1
|
Inoue Y, Takamatsu M, Masugi Y, Suzuki T, Hamada T, Abe S, Hara K, Kawaguchi Y, Kobayashi K, Maekawa A, Nakai Y, Sasahira N, Takeda T, Tanaka M, Uematsu Y, Uemura S, Ushiku T, Fujishiro M, Takeuchi K, Kitago M, Hasegawa K, Takahashi Y. Blood Group Antigen Expression in Blood and Tumor in Relation to Survival Outcomes in Resected Pancreatic Cancer, Overall and by Adjuvant Chemotherapy Regimens. Ann Surg Oncol 2025:10.1245/s10434-025-17289-7. [PMID: 40314902 DOI: 10.1245/s10434-025-17289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/22/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Few comprehensive studies have examined the associations of the ABO blood group with survival outcomes for patients with resected pancreatic cancer, overall and by adjuvant chemotherapy regimens. METHODS This multicenter study enrolled 1153 patients with resected pancreatic cancer. The hazard ratios (HRs) for disease-free and pancreatic cancer-specific survival were calculated with adjustment for potential confounders, including KRAS mutation and CDKN2A (p16), TP53, and SMAD4 expression, using the Cox proportional hazards regression model. Blood group antigen expression in tumors was immunohistochemically assessed. RESULTS The ABO blood group was not associated with disease-free or pancreatic cancer-specific survival (P > 0.90). For pancreatic cancer-specific survival, blood groups A, B, and AB had multivariable HRs of 0.97 (95% confidence interval [CI], 0.81-1.15), 1.03 (95% CI, 0.83-1.26), and 0.99 (95% CI, 0.76-1.30), respectively (vs. O). The associations between ABO blood group and disease-free and pancreatic cancer-specific survival differed according to the adjuvant chemotherapy regimens (Pinteraction = 0.011 and 0.008, respectively). For the patients without chemotherapy, the HRs for disease-free survival were 0.99 (95% CI, 0.69-1.41) for blood group A, 1.65 (95% CI, 1.09-2.48) for blood group B, and 1.79 (95% CI, 1.01-3.17) for blood group AB, (vs. O). For the patients receiving S-1-based chemotherapy, blood group AB (vs. O) exhibited a reverse association (HR, 0.63; 95% CI, 0.39-1.00). Similar interactions were observed when blood group antigen expression in tumors was analyzed. CONCLUSIONS The ABO blood group is not a prognostic biomarker in resected pancreatic cancer overall but may predict the effectiveness of adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yosuke Inoue
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Manabu Takamatsu
- Division of Pathology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Satoru Abe
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Hara
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikuni Kawaguchi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Kobayashi
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Aya Maekawa
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Uematsu
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Sho Uemura
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Takahashi
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
2
|
Liu Z, Chang S, Chen S, Gu R, Guo S. A novel prognostic signature based on m5C‑related LncRNAs and its immunological characteristics in colon adenocarcinoma. Discov Oncol 2025; 16:332. [PMID: 40095128 PMCID: PMC11914420 DOI: 10.1007/s12672-025-02081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) has high mortality rates due to frequent resistance to treatment. 5-methylcytosine (m5C) is a crucial epigenetic modification of RNA, closely associated with tumorigenesis in various cancers. This study focuses on developing an m5C-related long non-coding RNA (lncRNA) signature to predict prognosis and explore potential therapeutic targets. METHODS Using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), we analyzed 18 m5C regulatory genes and their associated lncRNAs in COAD samples. Prognostic lncRNAs were identified through univariate Cox regression, and a risk model was constructed through LASSO regression analyses. Kaplan-Meier survival and receiver operating characteristic analyses were employed to validate the prognostic ability of the signature. Additionally, functional enrichment and immune infiltration analyses were conducted to investigate underlying biological pathways and immune characteristics of the risk groups. Tumor mutation burden and drug sensitivity analyses were also performed. Functional validation of NR2F2-AS1 was conducted through in vitro experiments. RESULTS We established a risk score signature comprising six lncRNAs associated with m5C regulators. Patients were classified into high- and low-risk groups based on the median risk score. This prognostic signature demonstrated significant accuracy and was independent of other clinical features. Immune cell infiltration analysis revealed correlations between the risk signature and various immune cell subtypes. Drug sensitivity analysis indicated the potential therapeutic value of our prognostic signature. Functional experiments confirmed that NR2F2-AS1 acts as a risk factor in the proliferation of colon cancer cells. CONCLUSIONS The m5C-related lncRNA signature serves as a reliable prognostic indicator for colon adenocarcinoma and provides new insights into the tumor immune microenvironment.
Collapse
Affiliation(s)
- Zihe Liu
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Sheng Chang
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Shouguo Chen
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Rong Gu
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Shaoyong Guo
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China.
| |
Collapse
|
3
|
Tange S, Oyama H, Kawaguchi Y, Hakuta R, Hamada T, Ishigaki K, Kanai S, Noguchi K, Saito T, Sato T, Suzuki T, Tanaka M, Takahara N, Ushiku T, Hasegawa K, Nakai Y, Fujishiro M. Older Age as a Worrisome Feature in Patients With Intraductal Papillary Mucinous Neoplasms: A Long-Term Surveillance Study. Am J Gastroenterol 2025; 120:449-458. [PMID: 39012016 DOI: 10.14309/ajg.0000000000002966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Aging has been implicated in the development of various cancer types. No study has specifically investigated age at intraductal papillary mucinous neoplasm (IPMN) diagnosis in relation to the long-term risk of pancreatic carcinogenesis. METHODS Within a prospective cohort of 4,104 patients diagnosed with pancreatic cysts, we identified 3,142 patients with IPMNs and examined an association of age at IPMN diagnosis with the incidence of pancreatic carcinoma. Using the multivariable competing-risks proportional hazards regression model, we estimated subdistribution hazard ratios (SHRs) and 95% confidence intervals (CIs) for pancreatic carcinoma incidence according to age at IPMN diagnosis. RESULTS During 22,187 person-years of follow-up, we documented 130 patients diagnosed with pancreatic carcinoma (64 with IPMN-derived carcinoma and 66 with concomitant ductal adenocarcinoma). Older age at IPMN diagnosis was associated with a higher risk of pancreatic cancer incidence ( Ptrend = 0.002). Compared with patients younger than 55 years, patients aged 55-64, 65-74, and ≥ 75 years had adjusted SHRs of 1.80 (95% CI, 0.75-4.32), 2.56 (95% CI, 1.10-5.98), and 3.31 (95% CI, 1.40-7.83), respectively. Patients aged 70 years and older had a numerically similar adjusted SHR compared with patients younger than 70 years with worrisome features defined by the international consensus guidelines (1.73 [95% CI, 1.01-2.97] and 1.66 [95% CI, 0.89-3.10], respectively). DISCUSSION Older patients with IPMNs were at a higher risk of developing pancreatic carcinoma during surveillance. Surgically fit elderly patients may be good candidates for periodic surveillance aimed at a reduction of pancreatic cancer-related deaths.
Collapse
Affiliation(s)
- Shuichi Tange
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Oyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikuni Kawaguchi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Hakuta
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazunaga Ishigaki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiko Kanai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Kensaku Noguchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomotaka Saito
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naminatsu Takahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Trybus E, Trybus W. H1 Antihistamines-Promising Candidates for Repurposing in the Context of the Development of New Therapeutic Approaches to Cancer Treatment. Cancers (Basel) 2024; 16:4253. [PMID: 39766152 PMCID: PMC11674717 DOI: 10.3390/cancers16244253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/05/2025] Open
Abstract
Despite significant progress in the field of clinical oncology in terms of diagnostic and treatment methods, the results of anticancer therapy are still not fully satisfactory, especially due to limited response and high toxicity. This has forced the need for further research to finding alternative ways to improve success rates in oncological treatment. A good solution to this problem in the context of rapidly obtaining an effective drug that works on multiple levels of cancer and is also safe is the global strategy of repurposing an existing drug. Research into other applications of an existing drug enables a precise assessment of its possible mechanisms of action and, consequently, the broadening of therapeutic indications. This strategy is also supported by the fact that most non-oncological drugs have pleiotropic effects, and most of the diseases for which they were originally intended are multifactorial, which in turn is a very desirable phenomenon due to the heterogeneous and multifaceted biology of cancer. In this review, we will mainly focus on the anticancer potential of H1 antihistamines, especially the new generation that were not originally intended for cancer therapy, to highlight the relevant signaling pathways and discuss the properties of these agents for their judicious use based on the characteristic features of cancer.
Collapse
Affiliation(s)
- Ewa Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Wojciech Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
5
|
Wang K, Yu J, Xu Q, Peng Y, Li H, Lu Y, Ouyang M. Disulfidptosis-related long non-coding RNA signature predicts the prognosis, tumor microenvironment, immunotherapy, and antitumor drug options in colon adenocarcinoma. Apoptosis 2024; 29:2074-2090. [PMID: 39115621 PMCID: PMC11550253 DOI: 10.1007/s10495-024-02011-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 11/10/2024]
Abstract
This study aims to investigate the role and prognostic significance of long non-coding RNAs (lncRNAs) associated with disulfidptosis in colon adenocarcinoma (COAD). The TCGA database's clinical data and transcriptome profiles were employed. Analysis of previous studies identified 10 disulfidptosis-related genes (DRGs). We used these genes to construct a signature that could independently and accurately predict the prognosis of patients with COAD. The Kaplan-Meier (K-M) curve analysis showed that the lower-risk group had a better prognosis. With the help of multivariate Cox regression analysis, the risk score produced from the patient's signature might independently predict the outcomes. Utilizing a nomogram, the receiver operating characteristic (ROC) curve, and principal component analysis (PCA), the signature's predictive ability was also confirmed. It's interesting to note that immunotherapy, especially PD-1 immune checkpoint suppression, was more likely to benefit low-risk patients. The IC50 levels for certain anticancer agents were lower in the high-risk group. Finally, qRT-PCR analyses in colon cancer cell lines revealed elevated levels of lncRNAs CASC9, ZEB1-AS1, ATP2A1-AS1, SNHG7, AL683813.1, and AP003555.1, and reduced levels of FAM160A1-DT and AC112220.2, compared to normal cell lines. This signature offers insights into prognosis, tumor microenvironment, and options for immunotherapy and antitumor drugs in patients with COAD.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
| | - Jing Yu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Qihuan Xu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Yuanhong Peng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China
| | - Yan Lu
- Guangdong Medical University, Zhanjiang, Dongguan, 523808, China.
- GCP Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Foshan, Guangdong, 528300, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Shunde, Foshan, Guangdong Province, 528300, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
6
|
Punyawatthananukool S, Matsuura R, Wongchang T, Katsurada N, Tsuruyama T, Tajima M, Enomoto Y, Kitamura T, Kawashima M, Toi M, Yamanoi K, Hamanishi J, Hisamori S, Obama K, Charoensawan V, Thumkeo D, Narumiya S. Prostaglandin E 2-EP2/EP4 signaling induces immunosuppression in human cancer by impairing bioenergetics and ribosome biogenesis in immune cells. Nat Commun 2024; 15:9464. [PMID: 39487111 PMCID: PMC11530437 DOI: 10.1038/s41467-024-53706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
While prostaglandin E2 (PGE2) is produced in human tumor microenvironment (TME), its role therein remains poorly understood. Here, we examine this issue by comparative single-cell RNA sequencing of immune cells infiltrating human cancers and syngeneic tumors in female mice. PGE receptors EP4 and EP2 are expressed in lymphocytes and myeloid cells, and their expression is associated with the downregulation of oxidative phosphorylation (OXPHOS) and MYC targets, glycolysis and ribosomal proteins (RPs). Mechanistically, CD8+ T cells express EP4 and EP2 upon TCR activation, and PGE2 blocks IL-2-STAT5 signaling by downregulating Il2ra, which downregulates c-Myc and PGC-1 to decrease OXPHOS, glycolysis, and RPs, impairing migration, expansion, survival, and antitumor activity. Similarly, EP4 and EP2 are induced upon macrophage activation, and PGE2 downregulates c-Myc and OXPHOS in M1-like macrophages. These results suggest that PGE2-EP4/EP2 signaling impairs both adaptive and innate immunity in TME by hampering bioenergetics and ribosome biogenesis of tumor-infiltrating immune cells.
