibition of ACh-esterase by aldicarb protected C. elegans and C. briggsae behavior against hyperthermia. Antagonist of mAChRs atropine almost completely prevented the rise in behavior thermotolerance caused by aldicarb. Pilocarpine, agonist of mAChRs, protected nematodes behavior against hyperthermia similarly with aldicarb. Therefore it is evident that it is the deficiency of mAChRs activity that is the reason for nematodes' behavior failure by hyperthermia.
Collapse
Affiliation(s)
- Tatiana B Kalinnikova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia.
| | - Rufina R Kolsanova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Evgenia B Belova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Rifgat R Shagidullin
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Marat Kh Gainutdinov
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| |
Collapse
|
46
|
Yuyama K, Igarashi Y. Physiological and pathological roles of exosomes in the nervous system. Biomol Concepts 2016; 7:53-68. [PMID: 26812803 DOI: 10.1515/bmc-2015-0033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 01/23/2023] Open
Abstract
Exosomes represent a subtype of extracellular nanovesicles that are generated from the luminal budding of limiting endosomal membranes and subsequent exocytosis. They encapsulate or associate with obsolete molecules to eliminate or to transfer their cargos in intercellular communication. The exosomes are also released and transported between neurons and glia in the nervous system, having a broad impact on nerve development, activation and regeneration. Accumulating evidence suggests that the exosomes are attributed to the pathogenesis of several neurodegenerative diseases such as prion disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, as well as aging, in which the exosomes lack the capacity for cellular self-repair and spread their enclosed pathological agents among neurons. In this article, we review the current proposed functions of exosomes in physiological and pathological processes in the nervous system.
Collapse
|
47
|
Becirovic L, Brown IR. Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells. Neurochem Res 2016; 42:406-414. [PMID: 27743288 DOI: 10.1007/s11064-016-2084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. The intracellular localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B') was targeted to the periphery of nuclear speckles (perispeckles) that are sites of transcription factories. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 associated with perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting the involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but is not found in the genomes of the mouse and rat. Hence current animal models of neurodegenerative diseases lack a member of the HSPA family that exhibits the feature of stress-induced targeting to perispeckles.
Collapse
Affiliation(s)
- Larissa Becirovic
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
48
|
Nafar F, Williams JB, Mearow KM. Astrocytes release HspB1 in response to amyloid-β exposure in vitro. J Alzheimers Dis 2016; 49:251-63. [PMID: 26444769 DOI: 10.3233/jad-150317] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although heat shock proteins are thought to function primarily as intracellular chaperones, the release and potential extracellular functions of heat shock proteins have been the focus of an increasing number of studies. Our particular interest is HspB1 (Hsp25/27) and as astrocytes are an in vivo source of HspB1 it is a reasonable possibility they could release HspB1 in response to local stresses. Using primary cultures of rat cortical astrocytes, we investigated the extracellular release of HspB1 with exposure to amyloid-β (Aβ). In order to assess potential mechanisms of release, we cotreated the cells with compounds that can modulate protein secretion including Brefeldin A, Methyl β-cyclodextrin, and MAP kinase inhibitors. Exposure to Aβ (0.1, 1.0, 2.0 μM) for 24-48 h resulted in a selective release of HspB1 that was insensitive to BFA treatment; none of the other inhibitors had any detectable influence. Protease protection assays indicated that some of the released HspB1 was associated with a membrane bound fraction, and analysis of exosomal preparations indicated the presence of HspB1 in exosomes. Finally, immunoprecipitation experiments demonstrated that the extracellular HspB1 was able to interact with extracellular Aβ. In summary, Aβ can stimulate release of HspB1 from astrocytes, this release is insensitive to Golgi or lipid raft disruption, and HspB1 can be found either free in the medium or associated with exosomes. This release suggests that there is a potential for extracellular HspB1 to be able to bind and sequester extracellular Aβ.
Collapse
|
49
|
Tiernan CT, Ginsberg SD, Guillozet-Bongaarts AL, Ward SM, He B, Kanaan NM, Mufson EJ, Binder LI, Counts SE. Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease. Neurobiol Aging 2016; 42:80-90. [PMID: 27143424 PMCID: PMC4973891 DOI: 10.1016/j.neurobiolaging.2016.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 12/16/2022]
Abstract
Conformational phosphorylation and cleavage events drive the tau protein from a soluble, monomeric state to a relatively insoluble, polymeric state that precipitates the formation of neurofibrillary tangles (NFTs) in projection neurons in Alzheimer's disease (AD), including the magnocellular perikarya located in the nucleus basalis of Meynert (NBM) complex of the basal forebrain. Whether these structural changes in the tau protein are associated with pathogenic changes at the molecular and cellular level remains undetermined during the onset of AD. Here, we examined alterations in gene expression within individual NBM neurons immunostained for pS422, an early tau phosphorylation event, or dual labeled for pS422 and TauC3, a later stage tau neoepitope, from tissue obtained postmortem from subjects who died with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment, or mild/moderate AD. Specifically, pS422-positive pretangles displayed an upregulation of select gene transcripts subserving protein quality control. On the other hand, late-stage TauC3-positive NFTs exhibited upregulation of messenger RNAs involved in protein degradation but also cell survival. Taken together, these results suggest that molecular pathways regulating protein homeostasis are altered during the evolution of NFT pathology in the NBM. These changes likely contribute to the disruption of protein turnover and neuronal survival of these vulnerable NBM neurons during the progression of AD.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA; Department of Neuroscience & Physiology, NYU Langone Medical Center, New York, NY, USA
| | | | - Sarah M Ward
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Lester I Binder
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
50
|
Hu Q, Manaenko A, Matei N, Guo Z, Xu T, Tang J, Zhang JH. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Med Gas Res 2016; 6:20-32. [PMID: 27826420 PMCID: PMC5075679 DOI: 10.4103/2045-9912.179337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury.
Collapse
Affiliation(s)
- Qin Hu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ting Xu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|