1
|
Lee JS, Kao DJ, Worledge CS, Villamaria ZF, Wang RX, Welch NM, Kostelecky RE, Colgan SP. E. coli genetically modified for purine nucleobase release promotes butyrate generation and colonic wound healing during DSS insult. Gut Microbes 2025; 17:2490211. [PMID: 40247632 PMCID: PMC12013446 DOI: 10.1080/19490976.2025.2490211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 12/27/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
The gut microbiota transforms energy stored as undigestible carbohydrates into a remarkable number of metabolites that fuel intestinal bacterial communities and the host tissue. Colonic epithelial cells at the microbiota-host interface depend upon such microbiota-derived metabolites (MDMs) to satisfy their energy requisite. Microbial dysbiosis eliciting MDM loss contributes to barrier dysfunction and mucosal disease. Recent work has identified a role for microbiota-sourced purines (MSPs), notably hypoxanthine, as an MDM salvaged by the colonic epithelium for nucleotide biogenesis and energy balance. Here, we investigated the role of MSPs in mice during disease-modeled colonic energetic stress using a strain of E. coli genetically modified for enhanced purine nucleobase release (E. coli Mutant). E. coli Mutant colonization protected against DSS-induced tissue damage and permeability while promoting proliferation for wound healing. Metabolite and metagenomic analyses suggested a colonic butyrate-purine nucleobase metabolic axis, wherein the E. coli Mutant provided purine substrate for Clostridia butyrate production and host purine salvage, altogether supplying the host substrate for efficient nucleotide biogenesis and energy balance.
Collapse
Affiliation(s)
- J. Scott Lee
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Daniel J. Kao
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Corey S. Worledge
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Zachary F. Villamaria
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Ruth X. Wang
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Nichole M. Welch
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| | - Rachael E. Kostelecky
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
| | - Sean P. Colgan
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus
- Department of Medicine, Rocky Mountain Veterans Association, Aurora, CO, USA
| |
Collapse
|
2
|
Cardinale AN, Di Lorenzo A, Bellino M, Strisciullo G, Mussi V, Sablone S. Thanatochemistry and the role of hypoxanthine in the post-mortem interval estimation: a systematic literature review. Int J Legal Med 2025:10.1007/s00414-024-03378-x. [PMID: 39985608 DOI: 10.1007/s00414-024-03378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/16/2024] [Indexed: 02/24/2025]
Abstract
The estimation of post-mortem interval (PMI) is of utmost importance for forensic pathologists due to its implication in medico-legal evaluations. Research over the last thirty years has sought new methods for estimating the time of death, particularly focused on human biomarkers whose concentration changes over time after death. Although most studies are based on potassium (K+) concentrations in blood and vitreous humor (VH), hypoxanthine (Hx) has shown great promise in assessing PMI. Following PRISMA guidelines, this systematic review addresses the PICO question: "In human cadavers, what is the role of hypoxanthine, where, and with what analytical techniques is it currently used for post-mortem interval estimation?". Twenty-four papers were retrieved. The results indicate that Hx concentration can be estimated in various biofluids, VH being the most commonly accounted for. Furthermore, different pre-analytical procedures are resorted to for sample preparation, such as several methodologies utilized to detect Hx concentration. The relationship between the so-obtained Hx levels and PMI is expressed quantitively (through regressions or correlation coefficients) or semi-quantitatively (by changes in nuclear magnetic resonance spectra). PMI estimation accuracy improves significantly when additional factors are considered (such as ambient and rectal temperature, urea concentration, body weight, and cause of death) or when new methodologies providing flexible regression models are applied. Despite the promising potential, many limitations remain. Notably, the heterogeneity of sample selection and pre-analytical/analytical phases leads to inconsistent results. Thus, much more should be done to lay procedural standards and optimize biochemistry and Hx utilization in PMI-related forensic investigations.
Collapse
Affiliation(s)
- Andrea Nicola Cardinale
- Section of Legal Medicine, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy
| | - Antonio Di Lorenzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy
| | - Mara Bellino
- Section of Legal Medicine, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy
| | - Giuseppe Strisciullo
- Toxicology Laboratory, Interdisciplinary Department of Medicine, University of Bari Aldo Moro Bari Policlinico Hospital, Bari, Italy
| | - Valentina Mussi
- IMM CNR, Institute of Microelectronics and Microsystems, National Research Council, Rome, Italy
| | - Sara Sablone
- Section of Legal Medicine, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari Policlinico Hospital, Bari, Italy.
| |
Collapse
|
3
|
Fang Z, Ren G, Ke S, Xu Q, Chen Y, Shi X, Guo C, Huang J. Serum metabolomic profiling for predicting therapeutic response and toxicity in breast cancer neoadjuvant chemotherapy: a retrospective longitudinal study. Breast Cancer Res 2025; 27:2. [PMID: 39762945 PMCID: PMC11706045 DOI: 10.1186/s13058-024-01956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecular subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process and reduce the effectiveness of therapy. Although metabolic changes during cancer treatment are crucial determinant factors in therapeutic responses and toxicities, related clinical research remains limited. METHODS One hundred paired blood samples were collected from 50 patients with LABC before and after a complete NACT treatment cycle. Untargeted metabolomics was used by liquid chromatography-mass spectrometry (LC-MS) to investigate the relationship between dynamically changing metabolites in serum and the responses and toxicities of NACT. RESULTS Firstly, we observed significant alterations in serum metabolite levels pre- and post-NACT, with a predominant enrichment in the sphingolipid and amino acid metabolism pathways. Second, pre-treatment serum metabolites successfully predicted the therapeutic response and hematotoxicities during NACT. In particular, molecular subtype variations in favorable treatment responses are linked to acyl carnitine levels. Finally, we discovered that the therapeutic effects of NACT could be attributed to essential amino acid metabolism. CONCLUSION This study elucidated the dynamic changes in metabolism during NACT treatment, providing a possibility for developing responsive metabolic signatures for personalized NACT treatment.
Collapse
Affiliation(s)
- Zhihao Fang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guohong Ren
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shouyu Ke
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qimin Xu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoyuan Shi
- Analytical Instrument Trading Co., Ltd, SCIEX, Shanghai, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Athmani H, Direm A, Osório FAP, Valverde C. Exploring the nonlinear optical properties of hypoxanthinium salts: a structural and computational analysis. J Mol Model 2024; 30:280. [PMID: 39046583 DOI: 10.1007/s00894-024-06077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
CONTEXT In this study, we detail the synthesis and crystallographic characterization of an unprecedented structure, specifically hypoxanthinium chloride monohydrate ((I) hereafter), which crystallizes in the monoclinic P21/c space group. A comparative analysis was conducted with four related hypoxanthinium salts: hypoxanthinium bromide monohydrate (II), 9-methylhypoxanthinium chloride monohydrate (III), hypoxanthinium nitrate monohydrate (IV), and hypoxanthinium perchlorate monohydrate (V). This analysis has focused mainly on their crystal packing, hydrogen-bonding networks, and non-classical intermolecular interactions, as elucidated by comprehensive Hirshfeld surface and topological analyses. Theoretical investigation of the nonlinear optical (NLO) properties of the hypoxanthinium derivatives (I-V) was performed using the Density Functional Theory (DFT). METHODS The crystalline environment was simulated using the iterative Supermolecule method (SM), and the static and dynamics linear refractive index, linear polarizability, second-order hyperpolarizability, and the third-order nonlinear susceptibility at the DFT/CAM-B3LYP/6-311++G(d,p) level were computed. The results for the macroscopic third-order nonlinear susceptibility of (II) was found to equalχ 3 = 0.81 × 10 - 20 m 2 / V 2 . By replacing the bromine atom in (II) with a chlorine atom as in (III), theχ 3 value will be multiplied by 2.16, and therefore these results are large enough to suggest the potential application of these crystals as NLO materials.
