1
|
Garza-Aguilar SM, Ramos-Parra PA, Urrea-López R, Berdeja-Zamudio WJ, Lozano-Guajardo J, Benavides-Lozano J, Ramírez-Yáñez M, Díaz de la Garza RI. Folate Biosynthesis is Boosted in Legume Nodules. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39587701 DOI: 10.1111/pce.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Symbiotic nitrogen fixation (SNF) profoundly alters plant and bacteroid metabolism; however, SNF impact on folates and one-carbon (1C) metabolism are unknown. To explore this, SNF was induced in Phaseolus Vulgaris with Rhizobium etli. Nodules accumulated the highest folate concentration yet reported in a plant tissue (60 nmol/g fresh weight). Folate upregulation was not exclusive of determinate nodules, moderate to high folate contents were also encounter in Medicago truncatula and sativa. Moreover, folates correlated partial and positively with N2-fixation. 1C metabolism-associated amino acids (Ser, Gly, Cys, Thr, and Met) accumulated more in nodules than roots. Subcellular profiling of nodule folates revealed that the cytosol fraction primarily contained 5-methyl-tetrahydrofolate, cofactor for Met synthesis. 10-formyl-tetrahydrofolate, required for purine synthesis, was most abundant in nodule plastids, while bacteroids contained low folate levels. Differential transcriptome analysis from nodule legume studies revealed that only a few biosynthetic folate genes expression was increased in nodules whereas several genes for 1C reactions were upregulated. For the first time folates were detected in the xylem sap, with higher concentrations during SNF. We postulate that folates are needed during SNF to sustain purines, thymidylate, and Met synthesis, during both N2-fixation and nodule growth; nodule metabolism is then a 1C-unit sink.
Collapse
Affiliation(s)
- Sara M Garza-Aguilar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Perla A Ramos-Parra
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Rafael Urrea-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, Mexico
| | | | | | - Jorge Benavides-Lozano
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Mario Ramírez-Yáñez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rocío I Díaz de la Garza
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
2
|
Kumar S, Agyeman-Duah E, Awaga-Cromwell MM, Ujor VC. Transcriptomic characterization of recombinant Clostridium beijerinckii NCIMB 8052 expressing methylglyoxal synthase and glyoxal reductase from Clostridium pasteurianum ATCC 6013. Appl Environ Microbiol 2024; 90:e0101224. [PMID: 39258917 PMCID: PMC11497831 DOI: 10.1128/aem.01012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Bioconversion of abundant lactose-replete whey permeate to value-added chemicals holds promise for valorization of this expanding food processing waste. Efficient conversion of whey permeate-borne lactose requires adroit microbial engineering to direct carbon to the desired chemical. An engineered strain of Clostridium beijerinckii NCIMB 8052 (C. beijerinckii_mgsA+mgR) that produces 87% more butanol on lactose than the control strain was assessed for global transcriptomic changes. The results revealed broadly contrasting gene expression patterns in C. beijerinckii_mgsA+mgR relative to the control strain. These were characterized by widespread decreases in the abundance of mRNAs of Fe-S proteins in C. beijerinckii_mgsA+mgR, coupled with increased differential expression of lactose uptake and catabolic genes, iron uptake genes, two-component signal transduction and motility genes, and genes involved in the biosynthesis of vitamins B5 and B12, aromatic amino acids (particularly tryptophan), arginine, and pyrimidines. Conversely, the mRNA patterns suggest that the L-aspartate-dependent de novo biosynthesis of NAD as well as biosynthesis of lysine and asparagine and metabolism of glycine and threonine were likely down-regulated. Furthermore, genes involved in cysteine and methionine biosynthesis and metabolism, including cysteine desulfurase-a central player in Fe-S cluster biosynthesis-equally showed reductions in mRNA abundance. Genes involved in biosynthesis of capsular polysaccharides and stress response also showed reduced mRNA abundance in C. beijerinckii_mgsA+mgR. The results suggest that remodeling of cellular and metabolic networks in C. beijerinckii_mgsA+mgR to counter anticipated effects of methylglyoxal production from heterologous expression of methylglyoxal synthase led to enhanced growth and butanol production in C. beijerinckii_mgsA+mgR. IMPORTANCE Biological production of commodity chemicals from abundant waste streams such as whey permeate represents an opportunity for decarbonizing chemical production. Whey permeate remains a vastly underutilized feedstock for bioproduction purposes. Thus, enhanced understanding of the cellular and metabolic repertoires of lactose-mediated production of chemicals such as butanol promises to identify new targets that can be fine tuned in recombinant and native microbial strains to engender stronger coupling of whey permeate-borne lactose to value-added chemicals. Our results highlight new genetic targets for future engineering of C. beijerinckii for improved butanol production on lactose and ultimately in whey permeate.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric Agyeman-Duah
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Victor C. Ujor
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
González-Orenga S, López-González D, Araniti F, González L, Sánchez-Moreiras AM. The influence of environment on invasive Carpobrotus sp. populations across genetic clusters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109066. [PMID: 39186850 DOI: 10.1016/j.plaphy.2024.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The study aims to explore the natural variation in the metabolome of different populations of the invasive plant Carpobrotus from different genetic clusters and geographical origins to enhance our comprehension of its involvement in the adaptation process and phenotypic diversity. The metabolomic profile of shoots was analysed in four populations from two different genetic clusters (Cluster A: Cádiz and A Lanzada; Cluster B: La Marina and Samil) and two different biogeographical regions in Spain (Atlantic: Samil and A Lanzada; Mediterranean: Cádiz and La Marina), collected in the field and subsequently grown in the greenhouse. In addition, climatic, and physiological parameters were analysed. The Mediterranean populations (Cádiz and La Marina) showed lower initial weight and length measurements in morphological parameters than the Atlantic populations. On the contrary, only root parameters showed significant differences in growth parameters among populations. The analysis of ion levels revealed a consistent pattern of higher concentrations in shoots compared to roots, with significant differences among populations, particularly in sodium (Na+) and chlorides (Cl-) levels. Regarding metabolomic analysis, clear correlations between the metabolome, genetic and climatic conditions of Carpobrotus sp.pl populations are described. Pairwise comparisons using t-tests and Principal Component Analysis (PCA) indicated that the differences in metabolomic profile between the Samil and La Marina populations, which correspond to the same genetic cluster (cluster B), were smaller than in the rest of the comparisons indicating that populations from the same genetic cluster were more similar metabolically than those from the same climatic region. The study identified key metabolites representative of each cluster, with significant differences in amino acids, organic acids, and sugars contributing to the variation among populations. Pathway analysis highlighted the impact of climatic conditions on metabolic pathways, particularly in populations from Cluster A. In conclusion, the different populations were more similar according to the genetic cluster than to the climatic region of origin when studied at the metabolomic level. Consequently, the metabolites more representative of each cluster were also identified.
Collapse
Affiliation(s)
- Sara González-Orenga
- Universitat Politècnica de València, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Camino de Vera s/n, 46022, Valencia, Spain; Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Universidade de Vigo, Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, 32004, Ourense, Spain.
| | - David López-González
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Universidade de Vigo, Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, 32004, Ourense, Spain
| | - Fabrizio Araniti
- Università Statale di Milano, Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Via Celoria 2, 20133, Milano, Italy
| | - Luis González
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela Maria Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Universidade de Vigo, Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, 32004, Ourense, Spain
| |
Collapse
|
4
|
Aoyama H, Arae T, Yamashita Y, Toyoda A, Naito S, Sotta N, Chiba Y. Impact of translational regulation on diel expression revealed by time-series ribosome profiling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1889-1906. [PMID: 38494830 DOI: 10.1111/tpj.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Plants have developed the ability to adjust to the day/night cycle through the expression of diel genes, which allow them to effectively respond to environmental changes and optimise their growth and development. Diel oscillations also have substantial implications in many physiological processes, including photosynthesis, floral development, and environmental stress responses. The expression of diel genes is regulated by a combination of the circadian clock and responses to environmental cues, such as light and temperature. A great deal of information is available on the transcriptional regulation of diel gene expression. However, the extent to which translational regulation is involved in controlling diel changes in expression is not yet clear. To investigate the impact of translational regulation on diel expression, we conducted Ribo-seq and RNA-seq analyses on a time-series sample of Arabidopsis shoots cultivated under a 12 h light/dark cycle. Our results showed that translational regulation is involved in about 71% of the genes exhibiting diel changes in mRNA abundance or translational activity, including clock genes, many of which are subject to both translational and transcriptional control. They also revealed that the diel expression of glycosylation and ion-transporter-related genes is mainly established through translational regulation. The expression of several diel genes likely subject to translational regulation through upstream open-reading frames was also determined.