Collapse
MESH Headings
- Dinoprostone/metabolism
- Humans
- Animals
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Signal Transduction
- Female
- Tumor Microenvironment/immunology
- Mice
- Energy Metabolism
- Ribosomes/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/genetics
- Neoplasms/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Oxidative Phosphorylation
- Glycolysis
- Macrophages/metabolism
- Macrophages/immunology
- Mice, Inbred C57BL
- Cell Line, Tumor
- Immune Tolerance
Collapse
Affiliation(s)
| | - Ryuma Matsuura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Thamrong Wongchang
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Division of Pharmacology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Nao Katsurada
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Medical Technology and Sciences, Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto, 607-8175, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yutaka Enomoto
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshio Kitamura
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shigeo Hisamori
- Department of Gastrointestinal Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Varodom Charoensawan
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
- AMED-FORCE, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
- Foundation for Biomedical Research and Innovation at Kobe, Kobe, 650-0047, Japan.
| |
Collapse
|
7
|
Takenaka M, Gonoi W, Sato T, Saito T, Hanaoka S, Hamada T, Omoto S, Masuda A, Tsujimae M, Iwashita T, Uemura S, Ota S, Shiomi H, Fujisawa T, Takahashi S, Matsubara S, Suda K, Maruta A, Yoshida K, Iwata K, Okuno M, Hayashi N, Mukai T, Isayama H, Yasuda I, Nakai Y, Sakai A, Nakano R, Iwasa Y. Artificial intelligence–based skeletal muscle estimates and outcomes of EUS-guided treatment of pancreatic fluid collections. IGIE 2024; 3:382-392.e8. [DOI: 10.1016/j.igie.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
|
8
|
Takaoka S, Hamada T, Takahara N, Fukuda R, Hakuta R, Ishigaki K, Kanai S, Kurihara K, Matsui H, Michihata N, Nishio H, Noguchi K, Oyama H, Saito T, Sato T, Suzuki T, Suzuki Y, Tange S, Fushimi K, Nakai Y, Yasunaga H, Fujishiro M. Body mass index and survival among patients with advanced biliary tract cancer: a single-institutional study with nationwide data-based validation. J Gastroenterol 2024; 59:732-743. [PMID: 38896254 DOI: 10.1007/s00535-024-02124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Excess body weight may modulate the progression of various cancer types. The prognostic relevance of body mass index (BMI) has not been fully examined in patients with biliary tract cancer. METHODS Using a single-institutional cohort of 360 patients receiving gemcitabine-based chemotherapy for advanced biliary tract cancer, we examined the association of BMI with overall survival (OS). Using the Cox regression model with adjustment for potential confounders, we calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for OS according to BMI. The findings were validated using a Japanese nationwide inpatient database including 8324 patients treated at 201 hospitals. RESULTS In the clinical cohort, BMI was not associated with OS (Ptrend = 0.34). Compared to patients with BMI = 18.5-24.9 kg/m2, patients with BMI < 18.5 kg/m2 and ≥ 25.0 kg/m2 had adjusted HRs for OS of 1.06 (95% CI, 0.78-1.45) and 1.01 (95% CI, 0.74-1.39), respectively. There was no evidence on a non-linear relationship between BMI and OS (Pnonlinearity = 0.63). In the nationwide cohort, the null findings were validated (Ptrend = 0.18) with adjusted HRs of 1.07 (95% CI, 0.98-1.18) for BMI < 18.5 kg/m2 and 1.05 (95% CI, 0.96-1.14) for BMI ≥ 25.0 kg/m2 (vs. BMI = 18.5-24.9 kg/m2). In the clinical cohort, BMI was not associated with progression-free survival (Ptrend = 0.81). CONCLUSIONS BMI was not associated with survival outcomes of patients with advanced biliary tract cancer. Further research is warranted incorporating more detailed body composition metrics to explore the prognostic role of adiposity in biliary tract cancer.
Collapse
Affiliation(s)
- Shinya Takaoka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naminatsu Takahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rintaro Fukuda
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Hakuta
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunaga Ishigaki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiko Kanai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo City, Tokyo, 113-8655, Japan
| | - Kohei Kurihara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Matsui
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Nobuaki Michihata
- Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Nishio
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensaku Noguchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Oyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomotaka Saito
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuichi Tange
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo City, Tokyo, 113-8655, Japan.
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Peng K, Liu Y, Liu S, Wang Z, Zhang H, He W, Jin Y, Wang L, Xia X, Xia L. Targeting MEK/COX-2 axis improve immunotherapy efficacy in dMMR colorectal cancer with PIK3CA overexpression. Cell Oncol (Dordr) 2024; 47:1043-1058. [PMID: 38315285 DOI: 10.1007/s13402-024-00916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE PIK3CA mutation or overexpression is associated with immunotherapy resistance in multiple cancer types, but is also paradoxically associated with benefit of COX-2 inhibition on patient survival of colorectal cancer (CRC) with mismatch repair deficiency (dMMR). This study examined whether and how PIK3CA status affected COX-2-mediated tumor inflammation and immunotherapy response of dMMR CRC. METHODS Murine colon cancer cells MC38, CT26, and CT26-Mlh1-KO were used to construct PIK3CA knockdown and overexpression models to mimic dMMR CRC with PIK3CA dysregulation, and xenograft models were used to evaluate how PIK3CA regulate COX-2 expression, CD8+ T cells infiltration, tumor growth, and therapy response to anti-PD-L1 treatment using immunocompetent mice. Western blot was carried out to delineate the signaling pathways in human and mouse cancer cells, and immunohistochemical analysis together with bioinformatics analysis using human patient samples. RESULTS PIK3CA upregulates COX-2 expression through MEK/ERK signaling pathway independent of AKT signaling to promote tumor inflammation and immunosuppression. PIK3CA knockdown profoundly reduced CT26 tumor growth in a CD8+ T cell-dependent manner, while PIK3CA overexpression significantly inhibited CD8+ T cells infiltration and promoted tumor growth. Furthermore, MEK or COX-2 inhibition augmented the anti-tumor activity of anti-PD-L1 immunotherapy on dMMR CRC mouse models, accompanied with increased CD8+ T cells infiltration and activated tumor microenvironment. CONCLUSION Our results identified that the PIK3CA hyperactivation in dMMR CRC upregulated COX-2 through MEK signaling, which inhibited CD8+ T cells infiltration and promoted tumor growth, together led to immunotherapy resistance. COX-2 or MEK inhibition may relieve therapy resistance and promote therapy efficacy of anti-PD-1/PD-L1 immunotherapy for treating dMMR CRC with PIK3CA overexpression or activating mutation.
Collapse
Affiliation(s)
- Kunwei Peng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Shousheng Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yanan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
- VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
11
|
Wang Y, Wang M, Liu C, Hao M, Wang W, Li Y, Shi J, Zhang X, Dang S. Hepatoprotective effects of aspirin on diethylnitrosamine-induced hepatocellular carcinoma in rats by reducing inflammation levels and PD-L1 expression. Sci Rep 2023; 13:21362. [PMID: 38049630 PMCID: PMC10695938 DOI: 10.1038/s41598-023-48812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
Aspirin, as a widely used anti-inflammatory drug, has been shown to exert anti-cancer effects in a variety of cancers. PD-L1 is widely expressed in tumor cells and inhibits anti-tumor immunity. This study aims to clarify whether aspirin exerts its anti-hepatocellular carcinoma (HCC) effect by inhibiting PD-L1 expression. The rat model of HCC was established by drinking 0.01% diethylnitrosamine (DEN), and aspirin was given by gavage. The gross and blood biochemical indexes of rats were analyzed. CD4 and CD8 expression in liver tissues were investigated by immunohistochemistry. CCK8 assay was used to detect the inhibitory effect of aspirin on the proliferation of HCC cells. The regulatory effect of aspirin on PD-L1 expression was analyzed by western blot. As a result, the tumor number and liver weight ratio in the DEN + ASA group were lower than those in the DEN group (P = 0.006, P = 0.046). Compared with the DEN group, the expression of CD4 in the DEN + ASA group was significantly increased, while CD8 was decreased (all P < 0.01). Biochemical indexes showed that there were differences in all indexes between the DEN and control group (P < 0.05). The levels of DBIL, ALP, and TT in the DEN + ASA group were lower than those in the DEN group (P = 0.038, P = 0.042, P = 0.031). In the DEN group, there was an obvious fibrous capsule around the tumor, and the portal vein was dilated. The pathological changes were mild in the DEN + ASA group. Compared with the DEN group, the expression of PD-L1 in liver tissue of the DEN + ASA group was decreased (P = 0.0495). Cytological experiments further showed that aspirin could inhibit the proliferation and PD-L1 expression in Hep G2 and Hep 3B cells. In conclusion, aspirin can inhibit the proliferation of HCC cells and reduce tumor burden by reducing inflammation and targeting PD-L1.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Muqi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Chenrui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Miao Hao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Juanjuan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
12
|
Han WJ, He P. A novel tumor microenvironment-related gene signature with immune features for prognosis of lung squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:13137-13154. [PMID: 37479755 DOI: 10.1007/s00432-023-05042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE Lung squamous cell carcinoma (LUSC) is an aggressive subset of non-small-cell lung cancer (NSCLC). The tumor microenvironment (TME) plays an important role in the development of LUSC. We aim to identify potential therapeutic targets and a TME-related prognostic signature and for LUSC. METHODS TME-related genes were obtained from TCGA-LUSC dataset. LUSC samples were clustered by the non-negative matrix clustering algorithm (NMF). The prognostic signature was constructed through univariate Cox regression, multivariate Cox regression, and the least absolute shrinkage and selection operator (LASSO) analyses. Gene set enrichment analysis (GSEA) was carried out to explore the enrichment pathways. RESULTS This study constructed a prognostic signature which contained 12 genes: HHIPL2, PLK4, SLC6A4, LSM1, TSLP, P4HA1, AMH, CLDN5, NRTN, CDH2, PTGIS, and STX1A. Patients were classified into high-risk and low-risk groups according to the median risk score of this signature. Compared with low-risk group patients, patients in high-risk group patients had poorer overall survival, which demonstrated this signature was an independent prognostic factor. Besides, correlation analysis and GSEA results revealed that genes of this signature were correlated with immune cells and drug response. CONCLUSION Our novel signature based on 12 TME-related genes might be applied as an independent prognostic indicator. Importantly, the signature could be a promising biomarker and accurately predict the prognosis of LUSC patients.
Collapse
Affiliation(s)
- Wan Jia Han
- Beijing Normal University, Beijing, China.
- Sichuan Second Hospital of TCM, Chengdu, China.
| | - Pengzhi He
- Beijing Normal University, Beijing, China
- Sichuan Second Hospital of TCM, Chengdu, China
| |
Collapse
|
13
|
Shi D, Wang J, Deng Q, Kong X, Dong Y, Yang Y, Xu Y, Ling L, Jiao Y, Yu S. KIF15 knockdown inhibits colorectal cancer proliferation and migration through affecting the ubiquitination modification of NRAS. Am J Cancer Res 2023; 13:4944-4960. [PMID: 37970344 PMCID: PMC10636684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
As one of the most common malignancies, colorectal cancer (CRC) requires a thorough understanding of the mechanisms that promote its development and the discovery of new therapeutic targets. In this study, immunohistochemical staining confirmed significantly higher expression levels of KIF15 in CRC. qPCR and western blot results demonstrated the effective suppression of KIF15 mRNA and protein expression by shKIF15. Downregulation of KIF15 inhibited the proliferation and migration of CRC cells while promoting apoptosis. In addition, evidence from the xenograft experiments in nude mice demonstrated that KIF15 knockdown also suppressed tumor growth. Through bioinformatics analysis, the downstream molecular NRAS and Rac signaling pathway associated with KIF15 were identified. KIF15 knockdown was found to inhibit NRAS expression and disrupt Rac signaling pathway. Moreover, WB and Co-IP assays revealed that KIF15 reduced the ubiquitination modification of NRAS protein by interacting with the E3 ligase MDM2, thereby enhancing NRAS protein stability. Functionally, NRAS knockdown was shown to inhibit cell proliferation and migration. In conclusion, KIF15 promoted CRC progression by regulating NRAS expression and Rac signaling pathway.