Collapse
Affiliation(s)
- Hamza Athmani
- Laboratory of Structures, Properties and Interatomic Interactions LASPI2A, Faculty of Sciences and Technology, Abbes Laghrour University, 40.000, Khenchela, Algeria
- Department of Matter Sciences, Faculty of Sciences and Technology, Abbes Laghrour University, 40.000, Khenchela, Algeria
| | - Amani Direm
- Laboratory of Structures, Properties and Interatomic Interactions LASPI2A, Faculty of Sciences and Technology, Abbes Laghrour University, 40.000, Khenchela, Algeria.
- Department of Matter Sciences, Faculty of Sciences and Technology, Abbes Laghrour University, 40.000, Khenchela, Algeria.
| | - Francisco A P Osório
- Instituto de Física, Universidade Federal de Goiás, 74.690-900, Goiânia, GO, Brazil
| | - Clodoaldo Valverde
- Laboratório de Modelagem Molecular Aplicada E Simulação (LaMMAS), Universidade Estadual de Goiás, Campus de CiênciasExatas E Tecnológicas, Anápolis, GO, 75001-970, Brazil.
- Universidade Paulista, Goiânia, GO, 74845-090, Brazil.
| |
Collapse
|
5
|
Gülersoy E, Balıkçı C, Şahan A, Günal İ, Atlı MO. NMR-based metabolomic investigation of dogs with acute flaccid paralysis due to tick paralysis. Vet Med Sci 2024; 10:e1528. [PMID: 38952268 PMCID: PMC11217601 DOI: 10.1002/vms3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Acute flaccid paralysis (AFP) is a complex clinical syndrome with various aetiologies. If untreated, AFP may lead to death due to failure of respiratory muscles. Tick paralysis, which is a noninfectious neurologic syndrome of AFP, occurs following tick attachment, engorgement, and injection of tick saliva toxins. There is no specific diagnostic test for tick paralysis, and mortality increases as definitive diagnosis is delayed. Although metabolomic investigation of tick saliva was conducted, there is a lack of research on metabolomic evaluation of hosts affected by tick paralysis. OBJECTIVES Thus, the aim of this study is to investigate metabolomic changes in serum samples of dogs with tick paralysis due to Rhipicephalus sanguineus using NMR-based metabolomics and to identify potential diagnostic/prognostic markers. MATERIALS AND METHODS Forty dogs infested with R. sanguineus, with clinical findings compatible with AFP and with a confirmed tick paralysis diagnosis ex juvantibus, constituted the Paralysis Group. Ten healthy dogs, which were admitted either for vaccination and/or check-up purposes, constituted the Control Group. After the confirmation tick paralysis, medical history, vaccination and nutritional status, body surface area and estimated tick numbers of all the dogs were noted. Physical examination included body temperature, heart and respiratory rate, capillary refill time evaluation and Modified Glasgow Coma Scale calculation. Serum samples were extracted from venous blood samples of all the dogs and were prepared for NMR analysis, and NMR-based metabolomics identification and quantification were performed. RESULTS NMR-based serum metabolomics of the present study revealed distinct up/down-regulated expressions, presenting a promising avenue. Moreover, it was observed that energy metabolism and especially liver functions were impaired in dogs with tick paralysis, and not only the respiratory system but also the kidneys were affected. CONCLUSION It was concluded that the present approach may help to better understand the pathological mechanisms developing in cases of AFP due to tick paralysis.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Canberk Balıkçı
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Adem Şahan
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - İsmail Günal
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Mehmet Osman Atlı
- Veterinary FacultyDepartment of Reproduction and Artificial InseminationHarran UniversityŞanlıurfaTurkey
| |
Collapse
|
6
|
Shakartalla SB, Ashmawy NS, Semreen MH, Fayed B, Al Shareef ZM, Jayakumar MN, Ibrahim S, Rahmani M, Hamdy R, Soliman SSM. 1H-NMR metabolomics analysis identifies hypoxanthine as a novel metastasis-associated metabolite in breast cancer. Sci Rep 2024; 14:253. [PMID: 38167685 PMCID: PMC10762038 DOI: 10.1038/s41598-023-50866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is one of the leading causes of death in females, mainly because of metastasis. Oncometabolites, produced via metabolic reprogramming, can influence metastatic signaling cascades. Accordingly, and based on our previous results, we propose that metabolites from highly metastatic breast cancer cells behave differently from less-metastatic cells and may play a significant role in metastasis. For instance, we aim to identify these metabolites and their role in breast cancer metastasis. Less metastatic cells (MCF-7) were treated with metabolites secreted from highly metastatic cells (MDA-MB-231) and the gene expression of three epithelial-to-mesenchymal transition (EMT) markers including E-cadherin, N-cadherin and vimentin were examined. Some metabolites secreted from MDA-MB-231 cells significantly induced EMT activity. Specifically, hypoxanthine demonstrated a significant EMT effect and increased the migration and invasion effects of MCF-7 cells through a hypoxia-associated mechanism. Hypoxanthine exhibited pro-angiogenic effects via increasing the VEGF and PDGF gene expression and affected lipid metabolism by increasing the gene expression of PCSK-9. Notably, knockdown of purine nucleoside phosphorylase, a gene encoding for an important enzyme in the biosynthesis of hypoxanthine, and inhibition of hypoxanthine uptake caused a significant decrease in hypoxanthine-associated EMT effects. Collectively for the first time, hypoxanthine was identified as a novel metastasis-associated metabolite in breast cancer cells and represents a promising target for diagnosis and therapy.