Collapse
Affiliation(s)
- Haruka Aoyama
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toshihiro Arae
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
5
|
Li X, Liu Y, Hu W, Yin B, Liang B, Li Z, Zhang X, Xu J, Zhou S. Integrative physiological, metabolomic, and transcriptomic analysis reveals the drought responses of two apple rootstock cultivars. BMC PLANT BIOLOGY 2024; 24:219. [PMID: 38532379 DOI: 10.1186/s12870-024-04902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Drought is considered the main environmental factor restricting apple production and thus the development of the apple industry. Rootstocks play an important role in enhancing the drought tolerance of apple plants. Studies of the physiology have demonstrated that 'ZC9-3' is a strong drought-resistant rootstock, whereas 'Jizhen-2' is a weak drought-resistant rootstock. However, the metabolites in these two apple rootstock varieties that respond to drought stress have not yet been characterized, and the molecular mechanisms underlying their responses to drought stress remain unclear. RESULTS In this study, the physiological and molecular mechanisms underlying differences in the drought resistance of 'Jizhen-2' (drought-sensitive) and 'ZC9-3' (drought-resistant) apple rootstocks were explored. Under drought stress, the relative water content of the leaves was maintained at higher levels in 'ZC9-3' than in 'Jizhen-2', and the photosynthetic, antioxidant, and osmoregulatory capacities of 'ZC9-3' were stronger than those of 'Jizhen-2'. Metabolome analysis revealed a total of 95 and 156 differentially accumulated metabolites in 'Jizhen-2' and 'ZC9-3' under drought stress, respectively. The up-regulated metabolites in the two cultivars were mainly amino acids and derivatives. Transcriptome analysis revealed that there were more differentially expressed genes and transcription factors in 'ZC9-3' than in 'Jizhen-2' throughout the drought treatment. Metabolomic and transcriptomic analysis revealed that amino acid biosynthesis pathways play key roles in mediating drought resistance in apple rootstocks. A total of 13 metabolites, including L-α-aminoadipate, L-homoserine, L-threonine, L-isoleucine, L-valine, L-leucine, (2S)-2-isopropylmalate, anthranilate, L-tryptophan, L-phenylalanine, L-tyrosine, L-glutamate, and L-proline, play an important role in the difference in drought resistance between 'ZC9-3' and 'Jizhen-2'. In addition, 13 genes encoding O-acetylserine-(thiol)-lyase, S-adenosylmethionine synthetase, ketol-acid isomeroreductase, dihydroxyacid dehydratase, isopropylmalate isomerase, branched-chain aminotransferase, pyruvate kinase, 3-dehydroquinate dehydratase/shikimate 5-dehydrogenase, N-acetylglutamate-5-P-reductase, and pyrroline-5-carboxylate synthetase positively regulate the response of 'ZC9-3' to drought stress. CONCLUSIONS This study enhances our understanding of the response of apple rootstocks to drought stress at the physiological, metabolic, and transcriptional levels and provides key insights that will aid the cultivation of drought-resistant apple rootstock cultivars. Especially, it identifies key metabolites and genes underlying the drought resistance of apple rootstocks.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yitong Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Wei Hu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Baoying Yin
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhongyong Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Shasha Zhou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
6
|
Cao M, Wu J, Zhu X, Jia Z, Zhou Y, Yu L, Hu C, Gao Y, Chen Z. Tissue distribution of metabolites in Cordyceps cicadae determined by DESI-MSI analysis. Anal Bioanal Chem 2024; 416:1883-1906. [PMID: 38367042 DOI: 10.1007/s00216-024-05188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC-MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive-negative ion mode with a spatial resolution of 100 μm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.
Collapse
Affiliation(s)
- Mayijie Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Jie Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Xiaoli Zhu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Zhuolin Jia
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Ye Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Lingying Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Changjiang Hu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Yongxiang Gao
- International Education College, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Zhimin Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Zhang Y, Wang Q, Liu Y, Dong S, Zhang Y, Zhu Y, Tian Y, Li J, Wang Z, Wang Y, Yan F. Overexpressing GmCGS2 Improves Total Amino Acid and Protein Content in Soybean Seed. Int J Mol Sci 2023; 24:14125. [PMID: 37762432 PMCID: PMC10532240 DOI: 10.3390/ijms241814125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Soybean (Glycine max (L.) Merr.) is an important source of plant protein, the nutritional quality of which is considerably affected by the content of the sulfur-containing amino acid, methionine (Met). To improve the quality of soybean protein and increase the Met content in seeds, soybean cystathionine γ-synthase 2 (GmCGS2), the first unique enzyme in Met biosynthesis, was overexpressed in the soybean cultivar "Jack", producing three transgenic lines (OE3, OE4, and OE10). We detected a considerable increase in the content of free Met and other free amino acids in the developing seeds of the three transgenic lines at the 15th and 75th days after flowering (15D and 75D). In addition, transcriptome analysis showed that the expression of genes related to Met biosynthesis from the aspartate-family pathway and S-methyl Met cycle was promoted in developing green seeds of OE10. Ultimately, the accumulation of total amino acids and soluble proteins in transgenic mature seeds was promoted. Altogether, these results indicated that GmCGS2 plays an important role in Met biosynthesis, by providing a basis for improving the nutritional quality of soybean seeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fan Yan
- Correspondence: (Y.W.); (F.Y.)
| |
Collapse
|
8
|
Harrison SA, Webb WL, Rammu H, Lane N. Prebiotic Synthesis of Aspartate Using Life's Metabolism as a Guide. Life (Basel) 2023; 13:life13051177. [PMID: 37240822 DOI: 10.3390/life13051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A protometabolic approach to the origins of life assumes that the conserved biochemistry of metabolism has direct continuity with prebiotic chemistry. One of the most important amino acids in modern biology is aspartic acid, serving as a nodal metabolite for the synthesis of many other essential biomolecules. Aspartate's prebiotic synthesis is complicated by the instability of its precursor, oxaloacetate. In this paper, we show that the use of the biologically relevant cofactor pyridoxamine, supported by metal ion catalysis, is sufficiently fast to offset oxaloacetate's degradation. Cu2+-catalysed transamination of oxaloacetate by pyridoxamine achieves around a 5% yield within 1 h, and can operate across a broad range of pH, temperature, and pressure. In addition, the synthesis of the downstream product β-alanine may also take place in the same reaction system at very low yields, directly mimicking an archaeal synthesis route. Amino group transfer supported by pyridoxal is shown to take place from aspartate to alanine, but the reverse reaction (alanine to aspartate) shows a poor yield. Overall, our results show that the nodal metabolite aspartate and related amino acids can indeed be synthesised via protometabolic pathways that foreshadow modern metabolism in the presence of the simple cofactor pyridoxamine and metal ions.
Collapse
Affiliation(s)
- Stuart A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - William L Webb
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Hanadi Rammu
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Pakzad R, Fatehi F, Kalantar M, Maleki M. Proteomics approach to investigating osmotic stress effects on pistachio. FRONTIERS IN PLANT SCIENCE 2023; 13:1041649. [PMID: 36762186 PMCID: PMC9907329 DOI: 10.3389/fpls.2022.1041649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Osmotic stress can occur due to some stresses such as salinity and drought, threatening plant survival. To investigate the mechanism governing the pistachio response to this stress, the biochemical alterations and protein profile of PEG-treated plants was monitored. Also, we selected two differentially abundant proteins to validate via Real-Time PCR. Biochemical results displayed that in treated plants, proline and phenolic content was elevated, photosynthetic pigments except carotenoid decreased and MDA concentration were not altered. Our findings identified a number of proteins using 2DE-MS, involved in mitigating osmotic stress in pistachio. A total of 180 protein spots were identified, of which 25 spots were altered in response to osmotic stress. Four spots that had photosynthetic activities were down-regulated, and the remaining spots were up-regulated. The biological functional analysis of protein spots exhibited that most of them are associated with the photosynthesis and metabolism (36%) followed by stress response (24%). Results of Real-Time PCR indicated that two of the representative genes illustrated a positive correlation among transcript level and protein expression and had a similar trend in regulation of gene and protein. Osmotic stress set changes in the proteins associated with photosynthesis and stress tolerance, proteins associated with the cell wall, changes in the expression of proteins involved in DNA and RNA processing occur. Findings of this research will introduce possible proteins and pathways that contribute to osmotic stress and can be considered for improving osmotic tolerance in pistachio.
Collapse
Affiliation(s)
- Rambod Pakzad
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | - Mansour Kalantar
- Department of Plant Breeding, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
10
|
Yuan W, Huang J, Li H, Ma Y, Gui C, Huang F, Feng X, Yu D, Wang H, Kan G. Genetic dissection reveals the complex architecture of amino acid composition in soybean seeds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:17. [PMID: 36670242 DOI: 10.1007/s00122-023-04280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Five loci related to soybean protein and amino acid contents were colocated by performing linkage mapping and GWAS. The haplotype analysis showed that Glyma.08G109100 may be useful to improve the soybean seed composition. Soybean (Glycine max (L.) Merr.) seeds are good protein sources. Although genetic variation is abundant, natural variation in seed amino acids and their derived traits is lacking across soybean accessions. Here, we determined the contents of protein and 17 amino acids, obtained 36 derived traits based on the protein and total amino acid contents, and derived 34 traits based on seven amino acid family groups. Furthermore, we performed a linkage analysis of the contents of 17 amino acids and 73 amino acid-derived traits based on the recombinant inbred line (RIL)-derived Kefeng No. 1 × Nannong 1138-2. Six hundred thirty-nine quantitative trait loci (QTLs) were identified, explaining 6.07-39.00% of the phenotypic variation. Among these loci, five were detected in diverse soybean accessions using a genome-wide association study. A network analysis revealed that some loci that were significantly associated with multiple amino acids were tightly linked on chromosome 8 based on linkage disequilibrium values, which also further confirmed the results of the correlation analysis among amino acid traits. Through a combination of a genome-wide association study, linkage analysis, qRT-PCR, and genomic polymorphism comparison, Glyma.08G109100 on chromosome 8, which may affect amino acid contents, was selected. The haplotype analysis showed that Hap-T of Glyma.08G109100 may be useful to improve the contents of protein and 16 amino acids in soybean. This study provides new insights into the genetic basis of the amino acid composition in soybean seeds and may facilitate marker-based breeding of soybean with improved nutritional value.