Collapse
Affiliation(s)
- Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center270 Dong’an Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Jianwei Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Qun Deng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Ying Dong
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center270 Dong’an Road, Shanghai 200032, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center270 Dong’an Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Limian Ling
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Yurong Jiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| | - Shaojun Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88th, Jiefang Road, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
14
|
Masugi Y, Takamatsu M, Tanaka M, Hara K, Inoue Y, Hamada T, Suzuki T, Arita J, Hirose Y, Kawaguchi Y, Nakai Y, Oba A, Sasahira N, Shimane G, Takeda T, Tateishi K, Uemura S, Fujishiro M, Hasegawa K, Kitago M, Takahashi Y, Ushiku T, Takeuchi K, Sakamoto M, for the GTK Pancreatic Cancer Study Group in Japan. Post-operative mortality and recurrence patterns in pancreatic cancer according to KRAS mutation and CDKN2A, p53, and SMAD4 expression. J Pathol Clin Res 2023; 9:339-353. [PMID: 37291757 PMCID: PMC10397380 DOI: 10.1002/cjp2.323] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 06/10/2023]
Abstract
Alterations in KRAS, CDKN2A (p16), TP53, and SMAD4 genes have been major drivers of pancreatic carcinogenesis. The clinical course of patients with pancreatic cancer in relation to these driver alterations has not been fully characterised in large populations. We hypothesised that pancreatic carcinomas with different combinations of KRAS mutation and aberrant expression of CDKN2A, p53, and SMAD4 might show distinctive recurrence patterns and post-operative survival outcomes. To test this hypothesis, we utilised a multi-institutional cohort of 1,146 resected pancreatic carcinomas and assessed KRAS mutations by droplet digital polymerase chain reaction and CDKN2A, p53, and SMAD4 expression by immunohistochemistry. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for disease-free survival (DFS) and overall survival (OS) were computed according to each molecular alteration and the number of altered genes using the Cox regression models. Multivariable competing risks regression analyses were conducted to assess the associations of the number of altered genes with specific patterns of recurrence. Loss of SMAD4 expression was associated with short DFS (multivariable HR, 1.24; 95% CI, 1.09-1.43) and OS times (multivariable HR, 1.27; 95% CI, 1.10-1.46). Compared to cases with 0-2 altered genes, cases with three and four altered genes had multivariable HRs for OS of 1.28 (95% CI, 1.09-1.51) and 1.47 (95% CI, 1.22-1.78), respectively (ptrend < 0.001). Patients with an increasing number of altered genes were more likely to have short DFS time (ptrend = 0.003) and to develop liver metastasis (ptrend = 0.006) rather than recurrence at local or other distant sites. In conclusion, loss of SMAD4 expression and an increasing number of altered genes were associated with unfavourable outcomes in pancreatic cancer patients. This study suggests that the accumulation of the four major driver alterations can confer a high metastatic potential to the liver, thereby impairing post-operative survival among patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan
- Division of Diagnostic PathologyKeio University School of MedicineTokyoJapan
| | - Manabu Takamatsu
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kensuke Hara
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yosuke Inoue
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Junichi Arita
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Gastroenterological SurgeryAkita University Graduate School of MedicineAkitaJapan
| | - Yuki Hirose
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshikuni Kawaguchi
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Atsushi Oba
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Naoki Sasahira
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Gaku Shimane
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Tsuyoshi Takeda
- Department of Hepato‐Biliary‐Pancreatic MedicineCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kiyoshi Hasegawa
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yu Takahashi
- Department of Hepatobiliary and Pancreatic SurgeryCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kengo Takeuchi
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| | | |
Collapse
|
15
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
16
|
Ugai T, Shimizu T, Kawamura H, Ugai S, Takashima Y, Usui G, Väyrynen JP, Okadome K, Haruki K, Akimoto N, Masugi Y, da Silva A, Mima K, Zhang X, Chan AT, Wang M, Garrett WS, Freeman GJ, Meyerhardt JA, Nowak JA, Song M, Giannakis M, Ogino S. Inverse relationship between Fusobacterium nucleatum amount and tumor CD274 (PD-L1) expression in colorectal carcinoma. Clin Transl Immunology 2023; 12:e1453. [PMID: 37538192 PMCID: PMC10394676 DOI: 10.1002/cti2.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 08/05/2023] Open
Abstract
Objectives The CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) immune checkpoint axis is known to regulate the antitumor immune response. Evidence also supports an immunosuppressive effect of Fusobacterium nucleatum. We hypothesised that tumor CD274 overexpression might be inversely associated with abundance of F. nucleatum in colorectal carcinoma. Methods We assessed tumor CD274 expression by immunohistochemistry and F. nucleatum DNA within tumor tissue by quantitative PCR in 812 cases among 4465 incident rectal and colon cancer cases that had occurred in two prospective cohort studies. Multivariable logistic regression analyses with inverse probability weighting were used to adjust for selection bias because of tissue data availability and potential confounders including microsatellite instability status, CpG island methylator phenotype, LINE-1 methylation level and KRAS, BRAF and PIK3CA mutations. Results Fusobacterium nucleatum DNA was detected in tumor tissue in 109 (13%) cases. Tumor CD274 expression level was inversely associated with the amount of F. nucleatum in colorectal cancer tissue (P = 0.0077). For one category-unit increase in three ordinal F. nucleatum categories (negative vs. low vs. high), multivariable-adjusted odds ratios (with 95% confidence interval) of the low, intermediate and high CD274 categories (vs. negative) were 0.78 (0.41-1.51), 0.64 (0.32-1.28) and 0.50 (0.25-0.99), respectively (P trend = 0.032). Conclusions Tumor CD274 expression level was inversely associated with the amount of F. nucleatum in colorectal cancer tissue, suggesting that different immunosuppressive mechanisms (i.e. PDCD1 immune checkpoint activation and tumor F. nucleatum enrichment) tend to be used by different tumor subgroups.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Takashi Shimizu
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Satoko Ugai
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Genki Usui
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
- Cancer and Translational Medicine Research Unit, Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Yohei Masugi
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | | | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Clinical and Translational Epidemiology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Division of GastroenterologyMassachusetts General HospitalBostonMAUSA
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Molin Wang
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Wendy S Garrett
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMAUSA
- Harvard T.H. Chan Microbiome in Public Health CenterBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Gordon J Freeman
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Jeffrey A Meyerhardt
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Mingyang Song
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMAUSA
- Clinical and Translational Epidemiology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Division of GastroenterologyMassachusetts General HospitalBostonMAUSA
| | - Marios Giannakis
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Cancer Immunology and Cancer Epidemiology ProgramsDana‐Farber Harvard Cancer CenterBostonMAUSA
| |
Collapse
|
17
|
Lai H, Liu Y, Wu J, Cai J, Jie H, Xu Y, Deng S. Targeting cancer-related inflammation with non-steroidal anti-inflammatory drugs: Perspectives in pharmacogenomics. Front Pharmacol 2022; 13:1078766. [PMID: 36545311 PMCID: PMC9760816 DOI: 10.3389/fphar.2022.1078766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory processes are essential for innate immunity and contribute to carcinogenesis in various malignancies, such as colorectal cancer, esophageal cancer and lung cancer. Pharmacotherapies targeting inflammation have the potential to reduce the risk of carcinogenesis and improve therapeutic efficacy of existing anti-cancer treatment. Non-steroidal anti-inflammatory drugs (NSAIDs), comprising a variety of structurally different chemicals that can inhibit cyclooxygenase (COX) enzymes and other COX-independent pathways, are originally used to treat inflammatory diseases, but their preventive and therapeutic potential for cancers have also attracted researchers' attention. Pharmacogenomic variability, including distinct genetic characteristics among different patients, can significantly affect pharmacokinetics and effectiveness of NSAIDs, which might determine the preventive or therapeutic success for cancer patients. Hence, a more comprehensive understanding in pharmacogenomic characteristics of NSAIDs and cancer-related inflammation would provide new insights into this appealing strategy. In this review, the up-to-date advances in clinical and experimental researches targeting cancer-related inflammation with NSAIDs are presented, and the potential of pharmacogenomics are discussed as well.
Collapse
Affiliation(s)
- Hongjin Lai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Wu
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Cai
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Jie
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuyang Xu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yuyang Xu, ; Senyi Deng,
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yuyang Xu, ; Senyi Deng,
| |
Collapse
|
18
|
Ugai T, Liu L, Tabung FK, Hamada T, Langworthy BW, Akimoto N, Haruki K, Takashima Y, Okadome K, Kawamura H, Zhao M, Kahaki SMM, Glickman JN, Lennerz JK, Zhang X, Chan AT, Fuchs CS, Song M, Wang M, Yu K, Giannakis M, Nowak JA, Meyerhardt JA, Wu K, Ogino S, Giovannucci EL. Prognostic role of inflammatory diets in colorectal cancer overall and in strata of tumor-infiltrating lymphocyte levels. Clin Transl Med 2022; 12:e1114. [PMID: 36437503 PMCID: PMC9702366 DOI: 10.1002/ctm2.1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Certain dietary patterns can elicit systemic and intestinal inflammatory responses, which may influence adaptive anti-tumor immune responses and tumor behavior. We hypothesized that pro-inflammatory diets might be associated with higher colorectal cancer mortality and that the association might be stronger for tumors with lower immune responses. METHODS We calculated an empirical dietary inflammatory pattern (EDIP) score in 2829 patients among 3988 incident rectal and colon carcinoma cases in the Nurses' Health Study and Health Professionals Follow-up Study. Using Cox proportional hazards regression analyses, we examined the prognostic association of EDIP scores and whether it might be modified by histopathologic immune reaction (in 1192 patients with available data). RESULTS Higher EDIP scores after colorectal cancer diagnosis were associated with worse survival, with multivariable-adjusted hazard ratios (HRs) for the highest versus lowest tertile of 1.41 (95% confidence interval [CI]: 1.13-1.77; Ptrend = 0.003) for 5-year colorectal cancer-specific mortality and 1.44 (95% CI, 1.19-1.74; Ptrend = 0.0004) for 5-year all-cause mortality. The association of post-diagnosis EDIP scores with 5-year colorectal cancer-specific mortality differed by degrees of tumor-infiltrating lymphocytes (TIL; Pinteraction = .002) but not by three other lymphocytic reaction patterns. The multivariable-adjusted, 5-year colorectal cancer-specific mortality HRs for the highest versus lowest EDIP tertile were 1.59 (95% CI: 1.01-2.53) in TIL-absent/low cases and 0.48 (95% CI: 0.16-1.48) in TIL-intermediate/high cases. CONCLUSIONS Pro-inflammatory diets after colorectal cancer diagnosis were associated with increased mortality, particularly in patients with absent or low TIL.