Collapse
Affiliation(s)
- Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, University of Gezira, P.O. Box. 21111, Wadmedani, Sudan
| | - Naglaa S Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, P.O. Box 4184, Ajman, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Mohammad H Semreen
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Chemistry of Natural and Microbial Product Department, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Zainab M Al Shareef
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Manju N Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Saleh Ibrahim
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Santoro N, Kuhn K, Pretzel S, Schauer IE, Fought A, D’Alessandro A, Stephenson D, Bradford AP. A high-fat eucaloric diet induces reprometabolic syndrome of obesity in normal weight women. PNAS NEXUS 2024; 3:pgad440. [PMID: 38178979 PMCID: PMC10766410 DOI: 10.1093/pnasnexus/pgad440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
We examined the effects of 1 month of a eucaloric, high-fat (48% of calories) diet (HFD) on gonadotropin secretion in normal-weight women to interrogate the role of free fatty acids and insulin in mediating the relative hypogonadotropic hypogonadism of obesity. Eighteen eumenorrheic women (body mass index [BMI] 18-25 kg/m2) were studied in the early follicular phase of the menstrual cycle before and after exposure to an HFD with frequent blood sampling for luteinizing hormone (LH) and follicle-stimulating hormone (FSH), followed by an assessment of pituitary sensitivity to gonadotropin-releasing hormone (GnRH). Mass spectrometry-based plasma metabolomic analysis was also performed. Paired testing and time-series analysis were performed as appropriate. Mean endogenous LH (unstimulated) was significantly decreased after the HFD (4.3 ± 1.0 vs. 3.8 ± 1.0, P < 0.01); mean unstimulated FSH was not changed. Both LH (10.1 ± 1.0 vs. 7.2 ± 1.0, P < 0.01) and FSH (9.5 ± 1.0 vs. 8.8 ± 1.0, P < 0.01) responses to 75 ng/kg of GnRH were reduced after the HFD. Mean LH pulse amplitude and LH interpulse interval were unaffected by the dietary exposure. Eucaloric HFD exposure did not cause weight change. Plasma metabolomics confirmed adherence with elevation of fasting free fatty acids (especially long-chain mono-, poly-, and highly unsaturated fatty acids) by the last day of the HFD. One-month exposure to an HFD successfully induced key reproductive and metabolic features of reprometabolic syndrome in normal-weight women. These data suggest that dietary factors may underlie the gonadotrope compromise seen in obesity-related subfertility and therapeutic dietary interventions, independent of weight loss, may be possible.
Collapse
Affiliation(s)
- Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katherine Kuhn
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shannon Pretzel
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Irene E Schauer
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela Fought
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew P Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Reisz JA, Dzieciatkowska M, Stephenson D, Gamboni F, Morton DH, D’Alessandro A. Red Blood Cells from Individuals with Lesch-Nyhan Syndrome: Multi-Omics Insights into a Novel S162N Mutation Causing Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency. Antioxidants (Basel) 2023; 12:1699. [PMID: 37760001 PMCID: PMC10525117 DOI: 10.3390/antiox12091699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lesch-Nyhan syndrome (LN) is an is an X-linked recessive inborn error of metabolism that arises from a deficiency of purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). The disease manifests severely, causing intellectual deficits and other neural abnormalities, hypercoagulability, uncontrolled self-injury, and gout. While allopurinol is used to alleviate gout, other symptoms are less understood, impeding treatment. Herein, we present a high-throughput multi-omics analysis of red blood cells (RBCs) from three pediatric siblings carrying a novel S162N HPRT1 mutation. RBCs from both parents-the mother, a heterozygous carrier, and the father, a clinically healthy control-were also analyzed. Global metabolite analysis of LN RBCs shows accumulation of glycolytic intermediates upstream of pyruvate kinase, unsaturated fatty acids, and long chain acylcarnitines. Similarly, highly unsaturated phosphatidylcholines are also elevated in LN RBCs, while free choline is decreased. Intracellular iron, zinc, selenium, and potassium are also decreased in LN RBCs. Global proteomics documented changes in RBC membrane proteins, hemoglobin, redox homeostasis proteins, and the enrichment of coagulation proteins. These changes were accompanied by elevation in protein glutamine deamidation and methylation in the LN children and carrier mother. Treatment with allopurinol incompletely reversed the observed phenotypes in the two older siblings currently on this treatment. This unique data set provides novel opportunities for investigations aimed at potential therapies for LN-associated sequelae.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - D. Holmes Morton
- Central Pennsylvania Clinic, A Medical Home for Special Children and Adults, Belleville, PA 17004, USA;
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| |
Collapse
|
9
|
Perrone S, Manti S, Petrolini C, Dell'Orto VG, Boscarino G, Ceccotti C, Bertini M, Buonocore G, Esposito SMR, Gitto E. Oxygen for the Newborn: Friend or Foe? CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10030579. [PMID: 36980137 PMCID: PMC10047080 DOI: 10.3390/children10030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Oxygen supplementation is widely used in neonatal care, however, it can also cause toxic effects if not used properly. Therefore, it appears crucial to find a balance in oxygen administration to avoid damage as a consequence of its insufficient or excessive use. Oxygen toxicity is mainly due to the production of oxygen radicals, molecules normally produced in humans and involved in a myriad of physiological reactions. In the neonatal period, an imbalance between oxidants and antioxidant defenses, the so-called oxidative stress, might occur, causing severe pathological consequences. In this review, we focus on the mechanisms of the production of oxygen radicals and their physiological functions in determining a set of diseases grouped together as "free radical diseases in the neonate". In addition, we describe the evolution of the oxygenation target recommendations during neonatal resuscitation and post-stabilization phases with the aim to define the best oxygen administration according to the newest evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology "Gaetano Barresi", University of Messina, 98122 Messina, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Giovanna Dell'Orto
- Neonatology Unit, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Ceccotti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Mattia Bertini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | - Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Human Pathology "Gaetano Barresi", University of Messina, 98122 Messina, Italy
| |
Collapse
|
10
|
Saugstad OD. Oxygenation of the newborn. The impact of one molecule on newborn lives. J Perinat Med 2023; 51:20-26. [PMID: 35848535 DOI: 10.1515/jpm-2022-0259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023]
Abstract
Hypoxanthine is a purine metabolite which increases during hypoxia and therefore is an indicator of this condition. Further, when hypoxanthine is oxidized to uric acid in the presence of xanthine oxidase, oxygen radicals are generated. This was the theoretical basis for suggesting and studying, beginning in the 1990s, resuscitation of newborn infants with air instead of the traditional 100% O2. These studies demonstrated a 30% reduction in mortality when resuscitation of term and near term infants was carried out with air compared to pure oxygen. The mechanism for this is not fully understood, however the hypoxanthine -xanthine oxidase system increases oxidative stress and plays a role in regulation of the perinatal circulation. Further, hyperoxic resuscitation inhibits mitochondrial function, and one reason may be that genes involved in ATP production are down-regulated. Thus, the study of one single molecule, hypoxanthine, has contributed to the global prevention of an estimated 2-500,000 annual infant deaths.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, University of Oslo and Oslo University hospital, Oslo, Norway
- Anne and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
12
|