Collapse
Affiliation(s)
- Wenjie Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jie Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Haiyang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yujie Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chunju Gui
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Fang Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
11
|
García-Gómez ML, Reyes-Hernández BJ, Sahoo DP, Napsucialy-Mendivil S, Quintana-Armas AX, Pedroza-García JA, Shishkova S, Torres-Martínez HH, Pacheco-Escobedo MA, Dubrovsky JG. A mutation in THREONINE SYNTHASE 1 uncouples proliferation and transition domains of the root apical meristem: experimental evidence and in silico proposed mechanism. Development 2022; 149:278438. [PMID: 36278862 PMCID: PMC9796171 DOI: 10.1242/dev.200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.
Collapse
Affiliation(s)
- Monica L. García-Gómez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Blanca J. Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Debee P. Sahoo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Aranza X. Quintana-Armas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - José A. Pedroza-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Héctor H. Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Mario A. Pacheco-Escobedo
- Facultad de Ciencias de la Salud, Universidad Tecnológica de México – UNITEC MÉXICO – Campus Atizapán, Av. Calacoaya 7, Atizapán de Zaragoza, Estado de México, 52970, Mexico
| | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico,Author for correspondence ()
| |
Collapse
|
12
|
Zhou J, Yang LY, Jia CL, Shi WG, Deng SR, Luo ZB. Identification and Functional Prediction of Poplar Root circRNAs Involved in Treatment With Different Forms of Nitrogen. FRONTIERS IN PLANT SCIENCE 2022; 13:941380. [PMID: 35874008 PMCID: PMC9305699 DOI: 10.3389/fpls.2022.941380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNA molecules with ring structures formed by covalent bonds and are commonly present in organisms, playing an important regulatory role in plant growth and development. However, the mechanism of circRNAs in poplar root responses to different forms of nitrogen (N) is still unclear. In this study, high-throughput sequencing was used to identify and predict the function of circRNAs in the roots of poplar exposed to three N forms [1 mM NO3 - (T1), 0.5 mM NH4NO3 (T2, control) and 1 mM NH4 + (T3)]. A total of 2,193 circRNAs were identified, and 37, 24 and 45 differentially expressed circRNAs (DECs) were screened in the T1-T2, T3-T2 and T1-T3 comparisons, respectively. In addition, 30 DECs could act as miRNA sponges, and several of them could bind miRNA family members that play key roles in response to different N forms, indicating their important functions in response to N and plant growth and development. Furthermore, we generated a competing endogenous RNA (ceRNA) regulatory network in poplar roots treated with three N forms. DECs could participate in responses to N in poplar roots through the ceRNA regulatory network, which mainly included N metabolism, amino acid metabolism and synthesis, response to NO3 - or NH4 + and remobilization of N. Together, these results provide new insights into the potential role of circRNAs in poplar root responses to different N forms.
Collapse
|
13
|
Decouard B, Bailly M, Rigault M, Marmagne A, Arkoun M, Soulay F, Caïus J, Paysant-Le Roux C, Louahlia S, Jacquard C, Esmaeel Q, Chardon F, Masclaux-Daubresse C, Dellagi A. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. FRONTIERS IN PLANT SCIENCE 2022; 12:807798. [PMID: 35185958 PMCID: PMC8854266 DOI: 10.3389/fpls.2021.807798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.
Collapse
Affiliation(s)
- Bérengère Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marlène Bailly
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Mustapha Arkoun
- Agro Innovation International - Laboratoire Nutrition Végétale, TIMAC AGRO International SAS, Saint Malo, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, University of Évry Val d′Essonne, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Said Louahlia
- Natural Resources and Environment Lab, Faculté Polydiscipliniare de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA 4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
14
|
Zhou J, Yang LY, Chen X, Shi WG, Deng SR, Luo ZB. Genome-Wide Identification and Characterization of Long Noncoding RNAs in Populus × canescens Roots Treated With Different Nitrogen Fertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:890453. [PMID: 35646010 PMCID: PMC9135444 DOI: 10.3389/fpls.2022.890453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 05/14/2023]
Abstract
Nitrate (NO3 -) and ammonium (NH4 +) are the primary forms of inorganic nitrogen acquired by plant roots. LncRNAs, as key regulators of gene expression, are a class of non-coding RNAs larger than 200 bp. However, knowledge about the regulatory role of lncRNAs in response to different nitrogen forms remains limited, particularly in woody plants. Here, we performed strand-specific RNA-sequencing of P. × canescens roots under three different nitrogen fertilization treatments. In total, 324 lncRNAs and 6,112 mRNAs were identified as showing significantly differential expression between the NO3 - and NH4NO3 treatments. Moreover, 333 lncRNAs and 6,007 mRNAs showed significantly differential expression between the NH4 + and NH4NO3 treatments. Further analysis suggested that these lncRNAs and mRNAs have different response mechanisms for different nitrogen forms. In addition, functional annotation of cis and trans target mRNAs of differentially expressed lncRNAs indicated that 60 lncRNAs corresponding to 49 differentially expressed cis and trans target mRNAs were involved in plant nitrogen metabolism and amino acid biosynthesis and metabolism. Furthermore, 42 lncRNAs were identified as putative precursors of 63 miRNAs, and 28 differentially expressed lncRNAs were potential endogenous target mimics targeted by 96 miRNAs. Moreover, ceRNA regulation networks were constructed. MSTRG.6097.1, MSTRG.13550.1, MSTRG.2693.1, and MSTRG.12899.1, as hub lncRNAs in the ceRNA networks, are potential candidate lncRNAs for studying the regulatory mechanism in poplar roots under different nitrogen fertilization treatments. The results provide a basis for obtaining insight into the molecular mechanisms of lncRNA responses to different nitrogen forms in woody plants.
Collapse
|
15
|
Ali Q, Mazhar MW, Ishtiaq M, Hussain AI, Bhatti KH, Maqbool M, Hussain T, Khanum H, Sardar T, Mazhar M. Efficacy of Zn-Aspartate in comparison with ZnSO4 and L-Aspartate in amelioration of drought stress in maize by modulating antioxidant defence; osmolyte accumulation and photosynthetic attributes. PLoS One 2021; 16:e0260662. [PMID: 34941898 PMCID: PMC8700056 DOI: 10.1371/journal.pone.0260662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022] Open
Abstract
Human population is exceeding beyond the carrying capacity of earth resources and stresses like water shortage faced by the plants is jeopardizing the food security. Current research study was aimed to investigate the potentials of Zn-Aspartate (Zn-Asp), Zn-Sulphate (ZnSO4) and L-Aspartate (L-Asp) to be used as osmolytes and role of various levels of these chemicals in combating drought stress in maize plants in Punjab, Pakistan. Study was performed on two plots corresponding to drought and controlled environments. The lamina of maize plants was sprinkled row wise with various treatments including No spray (NS), water sprinkle (WS), sprinkle with ZnSO4 0.25% and 0.50%, sprinkle with Zn-Asp 0.25% and 0.50% and Foliar sprinkle of L-Asp 0.5% and 1%, respectively. Role of major osmoprotectants and secondary metabolites was analyzed and positive changes were found in total soluble sugars (41.16), flavonoids (5387.74), tocopherol content (9089.18), ascorbic acid (645.27) and anthocyanin (14.84) conc. which assists in mitigating drought menace on maize. Shoot mineral ions (Ca, K, Zn, P, Mg and N) status of water stressed maize plants was also analyzed and it was found that application experimental dose enhanced their availability to crop. Physio-biochemical studies were performed on antioxidants enzymes like superoxide dismutase (SOD), peroxidase (POD), carotenoid content (CC), malondialdehyde, hydrogen peroxide, aspartate and free amino acid contents. The activity of SOD was increased by 28.5% and activity of POD was increased by 33.33% due to foliar applied 0.5% Zn-Asp under drought stress. Photosynthetic pigments (chlorophyll A, B and total chlorophyll content) analysis was also carried out in this study. It was found that conc. of different chlorophylls pigments increased (chl-A: 2.24, chl-B: 25.12, total chl: 24.30) which enhanced photosynthetic activity culminating into better growth and yield). The level of malondialdehyde and hydrogen peroxide decreased by 43.9% and 32.8% respectively on treatment with 0.5% Zn-Asp proving the efficacy of the treatment in drought amelioration. Study reveals that Zn-Asp induced modulations are far better than conventional sulphate salts in mitigating water scarce environment. Current study recommends the use of the Zn-Asp to meet the global food and agricultural challenges as compared to ZnSO4 and L-Asp due to its better drought amelioration properties. This research provides valuable informations which can used for future research and practical use in agriculture fields by indigenous and other people to enhance yield of maize to meet the food necessities of country.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
- * E-mail:
| | | | | | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Tanveer Hussain
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Humaira Khanum
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Tauqeer Sardar
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| | - Mubashir Mazhar
- Department of Botany, Mirpur University of Science & Technology (MUST), Mirpur, Pakistan
| |
Collapse
|
16
|
Zhang H, Qin Y, Huang K, Zhan F, Li R, Chen J. Root Metabolite Differences in Two Maize Varieties Under Lead (Pb) Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:656074. [PMID: 34887879 PMCID: PMC8649664 DOI: 10.3389/fpls.2021.656074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
To assess root metabolic differences of maize varieties in their response to lead (Pb) stress, the lead-tolerant variety Huidan No. 4 and the lead-sensitive variety Ludan No. 8 were tested under Pb-free and Pb-stressed conditions. Changes in metabolites were measured using ultra-performance liquid chromatography-mass spectrometry. Pb stress changed the levels of the amino acids proline, glutamine, lysine, and arginine in both varieties, whereas glutamate and phenylalanine levels changed only in Huidan No. 4. Pb stress altered cystine, valine, methionine, and tryptophan levels only in Ludan No. 8. Therefore, the synthesis and decomposition of amino acids may affect the response of maize to Pb stress. The degree of change in differential metabolites for Huidan No. 4 was greater than that for Ludan No. 8. In cell wall subcellular components, increases in superoxide dismutase (SOD), peroxidases (PODs), and Pb concentrations were greater in Huidan No. 4 than in Ludan No. 8. Therefore, the greater Pb tolerance of Huidan No. 4 could be due to better sequestration of Pb in cell walls and more effective removal of reactive oxygen species (ROS) from the plant. The levels of certain metabolites only increased in Ludan No. 8, indicating that Pb-sensitive varieties may use different metabolic pathways to cope with Pb stress. Both varieties showed increased levels of some metabolites related to antioxidant protection and osmotic regulation. This study provides an understanding of maize Pb tolerance mechanisms and a basis for further development of tools for use in maize breeding.