Collapse
|
19
|
McCabe M, Penny C, Magangane P, Mirza S, Perner Y. Left-sided colorectal cancer distinct in indigenous African patients compared to other ethnic groups in South Africa. BMC Cancer 2022; 22:1089. [PMID: 36280820 PMCID: PMC9590207 DOI: 10.1186/s12885-022-10185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction A large proportion of indigenous African (IA) colorectal cancer (CRC) patients in South Africa are young (< 50 years), with no unique histopathological or molecular characteristics. Anatomical site as well as microsatellite instability (MSI) status have shown to be associated with different clinicopathological and molecular features. This study aimed to ascertain key histopathological features in microsatellite stable (MSS) and low-frequency MSI (MSI-L) patients, to provide insight into the mechanism of the disease. Methods A retrospective cohort (2011–2015) of MSS/MSI-L CRC patient samples diagnosed at Charlotte Maxeke Johannesburg Academic Hospital was analyzed. Samples were categorized by site [right colon cancer (RCC) versus left (LCC)], ethnicity [IA versus other ethnic groups (OEG)] and MSI status (MSI-L vs MSS). T-test, Fischer’s exact and Chi-square tests were conducted. Results IA patients with LCC demonstrated an increased prevalence in males, sigmoid colon, signet-ring-cell morphology, MSI-L with BAT25/26 marker instability and advanced disease association. Conclusion This study revealed distinct histopathological features for LCC, and suggests BAT25 and BAT26 as negative prognostic markers in African CRC patients. Larger confirmatory studies are recommended.
Collapse
Affiliation(s)
- Michelle McCabe
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Johannesburg, 2193 South Africa ,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Braamfontein, Johannesburg, 2000 South Africa
| | - Clement Penny
- grid.11951.3d0000 0004 1937 1135Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193 South Africa
| | - Pumza Magangane
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Johannesburg, 2193 South Africa
| | - Sheefa Mirza
- grid.11951.3d0000 0004 1937 1135Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193 South Africa
| | - Yvonne Perner
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Johannesburg, 2193 South Africa
| |
Collapse
|
20
|
Davis JS, Chavez JC, Kok M, San Miguel Y, Lee HY, Henderson H, Overman MJ, Morris V, Kee B, Fogelman D, Advani SM, Johnson B, Parseghian C, Shen JP, Dasari A, Shaw KR, Vilar E, Raghav KP, Shureiqi I, Wolff RA, Meric-Bernstam F, Maru D, Menter DG, Kopetz S, Chang S. Association of Prediagnosis Obesity and Postdiagnosis Aspirin With Survival From Stage IV Colorectal Cancer. JAMA Netw Open 2022; 5:e2236357. [PMID: 36239938 PMCID: PMC9568800 DOI: 10.1001/jamanetworkopen.2022.36357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE The potential relationship between obesity and colorectal cancer (CRC) outcome is poorly understood in patients with late-stage disease. Increased body mass index may negate aspirin use for cancer prevention, but its role as a factor on the effectiveness of postdiagnosis aspirin use is unclear. OBJECTIVE To evaluate how prediagnosis obesity and postdiagnosis aspirin use may be associated with overall survival in patients with late-stage colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used self-reported data from patients with metastatic or treatment-refractory disease who consented to a clinical protocol at MD Anderson Cancer Center, a large US cancer treatment center. Patients were enrolled between 2010 and 2018 and followed up for mortality through July 2020. Analyses were conducted through March 2022. EXPOSURES Body mass index in the decade prior to initial diagnosis and regular aspirin use at survey completion. MAIN OUTCOMES AND MEASURES Overall survival was measured from stage IV diagnosis until death or last follow-up. Cox proportional hazards models were constructed to estimate associations of prediagnosis obesity and postdiagnosis aspirin use with overall survival. RESULTS Of 656 patients included in this analysis, 280 (42.7%) were women, 135 (20.6%) were diagnosed with CRC before age 45 years, 414 (63.1%) were diagnosed between ages 45 and 65 years, and 107 (16.3%) were diagnosed at 65 years or older; 105 patients (16.0%) were Black or Hispanic, and 501 (76.4%) were non-Hispanic White. Controlling for age, sex, race, stage at initial diagnosis, and weight change between prediagnosis and survey date, patients with obesity in the decade prior to CRC diagnosis had significantly higher likelihood of death (hazard ratio, 1.45; 95% CI, 1.11-1.91) compared with those with normal prediagnosis body mass index. Furthermore, only patients with normal prediagnosis body mass index experienced significant survival benefit with postdiagnosis aspirin use (hazard ratio, 0.59; 95% CI, 0.39-0.90). CONCLUSIONS AND RELEVANCE In this cross-sectional study, our findings suggest potentially differential tumor development in the long-term physiologic host environment of obesity. Confirmation and further evaluation are needed to determine whether prediagnosis body mass index may be used to estimate the benefit from postdiagnosis aspirin use.
Collapse
Affiliation(s)
- Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
- Now with Department of Cancer Biology, University of Kansas Medical Center, Kansas City
| | - Janelle C. Chavez
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Cancer Prevention Research Training Program, The University of Texas MD Anderson Cancer Center, Houston
- Now with Stanford University School of Medicine, Stanford, California
| | - Melissa Kok
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Cancer Prevention Research Training Program, The University of Texas MD Anderson Cancer Center, Houston
- Now with Baylor College of Medicine, Houston, Texas
| | - Yazmin San Miguel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Cancer Prevention Research Training Program, The University of Texas MD Anderson Cancer Center, Houston
- Now with Abbott Laboratories, Chicago, Illinois
| | - Hwa Young Lee
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Cancer Prevention Research Training Program, The University of Texas MD Anderson Cancer Center, Houston
| | - Henry Henderson
- Department of Cancer Prevention Research Training Program, The University of Texas MD Anderson Cancer Center, Houston
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston
- Now with Foundation Medicine, Atlanta, Georgia
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Van Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Bryan Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - David Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Now with Merck & Co, Philadelphia, Pennsylvania
| | - Shailesh M. Advani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Now with Terasaki Institute of Biomedical Innovation, Los Angeles, California
| | - Benny Johnson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Christine Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Kenna R. Shaw
- Department of Sheikh Khalifa Nahyan Ben Zayed Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston
| | - Eduardo Vilar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston
| | - Kanwal P. Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Now with Department of Cancer Biology, University of Michigan Medical School, Ann Arbor
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - David G. Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Shine Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Cancer Prevention Research Training Program, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
21
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Zhang W, Zhang J, Liu T, Xing J, Zhang H, Wang D, Tang D. Bidirectional effects of intestinal microbiota and antibiotics: a new strategy for colorectal cancer treatment and prevention. J Cancer Res Clin Oncol 2022; 148:2387-2404. [PMID: 35661254 DOI: 10.1007/s00432-022-04081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is the third most common cancer worldwide, and its incidence and mortality rates are increasing every year. The intestinal microbiota has been called the "neglected organ" and there is growing evidence that the intestinal microbiota and its metabolites can be used in combination with immunotherapy, radiotherapy and chemotherapy to greatly enhance the treatment of colorectal cancer and to address some of the side effects and adverse effects of these therapies. Antibiotics have great potential to eliminate harmful microbiota, control infection, and reduce colorectal cancer side effects. However, the use of antibiotics has been a highly controversial issue, and numerous retrospective studies have shown that the use of antibiotics affects the effectiveness of treatment (especially immunotherapy). Understanding the bi-directional role of the gut microbiota and antibiotics will further enhance our research into the diagnosis and treatment of cancer. METHODS We searched the "PubMed" database and selected the following keywords "intestinal microbiota, antibiotics, treatment, prevention, colorectal cancer". In this review, we discuss the role of the intestinal microbiota in immunotherapy, radiotherapy, chemotherapy, diagnosis, and prevention of CRC. We also conclude that the intestinal microbiota and antibiotics work together to promote the treatment of CRC through a bidirectional effect. RESULTS We found that the intestinal microbiota plays a key role in promoting immunotherapy, chemotherapy, radiotherapy, diagnosis and prevention of CRC. In addition, gut microbiota and antibiotic interactions could be a new strategy for CRC treatment. CONCLUSION The bi-directional role of the intestinal microbiota and antibiotics plays a key role in the prevention, diagnosis, and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
23
|
Suzuki T, Masugi Y, Inoue Y, Hamada T, Tanaka M, Takamatsu M, Arita J, Kato T, Kawaguchi Y, Kunita A, Nakai Y, Nakano Y, Ono Y, Sasahira N, Takeda T, Tateishi K, Uemura S, Koike K, Ushiku T, Takeuchi K, Sakamoto M, Hasegawa K, Kitago M, Takahashi Y, Fujishiro M, for the GTK Pancreatic Cancer Study Group in Japan. KRAS variant allele frequency, but not mutation positivity, associates with survival of patients with pancreatic cancer. Cancer Sci 2022; 113:3097-3109. [PMID: 35567350 PMCID: PMC9459293 DOI: 10.1111/cas.15398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022] Open
Abstract
KRAS mutation is a major driver of pancreatic carcinogenesis and will likely be a therapeutic target. Due to lack of sensitive assays for clinical samples of pancreatic cancer with low cellularity, KRAS mutations and their prognostic association have not been fully examined in large populations. In a multi-institutional cohort of 1162 pancreatic cancer patients with formalin-fixed paraffin-embedded tumor samples, we undertook droplet digital PCR (ddPCR) for KRAS codons 12/13/61. We examined detection rates of KRAS mutations by clinicopathological parameters and survival associations of KRAS mutation status. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for disease-free survival (DFS) and overall survival (OS) were computed using the Cox regression model with adjustment for potential confounders. KRAS mutations were detected in 1139 (98%) patients. The detection rate did not differ by age of tissue blocks, tumor cellularity, or receipt of neoadjuvant chemotherapy. KRAS mutations were not associated with DFS or OS (multivariable HR comparing KRAS-mutant to KRAS-wild-type tumors, 1.04 [95% CI, 0.62-1.75] and 1.05 [95% CI, 0.60-1.84], respectively). Among KRAS-mutant tumors, KRAS variant allele frequency (VAF) was inversely associated with DFS and OS with HRs per 20% VAF increase of 1.27 (95% CI, 1.13-1.42; ptrend <0.001) and 1.31 (95% CI, 1.16-1.48; ptrend <0.001), respectively. In summary, ddPCR detected KRAS mutations in clinical specimens of pancreatic cancer with high sensitivity irrespective of parameters potentially affecting mutation detections. KRAS VAF, but not mutation positivity, was associated with survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yosuke Inoue
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Manabu Takamatsu
- Division of PathologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Junichi Arita
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomotaka Kato
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshikuni Kawaguchi
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akiko Kunita
- Next‐Generation Precision Medicine Development Laboratory, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Yutaka Nakano
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yoshihiro Ono
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Naoki Sasahira
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Takeda
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kengo Takeuchi
- Division of PathologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Kiyoshi Hasegawa
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yu Takahashi
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | | |
Collapse
|
24
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Aiad M, Tahir A, Fresco K, Prenatt Z, Ramos-Feliciano K, Walia J, Stoltzfus J, Albandar HJ. Does the Combined Use of Aspirin and Immunotherapy Result in Better Outcomes in Non-Small Cell Lung Cancer Than Immunotherapy Alone? Cureus 2022; 14:e25891. [PMID: 35720783 PMCID: PMC9190187 DOI: 10.7759/cureus.25891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction: Immunotherapy works by stimulating the immune system against cancer cells. Resistance to immunotherapy represents a significant challenge in the field of medical oncology. The mechanisms by which cancer cells evade immunotherapy are not well understood. Prior research suggested overexpression of prostaglandin E-2 (PGE-2) by cancer cells, which bind to EP-2 and EP-4 receptors on the tumor-specific cytotoxic T-lymphocytes (CTLs) and suppress their anticancer role. This immunosuppressive effect is involved in evading the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade of immunotherapy, which fuels cancer cell growth and recurrence. Studies found that combining PGE-2 blockade and a PD-1 signaling inhibitor helped promote the anticancer immunity cells. If confirmed in a clinical setting, the above in vitro findings could be of great clinical significance. Methods: Given that aspirin (ASA) blocks PGE-2 production, this work aimed to evaluate whether ASA use with immunotherapy results in better outcomes than immunotherapy alone. We performed a retrospective chart review of 500 non-small cell lung cancer (NSCLC) patients aged 21 years or older treated with PD-1 and/or PD-L1 directed immunotherapy at St. Luke’s University Health Network between July 2015 and July 2021. Relevant patient, disease, and treatment-related variables were collected, including ASA use (≥ 81 mg daily) and the type of immunotherapy. Bivariate analyses were conducted to determine which variables to include in a multivariable model. The four primary outcomes included survival at 18-months, both after diagnosis and starting immunotherapy, achieving complete remission (CR), and having a progressive disease (PD), as defined by RECIST (Response Evaluation Criteria in Solid Tumors) criteria. Secondary outcomes included therapy-related toxicities and complications in the different treatment groups. Results: After bivariate analysis, no statistical significance was found for a difference in 18-month survival between ASA and non-ASA groups (50.3% vs 49.7%, p-value = 0.79). ASA with PD-L1 inhibitor showed a trend towards a higher likelihood of achieving CR [adjusted odds ratio (AOR) 1.85] with a p-value close to statistical significance (0.06). However, ASA with PD-L1 showed high statistical significance as an independent variable associated with a decreased likelihood of having PD (AOR 0.44, p < 0.001). These findings suggest that NSCLC patients receiving PD-L1 inhibitors could benefit more from daily ASA than patients treated with PD-1 inhibitors. Our study emphasizes using the Eastern Cooperative Oncology Group (ECOG) scoring of the performance status (PS) in NSCLC patients. Poorer PS was associated with lower survival, decreased likelihood of CR, and more PD. Other variables associated with worse outcomes were advanced cancer stage at diagnosis and male gender. Low-PD-L1 expression in NSCLC was associated with an increased likelihood of survival; this could be of clinical significance, especially with previous studies suggesting better outcomes of using ASA in PD-L1 low tumors. Conclusion: These findings suggest that daily ASA use with PD-L1 inhibitors is associated with more favorable outcomes in NSCLC. More studies are needed to investigate further the potential benefits vs. risks of using ASA with different immunotherapies and the other possible variables affecting treatment outcomes.