Rauckhorst AJ, Borcherding N, Pape DJ, Kraus AS, Scerbo DA, Taylor EB. Mouse tissue harvest-induced hypoxia rapidly alters the in vivo metabolome, between-genotype metabolite level differences, and 13C-tracing enrichments. Mol Metab 2022; 66:101596. [PMID: 36100179 PMCID: PMC9589196 DOI: 10.1016/j.molmet.2022.101596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Metabolomics as an approach to solve biological problems is exponentially increasing in use. Thus, this a pivotal time for the adoption of best practices. It is well known that disrupted tissue oxygen supply rapidly alters cellular energy charge. However, the speed and extent to which delayed mouse tissue freezing after dissection alters the broad metabolome is not well described. Furthermore, how tissue genotype may modulate such metabolomic drift and the degree to which traced 13C-isotopologue distributions may change have not been addressed. METHODS By combined liquid chromatography (LC)- and gas chromatography (GC)-mass spectrometry (MS), we measured how levels of 255 mouse liver metabolites changed following 30-second, 1-minute, 3-minute, and 10-minute freezing delays. We then performed test-of-concept delay-to-freeze experiments evaluating broad metabolomic drift in mouse heart and skeletal muscle, differential metabolomic change between wildtype (WT) and mitochondrial pyruvate carrier (MPC) knockout mouse livers, and shifts in 13C-isotopologue abundances and enrichments traced from 13C-labled glucose into mouse liver. RESULTS Our data demonstrate that delayed mouse tissue freezing after dissection leads to rapid hypoxia-driven remodeling of the broad metabolome, induction of both false-negative and false-positive between-genotype differences, and restructuring of 13C-isotopologue distributions. Notably, we show that increased purine nucleotide degradation products are an especially high dynamic range marker of delayed liver and heart freezing. CONCLUSIONS Our findings provide a previously absent, systematic illustration of the extensive, multi-domain metabolomic changes occurring within the early minutes of delayed tissue freezing. They also provide a novel, detailed resource of mouse liver ex vivo, hypoxic metabolomic remodeling.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Alora S Kraus
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Diego A Scerbo
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
13
|
Semi-mechanistic Modeling of Hypoxanthine, Xanthine, and Uric Acid Metabolism in Asphyxiated Neonates. Clin Pharmacokinet 2022; 61:1545-1558. [PMID: 36040612 PMCID: PMC9652176 DOI: 10.1007/s40262-022-01164-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Previously, we developed a pharmacokinetic-pharmacodynamic model of allopurinol, oxypurinol, and biomarkers, hypoxanthine, xanthine, and uric acid, in neonates with hypoxic-ischemic encephalopathy, in which high initial biomarker levels were observed suggesting an impact of hypoxia. However, the full pharmacodynamics could not be elucidated in our previous study. The current study included additional data from the ALBINO study (NCT03162653) placebo group, aiming to characterize the dynamics of hypoxanthine, xanthine, and uric acid in neonates with hypoxic-ischemic encephalopathy. METHODS Neonates from the ALBINO study who received allopurinol or placebo mannitol were included. An extended population pharmacokinetic-pharmacodynamic model was developed based on the mechanism of purine metabolism, where synthesis, salvage, and degradation via xanthine oxidoreductase pathways were described. The initial level of the biomarkers was a combination of endogenous turnover and high disease-related amounts. Model development was accomplished by nonlinear mixed-effects modeling (NONMEM®, version 7.5). RESULTS In total, 20 neonates treated with allopurinol and 17 neonates treated with mannitol were included in this analysis. Endogenous synthesis of the biomarkers reduced with 0.43% per hour because of precursor exhaustion. Hypoxanthine was readily salvaged or degraded to xanthine with rate constants of 0.5 1/h (95% confidence interval 0.33-0.77) and 0.2 1/h (95% confidence interval 0.09-0.31), respectively. A greater salvage was found in the allopurinol treatment group consistent with its mechanism of action. High hypoxia-induced initial levels of biomarkers were quantified, and were 1.2-fold to 2.9-fold higher in neonates with moderate-to-severe hypoxic-ischemic encephalopathy compared with those with mild hypoxic-ischemic encephalopathy. Half-maximal xanthine oxidoreductase inhibition was achieved with a combined allopurinol and oxypurinol concentration of 0.68 mg/L (95% confidence interval 0.48-0.92), suggesting full xanthine oxidoreductase inhibition during the period studied. CONCLUSIONS This extended pharmacokinetic-pharmacodynamic model provided an adequate description of the complex hypoxanthine, xanthine, and uric acid metabolism in neonates with hypoxic-ischemic encephalopathy, suggesting a positive allopurinol effect on these biomarkers. The impact of hypoxia on their dynamics was characterized, underlining higher hypoxia-related initial exposure with a more severe hypoxic-ischemic encephalopathy status.
Collapse
|
14
|
Beamer E, O’Dea MI, Garvey AA, Smith J, Menéndez-Méndez A, Kelly L, Pavel A, Quinlan S, Alves M, Jimenez-Mateos EM, Tian F, Dempsey E, Dale N, Murray DM, Boylan GB, Molloy EJ, Engel T. Novel Point-of-Care Diagnostic Method for Neonatal Encephalopathy Using Purine Nucleosides. Front Mol Neurosci 2021; 14:732199. [PMID: 34566578 PMCID: PMC8458851 DOI: 10.3389/fnmol.2021.732199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Evidence suggests that earlier diagnosis and initiation of treatment immediately after birth is critical for improved neurodevelopmental outcomes following neonatal encephalopathy (NE). Current diagnostic tests are, however, mainly restricted to clinical diagnosis with no molecular tests available. Purines including adenosine are released during brain injury such as hypoxia and are also present in biofluids. Whether blood purine changes can be used to diagnose NE has not been investigated to date. Methods: Blood purines were measured in a mouse model of neonatal hypoxia and infants with NE using a novel point-of-care diagnostic technology (SMARTChip) based on the summated electrochemical detection of adenosine and adenosine metabolites in the blood. Results: Blood purine concentrations were ∼2-3-fold elevated following hypoxia in mice [2.77 ± 0.48 μM (Control) vs. 7.57 ± 1.41 μM (post-hypoxia), p = 0.029]. Data in infants with NE had a 2-3-fold elevation when compared to healthy controls [1.63 ± 0.47 μM (Control, N = 5) vs. 4.87 ± 0.92 μM (NE, N = 21), p = 0.0155]. ROC curve analysis demonstrates a high sensitivity (81%) and specificity (80%) for our approach to identify infants with NE. Moreover, blood purine concentrations were higher in infants with NE and seizures [8.13 ± 3.23 μM (with seizures, N = 5) vs. 3.86 ± 0.56 μM (without seizures, N = 16), p = 0.044]. Conclusion: Our data provides the proof-of-concept that measurement of blood purine concentrations via SMARTChip technology may offer a low-volume bedside test to support a rapid diagnosis of NE.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mary Isabel O’Dea
- Coombe Women and Infants University Hospital, Dublin, Ireland
- National Children’s Research Centre, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children’s Health Ireland at Crumlin and Tallaght, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Aisling A. Garvey
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Aida Menéndez-Méndez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Lynne Kelly
- Coombe Women and Infants University Hospital, Dublin, Ireland
- Discipline of Paediatrics, Children’s Health Ireland at Crumlin and Tallaght, Dublin, Ireland
| | - Andreea Pavel
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Sean Quinlan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Eva M. Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Faming Tian
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eugene Dempsey
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Deirdre M. Murray
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, University College Cork, Dublin, Ireland
- Department of Paediatrics and Child Health, University College Cork, Dublin, Ireland
| | - Eleanor J. Molloy
- Coombe Women and Infants University Hospital, Dublin, Ireland
- National Children’s Research Centre, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children’s Health Ireland at Crumlin and Tallaght, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
15
|
Dale N. Biological insights from the direct measurement of purine release. Biochem Pharmacol 2021; 187:114416. [PMID: 33444569 DOI: 10.1016/j.bcp.2021.114416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022]
Abstract
Although purinergic signalling has been a well-established and accepted mechanism of chemical communication for many years, it remains important to measure the extracellular concentration of ATP and adenosine in real time. In this review I summarize the reasons why such measurements are still needed, how they provide additional mechanistic insight and give an overview of the techniques currently available to make spatially localised measurements of ATP and adenosine in real time. To illustrate the impact of direct real-time measurements, I explore CO2 and nutrient sensing in the medulla oblongata and hypothalamus. In both of these examples, the sensing involves hemichannel mediated ATP release from glial cells. For CO2 the hemichannels involved, connexin26, are directly CO2-sensitive. This mechanism contributes to the chemosensory control of breathing. In the hypothamalus, specialised glial cells, tanycytes, directly contact the cerebrospinal fluid in the 3rd ventricle and sense nutrients via sweet and umami taste receptors. Nutrient sensing by tanycytes is likely to contribute to the control of body weight as their selective stimulation alters food intake. To illustrate the importance of direct adenosine measurements, I consider the complex and multiple mechanisms of activity-dependent adenosine release in different brain regions. This activity dependent release of adenosine is likely to mediate important feedback regulation and may also be involved in controlling the sleep-wake state. I finish by briefly considering the potential of whole blood purine measurements in clinical practice.