Collapse
Affiliation(s)
- Hanqian Zhang
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuying Qin
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Kai Huang
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Fangdong Zhan
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Ru Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jianjun Chen
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
17
|
Joshi V, Nimmakayala P, Song Q, Abburi V, Natarajan P, Levi A, Crosby K, Reddy UK. Genome-wide association study and population structure analysis of seed-bound amino acids and total protein in watermelon. PeerJ 2021; 9:e12343. [PMID: 34722000 PMCID: PMC8533027 DOI: 10.7717/peerj.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Watermelon seeds are a powerhouse of value-added traits such as proteins, free amino acids, vitamins, and essential minerals, offering a paleo-friendly dietary option. Despite the availability of substantial genetic variation, there is no sufficient information on the natural variation in seed-bound amino acids or proteins across the watermelon germplasm. This study aimed to analyze the natural variation in watermelon seed amino acids and total protein and explore underpinning genetic loci by genome-wide association study (GWAS). METHODS The study evaluated the distribution of seed-bound free amino acids and total protein in 211 watermelon accessions of Citrullus spp, including 154 of Citrullus lanatus, 54 of Citrullus mucosospermus (egusi) and three of Citrullus amarus. We used the GWAS approach to associate seed phenotypes with 11,456 single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS). RESULTS Our results demonstrate a significant natural variation in different free amino acids and total protein content across accessions and geographic regions. The accessions with high protein content and proportion of essential amino acids warrant its use for value-added benefits in the food and feed industries via biofortification. The GWAS analysis identified 188 SNPs coinciding with 167 candidate genes associated with watermelon seed-bound amino acids and total protein. Clustering of SNPs associated with individual amino acids found by principal component analysis was independent of the speciation or cultivar groups and was not selected during the domestication of sweet watermelon. The identified candidate genes were involved in metabolic pathways associated with amino acid metabolism, such as Argininosuccinate synthase, explaining 7% of the variation in arginine content, which validate their functional relevance and potential for marker-assisted analysis selection. This study provides a platform for exploring potential gene loci involved in seed-bound amino acids metabolism, useful in genetic analysis and development of watermelon varieties with superior seed nutritional values.
Collapse
Affiliation(s)
- Vijay Joshi
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
- Texas A&M AgriLife Research and Extension Center, Uvalde, Texas, United States
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Qiushuo Song
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
| | - Venkata Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Amnon Levi
- Vegetable Laboratory, USDA-ARS, Charleston, South Carolina, United States
| | - Kevin Crosby
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| |
Collapse
|
18
|
Sahoo DP, Van Winkle LJ, Díaz de la Garza RI, Dubrovsky JG. Interkingdom Comparison of Threonine Metabolism for Stem Cell Maintenance in Plants and Animals. Front Cell Dev Biol 2021; 9:672545. [PMID: 34557481 PMCID: PMC8454773 DOI: 10.3389/fcell.2021.672545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 01/12/2023] Open
Abstract
In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.
Collapse
Affiliation(s)
- Debee Prasad Sahoo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lon J. Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL, United States
- Department of Medical Humanities, Rocky Vista University, Parker, CO, United States
| | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
19
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. Int J Mol Sci 2020; 21:ijms21176036. [PMID: 32839408 PMCID: PMC7504276 DOI: 10.3390/ijms21176036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Watermelon (Citrullus lanatus L.) is a widely popular vegetable fruit crop for human consumption. Soil salinity is among the most critical problems for agricultural production, food security, and sustainability. The transcriptomic and the primary molecular mechanisms that underlie the salt-induced responses in watermelon plants remain uncertain. In this study, the photosynthetic efficiency of photosystem II, free amino acids, and transcriptome profiles of watermelon seedlings exposed to short-term salt stress (300 mM NaCl) were analyzed to identify the genes and pathways associated with response to salt stress. We observed that the maximal photochemical efficiency of photosystem II decreased in salt-stressed plants. Most free amino acids in the leaves of salt-stressed plants increased many folds, while the percent distribution of glutamate and glutamine relative to the amino acid pool decreased. Transcriptome analysis revealed 7622 differentially expressed genes (DEGs) under salt stress, of which 4055 were up-regulated. The GO analysis showed that the molecular function term “transcription factor (TF) activity” was enriched. The assembled transcriptome demonstrated up-regulation of 240 and down-regulation of 194 differentially expressed TFs, of which the members of ERF, WRKY, NAC bHLH, and MYB-related families were over-represented. The functional significance of DEGs associated with endocytosis, amino acid metabolism, nitrogen metabolism, photosynthesis, and hormonal pathways in response to salt stress are discussed. The findings from this study provide novel insights into the salt tolerance mechanism in watermelon.
Collapse
|
21
|
Submergence response of pyruvate decarboxylase family genes in adzuki bean. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Kimani W, Zhang LM, Wu XY, Hao HQ, Jing HC. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics 2020; 21:112. [PMID: 32005168 PMCID: PMC6995107 DOI: 10.1186/s12864-020-6538-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In sorghum (Sorghum bicolor), one paramount breeding objective is to increase grain quality. The nutritional quality and end use value of sorghum grains are primarily influenced by the proportions of tannins, starch and proteins, but the genetic basis of these grain quality traits remains largely unknown. This study aimed to dissect the natural variation of sorghum grain quality traits and identify the underpinning genetic loci by genome-wide association study. RESULTS Levels of starch, tannins and 17 amino acids were quantified in 196 diverse sorghum inbred lines, and 44 traits based on known metabolic pathways and biochemical interactions amongst the 17 amino acids calculated. A Genome-wide association study (GWAS) with 3,512,517 SNPs from re-sequencing data identified 14, 15 and 711 significant SNPs which represented 14, 14, 492 genetic loci associated with levels of tannins, starch and amino acids in sorghum grains, respectively. Amongst these significant SNPs, two SNPs were associated with tannin content on chromosome 4 and colocalized with three previously identified loci for Tannin1, and orthologs of Zm1 and TT16 genes. One SNP associated with starch content colocalized with sucrose phosphate synthase gene. Furthermore, homologues of opaque1 and opaque2 genes associated with amino acid content were identified. Using the KEGG pathway database, six and three candidate genes of tannins and starch were mapped into 12 and 3 metabolism pathways, respectively. Thirty-four candidate genes were mapped into 16 biosynthetic and catabolic pathways of amino acids. We finally reconstructed the biosynthetic pathways for aspartate and branched-chain amino acids based on 15 candidate genes identified in this study. CONCLUSION Promising candidate genes associated with grain quality traits have been identified in the present study. Some of them colocalized with previously identified genetic regions, but novel candidate genes involved in various metabolic pathways which influence grain quality traits have been dissected. Our study acts as an entry point for further validation studies to elucidate the complex mechanisms controlling grain quality traits such as tannins, starch and amino acids in sorghum.