Collapse
|
26
|
Akimoto N, Väyrynen JP, Zhao M, Ugai T, Fujiyoshi K, Borowsky J, Zhong R, Haruki K, Arima K, Lau MC, Kishikawa J, Twombly TS, Takashima Y, Song M, Zhang X, Wu K, Chan AT, Meyerhardt JA, Giannakis M, Nowak JA, Ogino S. Desmoplastic Reaction, Immune Cell Response, and Prognosis in Colorectal Cancer. Front Immunol 2022; 13:840198. [PMID: 35392092 PMCID: PMC8980356 DOI: 10.3389/fimmu.2022.840198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The relationships between tumor stromal features (such as desmoplastic reaction, myxoid stroma, and keloid-like collagen bundles) and immune cells in the colorectal carcinoma microenvironment have not yet been fully characterized. Methods In 908 tumors with available tissue among 4,465 incident colorectal adenocarcinoma cases in two prospective cohort studies, we examined desmoplastic reaction, myxoid stroma, and keloid-like collagen bundles. We conducted multiplex immunofluorescence for T cells [CD3, CD4, CD8, CD45RO (PTPRC), and FOXP3] and for macrophages [CD68, CD86, IRF5, MAF, and MRC1 (CD206)]. We used the inverse probability weighting method and the 4,465 incident cancer cases to adjust for selection bias. Results Immature desmoplastic reaction was associated with lower densities of intraepithelial CD3+CD8+CD45RO+ cells [multivariable odds ratio (OR) for the highest (vs. lowest) density category, 0.43; 95% confidence interval (CI), 0.29-0.62; Ptrend <0.0001] and stromal M1-like macrophages [the corresponding OR, 0.44; 95% CI, 0.28-0.70; Ptrend = 0.0011]. Similar relations were observed for myxoid stroma [intraepithelial CD3+CD8+CD45RO+ cells (Ptrend <0.0001) and stromal M1-like macrophages (Ptrend = 0.0007)] and for keloid-like collagen bundles (Ptrend <0.0001 for intraepithelial CD3+CD8+CD45RO+ cells). In colorectal cancer-specific survival analyses, multivariable-adjusted hazard ratios (with 95% confidence intervals) were 0.32 (0.23-0.44; Ptrend <0.0001) for mature (vs. immature) desmoplastic reaction, 0.25 (0.16-0.39; Ptrend <0.0001) for absent (vs. marked) myxoid stroma, and 0.12 (0.05-0.28; Ptrend <0.0001) for absent (vs. marked) keloid-like collagen bundles. Conclusions Immature desmoplastic reaction and myxoid stroma were associated with lower densities of tumor intraepithelial memory cytotoxic T cells and stromal M1-like macrophages, likely reflecting interactions between tumor, immune, and stromal cells in the colorectal tumor microenvironment.
Collapse
Affiliation(s)
- Naohiko Akimoto
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Gastroenterology, Nippon Medical School, Graduate School of Medicine, Tokyo, Japan
| | - Juha P. Väyrynen
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Melissa Zhao
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Tomotaka Ugai
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kenji Fujiyoshi
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jennifer Borowsky
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rong Zhong
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Koichiro Haruki
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kota Arima
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mai Chan Lau
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Junko Kishikawa
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Tyler S. Twombly
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yasutoshi Takashima
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jeffrey A. Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan A. Nowak
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shuji Ogino
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, United States
| |
Collapse
|
27
|
Choi HB, Pyo JS, Son S, Kim K, Kang G. Diagnostic and Prognostic Roles of CDX2 Immunohistochemical Expression in Colorectal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12030757. [PMID: 35328309 PMCID: PMC8947721 DOI: 10.3390/diagnostics12030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
The study is aimed to evaluate the diagnostic and prognostic role of the immunohistochemical expression of the Caudal-type homeobox transcription factor 2 (CDX2) in colorectal cancers (CRCs) through a meta-analysis. By searching relevant databases, 38 articles were eligible to be included in this study. We extracted the information for CDX2 expression rates and the correlation between CDX2 expression and clinicopathological characteristics. The estimated rates of CDX2 expression were 0.882 [95% confidence interval (CI) 0.774−0.861] and 0.893 (95% CI 0.820−0.938) in primary and metastatic CRCs, respectively. Furthermore, based on their histologic subtype, CDX2 expression rates of adenocarcinoma and medullary carcinoma were 0.886 (95% CI 0.837−0.923) and 0.436 (95% CI 0.269−0.618), respectively. There was a significant difference in CDX2 expression rates between adenocarcinoma and medullary carcinoma in the meta-regression test (p < 0.001). In addition, CDX2 expression was significantly lower in CRCs with the BRAFV600E mutation than in CRCs without mutation. Patients with CDX2 expression had better overall and cancer-specific survival rates than those without CDX2 expression. Thus, CDX2 is a useful diagnostic and prognostic marker CRCs.
Collapse
Affiliation(s)
- Hong Bae Choi
- Department of Surgery, Daehang Hospital, Seoul 06699, Korea
| | - Jung-Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea
| | - Soomin Son
- Division of Molecular Life and Chemical Sciences, College of Natural Sciences, Ewha Woman's University, Seoul 03760, Korea
| | | | - Guhyun Kang
- Department of Pathology, Daehang Hospital, Seoul 06699, Korea
| |
Collapse
|
28
|
Obeidat AE, Mahfouz R, Monti G, Mansour MM, Darweesh M, Acoba J. Pre-Diagnosis Aspirin Use Has No Effect on Overall Survival in Patients With Colorectal Cancer: A Study of a Multi-Racial Population. Cureus 2022; 14:e22769. [PMID: 35371873 PMCID: PMC8971118 DOI: 10.7759/cureus.22769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 11/05/2022] Open
|
29
|
Mädge JC, Stallmach A, Kleebusch L, Schlattmann P. Meta-analysis of aspirin-guided therapy of colorectal cancer. J Cancer Res Clin Oncol 2022; 148:1407-1417. [PMID: 35171329 PMCID: PMC9114035 DOI: 10.1007/s00432-022-03942-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/03/2022] [Indexed: 12/03/2022]
Abstract
Abstract Purpose colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. Some evidence has shown that aspirin can reduce the morbidity and mortality of CRC. The aim of this meta-analysis was to compare standard care of patients with CRC and standard care with the addition of aspirin in terms of the survival benefit. Methods The systematic search was conducted by two independent reviewers in the databases PubMed and Web of Science. Survival data were extracted from studies published before July 2019. We searched for randomised controlled trials, cohort studies and case-control studies. Results We included 27 studies in our meta-analysis. There was a sample size of 237,245 patients overall. Aspirin use after diagnosis was associated with an improvement in CRC-specific survival with a hazard ratio (HR) for cancer-related death of 0.74 (95% CI: 0.62–0.89). Our analysis of overall survival data revealed reduced mortality with an HR of 0.82 (95% CI: 0.74–0.90). Patients with the phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation profited from postdiagnosis aspirin use (HR = 0.74, 95% CI: 0.56–0.97). For a high expression of prostaglandin-endoperoxide synthase 2 (PTGS2) = COX-2, we found an HR of 0.65 (95% CI: 0.52–0.82). Conclusion Aspirin can improve the outcome of patients with CRC. PIK3CA mutation status and high expression of PTGS2 are associated with longer survival. However, randomised controlled trials are needed to investigate postdiagnosis aspirin use in CRC patients taking into account cancer stage and gene expression. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-03942-1.
Collapse
Affiliation(s)
- Johanna C Mädge
- Department of Medical Statistics, Computer Sciences and Data Sciences, Jena University Hospital, 07743, Jena, Germany.
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, 07743, Jena, Germany
| | - Lisa Kleebusch
- Department of Internal Medicine, Thüringen-Kliniken Pößneck, 07381, Pößneck, Germany
| | - Peter Schlattmann
- Department of Medical Statistics, Computer Sciences and Data Sciences, Jena University Hospital, 07743, Jena, Germany
| |
Collapse
|
30
|
The modulation of PD-L1 induced by the oncogenic HBXIP for breast cancer growth. Acta Pharmacol Sin 2022; 43:429-445. [PMID: 33824459 PMCID: PMC8791967 DOI: 10.1038/s41401-021-00631-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Programmed death ligand-1 (PD-L1)/PD-1 checkpoint extensively serves as a central mediator of immunosuppression. A tumor-promoting role for abundant PD-L1 in several cancers is revealed. However, the importance of PD-L1 and how the PD-L1 expression is controlled in breast cancer remains obscure. Here, the mechanisms of controlling PD-L1 at the transcription and protein acetylation levels in promoting breast cancer growth are presented. Overexpressed PD-L1 accelerates breast cancer growth in vitro and in vivo. RNA-seq uncovers that PD-L1 can induce some target genes affecting many cellular processes, especially cancer development. In clinical breast cancer tissues and cells, PD-L1 and HBXIP are both increased, and their expressions are positively correlated. Mechanistic exploration identifies that HBXIP stimulates the transcription of PD-L1 through co-activating ETS2. Specifically, HBXIP induces PD-L1 acetylation at K270 site through interacting with acetyltransferase p300, leading to the stability of PD-L1 protein. Functionally, depletion of HBXIP attenuates PD-L1-accelerated breast tumor growth. Aspirin alleviates breast cancer via targeting PD-L1 and HBXIP. Collectively, the findings display new light into the mechanisms of controlling tumor PD-L1 and broaden the utility for PD-L1 as a target in breast cancer therapy.