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
16
|
Beamer E, Lacey A, Alves M, Conte G, Tian F, de Diego-Garcia L, Khalil M, Rosenow F, Delanty N, Dale N, El-Naggar H, Henshall DC, Engel T. Elevated blood purine levels as a biomarker of seizures and epilepsy. Epilepsia 2021; 62:817-828. [PMID: 33599287 DOI: 10.1111/epi.16839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is a major unmet need for a molecular biomarker of seizures or epilepsy that lends itself to fast, affordable detection in an easy-to-use point-of-care device. Purines such as adenosine triphosphate and adenosine are potent neuromodulators released during excessive neuronal activity that are also present in biofluids. Their biomarker potential for seizures and epilepsy in peripheral blood has, however, not yet been investigated. The aim of the present study was to determine whether blood purine nucleoside measurements can serve as a biomarker for the recent occurrence of seizures and to support the diagnosis of epilepsy. METHODS Blood purine concentrations were measured via a point-of-care diagnostic technology based on the summated electrochemical detection of adenosine and adenosine breakdown products (inosine, hypoxanthine, and xanthine; SMARTChip). Measurements of blood purine concentrations were carried out using samples from mice subjected to intra-amygdala kainic acid-induced status epilepticus and in video-electroencephalogram (EEG)-monitored adult patients with epilepsy. RESULTS In mice, blood purine concentrations were rapidly increased approximately two- to threefold after status epilepticus (2.32 ± .40 µmol·L-1 [control] vs. 8.93 ± 1.03 µmol·L-1 [after status epilepticus]), and levels correlated with seizure burden and postseizure neurodegeneration in the hippocampus. Blood purine concentrations were also elevated in patients with video-EEG-diagnosed epilepsy (2.39 ± .34 µmol·L-1 [control, n = 13] vs. 4.35 ± .38 µmol·L-1 [epilepsy, n = 26]). SIGNIFICANCE Our data provide proof of concept that the measurement of blood purine concentrations may offer a rapid, low-volume bedside test to support the diagnosis of seizures and epilepsy.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Austin Lacey
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Faming Tian
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mohamed Khalil
- Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Hessen, Marburg, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, Frankfurt on the Main, Germany
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Nicholas Dale
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Hany El-Naggar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
17
|
Orts-Arroyo M, Castro I, Martínez-Lillo J. Detection of Hypoxanthine from Inosine and Unusual Hydrolysis of Immunosuppressive Drug Azathioprine through the Formation of a Diruthenium(III) System. BIOSENSORS 2021; 11:19. [PMID: 33440852 PMCID: PMC7827764 DOI: 10.3390/bios11010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Hypoxanthine (hpx) is an important molecule for both biochemistry research and biomedical applications. It is involved in several biological processes associated to energy and purine metabolism and has been proposed as a biomarker for a variety of disease states. Consequently, the discovery and development of systems suitable for the detection of hypoxanthine is pretty appealing in this research field. Thus, we have obtained a stable diruthenium (III) compound in its dehydrated and hydrated forms with formula [{Ru(µ-Cl)(µ-hpx)}2Cl4] (1a) and [{Ru(µ-Cl)(µ-hpx)}2Cl4]·2H2O (1b), respectively. This purine-based diruthenium(III) system was prepared from two very different starting materials, namely, inosine and azathioprine, the latter being an immunosuppressive drug. Remarkably, it was observed that an unusual azathioprine hydrolysis occurs in the presence of ruthenium, thus generating hypoxanthine instead of the expected 6-mercaptopurine antimetabolite, so that the hpx molecule is linked to two ruthenium(III) ions. 1a and 1b were characterized through IR, SEM, powder and single-crystal X-ray Diffraction and Cyclic Voltammetry (CV). The electrochemical studies allowed us to detect the hpx molecule when coordinated to ruthenium in the reported compound. The grade of sensitivity, repeatability and stability reached by this diruthenium system make it potentially useful and could provide a first step to develop new sensor devices suitable to detect hypoxanthine.
Collapse
Affiliation(s)
| | | | - José Martínez-Lillo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, c/ Catedrático José Beltrán 2, Paterna, 46980 València, Spain; (M.O.-A.); (I.C.)
| |
Collapse
|
18
|
Abstract
Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.
Collapse
|
19
|
Abstract
Hypoxic Ischemic Encephalopathy (HIE) is one of the most deleterious conditions in the perinatal period and the access to small molecule biomarkers aiding accurate diagnosis and disease staging, progress monitoring, and early outcome prognosis could provide relevant advances towards the development of personalized therapies. The emergence of metabolomics, the "omics" technology enabling the holistic study of small molecules, for biomarker discovery employing different analytical platforms, animal models and study populations has drastically increased the number and diversity of small molecules proposed as candidate biomarkers. However, the use of very few compounds has been implemented in clinical guidelines and authorized medical devices. In this work we review different approaches employed for discovering HIE-related small molecule biomarkers. Their role in associated biochemical disease mechanisms as well as the way towards their translation into the clinical practice are discussed.
Collapse
|
20
|
Pigaiani N, Bertaso A, De Palo EF, Bortolotti F, Tagliaro F. Vitreous humor endogenous compounds analysis for post-mortem forensic investigation. Forensic Sci Int 2020; 310:110235. [PMID: 32169668 DOI: 10.1016/j.forsciint.2020.110235] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
The chemical and biochemical analysis of bodily fluids after death is an important thanatochemical approach to assess the cause and time since death. Vitreous humor (VH) has been used as a biofluid for forensic purposes since the 1960s. Due to its established relevance in toxicology, a literature review highlighting the use of VH with an emphasis on endogenous compounds has not yet been undertaken. VH is a chemically complex aqueous solution of carbohydrates, proteins, electrolytes and other small molecules present in living organisms; this biofluid is useful tool for its isolated environment, preserved from bacterial contamination, decomposition, autolysis, and metabolic reactions. The post-mortem analysis of VH provides an important tool for the estimation of the post-mortem interval (PMI), which can be helpful in determining the cause of death. Consequently, the present review evaluates the recent chemical and biochemical advances with particular importance on the endogenous compounds present at the time of death and their modification over time, which are valuable for the PMI prediction and to identify the cause of death.