Collapse
Affiliation(s)
- Wilson Kimani
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Xiao-Yuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Huai-Qing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
23
|
Kumari M, Thakur S, Kumar A, Joshi R, Kumar P, Shankar R, Kumar R. Regulation of color transition in purple tea (Camellia sinensis). PLANTA 2019; 251:35. [PMID: 31853722 DOI: 10.1007/s00425-019-03328-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Comparative proteomics and metabolomics study of juvenile green, light purple and dark purple leaf to identify key proteins and metabolites that putatively govern color transition in Camellia sinensis. Color transition from juvenile green to dark purple leaf in Camellia sinensis is a complex process and thought to be regulated by an intricate balance of genes, proteins and metabolites expression. A molecular-level understanding of proteins and metabolites expression is needed to define metabolic process underpinning color transition in C. sinensis. Here, purple leaf growth of C. sinensis cultivar was divided into three developmental stages viz. juvenile green (JG), light purple (LP) and dark purple (DP) leaf. Scanning electron microscope (SEM) analysis revealed a clear morphological variation such as cell size, shape and texture as tea leaf undergoing color transition. Proteomic and metabolomic analyses displayed the temporal changes in proteins and metabolites that occur in color transition process. In total, 211 differentially expressed proteins (DEPs) were identified presumably involved in secondary metabolic processes particularly, flavonoids/anthocyanin biosynthesis, phytohormone regulation, carbon and nitrogen assimilation and photosynthesis, among others. Subcellular localization of three candidate proteins was further evaluated by their transient expression in planta. Interactome study revealed that proteins involved in primary metabolism, precursor metabolite, photosynthesis, phytohormones, transcription factor and anthocyanin biosynthesis were found to be interact directly or indirectly and thus, regulate color transition from JG to DP leaf. The present study not only corroborated earlier findings but also identified novel proteins and metabolites that putatively govern color transition in C. sinensis. These findings provide a platform for future studies that may be utilized for metabolic engineering/molecular breeding in an effort to develop more desirable traits.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shweta Thakur
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ajay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Prakash Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ravi Shankar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India.
| |
Collapse
|
24
|
Threonine synthase CoTHR4 is involved in infection-related morphogenesis during the pre-penetration stage in Colletotrichum orbiculare. Microb Pathog 2019; 137:103746. [DOI: 10.1016/j.micpath.2019.103746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
|
25
|
Boter M, Calleja-Cabrera J, Carrera-Castaño G, Wagner G, Hatzig SV, Snowdon RJ, Legoahec L, Bianchetti G, Bouchereau A, Nesi N, Pernas M, Oñate-Sánchez L. An Integrative Approach to Analyze Seed Germination in Brassica napus. FRONTIERS IN PLANT SCIENCE 2019; 10:1342. [PMID: 31708951 PMCID: PMC6824160 DOI: 10.3389/fpls.2019.01342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/26/2019] [Indexed: 05/23/2023]
Abstract
Seed germination is a complex trait determined by the interaction of hormonal, metabolic, genetic, and environmental components. Variability of this trait in crops has a big impact on seedling establishment and yield in the field. Classical studies of this trait in crops have focused mainly on the analyses of one level of regulation in the cascade of events leading to seed germination. We have carried out an integrative and extensive approach to deepen our understanding of seed germination in Brassica napus by generating transcriptomic, metabolic, and hormonal data at different stages upon seed imbibition. Deep phenotyping of different seed germination-associated traits in six winter-type B. napus accessions has revealed that seed germination kinetics, in particular seed germination speed, are major contributors to the variability of this trait. Metabolic profiling of these accessions has allowed us to describe a common pattern of metabolic change and to identify the levels of malate and aspartate metabolites as putative metabolic markers to estimate germination performance. Additionally, analysis of seed content of different hormones suggests that hormonal balance between ABA, GA, and IAA at crucial time points during this process might underlie seed germination differences in these accessions. In this study, we have also defined the major transcriptome changes accompanying the germination process in B. napus. Furthermore, we have observed that earlier activation of key germination regulatory genes seems to generate the differences in germination speed observed between accessions in B. napus. Finally, we have found that protein-protein interactions between some of these key regulator are conserved in B. napus, suggesting a shared regulatory network with other plant species. Altogether, our results provide a comprehensive and detailed picture of seed germination dynamics in oilseed rape. This new framework will be extremely valuable not only to evaluate germination performance of B. napus accessions but also to identify key targets for crop improvement in this important process.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Julián Calleja-Cabrera
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Geoffrey Wagner
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Vanessa Hatzig
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Laurie Legoahec
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Grégoire Bianchetti
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Alain Bouchereau
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Nathalie Nesi
- Joint Laboratory for Genetics, Institute for Genetics, Environment and Plant Protection (IGEPP), Le Rheu, France
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, (Universidad Politécnica de Madrid –Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| |
Collapse
|
26
|
Reyes-Hernández BJ, Shishkova S, Amir R, Quintana-Armas AX, Napsucialy-Mendivil S, Cervantes-Gamez RG, Torres-Martínez HH, Montiel J, Wood CD, Dubrovsky JG. Root stem cell niche maintenance and apical meristem activity critically depend on THREONINE SYNTHASE1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3835-3849. [PMID: 30972413 DOI: 10.1093/jxb/erz165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/22/2019] [Indexed: 05/23/2023]
Abstract
Indeterminate root growth depends on the stem cell niche (SCN) and root apical meristem (RAM) maintenance whose regulation permits plasticity in root system formation. Using a forward genetics approach, we isolated the moots koom1 ('short root' in Mayan) mutant that shows complete primary RAM exhaustion and abolished SCN activity. We identified that this phenotype is caused by a point mutation in the METHIONINE OVERACCUMULATOR2 (MTO2) gene that encodes THREONINE SYNTHASE1 and renamed the mutant as mto2-2. The amino acid profile showed drastic changes, most notorious of which was accumulation of methionine. In non-allelic mto1-1 (Arabidopsis thaliana cystathionine gamma-synthetase1) and mto3-1 (S-adenosylmethionine synthetase) mutants, both with an increased methionine level, the RAM size was similar to that of the wild type, suggesting that methionine overaccumulation itself did not cause RAM exhaustion in mto2 mutants. When mto2-2 RAM is not yet completely exhausted, exogenous threonine induced de novo SCN establishment and root growth recovery. The threonine-dependent RAM re-establishment in mto2-2 suggests that threonine is a limiting factor for RAM maintenance. In the root, MTO2 was predominantly expressed in the RAM. The essential role of threonine in mouse embryonic stem cells and in RAM maintenance suggests that common regulatory mechanisms may operate in plant and animal SCN maintenance.
Collapse
Affiliation(s)
- Blanca Jazmín Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Aranza Xhaly Quintana-Armas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rocio Guadalupe Cervantes-Gamez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Héctor Hugo Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Jesús Montiel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Christopher D Wood
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
27
|
Nguyen VL, Palmer L, Roessner U, Stangoulis J. Genotypic Variation in the Root and Shoot Metabolite Profiles of Wheat ( Triticum aestivum L.) Indicate Sustained, Preferential Carbon Allocation as a Potential Mechanism in Phosphorus Efficiency. FRONTIERS IN PLANT SCIENCE 2019; 10:995. [PMID: 31447867 PMCID: PMC6691131 DOI: 10.3389/fpls.2019.00995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/16/2019] [Indexed: 05/25/2023]
Abstract
Changes in the levels of plant metabolites in response to nutrient deficiency is indicative of how plants utilize scarce resources. In this study, changes in the metabolite profile of roots and shoots of wheat genotypes differing in phosphorus use efficiency (PUE) was investigated. Under low P supply and at 28 days after sowing (DAS), the wheat breeding line, RAC875 (P efficient) produced 42% more shoot biomass than the wheat variety, and Wyalkatchem (P inefficient). Significant changes in the metabolite profile in leaves and roots were observed under low P supply and significant genotypic variation was evident. Under low P supply, an increase in raffinose and 1-kestose was evident in roots of both wheat genotypes, with RAC875 accumulating more when compared to Wyalkatchem. There was no significant increase in raffinose and 1-kestose in leaves when plants were grown under P deficiency. P deficiency had no significant impact on the levels of sucrose, maltose, glucose and fructose in both genotypes, and while phosphorylated sugars (glucose-6-P and fructose-6-P) remained unchanged in RAC875, in Wyalkatchem, glucose-6-P significantly decreased in roots, and fructose-6-P significantly decreased in both leaves and roots. Glycerol-3-P decreased twofold in roots of both wheat genotypes in response to low P. In roots, RAC875 exhibited significantly lower levels of fumarate, malate, maleate and itaconate than Wyalkatchem, while low P enhanced organic acid exudation in RAC875 but not in Wyalkatchem. RAC875 showed greater accumulation of aspartate, glutamine and β-alanine in leaves than Wyalkatchem under low P supply. Greater accumulation of raffinose and 1-kestose in roots and aspartate, glutamine and β-alanine in leaves appears to be associated with enhanced PUE in RAC875. Glucose-6-P and fructose-6-P are important for glycolysis, thus maintaining these metabolites would enable RAC875 to maintain carbohydrate metabolism and shoot biomass under P deficiency. The work presented here provides evidence that differences in metabolite profiles can be observed between wheat varieties that differ in PUE and key metabolic pathways are maintained in the efficient genotype to ensure carbon supply under P deficiency.