Collapse
|
31
|
K W To K, Cho WCS. Drug Repurposing for Cancer Therapy in the Era of Precision Medicine. Curr Mol Pharmacol 2022; 15:895-903. [PMID: 35156588 DOI: 10.2174/1874467215666220214104530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022]
Abstract
Drug repurposing refers to the identification of clinically approved drugs with the known safety profiles and defined pharmacokinetic properties for new indications. Despite the advances in oncology research, cancers are still associated with the most unmet medical needs. Drug repurposing has emerged as a useful approach for the search for effective and durable cancer treatment. It may also represent a promising strategy to facilitate precision cancer treatment and overcome drug resistance. The repurposing of non-cancer drugs for precision oncology effectively extends the inventory of actionable molecular targets and thus increases the number of patients who may benefit from precision cancer treatment. In cancer types where genetic heterogeneity is so high that it is not feasible to identify strong repurposed drug candidates for standard treatment, the precision oncology approach offers individual patients access to novel treatment options. For repurposed candidates with low potency, a combination of multiple repurposed drugs may produce a synergistic therapeutic effect. Precautions should be taken when combining repurposed drugs with anticancer agents to avoid detrimental drug-drug interactions and unwanted side effects. New multifactorial data analysis and artificial intelligence methods are needed to untangle the complex association of molecular signatures influencing specific cancer subtypes to facilitate drug repurposing in precision oncology.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
32
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
33
|
Xiao S, Xie W, Fan Y, Zhou L. Timing of Aspirin Use Among Patients With Colorectal Cancer in Relation to Mortality: A Systematic Review and Meta-Analysis. JNCI Cancer Spectr 2021; 5:pkab067. [PMID: 34514327 PMCID: PMC8421810 DOI: 10.1093/jncics/pkab067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/25/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Exposure of aspirin has been associated with reduced risk of colorectal cancer (CRC) incidence, but aspirin use in relation to CRC patients' mortality remains undetermined. It is necessary to quantify the association between aspirin use and CRC mortality. Methods Two authors independently searched the electronic databases (PubMed, Embase, and the Cochrane Library) from 1947 through April 25, 2020. All observational studies assessing the association between different timing of aspirin use and CRC mortality were included. The effect size on study outcomes was calculated using random-effect model and presented as risk ratio (RR) with 95% confidence interval (CI). Heterogeneity, publication bias, and quality of included studies were also assessed. Results A total of 34 studies were included in this systematic review and meta-analysis. Prediagnosis aspirin use was not associated with CRC-specific mortality (RR = 0.91, 95% CI = 0.79 to 1.05) and all-cause mortality (RR = 0.87, 95% CI = 0.57 to 1.31). A statistically significant association between continued aspirin use and improvement in both CRC-specific mortality (RR = 0.76, 95% CI = 0.70 to 0.81) and all-cause mortality (RR = 0.83, 95% CI = 0.74 to 0.93) was observed. Postdiagnosis use of aspirin was associated only with reduced all-cause mortality (RR = 0.80, 95% CI = 0.69 to 0.94). Conclusions Continued aspirin use before and after CRC diagnosis has the most advantage regarding the improvement of CRC mortality. Nevertheless, further prospective trials and mechanistic studies are highly warranted.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yihan Fan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
34
|
Li Y, Tang J, Jiang J, Chen Z. Metabolic checkpoints and novel approaches for immunotherapy against cancer. Int J Cancer 2021; 150:195-207. [PMID: 34460110 PMCID: PMC9298207 DOI: 10.1002/ijc.33781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 01/22/2023]
Abstract
While immunotherapy has achieved unprecedented success in conquering cancer, the majority of patients develop primary or acquired resistance to immunotherapy, largely in part due to the complicated metabolic networks in the tumor microenvironment. The microenvironmental metabolic networks are woven by a set of metabolic checkpoints, and accumulating evidence indicates that these metabolic checkpoints orchestrate antitumor immunity and immunotherapy. Metabolic checkpoints can regulate T cell development, differentiation and function, orchestrate metabolic competition between tumor cells and infiltrating T cells, and respond to the metabolic stress imposed on the infiltrating T cells. Furthermore, metabolic checkpoints and pathways can modulate the expression profiles of immune checkpoint receptors and ligands and vice versa. Therefore, repurposing interventions targeting metabolic checkpoints might synergize with immunotherapy, and promising approaches to reprogram the metabolic environment are much more warranted. In this review, we summarize recent researches on the metabolic checkpoints and discuss how these metabolic checkpoints regulate antitumor immunity and the promising approaches to modulate these metabolic checkpoints in the combination therapy. A comprehensive and objective understanding of the metabolic checkpoints might help the research and development of novel approaches to antitumor immunotherapy.
Collapse
Affiliation(s)
- Yiming Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Tang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianli Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Yilmaz Ç, Köksoy S, Çeker T, Aslan M. Diclofenac down-regulates COX-2 induced expression of CD44 and ICAM-1 in human HT29 colorectal cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2259-2272. [PMID: 34436652 DOI: 10.1007/s00210-021-02139-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
Cyclooxygenase-2 (COX-2) is expressed in a variety of human colorectal cancer cells and can contribute to carcinogenesis. This study aimed to investigate the effect of diclofenac (DCF), a selective COX-2 inhibitor, on cell adhesion molecules and apoptosis in human colon adenocarcinoma cells. Levels of homing cell adhesion molecule (H-CAM, CD44), intercellular adhesion molecule-1 (ICAM-1, CD54), vascular cell adhesion molecule-1 (VCAM-1, CD106), and epithelial cell adhesion molecule (EpCAM, CD326) were evaluated in cancer cells overexpressing (HT29) or not expressing (HCT116) COX-2. Cell viability was determined by MTT assay, COX-2 protein levels and activity were assessed by immunofluorescence and fluorometric analysis, respectively. Endogenous levels of polyunsaturated fatty acids (PUFAs) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) while expression of cell adhesion molecules was analyzed by flow cytometry. Annexin V-FITC/propidium iodide-labelling and fluorometric caspase-3 activity measurements were carried out to determine apoptosis. Flow cytometry analysis revealed that the percentage of CD44 and ICAM-1 staining in HCT116 cells was significantly lower compared to HT29 cells. In HT29 cells, phorbol 12-myristate 13-acetate (PMA) induced COX-2 expression and increased CD44 and ICAM-1 levels were down-regulated by diclofenac. Stimulation of COX-2 activity in HT29 cells via PMA significantly decreased diclofenac associated increase in PUFA levels. Treatment with both diclofenac and PMA significantly increased the number of apoptotic cells and caspase-3 activity in colon adenocarcinoma cells compared to control groups. In conclusion, diclofenac's effect to retard colorectal tumor growth and metastasis occurs in COX-2 overexpressing colon cancer cells by increased apoptosis and decreased expression of CD44 and ICAM-1.
Collapse
Affiliation(s)
- Çağatay Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Sadi Köksoy
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey.,Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey. .,Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey.
| |
Collapse
|
36
|
Tran PHL, Lee BJ, Tran TTD. Current Studies of Aspirin as an Anticancer Agent and Strategies to Strengthen its Therapeutic Application in Cancer. Curr Pharm Des 2021; 27:2209-2220. [PMID: 33138752 DOI: 10.2174/1381612826666201102101758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Aspirin has emerged as a promising intervention in cancer in the past decade. However, there are existing controversies regarding the anticancer properties of aspirin as its mechanism of action has not been clearly defined. In addition, the risk of bleeding in the gastrointestinal tract from aspirin is another consideration that requires medical and pharmaceutical scientists to work together to develop more potent and safe aspirin therapy in cancer. This review presents the most recent studies of aspirin with regard to its role in cancer prevention and treatment demonstrated by highlighted clinical trials, mechanisms of action as well as approaches to develop aspirin therapy best beneficial to cancer patients. Hence, this review provides readers with an overview of aspirin research in cancer that covers not only the unique features of aspirin, which differentiate aspirin from other non-steroidal anti-inflammatory drugs (NSAIDs), but also strategies that can be used in the development of drug delivery systems carrying aspirin for cancer management. These studies convey optimistic messages on the continuing efforts of the scientist on the way of developing an effective therapy for patients with a low response to current cancer treatments.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
37
|
Ugai T, Zhao M, Shimizu T, Akimoto N, Shi S, Takashima Y, Zhong R, Lau MC, Haruki K, Arima K, Fujiyoshi K, Langworthy B, Masugi Y, da Silva A, Nosho K, Baba Y, Song M, Chan AT, Wang M, Meyerhardt JA, Giannakis M, Väyrynen JP, Nowak JA, Ogino S. Association of PIK3CA mutation and PTEN loss with expression of CD274 (PD-L1) in colorectal carcinoma. Oncoimmunology 2021; 10:1956173. [PMID: 34377593 PMCID: PMC8331006 DOI: 10.1080/2162402x.2021.1956173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy targeting the CD274 (PD-L1)/PDCD1 (PD-1) immune checkpoint axis has emerged as a promising treatment strategy for various cancers. Experimental evidence suggests that phosphatidylinositol-4,5-bisphosphonate 3-kinase (PI3K) signaling may upregulate CD274 expression. Thus, we hypothesized that PIK3CA mutation, PTEN loss, or their combined status might be associated with CD274 overexpression in colorectal carcinoma. We assessed tumor CD274 and PTEN expression by immunohistochemistry and assessed PIK3CA mutation by pyrosequencing in 753 patients among 4,465 incident rectal and colon cancer cases that had occurred in two U.S.-wide prospective cohort studies. To adjust for potential confounders and selection bias due to tissue availability, inverse probability weighted multivariable ordinal logistic regression analyses used the 4,465 cases and tumoral data including microsatellite instability, CpG island methylator phenotype, KRAS and BRAF mutations. PIK3CA mutation and loss of PTEN expression were detected in 111 of 753 cases (15%) and 342 of 585 cases (58%), respectively. Tumor CD274 expression was negative in 306 (41%), low in 195 (26%), and high in 252 (33%) of 753 cases. PTEN loss was associated with CD274 overexpression [multivariable odds ratio (OR) 1.83; 95% confidence interval (CI), 1.22–2.75; P = .004]. PIK3CA mutation was statistically-insignificantly (P = .036 with the stringent alpha level of 0.005) associated with CD274 overexpression (multivariable OR, 1.54; 95% CI, 1.03–2.31). PIK3CA-mutated PTEN-lost tumors (n = 33) showed higher prevalence of CD274-positivity (82%) than PIK3CA-wild-type PTEN-lost tumors (n = 204; 70% CD274-positivity) and PTEN-expressed tumors (n = 147; 50% CD274-positivity) (P = .003). Our findings support the role of PI3K signaling in the CD274/PDCD1 pathway.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Takashi Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin Langworthy
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohei Masugi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Annacarolina da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Katsuhiko Nosho
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshifumi Baba
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
38
|
Imazeki H, Ogiwara Y, Kawamura M, Boku N, Kudo-Saito C. CD11b +CTLA4 + myeloid cells are a key driver of tumor evasion in colorectal cancer. J Immunother Cancer 2021; 9:jitc-2021-002841. [PMID: 34261702 PMCID: PMC8280900 DOI: 10.1136/jitc-2021-002841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tumor metastasis is the major cause of death of colorectal cancer (CRC), and metastatic CRC remains incurable in many cases despite great advances in genetic and molecular profiling, and clinical development of numerous drugs, including immune checkpoint inhibitors. Thus, more effective treatments are urgently needed for the patients in clinical settings. Methods We used mouse CRC metastasis models that murine Colon26 cells were subcutaneously and intravenously implanted and attempted to elucidate the tumor biological and immunological mechanisms underlying cancer metastasis. Then, we evaluated in vivo antitumor efficacy induced by agents targeting the identified molecular mechanisms using the mouse models. We validated the clinical relevancy of the findings using peripheral blood mononuclear cells obtained from stage IV metastatic CRC patients. Results CD11b+CTLA4+ myeloid cells were systemically expanded in the metastatic settings and facilitated tumor progression and metastasis directly via generating lipid droplets in tumor cells and indirectly via inducing immune exhaustion. These events were mediated by IL1B produced via the CTLA4 signaling from the increased myeloid cells. Blocking CTLA4 and IL1B with the specific mAbs significantly suppressed tumor progression and metastasis in the mouse models resistant to anti-PD1 therapy, and the therapeutic efficacy was optimized by blocking cyclooxygenases with aspirin. Conclusions The CD11b+CTLA4+ cells are a key driver of tumor evasion, and targeting the CTLA4-IL1B axis could be a promising strategy for treating metastatic CRC. The triple combination regimen with anti-CTLA4/IL1B mAbs and aspirin may be useful in clinical settings.