Collapse
Affiliation(s)
- Nicola Pigaiani
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy.
| | - Anna Bertaso
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy.
| | - Elio Franco De Palo
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Federica Bortolotti
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Franco Tagliaro
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy; Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
21
|
Zheng S, Loreto R, Smith P, Patterson A, Hughes D, Wang L. Specialist and Generalist Fungal Parasites Induce Distinct Biochemical Changes in the Mandible Muscles of Their Host. Int J Mol Sci 2019; 20:E4589. [PMID: 31533250 PMCID: PMC6769763 DOI: 10.3390/ijms20184589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
Some parasites have evolved the ability to adaptively manipulate host behavior. One notable example is the fungus Ophiocordyceps unilateralis sensu lato, which has evolved the ability to alter the behavior of ants in ways that enable fungal transmission and lifecycle completion. Because host mandibles are affected by the fungi, we focused on understanding changes in the metabolites of muscles during behavioral modification. We used High-Performance Liquid Chromatography-Mass/Mass (HPLC-MS/MS) to detect the metabolite difference between controls and O. unilateralis-infected ants. There was a significant difference between the global metabolome of O. unilateralis-infected ants and healthy ants, while there was no significant difference between the Beauveria bassiana treatment ants group compared to the healthy ants. A total of 31 and 16 of metabolites were putatively identified from comparisons of healthy ants with O. unilateralis-infected ants and comparisons of B. bassiana with O. unilateralis-infected samples, respectively. This result indicates that the concentrations of sugars, purines, ergothioneine, and hypoxanthine were significantly increased in O. unilateralis-infected ants in comparison to healthy ants and B. bassiana-infected ants. This study provides a comprehensive metabolic approach for understanding the interactions, at the level of host muscles, between healthy ants and fungal parasites.
Collapse
Affiliation(s)
- Shanshan Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.
- College of Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Raquel Loreto
- Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil.
| | - Philip Smith
- Metabolomics Core Facility, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Andrew Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - David Hughes
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Liande Wang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.
- College of Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Abstract
Low- and middle-income countries and resource-limited regions are major contributors to perinatal and infant mortality. Oxygen is widely used for resuscitation in high- and middle-income settings. However, oxygen supplementation is not available in resource-limited regions. Oxygen supplementation for resuscitation at birth has adverse effects in human/animal model studies. There has been a change with resultant recommendations for restrictive oxygen use in neonatal resuscitation. Neonatal resuscitation without supplemental oxygen decreases mortality and morbidities. Oxygen in resource-limited settings for neonatal resuscitation is ideal as a backup for selected resuscitations but should not be a limiting factor for implementing basic life-saving efforts.
Collapse
|
23
|
Fisher O, Benson RA, Imray CH. The clinical application of purine nucleosides as biomarkers of tissue Ischemia and hypoxia in humans in vivo. Biomark Med 2019; 13:953-965. [PMID: 31321992 DOI: 10.2217/bmm-2019-0049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During periods of ischemia and hypoxia, intracellular adenosine triphosphate stores are rapidly depleted. Its metabolism results in release of purine nucleosides into the systemic circulation. While the potential of purine nucleosides as a biomarker of ischemia has long been recognized, this has been limited by their complex physiological role and inherent instability leading to problematic sampling and prolonged, complex analysis procedures. Purine release has been demonstrated from cerebral tissue in patients undergoing carotid endarterectomy and patients presenting to hospital with stroke and transient ischemic attack. Rises in purine nucleosides have also been demonstrated in patients with angina and myocardial infarction, during systemic hypoxia, exercise, in patients with peripheral arterial disease and during surgery. This article reviews purine nucleoside production in ischemia, the development of purine analysis technology and details results of the studies investigating purine nucleosides as a biomarker of ischemia with suggestions for areas of future research.
Collapse
Affiliation(s)
- Owain Fisher
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Warwick Medical School, University of Warwick, CV4 7AL, UK
| | - Ruth A Benson
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Institute of Cancer & Genomic Sciences, University of Birmingham, B15 2SY, UK
| | - Christopher He Imray
- Department of Vascular Surgery, University Hospital Coventry & Warwickshire, Coventry, CV2 2DX, UK.,Warwick Medical School, University of Warwick, CV4 7AL, UK
| |
Collapse
|
24
|
Dekker J, Stenning FJ, Willms LJFB, Martherus T, Hooper SB, Te Pas AB. Time to achieve desired fraction of inspired oxygen using a T-piece ventilator during resuscitation of preterm infants at birth. Resuscitation 2019; 136:100-104. [PMID: 30708072 DOI: 10.1016/j.resuscitation.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 01/20/2019] [Indexed: 11/17/2022]
Abstract
AIM To determine the time between adjustment of FiO2 at the oxygen blender and the desired FiO2 reaching the preterm infant during respiratory support at birth. METHODS This observational study was performed using a Neopuff™ T-piece Resuscitator attached to either a test lung (during initial bench tests) or a face mask during the stabilization of infants at birth. FiO2 was titrated following resuscitation guidelines. The duration for the desired FiO2 to reach either the test lung or face mask was recorded, both with and without leakage. A respiratory function monitor was used to record FiO2 and amount of leak. RESULTS In bench tests, the median (IQR) time taken to achieve a desired FiO2 was 34.2 (21.8-69.1) s. This duration was positively associated with the desired FiO2 difference, the direction of titration (upwards) and the occurrence of no leak (R2 0.863, F 65.016, p < 0.001). During stabilization of infants (median (IQR) gestational age 29+0 (28+2-30+0) weeks, birthweight 1290 (1240-1488) g), the duration (19.0 (0.0-57.0) s) required to reach a desired FiO2 was less, but still evident. In 27/55 (49%) titrations, the desired FiO2 was not achieved before the FiO2 levels were again changed. CONCLUSION There is a clear delay before a desired FiO2 is achieved at the distal end of the T-piece resuscitator. This delay is clinically relevant as this delay could easily lead to over- and under titration of oxygen, which might result in an increased risk for both hypoxia and hyperoxia.
Collapse
Affiliation(s)
- J Dekker
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | - F J Stenning
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Australia
| | - L J F B Willms
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Martherus
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - S B Hooper
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Australia
| | - A B Te Pas
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Dekker J, Hooper SB, Giera M, McGillick EV, Hutten GJ, Onland W, van Kaam AH, Te Pas AB. High vs. Low Initial Oxygen to Improve the Breathing Effort of Preterm Infants at Birth: Study Protocol for a Randomized Controlled Trial. Front Pediatr 2019; 7:179. [PMID: 31134170 PMCID: PMC6514187 DOI: 10.3389/fped.2019.00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Although most preterm infants breathe at birth, their respiratory drive is weak and supplemental oxygen is often needed to overcome hypoxia. This could in turn lead to hyperoxia. To reduce the risk of hyperoxia, currently an initial low oxygen concentration (21-30%) is recommended during stabilization at birth, accepting the risk of a hypoxic period. However, hypoxia inhibits respiratory drive in preterm infants. Starting with a higher level of oxygen could lead to a shorter duration of hypoxia by stimulating breathing effort of preterm infants, and combined with subsequent titration based on oxygen saturation, prolonged hyperoxia might be prevented. Study design: This multi-center randomized controlled trial will include 50 infants with a gestational age between 24 and 30 weeks. Eligible infants will be randomized to stabilization with an initial FiO2 of either 1.0 or 0.3 at birth. Hereafter, FiO2 will be titrated based on the oxygen saturation target range. In both groups, all other interventions during stabilization and thereafter will be similar. The primary outcome is respiratory effort in the first 5 min after birth expressed as average minute volume/kg. Secondary outcomes include inspired tidal volumes/kg, rate of rise to maximum tidal volume/kg, percentage of recruitment breaths with tidal volumes above 8 mL/kg, duration of hypoxia and hyperoxia and plasma levels of markers of oxidative stress (8-iso-prostaglandin F2α). Discussion: Current resuscitation guidelines recommend oxygen titration if infants fail to achieve the 25th percentile of the SpO2 reference ranges. It has become clear that, using this approach, most preterm infants are at risk for hypoxia in the first 5 min after birth, which could suppress the breathing effort. In addition, for compromised preterm infants who need respiratory support at birth, higher SpO2 reference ranges in the first minutes after birth might be needed to prevent prolonged hypoxia. Enhancing breathing effort by achieving an adequate level of oxygenation could potentially lead to a lower incidence of intubation and mechanical ventilation in the delivery room, contributing to a lower risk on lung injury in high-risk preterm infants. Measuring 8-iso-prostaglandin F2α could lead to a reflection of the true amount of oxygen exposure in both study groups.