Collapse
Affiliation(s)
- Van Lam Nguyen
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
- Department of Biochemistry and Food Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Lachlan Palmer
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
28
|
Rodenburg SYA, Seidl MF, Judelson HS, Vu AL, Govers F, de Ridder D. Metabolic Model of the Phytophthora infestans-Tomato Interaction Reveals Metabolic Switches during Host Colonization. mBio 2019; 10:e00454-19. [PMID: 31289172 PMCID: PMC6747730 DOI: 10.1128/mbio.00454-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
The oomycete pathogen Phytophthora infestans causes potato and tomato late blight, a disease that is a serious threat to agriculture. P. infestans is a hemibiotrophic pathogen, and during infection, it scavenges nutrients from living host cells for its own proliferation. To date, the nutrient flux from host to pathogen during infection has hardly been studied, and the interlinked metabolisms of the pathogen and host remain poorly understood. Here, we reconstructed an integrated metabolic model of P. infestans and tomato (Solanum lycopersicum) by integrating two previously published models for both species. We used this integrated model to simulate metabolic fluxes from host to pathogen and explored the topology of the model to study the dependencies of the metabolism of P. infestans on that of tomato. This showed, for example, that P. infestans, a thiamine auxotroph, depends on certain metabolic reactions of the tomato thiamine biosynthesis. We also exploited dual-transcriptome data of a time course of a full late blight infection cycle on tomato leaves and integrated the expression of metabolic enzymes in the model. This revealed profound changes in pathogen-host metabolism during infection. As infection progresses, P. infestans performs less de novo synthesis of metabolites and scavenges more metabolites from tomato. This integrated metabolic model for the P. infestans-tomato interaction provides a framework to integrate data and generate hypotheses about in planta nutrition of P. infestans throughout its infection cycle.IMPORTANCE Late blight disease caused by the oomycete pathogen Phytophthora infestans leads to extensive yield losses in tomato and potato cultivation worldwide. To effectively control this pathogen, a thorough understanding of the mechanisms shaping the interaction with its hosts is paramount. While considerable work has focused on exploring host defense mechanisms and identifying P. infestans proteins contributing to virulence and pathogenicity, the nutritional strategies of the pathogen are mostly unresolved. Genome-scale metabolic models (GEMs) can be used to simulate metabolic fluxes and help in unravelling the complex nature of metabolism. We integrated a GEM of tomato with a GEM of P. infestans to simulate the metabolic fluxes that occur during infection. This yields insights into the nutrients that P. infestans obtains during different phases of the infection cycle and helps in generating hypotheses about nutrition in planta.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
29
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
30
|
Wang B, Xu S, Cao Y, Liu F, Zhao X, Feng X. Fungicidal activity of 10-deacetylbacatin III against Phytophthora capsici via inhibiting lysine biosynthesis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:114-121. [PMID: 30497701 DOI: 10.1016/j.pestbp.2018.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
10-deacetyl-bacatin III (10-DAB) is a natural plant-derived taxane diterpene, whose antimicrobial activity against phytopathogens remains unknown. In this study, we demonstrated the antimicrobial effect of 10-DAB on plant-pathogenic oomycetes. Our results revealed that 10-DAB exhibited significant antimicrobial activities against test oomycetes, especially against Phytophthora capsici, with a median effective concentration (EC50) of 1.46 μg/mL, but had no effect on test fungi. Under 10-DAB treatment, mycelia of P. capsici were contorted with an increased number of top branches, and the production and germination of zoospores were inhibited and delayed, respectively. In addition, 10-DAB had favorable protective and curative activities with control efficacies of 63.90% and 74.81% at 200 μg/mL on detached pepper leaves. Furthermore, 10-DAB caused a significant decrease in soluble protein, lysine, and α, ε-diaminopimelic acid content of P. capsici, which suggested that 10-DAB inhibited the lysine biosynthesis. On the contrary, treatment with exogenous lysine effectively counteracted 10-DAB's inhibition activity on P. capsici. Moreover, relative expression of four key lysine biosynthesis-related genes of P. capsici were decreased upon 10-DAB treatment. Taken together, our findings suggest a lysine biosynthesis inhibiting-dependent antimicrobial activity of 10-DAB against P. capsici, which contributes to accelerating the application of 10-DAB for successful management of phytophthora blight disease in agricultural production.
Collapse
Affiliation(s)
- Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Cao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China
| | - Xingzeng Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province, Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
31
|
Hartmann M, Zeier J. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:5-21. [PMID: 30035374 DOI: 10.1111/tpj.14037] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 05/03/2023]
Abstract
l-lysine catabolic routes in plants include the saccharopine pathway to α-aminoadipate and decarboxylation of lysine to cadaverine. The current review will cover a third l-lysine metabolic pathway having a major role in plant systemic acquired resistance (SAR) to pathogen infection that was recently discovered in Arabidopsis thaliana. In this pathway, the aminotransferase AGD2-like defense response protein (ALD1) α-transaminates l-lysine and generates cyclic dehydropipecolic (DP) intermediates that are subsequently reduced to pipecolic acid (Pip) by the reductase SAR-deficient 4 (SARD4). l-pipecolic acid, which occurs ubiquitously in the plant kingdom, is further N-hydroxylated to the systemic acquired resistance (SAR)-activating metabolite N-hydroxypipecolic acid (NHP) by flavin-dependent monooxygenase1 (FMO1). N-hydroxypipecolic acid induces the expression of a set of major plant immune genes to enhance defense readiness, amplifies resistance responses, acts synergistically with the defense hormone salicylic acid, promotes the hypersensitive cell death response and primes plants for effective immune mobilization in cases of future pathogen challenge. This pathogen-inducible NHP biosynthetic pathway is activated at the transcriptional level and involves feedback amplification. Apart from FMO1, some cytochrome P450 monooxygenases involved in secondary metabolism catalyze N-hydroxylation reactions in plants. In specific taxa, pipecolic acid might also serve as a precursor in the biosynthesis of specialized natural products, leading to C-hydroxylated and otherwise modified piperidine derivatives, including indolizidine alkaloids. Finally, we show that NHP is glycosylated in Arabidopsis to form a hexose-conjugate, and then discuss open questions in Pip/NHP-related research.
Collapse
Affiliation(s)
- Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
32
|
Wang W, Xu M, Wang G, Galili G. New insights into the metabolism of aspartate-family amino acids in plant seeds. PLANT REPRODUCTION 2018; 31:203-211. [PMID: 29399717 DOI: 10.1007/s00497-018-0322-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 05/03/2023]
Abstract
Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.
Collapse
Affiliation(s)
- Wenyi Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Department of Plant Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mengyun Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Gad Galili
- Department of Plant Science, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
33
|
Wen W, Jin M, Li K, Liu H, Xiao Y, Zhao M, Alseekh S, Li W, de Abreu E Lima F, Brotman Y, Willmitzer L, Fernie AR, Yan J. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1116-1128. [PMID: 29381266 DOI: 10.1111/tpj.13835] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize.
Collapse
Affiliation(s)
- Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
34
|
Deng M, Li D, Luo J, Xiao Y, Liu H, Pan Q, Zhang X, Jin M, Zhao M, Yan J. The genetic architecture of amino acids dissection by association and linkage analysis in maize. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1250-1263. [PMID: 28218981 PMCID: PMC5595712 DOI: 10.1111/pbi.12712] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/28/2017] [Accepted: 02/14/2017] [Indexed: 05/03/2023]
Abstract
Amino acids are both constituents of proteins, providing the essential nutrition for humans and animals, and signalling molecules regulating the growth and development of plants. Most cultivars of maize are deficient in essential amino acids such as lysine and tryptophan. Here, we measured the levels of 17 different total amino acids, and created 48 derived traits in mature kernels from a maize diversity inbred collection and three recombinant inbred line (RIL) populations. By GWAS, 247 and 281 significant loci were identified in two different environments, 5.1 and 4.4 loci for each trait, explaining 7.44% and 7.90% phenotypic variation for each locus in average, respectively. By linkage mapping, 89, 150 and 165 QTLs were identified in B73/By804, Kui3/B77 and Zong3/Yu87-1 RIL populations, 2.0, 2.7 and 2.8 QTLs for each trait, explaining 13.6%, 16.4% and 21.4% phenotypic variation for each QTL in average, respectively. It implies that the genetic architecture of amino acids is relative simple and controlled by limited loci. About 43.2% of the loci identified by GWAS were verified by expression QTL, and 17 loci overlapped with mapped QTLs in the three RIL populations. GRMZM2G015534, GRMZM2G143008 and one QTL were further validated using molecular approaches. The amino acid biosynthetic and catabolic pathways were reconstructed on the basis of candidate genes proposed in this study. Our results provide insights into the genetic basis of amino acid biosynthesis in maize kernels and may facilitate marker-based breeding for quality protein maize.
Collapse
Affiliation(s)
- Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Huang T, Jander G. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana. PLANTA 2017; 246:737-747. [PMID: 28668976 DOI: 10.1007/s00425-017-2727-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/21/2017] [Indexed: 05/22/2023]
Abstract
Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of the osmotic stress.
Collapse
Affiliation(s)
- Tengfang Huang
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Keygene Inc, Rockville, MD, 20850, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA.
| |
Collapse
|
36
|
Kaur G, Subramanian S. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase. Cell Cycle 2017; 16:1918-1926. [PMID: 28820334 DOI: 10.1080/15384101.2017.1363937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.