Collapse
Affiliation(s)
- Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Mami Kawamura
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Narikazu Boku
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
39
|
Elwood PC, Morgan G, Delon C, Protty M, Galante J, Pickering J, Watkins J, Weightman A, Morris D. Aspirin and cancer survival: a systematic review and meta-analyses of 118 observational studies of aspirin and 18 cancers. Ecancermedicalscience 2021; 15:1258. [PMID: 34567243 PMCID: PMC8426031 DOI: 10.3332/ecancer.2021.1258] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the accumulation of research papers on aspirin and cancer, there is doubt as to whether or not aspirin is an acceptable and effective adjunct treatment of cancer. The results of several randomised trials are awaited, and these should give clear evidence on three common cancers: colon, breast and prostate. The biological effects of aspirin appear likely however to be of relevance to cancer generally, and to metastatic spread, rather than just to one or a few cancers, and there is already a lot of evidence, mainly from observational studies, on the association between aspirin and survival in a wide range of cancers. AIMS In order to test the hypothesis that aspirin taking is associated with an increase in the survival of patients with cancer, we conducted a series of systematic literature searches to identify clinical studies of patients with cancer, some of whom took aspirin after having received a diagnosis of cancer. RESULTS Three literature searches identified 118 published observational studies in patients with 18 different cancers. Eighty-one studies report on aspirin and cancer mortality and 63 studies report on all-cause mortality. Within a total of about a quarter of a million patients with cancer who reported taking aspirin, representing 20%-25% of the total cohort, we found aspirin to be associated with a reduction of about 20% in cancer deaths (pooled hazard ratio (HR): 0.79; 95% confidence intervals: 0.73, 0.84 in 70 reports and a pooled odds ratio (OR): 0.67; 0.45, 1.00 in 11 reports) with similar reductions in all-cause mortality (HR: 0.80; 0.74, 0.86 in 56 studies and OR: 0.57; 0.36, 0.89 in seven studies). The relative safety of aspirin taking was examined in the studies and the corresponding author of every paper was written to asking for additional information on bleeding. As expected, the frequency of bleeding increased in the patients taking aspirin, but fatal bleeding was rare and no author reported a significant excess in fatal bleeds associated with aspirin. No author mentioned cerebral bleeding in the patients they had followed. CONCLUSIONS There is a considerable body of evidence suggestive of about a 20% reduction in mortality in patients with cancer who take aspirin, and the benefit appears not to be restricted to one or a few cancers. Aspirin, therefore, appears to deserve serious consideration as an adjuvant treatment of cancer, and patients with cancer, and their carers, have a right to be informed of the available evidence.
Collapse
Affiliation(s)
- Peter C Elwood
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Gareth Morgan
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Majd Protty
- Cardiff Lipidomics Group, Cardiff University, UK
| | - Julieta Galante
- University of Cambridge, Cambridge, UK
- National Institute for Health Research (NIHR) Applied Research Collaboration East of England, Cambridge, UK
| | - Janet Pickering
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - John Watkins
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Public Health Wales, Cardiff, UK
| | - Alison Weightman
- Specialist Unit for Review Evidence, Cardiff University, Cardiff, UK
| | - Delyth Morris
- University Library Service, Cardiff University, Cardiff, UK
| |
Collapse
|
40
|
Figueiredo JC, Jacobs EJ, Newton CC, Guinter MA, Cance WG, Campbell PT. Associations of Aspirin and Non-Aspirin Non-Steroidal Anti-Inflammatory Drugs With Colorectal Cancer Mortality After Diagnosis. J Natl Cancer Inst 2021; 113:833-840. [PMID: 33528005 DOI: 10.1093/jnci/djab008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/21/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aspirin use reduces colorectal cancer (CRC) incidence, but there is limited evidence regarding associations of aspirin and non-aspirin non-steroidal anti-inflammatory drugs (NSAIDs) with CRC-specific survival. METHODS This prospective analysis includes women and men from the Cancer Prevention Study-II Nutrition Cohort who were cancer free at baseline (1992 or 1993) and diagnosed with CRC during incidence follow-up through 2015. Detailed information on aspirin and non-aspirin NSAID use was self-reported on questionnaires at baseline, in 1997, and every 2 years thereafter. Pre- and postdiagnosis data were available for 2686 and 1931 participants without distant metastases, respectively, among whom 512 and 251 died from CRC during mortality follow-up through 2016. Secondary analyses examined associations between prediagnosis aspirin use and stage at diagnosis (distant metastatic vs localized or regional). All statistical tests were 2-sided. RESULTS Long-term regular use of aspirin (>15 times per month) before diagnosis was associated with lower CRC-specific mortality (multivariable-adjusted hazard ratio [HR] = 0.69, 95% confidence interval [CI] = 0.52 to 0.92). Postdiagnosis regular aspirin use was not statistically significantly associated with risk of CRC-specific mortality overall (HR = 0.82, 95% CI = 0.62 to 1.09), although participants who began regular aspirin use only after their diagnosis were at lower risk than participants who did not use aspirin at both the pre- and postdiagnosis periods (HR = 0.60, 95% CI = 0.36 to 0.98). Long-term aspirin use before diagnosis was also associated with lower odds of diagnosis with distant metastases (multivariable-adjusted odds ratio = 0.73, 95% CI = 0.53 to 0.99). CONCLUSIONS Our results suggest that long-term aspirin use before a diagnosis of nonmetastatic colorectal cancer may be associated with lower CRC-specific mortality after diagnosis, consistent with possible inhibition of micrometastases before diagnosis.
Collapse
Affiliation(s)
- Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric J Jacobs
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mark A Guinter
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, GA, USA
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| |
Collapse
|
41
|
Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal 2021; 35:e23810. [PMID: 33938589 PMCID: PMC8183910 DOI: 10.1002/jcla.23810] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Due to advances in understanding the immune microenvironment of colorectal cancer (CRC), microsatellite classification (dMMR/MSI-H and pMMR/MSS) has become a key biomarker for the diagnosis and treatment of CRC patients and therefore has important clinical value. Microsatellite status is associated with a variety of clinicopathological features and affects drug resistance and the prognosis of patients. CRC patients with different microsatellite statuses have different compositions and distributions of immune cells and cytokines within their tumor microenvironments (TMEs). Therefore, there is great interest in reversing or reshaping CRC TMEs to transform immune tolerant "cold" tumors into immune sensitive "hot" tumors. This requires a thorough understanding of differences in the immune microenvironments of MSI-H and MSS type tumors. This review focuses on the relationship between CRC microsatellite status and the immune microenvironment. It focuses on how this relationship has value for clinical application in diagnosis and treatment, as well as exploring the limitations of its current application.
Collapse
Affiliation(s)
- Junge Bai
- The Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Hongsheng Chen
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Xuefeng Bai
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
42
|
Wang T, Townsend MK, Eliassen AH, Terry KL, Song M, Irwin ML, Tworoger SS. Prediagnosis and postdiagnosis leisure time physical activity and survival following diagnosis with ovarian cancer. Int J Cancer 2021; 149:1067-1075. [PMID: 33963766 DOI: 10.1002/ijc.33676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Little is known about the influence of prediagnosis and postdiagnosis physical activity on ovarian cancer survival. We investigated this association in two large cohorts, the Nurses' Health Study (NHS) and NHSII. Analyses included 1461 women with confirmed invasive, epithelial ovarian cancer and data on physical activity. Cox regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for ovarian cancer-specific mortality. Ovarian cancer-specific mortality was not associated with physical activity reported 1-8 years before diagnosis overall (≥7.5 vs <1.5 MET-hours/week, HR = 0.96), for high-grade serous/ poorly differentiated tumors, or non-serous/ low-grade serous tumors (P-heterogeneity = .45). An inverse association was observed for activity 1-4 years after diagnosis (≥7.5 vs <1.5 MET-hours/week, HR = 0.67, 95%CI: 0.48-0.94), with similar results by histotype (P-heterogeneity = .53). Women who decreased their activity from ≥7.5 MET-hours/week 1-8 years before diagnosis to <7.5 MET-hours/week 1-4 years after diagnosis, compared to those with <7.5 MET-hours/week across periods, had a 49% increased risk of death (HR = 1.49, 95%CI: 1.07-2.08). Physical activity after, but not before, ovarian cancer diagnosis was associated with better prognosis.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Mary K Townsend
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Melinda L Irwin
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Jackson CM, Choi J, Routkevitch D, Pant A, Saleh L, Ye X, Caplan JM, Huang J, McDougall CG, Pardoll DM, Brem H, Tamargo RJ, Lim M. PD-1+ Monocytes Mediate Cerebral Vasospasm Following Subarachnoid Hemorrhage. Neurosurgery 2021; 88:855-863. [PMID: 33370819 DOI: 10.1093/neuros/nyaa495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cerebral vasospasm is a major source of morbidity and mortality following aneurysm rupture and has limited treatment options. OBJECTIVE To evaluate the role of programmed death-1 (PD-1) in cerebral vasospasm. METHODS Endovascular internal carotid artery perforation (ICAp) was used to induce cerebral vasospasm in mice. To evaluate the therapeutic potential of targeting PD-1, programmed death ligand-1 (PD-L1) was administered 1 h after ICAp and vasospasm was measured histologically at the level of the ICA bifurcation bilaterally. PD-1 expressing immune cell populations were evaluated by flow cytometry. To correlate these findings to patients and evaluate the potential of PD-1 as a biomarker, monocytes were isolated from the peripheral blood and analyzed by flow cytometry in a cohort of patients with ruptured cerebral aneurysms. The daily frequency of PD-1+ monocytes in the peripheral blood was correlated to transcranial Doppler velocities as well as clinical and radiographic vasospasm. RESULTS We found that PD-L1 administration prevented cerebral vasospasm by inhibiting ingress of activated Ly6c+ and CCR2+ monocytes into the brain. Human correlative studies confirmed the presence of PD-1+ monocytes in the peripheral blood of patients with ruptured aneurysms and the frequency of these cells corresponded with cerebral blood flow velocities and clinical vasospasm. CONCLUSION Our results identify PD-1+ monocytes as mediators of cerebral vasospasm and support PD-1 agonism as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Choi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Denis Routkevitch
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayush Pant
- The Bloomberg∼Kimmel Institute for Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center
| | - Laura Saleh
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobu Ye
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justin M Caplan
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Judy Huang
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cameron G McDougall
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- The Bloomberg∼Kimmel Institute for Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafael J Tamargo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Väyrynen JP, Haruki K, Väyrynen SA, Lau MC, Dias Costa A, Borowsky J, Zhao M, Ugai T, Kishikawa J, Akimoto N, Zhong R, Shi S, Chang TW, Fujiyoshi K, Arima K, Twombly TS, Da Silva A, Song M, Wu K, Zhang X, Chan AT, Nishihara R, Fuchs CS, Meyerhardt JA, Giannakis M, Ogino S, Nowak JA. Prognostic significance of myeloid immune cells and their spatial distribution in the colorectal cancer microenvironment. J Immunother Cancer 2021; 9:jitc-2020-002297. [PMID: 33931472 PMCID: PMC8098931 DOI: 10.1136/jitc-2020-002297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background Myeloid cells represent an abundant yet heterogeneous cell population in the colorectal cancer microenvironment, and their roles remain poorly understood. Methods We used multiplexed immunofluorescence combined with digital image analysis to identify CD14+ monocytic and CD15+ granulocytic cells and to evaluate their maturity (HLA-DR and CD33), immunosuppressive potential (ARG1) and proximity to cytokeratin (KRT)-positive tumor cells in 913 colorectal carcinomas. Using covariate data of 4465 incident colorectal cancers in two prospective cohort studies, the inverse probability weighting method was used with multivariable-adjusted Cox proportional hazards models to assess cancer-specific mortality according to ordinal quartiles (Q1–Q4) of myeloid cell densities. Immune cell–tumor cell proximity was measured with the nearest neighbor method and the G-cross function, which determines the likelihood of any tumor cell having at least one immune cell of the specified type within a certain radius. Results Higher intraepithelial (Ptrend=0.0002; HR for Q4 (vs Q1), 0.48, 95% CI 0.31 to 0.76) and stromal (Ptrend <0.0001; HR for Q4 (vs Q1), 0.42, 95% CI 0.29 to 0.63) densities of CD14+HLA-DR+ cells were associated with lower colorectal cancer-specific mortality while, conversely, higher intraepithelial densities of CD14+HLA-DR− cells were associated with higher colorectal cancer-specific mortality (Ptrend=0.0003; HR for Q4 (vs Q1), 1.78, 95% CI 1.25 to 2.55). Spatial analyses indicated that CD15+ cells were located closer to tumor cells than CD14+ cells, and CD14+HLA-DR+ cells were closer to tumor than CD14+HLA-DR− cells (p<0.0001). The G-cross proximity measurement, evaluating the difference in the likelihood of any tumor cell being colocated with at least one CD14+HLA-DR+ cell versus CD14+HLA-DR− cell within a 20 µm radius, was associated with lower colorectal cancer-specific mortality (Ptrend <0.0001; HR for Q4 (vs Q1), 0.37, 95% CI 0.24 to 0.57). Conclusions Myeloid cell populations occur in spatially distinct distributions and exhibit divergent, subset-specific prognostic significance in colorectal cancer, with mature CD14+HLA-DR+ and immature CD14+HLA-DR− monocytic phenotypes most notably showing opposite associations. These results highlight the prognostic utility of multimarker evaluation of myeloid cell infiltrates and reveal a previously unrecognized degree of spatial organization for myeloid cells in the immune microenvironment.