Collapse
Affiliation(s)
- Janneke Dekker
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute for Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Martin Giera
- Center Proteomics Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute for Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - G Jeroen Hutten
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - W Onland
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands
| | - Arjan B Te Pas
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Millán I, Piñero-Ramos JD, Lara I, Parra-Llorca A, Torres-Cuevas I, Vento M. Oxidative Stress in the Newborn Period: Useful Biomarkers in the Clinical Setting. Antioxidants (Basel) 2018; 7:E193. [PMID: 30558164 PMCID: PMC6316621 DOI: 10.3390/antiox7120193] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Aerobic metabolism is highly efficient in providing energy for multicellular organisms. However, even under physiological conditions, an incomplete reduction of oxygen produces reactive oxygen species and, subsequently, oxidative stress. Some of these chemical species are highly reactive free radicals capable of causing functional and structural damage to cell components (protein, lipids, or nucleotides). Oxygen is the most used drug in ill-adapted patients during the newborn period. The use of oxygen may cause oxidative stress-related diseases that increase mortality and cause morbidity with adverse long-term outcomes. Conditions such as prematurity or birth asphyxia are frequently treated with oxygen supplementation. Both pathophysiological situations of hypoxia⁻reoxygenation in asphyxia and hyperoxia in premature infants cause a burst of reactive oxygen species and oxidative stress. Recently developed analytical assays using mass spectrometry have allowed us to determine highly specific biomarkers with minimal samples. The detection of these metabolites will help improve the diagnosis, evolution, and response to therapy in oxidative stress-related conditions during the newborn period.
Collapse
Affiliation(s)
- Iván Millán
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | | | - Inmaculada Lara
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Instituto La Fe, 46026 Valencia, Spain.
- Division of Neonatology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain.
| |
Collapse
|
27
|
Lee JS, Wang RX, Alexeev EE, Lanis JM, Battista KD, Glover LE, Colgan SP. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem 2018; 293:6039-6051. [PMID: 29487135 PMCID: PMC5912467 DOI: 10.1074/jbc.ra117.000269] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function.
Collapse
Affiliation(s)
- J Scott Lee
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Ruth X Wang
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Erica E Alexeev
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Jordi M Lanis
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Kayla D Battista
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Louise E Glover
- the School of Medicine, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| |
Collapse
|
28
|
Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol 2017; 12:674-681. [PMID: 28395175 PMCID: PMC5388914 DOI: 10.1016/j.redox.2017.03.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/12/2017] [Accepted: 03/09/2017] [Indexed: 02/08/2023] Open
Abstract
Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a challenge for the immediate future since accurate evaluation of oxidative stress would contribute to improve the quality of care of our neonatal patients.
Collapse
Affiliation(s)
- Isabel Torres-Cuevas
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Anna Parra-Llorca
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Angel Sánchez-Illana
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Nuñez-Ramiro
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Julia Kuligowski
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Cernada
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Justo Escobar
- Scientific Department, Sabartech SL, Biopolo Instituto Investigación Sanitaria La Fe, Valencia, Spain
| | - Máximo Vento
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
29
|
Kuligowski J, Solberg R, Sánchez-Illana Á, Pankratov L, Parra-Llorca A, Quintás G, Saugstad OD, Vento M. Plasma metabolite score correlates with Hypoxia time in a newly born piglet model for asphyxia. Redox Biol 2017; 12:1-7. [PMID: 28209514 PMCID: PMC5310173 DOI: 10.1016/j.redox.2017.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 01/09/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia is a leading cause of mortality and acquired long-term neurologic co-morbidities in the neonate. The most successful intervention for the treatment of moderate to severe HIE is moderate whole body hypothermia initiated within 6 h from birth. The objective and prompt identification of infants who are at risk of developing moderate to severe HIE in the critical first hours still remains a challenge. This work proposes a metabolite score calculated based on the relative intensities of three metabolites (choline, 6,8-dihydroxypurine and hypoxanthine) that showed maximum correlation with hypoxia time in a consolidated piglet model for neonatal hypoxia-ischemia. The metabolite score's performance as a biomarker for perinatal hypoxia and its usefulness for clinical grading and decision making have been assessed and compared to the performance of lactate which is currently considered the gold standard. For plasma samples withdrawn before and directly after a hypoxic insult, the metabolite score performed similar to lactate. However, it provided an enhanced predictive capacity at 2 h after resuscitation. The present study evidences the usefulness of the metabolite score for improving the early assessment of the severity of the hypoxic insult based on serial determinations in a minimally invasive biofluid. The applicability of the metabolite score for clinical diagnosis and patient stratification for hypothermia treatment has to be confirmed in multicenter trials involving newborns suffering from HIE.
Collapse
Affiliation(s)
- Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
| | - Rønnaug Solberg
- Department of Pediatric Research, Institute for Surgical Research, University of Oslo, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Ángel Sánchez-Illana
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
| | - Leonid Pankratov
- Department of Pediatric Research, Institute for Surgical Research, University of Oslo, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
| | - Guillermo Quintás
- Human & Environmental Health & Safety (HEHS), Leitat Technological Center, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Analítica, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Institute for Surgical Research, University of Oslo, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain.
| |
Collapse
|
30
|
Assessment of phospholipid synthesis related biomarkers for perinatal asphyxia: a piglet study. Sci Rep 2017; 7:40315. [PMID: 28071721 PMCID: PMC5223196 DOI: 10.1038/srep40315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
The prompt and reliable identification of infants at risk of hypoxic-ischemic encephalopathy secondary to perinatal asphyxia in the first critical hours is important for clinical decision-making and yet still remains a challenge. This work strives for the evaluation of a panel of metabolic biomarkers that have been associated with the hypoxic-ischemic insult in the perinatal period. Plasma and urine samples from a consolidated newborn piglet model of hypoxia and withdrawn before and at different time points after a hypoxic insult were analyzed and compared to a control group. Time-dependent metabolic biomarker profiles were studied and observed patterns were similar to those of lactate levels, which are currently considered the gold standard for assessing hypoxia. Class prediction performance could be improved by the use of a combination of the whole panel of determined metabolites in plasma as compared to lactate values. Using a multivariate model including lactate together with the studied metabolic biomarkers allowed to improve the prediction performance of duration of hypoxia time, which correlates with the degree of brain damage. The present study evidences the usefulness of choline and related metabolites for improving the early assessment of the severity of the hypoxic insult.