Collapse
Affiliation(s)
- Gurmeet Kaur
- a CSIR-Institute of Microbial Technology (IMTECH) , Chandigarh , India
| | | |
Collapse
|
37
|
Hagel JM, Facchini PJ. Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4029-4043. [PMID: 28521055 DOI: 10.1093/jxb/erx152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene fusions have recently attracted attention especially in the field of plant specialized metabolism. The occurrence of a gene fusion, in which originally separate gene products are combined into a single polypeptide, often corresponds to the functional association of individual components within a single metabolic pathway. Examples include gene fusions implicated in benzylisoquinoline alkaloid (BIA), terpenoid, and amino acid biosynthetic pathways, in which distinct domains within a fusion catalyze consecutive, yet independent reactions. Both genomic and transcriptional mechanisms result in the fusion of gene products, which can include partial or complete domain repeats and extensive domain shuffling as evident in the BIA biosynthetic enzyme norcoclaurine synthase. Artificial gene fusions are commonly deployed in attempts to engineer new or improved pathways in plants or microorganisms, based on the premise that fusions are advantageous. However, a survey of functionally characterized fusions in microbial systems shows that the functional impact of fused gene products is not straightforward. For example, whereas enzyme fusions might facilitate the metabolic channeling of unstable intermediates, this channeling can also occur between tightly associated independent enzymes. The frequent occurrence of both fused and unfused enzymes in plant and microbial metabolism adds additional complexity, in terms of both pathway functionality and evolution.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Dr N.W., Alberta T2N 1N4, Canada
| |
Collapse
|
38
|
Novel regulatory mechanism of serine biosynthesis associated with 3-phosphoglycerate dehydrogenase in Arabidopsis thaliana. Sci Rep 2017; 7:3533. [PMID: 28615699 PMCID: PMC5471267 DOI: 10.1038/s41598-017-03807-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
The proteinogenic amino acid l-serine is a precursor for various essential biomolecules in all organisms. 3-Phosphoglycerate dehydrogenase (PGDH) is the first committed enzyme of the phosphorylated pathway of l-serine biosynthesis, and is regulated by negative feedback from l-serine in bacteria and plants. In the present study, two Arabidopsis PGDH isoforms were inhibited by l-serine but were activated by l-amino acids such as l-homocysteine in vitro. Activation and inhibition by these amino acids was cooperative, suggesting an allosteric mechanism. Moreover, the half maximal effective concentration of l-homocysteine was 2 orders of magnitude lower than that of l-serine, suggesting greater regulatory potency. These are the first data to show that PGDH is activated by various biomolecules and indicate that serine biosynthesis is regulated by multiple pathways.
Collapse
|
39
|
Hartmann M, Kim D, Bernsdorff F, Ajami-Rashidi Z, Scholten N, Schreiber S, Zeier T, Schuck S, Reichel-Deland V, Zeier J. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. PLANT PHYSIOLOGY 2017; 174:124-153. [PMID: 28330936 PMCID: PMC5411157 DOI: 10.1104/pp.17.00222] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Denis Kim
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Ziba Ajami-Rashidi
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Nicola Scholten
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schreiber
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Vanessa Reichel-Deland
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants (M.H., D.K., F.B., Z.A.-R., N.S., S.Schr., T.Z., S.Schu., V.R.-D., J.Z.) and Cluster of Excellence on Plant Sciences (Z.A.-R., S.Schu., J.Z.), Heinrich Heine University, D-40225 Duesseldorf, Germany
| |
Collapse
|
40
|
Kumar P, Jander G. Concurrent Overexpression of Arabidopsis thaliana Cystathionine γ-Synthase and Silencing of Endogenous Methionine γ-Lyase Enhance Tuber Methionine Content in Solanum tuberosum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2737-2742. [PMID: 28294619 DOI: 10.1021/acs.jafc.7b00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Potatoes (Solanum tuberosum) are deficient in methionine, an essential amino acid in human and animal diets. Higher methionine levels increase the nutritional quality and promote the typically pleasant aroma associated with baked and fried potatoes. Several attempts have been made to elevate tuber methionine levels by genetic engineering of methionine biosynthesis and catabolism. Overexpressing Arabidopsis thaliana cystathionine γ-synthase (AtCGS) in S. tuberosum up-regulates a rate-limiting step of methionine biosynthesis and increases tuber methionine levels. Alternatively, silencing S. tuberosum methionine γ-lyase (StMGL), which causes decreased degradation of methionine into 2-ketobutyrate, also increases methionine levels. Concurrently enhancing biosynthesis and reducing degradation were predicted to provide further increases in tuber methionine content. Here we report that S. tuberosum cv. Désirée plants with AtCGS overexpression and StMGL silenced by RNA interference are morphologically normal and accumulate higher free methionine levels than either single-transgenic line.
Collapse
Affiliation(s)
- Pavan Kumar
- Boyce Thompson Institute for Plant Research , 533 Tower Road, Ithaca, New York 14853, United States
| | - Georg Jander
- Boyce Thompson Institute for Plant Research , 533 Tower Road, Ithaca, New York 14853, United States
| |
Collapse
|
41
|
Seo H, Kim KJ. Structural basis for a novel type of cytokinin-activating protein. Sci Rep 2017; 7:45985. [PMID: 28374778 PMCID: PMC5379747 DOI: 10.1038/srep45985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
The Lonely Guy (LOG) protein has been identified as a crucial enzyme involved in the production of cytokinins, which are important phytohormones, in plants and plant-interacting organisms. However, C. glutamicum has an isoform (Cg1261) of LOG that contains an extended N-terminal region compared to those of known LOGs, and this type of isoforms are also found in a variety of organisms. Nevertheless, these proteins are considered as lysine decarboxylases, without their functional characterization. To investigate the function of Cg1261, we determined its crystal structure at a resolution of 1.95 Å. Unlike known dimeric LOGs, Cg1261 was found to form a hexamer. The overall shape of the hexamer resembles a trillium flower, in which a twisted dimer constitutes each petal. The dimeric petal is well superposed with known LOG dimers, and its active site conformation is similar to those of LOG dimers, suggesting that the hexameric LOG-like protein also acts as a LOG. Biochemical and in vivo cytokinin production studies on Cg1261 confirms that Cg1261 functions as a cytokinin-activating protein. Phylogenetic tree analysis using 123 LOG-like proteins suggest that the LOG-like proteins can be categorized to the dimeric type-I LOG and the hexameric type-II LOG.
Collapse
Affiliation(s)
- Hogyun Seo
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
42
|
Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarraj S, Hedrich R, Werner C, Rennenberg H. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. THE NEW PHYTOLOGIST 2017; 214:597-606. [PMID: 28042877 DOI: 10.1111/nph.14404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
The present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed 13 C/15 N-glutamine (Gln). The release of 13 CO2 was continuously monitored by isotope ratio infrared spectrometry. After 46 h, the allocation of C and N label into different organs was determined and tissues were subjected to metabolome, proteome and transcriptome analyses. Nitrogen of Gln fed was already separated from its C skeleton in the decomposing fluid secreted by the traps. Most of the Gln-C and Gln-N recovered inside plants were localized in fed traps. Among nonfed organs, traps were a stronger sink for Gln-C compared to Gln-N, and roots were a stronger sink for Gln-N compared to Gln-C. A significant amount of the Gln-C was respired as indicated by 13 C-CO2 emission, enhanced levels of metabolites of respiratory Gln degradation and increased abundance of proteins of respiratory processes. Transcription analyses revealed constitutive expression of enzymes involved in Gln metabolism in traps. It appears that prey not only provides building blocks of cellular constituents of carnivorous Dionaea muscipula, but also is used for energy generation by respiratory amino acid degradation.
Collapse
Affiliation(s)
- Lukas Fasbender
- Institute of Forest Sciences, Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Daniel Maurer
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Jörg Kruse
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
| | - Saleh Alfarraj
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, 97070, Germany
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Christiane Werner
- Institute of Forest Sciences, Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
43
|
Grant Pearce F, Hudson AO, Loomes K, Dobson RCJ. Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution. Subcell Biochem 2017; 83:271-289. [PMID: 28271480 DOI: 10.1007/978-3-319-46503-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzymes are usually comprised of multiple subunits and more often than not they are made up of identical subunits. In this review we examine lysine biosynthesis and focus on the enzyme dihydrodipicolinate synthase in terms of its structure, function and the evolution of its varied number of subunits (quaternary structure). Dihydrodipicolinate synthase is the first committed step in the biosynthesis of lysine, which occurs naturally in plants, bacteria, archaea and fungi, but is not synthesized in mammals. In bacteria, there have been four separate pathways identified from tetrahydrodipicolinate to meso-diaminopimelate, which is the immediate precursor to lysine. Dihydrodipicolinate synthases from many bacterial and plant species have been structurally characterised and the results show considerable variability with respect to their quaternary structure, hinting at their evolution. The oligomeric state of the enzyme plays a key role, both in catalysis and in the allosteric regulation of the enzyme by lysine. While most bacteria and plants have tetrameric enzymes, where the structure of the dimeric building blocks is conserved, the arrangement of the dimers differs. We also review a key development in the field, namely the discovery of a human dihydrodipicolinate synthase-like enzyme, now known as 4-hydroxy-2-oxoglutarate aldolase . This discovery complicates the rationale underpinning drug development against bacterial dihydrodipicolinate synthases, since genetic errors in 4-hydroxy-2-oxoglutarate aldolase cause the disease Primary Hyperoxaluria Type 3 and therefore compounds that are geared towards the inhibition of bacterial dihydrodipicolinate synthase may be toxic to mammalian cells.
Collapse
Affiliation(s)
- F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| |
Collapse
|
44
|
Eudes A, Zhao N, Sathitsuksanoh N, Baidoo EEK, Lao J, Wang G, Yogiswara S, Lee TS, Singh S, Mortimer JC, Keasling JD, Simmons BA, Loqué D. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility. Front Bioeng Biotechnol 2016; 4:58. [PMID: 27486577 PMCID: PMC4949269 DOI: 10.3389/fbioe.2016.00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022] Open
Abstract
Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression of AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.