Collapse
Affiliation(s)
- Juha P Väyrynen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Koichiro Haruki
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | - Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tzuu-Wang Chang
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Annacarolina Da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kana Wu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles S Fuchs
- Yale University Yale Cancer Center, New Haven, Connecticut, USA.,Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA .,Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Targeting Oncoimmune Drivers of Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13030554. [PMID: 33535613 PMCID: PMC7867187 DOI: 10.3390/cancers13030554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Residual metastasis is a major cause of cancer-associated death. Recent advances in understanding the molecular basis of the epithelial-mesenchymal transition (EMT) and the related cancer stem cells (CSCs) have revealed the landscapes of cancer metastasis and are promising contributions to clinical treatments. However, this rarely leads to practical advances in the management of cancer in clinical settings, and thus cancer metastasis is still a threat to patients. The reason for this may be the heterogeneity and complexity caused by the evolutional transformation of tumor cells through interactions with the host environment, which is composed of numerous components, including stromal cells, vascular cells, and immune cells. The reciprocal evolution further raises the possibility of successful tumor escape, resulting in a fatal prognosis for patients. To disrupt the vicious spiral of tumor-immunity aggravation, it is important to understand the entire metastatic process and the practical implementations. Here, we provide an overview of the molecular and cellular links between tumors' biological properties and host immunity, mainly focusing on EMT and CSCs, and we also highlight therapeutic agents targeting the oncoimmune determinants driving cancer metastasis toward better practical use in the treatment of cancer patients.
Collapse
|
46
|
Wang L, He X, Ugai T, Haruki K, Lo CH, Hang D, Akimoto N, Fujiyoshi K, Wang M, Fuchs CS, Meyerhardt JA, Zhang X, Wu K, Chan AT, Giovannucci EL, Ogino S, Song M. Risk Factors and Incidence of Colorectal Cancer According to Major Molecular Subtypes. JNCI Cancer Spectr 2021; 5:pkaa089. [PMID: 33442661 PMCID: PMC7791624 DOI: 10.1093/jncics/pkaa089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease that can develop via 3 major pathways: conventional, serrated, and alternate. We aimed to examine whether the risk factor profiles differ according to pathway-related molecular subtypes. Methods We examined the association of 24 risk factors with 4 CRC molecular subtypes based on a combinatorial status of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and BRAF and KRAS mutations by collecting data from 2 large US cohorts. We used inverse probability weighted duplication-method Cox proportional hazards regression to evaluate differential associations across subtypes. Results We documented 1175 CRC patients with molecular subtype data: subtype 1 (n = 498; conventional pathway; non-MSI-high, CIMP-low or negative, BRAF-wild-type, KRAS-wild-type), subtype 2 (n = 138; serrated pathway; any MSI status, CIMP-high, BRAF-mutated, KRAS-wild-type), subtype 3 (n = 367; alternate pathway; non-MSI-high, CIMP-low or negative, BRAF-wild-type, KRAS-mutated), and subtype 4 (n = 172; other marker combinations). Statistically significant heterogeneity in associations with CRC subtypes was found for age, sex, and smoking, with a higher hazard ratio (HR) observed for the subtype 2 (HR per 10 years of age = 2.64, 95% CI = 2.13 to 3.26; HR for female = 2.65, 95% CI = 1.60 to 4.39; HR per 20-pack-year of smoking = 1.29, 95% CI = 1.14 to 1.45) than other CRC subtypes (all P heterogeneity < .005). A stronger association was found for adiposity measures with subtype 1 CRC in men and subtype 3 CRC in women and for several dietary factors with subtype 1 CRC, although these differences did not achieve statistical significance at α level of .005. Conclusions Risk factor profiles may differ for CRC arising from different molecular pathways.
Collapse
Affiliation(s)
- Liang Wang
- Center of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xiaosheng He
- Department of Colorectal Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Koichiro Haruki
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Chun-Han Lo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Naohiko Akimoto
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Kenji Fujiyoshi
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- Department of Medicine, Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Smilow Cancer Hospital, New Haven, CT, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
PD-L1 Expression Is Associated with Deficient Mismatch Repair and Poor Prognosis in Middle Eastern Colorectal Cancers. J Pers Med 2021; 11:jpm11020073. [PMID: 33530623 PMCID: PMC7911042 DOI: 10.3390/jpm11020073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Several clinical trials are investigating the use of immune-targeted therapy with Programmed death ligand-1 (PD-L1) inhibitors for colorectal cancer (CRC), with promising results for patients with mismatch repair (MMR) deficiency or metastatic CRC. However, the prognostic significance of PD-L1 expression in CRC is controversial and such data are lacking in CRC from Middle Eastern ethnicity. We carried out this large retrospective study to investigate the prognostic and clinico-pathological impact of PD-L1 expression in Middle Eastern CRC using immunohistochemistry. A total of 1148 CRC were analyzed for PD-L1 expression. High PD-L1 expression was noted in 37.3% (428/1148) cases and was correlated with aggressive clinico-pathological features such as high malignancy grade (p < 0.0001), larger tumor size (p = 0.0007) and mucinous histology (p = 0.0005). Interestingly, PD-L1 expression was significantly higher in patients exhibiting MMR deficiency (p = 0.0169) and BRAF mutation (p = 0.0008). Furthermore, the expression of PD-L1 was found to be an independent marker for overall survival (HR = 1.45; 95% CI = 1.06 - 1.99; p = 0.0200). In conclusion, the results of this study indicate that PD-L1 expression could be a valid biomarker for poor prognosis in Middle Eastern CRC patients. This information can help in decision-making for anti-PD-L1 therapy in Middle Eastern CRC, especially for patients with MMR deficient tumors.
Collapse
|
48
|
Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 2021; 18:261-279. [PMID: 33469195 DOI: 10.1038/s41571-020-00459-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
The immune system has crucial roles in cancer development and treatment. Whereas adaptive immunity can prevent or constrain cancer through immunosurveillance, innate immunity and inflammation often promote tumorigenesis and malignant progression of nascent cancer. The past decade has witnessed the translation of knowledge derived from preclinical studies of antitumour immunity into clinically effective, approved immunotherapies for cancer. By contrast, the successful implementation of treatments that target cancer-associated inflammation is still awaited. Anti-inflammatory agents have the potential to not only prevent or delay cancer onset but also to improve the efficacy of conventional therapeutics and next-generation immunotherapies. Herein, we review the current clinical advances and experimental findings supporting the utility of an anti-inflammatory approach to the treatment of solid malignancies. Gaining a better mechanistic understanding of the mode of action of anti-inflammatory agents and designing more effective treatment combinations would advance the clinical application of this therapeutic approach.
Collapse
Affiliation(s)
- Jiajie Hou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Liver Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
49
|
Ou W, Zhou C, Zhu X, Lin L, Xu Q. Prognostic Significance of Preoperative Lymphocyte-to-C-Reactive Protein Ratio in Patients with Non-Metastatic Colorectal Cancer. Onco Targets Ther 2021; 14:337-346. [PMID: 33469310 PMCID: PMC7811467 DOI: 10.2147/ott.s290234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background The inflammatory indexes are attracting increasing attention as a prognostic predictor for colorectal cancer (CRC). However, the prognostic value of the preoperative lymphocyte-to-C-reactive protein ratio (LCR) in patients with non-metastatic CRC remains to be established. Methods A total of 955 patients from 2010 to 2014 at a single center were included. Receiver operating characteristic curves (ROC) were generated to define the optimal cutoff value of the inflammatory indexes, and the areas under the curve (AUC) were calculated to compare the predictive value among the inflammatory indexes. The Fine and Gray competing risk regression model and Cox proportional hazard model were used to determine the prognostic factors for cancer-specific survival (CSS) and overall survival (OS) by using sub-distribution hazard ratio (SHR) and hazard ratio (HR) as size effects, respectively. Results A ratio of 6500 was defined as the optimal cutoff value for LCR for dividing CRC patients into the high (> 6500, n = 528) and low (≤ 6500, n = 427) LCR groups. The LCR had the highest value of prognostic prediction among all inflammation-based scores. Low LCR was significant correlated with several clinicopathological features of tumor invasion and development. The patients with low LCR had poorer CSS and OS as compared to those with high LCR. Multivariate analyses showed that low LCR was independently associated with worse OS (HR = 0.61, 95% CI: 0.53-0.70) and CSS (SHR = 0.55, 95% CI: 0.43-0.71). Conclusion Preoperative LCR can be a useful biomarker for prognostic prediction in non-metastatic CRC patients with a better predictive value than other inflammatory indexes.
Collapse
Affiliation(s)
- Wenting Ou
- Department of Oncology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Caijin Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Xiaoqing Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Lin Lin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Qingwen Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| |
Collapse
|
50
|
Nevo D, Hamada T, Ogino S, Wang M. A novel calibration framework for survival analysis when a binary covariate is measured at sparse time points. Biostatistics 2020; 21:e148-e163. [PMID: 30380012 DOI: 10.1093/biostatistics/kxy063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/04/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
The goals in clinical and cohort studies often include evaluation of the association of a time-dependent binary treatment or exposure with a survival outcome. Recently, several impactful studies targeted the association between initiation of aspirin and survival following colorectal cancer (CRC) diagnosis. The value of this exposure is zero at baseline and may change its value to one at some time point. Estimating this association is complicated by having only intermittent measurements on aspirin-taking. Commonly used methods can lead to substantial bias. We present a class of calibration models for the distribution of the time of status change of the binary covariate. Estimates obtained from these models are then incorporated into the proportional hazard partial likelihood in a natural way. We develop non-parametric, semiparametric, and parametric calibration models, and derive asymptotic theory for the methods that we implement in the aspirin and CRC study. We further develop a risk-set calibration approach that is more useful in settings in which the association between the binary covariate and survival is strong.
Collapse
Affiliation(s)
- Daniel Nevo
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School Boston, MA, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network & Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|