Collapse
Affiliation(s)
- Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nanxia Zhao
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Noppadon Sathitsuksanoh
- Joint BioEnergy Institute, Emeryville, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Chemical Engineering, Conn Center for Renewable Energy, University of Louisville, Louisville, KY, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeemeng Lao
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - George Wang
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sasha Yogiswara
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Seema Singh
- Joint BioEnergy Institute, Emeryville, CA, USA; Sandia National Laboratory, Livermore, CA, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Sandia National Laboratory, Livermore, CA, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Université Claude Bernard Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| |
Collapse
|
45
|
Hudson AO, Harkness TCM, Savka MA. Functional Complementation Analysis (FCA): A Laboratory Exercise Designed and Implemented to Supplement the Teaching of Biochemical Pathways. J Vis Exp 2016:53850. [PMID: 27403640 PMCID: PMC4993271 DOI: 10.3791/53850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Functional complementation assay (FCA) is an in vivo assay that is widely used to elucidate the function/role of genes/enzymes. This technique is very common in biochemistry, genetics and many other disciplines. A comprehensive overview of the technique to supplement the teaching of biochemical pathways pertaining to amino acids, peptidoglycan and the bacterial stringent response is reported in this manuscript. Two cDNAs from the model plant organism Arabidopsis thaliana that are involved in the metabolism of lysine (L,L-diaminopimelate aminotransferase (dapL) and tyrosine aminotransferase (tyrB) involved in the metabolism of tyrosine and phenylalanine are highlighted. In addition, the bacterial peptidoglycan anabolic pathway is highlighted through the analysis of the UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-meso-2,6-diaminopimelate ligase (murE) gene from the bacterium Verrucomicrobium spinosum involved in the cross-linking of peptidoglycan. The bacterial stringent response is also reported through the analysis of the rsh (relA/spoT homolog) bifunctional gene responsible for a hyper-mucoid phenotype in the bacterium Novosphingobium sp. Four examples of FCA are presented. The video will focus on three of them, namely lysine, peptidoglycan and the stringent response.
Collapse
Affiliation(s)
- André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology;
| | - Taylor C M Harkness
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology
| |
Collapse
|
46
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
47
|
Jiang Z, Kempinski C, Bush CJ, Nybo SE, Chappell J. Engineering Triterpene and Methylated Triterpene Production in Plants Provides Biochemical and Physiological Insights into Terpene Metabolism. PLANT PHYSIOLOGY 2016; 170:702-16. [PMID: 26603654 PMCID: PMC4734568 DOI: 10.1104/pp.15.01548] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 05/08/2023]
Abstract
Linear, branch-chained triterpenes, including squalene (C30), botryococcene (C30), and their methylated derivatives (C31-C37), generated by the green alga Botryococcus braunii race B have received significant attention because of their utility as chemical and biofuel feedstocks. However, the slow growth habit of B. braunii makes it impractical as a production system. In this study, we evaluated the potential of generating high levels of botryococcene in tobacco (Nicotiana tabacum) plants by diverting carbon flux from the cytosolic mevalonate pathway or the plastidic methylerythritol phosphate pathway by the targeted overexpression of an avian farnesyl diphosphate synthase along with two versions of botryococcene synthases. Up to 544 µg g(-1) fresh weight of botryococcene was achieved when this metabolism was directed to the chloroplasts, which is approximately 90 times greater than that accumulating in plants engineered for cytosolic production. To test if methylated triterpenes could be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) from B. braunii into wild-type plants and transgenic lines selected for high-level triterpene accumulation. Up to 91% of the total triterpene contents could be converted to methylated forms (C31 and C32) by cotargeting the TMTs and triterpene biosynthesis to the chloroplasts, whereas only 4% to 14% of total triterpenes were methylated when this metabolism was directed to the cytoplasm. When the TMTs were overexpressed in the cytoplasm of wild-type plants, up to 72% of the total squalene was methylated, and total triterpene (C30+C31+C32) content was elevated 7-fold. Altogether, these results point to innate mechanisms controlling metabolite fluxes, including a homeostatic role for squalene.
Collapse
Affiliation(s)
- Zuodong Jiang
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Chase Kempinski
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Caroline J Bush
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - S Eric Nybo
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Joe Chappell
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| |
Collapse
|
48
|
Clark TJ, Lu Y. Analysis of Loss-of-Function Mutants in Aspartate Kinase and Homoserine Dehydrogenase Genes Points to Complexity in the Regulation of Aspartate-Derived Amino Acid Contents. PLANT PHYSIOLOGY 2015; 168:1512-26. [PMID: 26063505 PMCID: PMC4528744 DOI: 10.1104/pp.15.00364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/09/2015] [Indexed: 05/07/2023]
Abstract
Biosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays. The increases of Asp, Lys, and Met in ak-hsdh2 were also observed in ak1-1, ak2-1, ak3-1, and ak-hsdh1-1. However, the Thr increase in ak-hsdh2 was observed in ak-hsdh1-1 but not in ak1-1, ak2-1, or ak3-1. Activity assays showed that AK2 and AK-HSDH1 are the major contributors to overall AK and HSDH activities, respectively. Pairwise correlation analysis revealed positive correlations between the amount of AK transcripts and Lys-sensitive AK activity and between the amount of AK-HSDH transcripts and both Thr-sensitive AK activity and total HSDH activity. In addition, the ratio of total AK activity to total HSDH activity negatively correlates with the ratio of Lys to the total amount of Met, Thr, and isoleucine. These data led to the hypothesis that the balance between Lys-sensitive AKs and Thr-sensitive AK-HSDHs is important for maintaining the amounts and ratios of Asp-derived amino acids.
Collapse
Affiliation(s)
- Teresa J Clark
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| |
Collapse
|
49
|
Wen W, Li K, Alseekh S, Omranian N, Zhao L, Zhou Y, Xiao Y, Jin M, Yang N, Liu H, Florian A, Li W, Pan Q, Nikoloski Z, Yan J, Fernie AR. Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. THE PLANT CELL 2015; 27:1839-56. [PMID: 26187921 PMCID: PMC4531352 DOI: 10.1105/tpc.15.00208] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/30/2015] [Indexed: 05/16/2023]
Abstract
Deciphering the influence of genetics on primary metabolism in plants will provide insights useful for genetic improvement and enhance our fundamental understanding of plant growth and development. Although maize (Zea mays) is a major crop for food and feed worldwide, the genetic architecture of its primary metabolism is largely unknown. Here, we use high-density linkage mapping to dissect large-scale metabolic traits measured in three different tissues (leaf at seedling stage, leaf at reproductive stage, and kernel at 15 d after pollination [DAP]) of a maize recombinant inbred line population. We identify 297 quantitative trait loci (QTLs) with moderate (86.2% of the mapped QTL, R(2) = 2.4 to 15%) to major effects (13.8% of the mapped QTL, R(2) >15%) for 79 primary metabolites across three tissues. Pairwise epistatic interactions between these identified loci are detected for more than 25.9% metabolites explaining 6.6% of the phenotypic variance on average (ranging between 1.7 and 16.6%), which implies that epistasis may play an important role for some metabolites. Key candidate genes are highlighted and mapped to carbohydrate metabolism, the tricarboxylic acid cycle, and several important amino acid biosynthetic and catabolic pathways, with two of them being further validated using candidate gene association and expression profiling analysis. Our results reveal a metabolite-metabolite-agronomic trait network that, together with the genetic determinants of maize primary metabolism identified herein, promotes efficient utilization of metabolites in maize improvement.
Collapse
Affiliation(s)
- Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Lijun Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Alexandra Florian
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
50
|
Zhang C, Pang Q, Jiang L, Wang S, Yan X, Chen S, He Y. Dihydroxyacid dehydratase is important for gametophyte development and disruption causes increased susceptibility to salinity stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:879-88. [PMID: 25399005 PMCID: PMC4321549 DOI: 10.1093/jxb/eru449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dihydroxyacid dehydratase (DHAD) catalyses a key step in the branched-chain amino acid (BCAA) biosynthetic pathway that exists in numerous organisms, including bacteria, fungi, and plants, but not humans. In Arabidopsis thaliana, DHAD is encoded by a single gene (AT3G23940), but its biological function in controlling plant development remains uncharacterized. In this study, we showed that DHAD is highly expressed in most vegetative and reproductive tissues. It is an essential gene, and complete disruption caused partial sterility in both male and female gametophyte phases. In addition, reduced expression of DHAD in knockdown mutants resulted in a reduction in the accumulation of all three BCAAs in roots and, as a consequence, led to a shorter root phenotype, which could be restored by an exogenous supplement of free BCAAs. Interestingly, the knockdown mutants became hypersensitive to salt stress, not to heavy metal stress, implying that BCAAs may act as osmolytes in salt tolerance. This would be the second amino acid shown to confer such a function in addition to the well-documented proline. Our results provide evidence that BCAA biosynthesis plays important roles in gametophyte and root development, and BCAA homeostasis contributes to the adaptation of Arabidopsis to salinity stress.
Collapse
Affiliation(s)
- Chun Zhang
- National Maize Improvement Centre of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Centre, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Luguang Jiang
- National Maize Improvement Centre of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Shoucai Wang
- National Maize Improvement Centre of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Centre, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, and Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, Florida, USA
| | - Yan He
- National Maize Improvement Centre of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|