Collapse
|
31
|
Surowiec I, Ärlestig L, Rantapää-Dahlqvist S, Trygg J. Metabolite and Lipid Profiling of Biobank Plasma Samples Collected Prior to Onset of Rheumatoid Arthritis. PLoS One 2016; 11:e0164196. [PMID: 27755546 PMCID: PMC5068821 DOI: 10.1371/journal.pone.0164196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The early diagnosis of rheumatoid arthritis (RA) is desirable to install treatment to prevent disease progression and joint destruction. Autoantibodies and immunological markers pre-date the onset of symptoms by years albeit not all patients will present these factors, even at disease onset. Additional biomarkers would be of high value to improve early diagnosis and understanding of the process, leading to disease development. METHODS Plasma samples donated before the onset of RA were identified in the Biobank of Northern Sweden, a collection within national health survey programs. Thirty samples from pre-symptomatic individuals and nineteen from controls were subjected to liquid chromatography-mass spectrometry (LCMS) metabolite and lipid profiling. Lipid and metabolite profiles discriminating samples from pre-symptomatic individuals from controls were identified after univariate and multivariate OPLS-DA based analyses. RESULTS The OPLS-DA models including pre-symptomatic individuals and controls identified profiles differentiating between the groups that was characterized by lower levels of acyl-carnitines and fatty acids, with higher levels of lysophospatidylcholines (LPCs) and metabolites from tryptophan metabolism in pre-symptomatic individuals compared with controls. Lipid profiling showed that the majority of phospholipids and sphingomyelins were at higher levels in pre-symptomatic individuals in comparison with controls. CONCLUSIONS Our LCMS based approach demonstrated that there are changes in small molecule and lipid profiles detectable in plasma samples collected from the pre-symptomatic individuals who subsequently developed RA, which point to an up-regulation of levels of lysophospatidylcholines, and of tryptophan metabolism, perturbation of fatty acid beta-oxidation and increased oxidative stress in pre-symptomatic individuals' years before onset of symptoms.
Collapse
Affiliation(s)
- Izabella Surowiec
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
| | - Lisbeth Ärlestig
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University Hospital, Umeå, Sweden
| | | | - Johan Trygg
- Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
32
|
Changes of the plasma metabolome of newly born piglets subjected to postnatal hypoxia and resuscitation with air. Pediatr Res 2016; 80:284-92. [PMID: 27055187 DOI: 10.1038/pr.2016.66] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Perinatal hypoxic-ischemic brain damage is a major cause of mortality and morbidity in the neonatal period. Currently, limited ranges of biochemical tests assessing the intensity and duration of hypoxia are ready for clinical use. However, the need to initiate hypothermia therapy early after the clinical suspicion of hypoxic-ischemic encephalopathy requires the availability of early and reliable hypoxia markers. We have sought these biomarkers in an experimental model of hypoxia reoxygenation. METHODS Hypoxia and hypotension were induced in newborn piglets following a standardized model and reoxygenation was carried out using room air (RA). An untargeted liquid chromatography-time of flight mass spectrometry (LC-TOFMS) approach was used to assess changes in the metabolomic profile of plasma samples after intense hypoxia and upon reoxygenation. RESULTS At the end of hypoxia, the plasma metabolome showed an increased plasma concentration of analytes reflecting a metabolic adaptation to prolonged anaerobiosis. However, after resuscitation, metabolite levels returned to the starting values. CONCLUSION Severe hypoxia induces early, significant, and transient changes of specific metabolites in the plasma metabolome, which represent a snapshot of the biochemical adaptation of mammals to intense hypoxia. These metabolites could have applicability in predicting the severity of hypoxia in the clinical setting.
Collapse
|
33
|
Lakshminrusimha S, Saugstad OD. The fetal circulation, pathophysiology of hypoxemic respiratory failure and pulmonary hypertension in neonates, and the role of oxygen therapy. J Perinatol 2016; 36 Suppl 2:S3-S11. [PMID: 27225963 DOI: 10.1038/jp.2016.43] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
Neonatal hypoxemic respiratory failure (HRF), a deficiency of oxygenation associated with insufficient ventilation, can occur due to a variety of etiologies. HRF can result when pulmonary vascular resistance (PVR) fails to decrease at birth, leading to persistent pulmonary hypertension of newborn (PPHN), or as a result of various lung disorders including congenital abnormalities such as diaphragmatic hernia, and disorders of transition such as respiratory distress syndrome, transient tachypnea of newborn and perinatal asphyxia. PVR changes throughout fetal life, evident by the dynamic changes in pulmonary blood flow at different gestational ages. Pulmonary vascular transition at birth requires an interplay between multiple vasoactive mediators such as nitric oxide, which can be potentially inactivated by superoxide anions. Superoxide anions have a key role in the pathophysiology of HRF. Oxygen (O2) therapy, used in newborns long before our knowledge of the complex nature of HRF and PPHN, has continued to evolve. Over time has come the discovery that too much O2 can be toxic. Recommendations on the optimal inspired O2 levels to initiate resuscitation in term newborns have ranged from 100% (pre 1998) to the currently recommended use of room air (21%). Questions remain about the most effective levels, particularly in preterm and low birth weight newborns. Attaining the appropriate balance between hypoxemia and hyperoxemia, and targeting treatments to the pathophysiology of HRF in each individual newborn are critical factors in the development of improved therapies to optimize outcomes.
Collapse
Affiliation(s)
| | - O D Saugstad
- Department of Pediatric Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Nishino T, Okamoto K, Kawaguchi Y, Matsumura T, Eger BT, Pai EF, Nishino T. The C-terminal peptide plays a role in the formation of an intermediate form during the transition between xanthine dehydrogenase and xanthine oxidase. FEBS J 2015; 282:3075-90. [PMID: 25817260 PMCID: PMC4832347 DOI: 10.1111/febs.13277] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/09/2015] [Accepted: 03/21/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED Mammalian xanthine oxidoreductase can exist in both dehydrogenase and oxidase forms. Conversion between the two is implicated in such diverse processes as lactation, anti-bacterial activity, reperfusion injury and a growing number of diseases. We have constructed a variant of the rat liver enzyme that lacks the carboxy-terminal amino acids 1316-1331; it appears to assume an intermediate form, exhibiting a mixture of dehydrogenase and oxidase activities. The purified variant protein retained ~ 50-70% of oxidase activity even after prolonged dithiothreitol treatment, supporting a previous prediction that the C-terminal region plays a role in the dehydrogenase to oxidase conversion. In the crystal structure of the protein variant, most of the enzyme stays in an oxidase conformation. After 15 min of incubation with a high concentration of NADH, however, the corresponding X-ray structures showed a dehydrogenase-type conformation. On the other hand, disulfide formation between Cys535 and Cys992, which can clearly be seen in the electron density map of the crystal structure of the variant after removal of dithiothreitol, goes in parallel with the complete conversion to oxidase, resulting in structural changes identical to those observed upon proteolytic cleavage of the linker peptide. These results indicate that the dehydrogenase-oxidase transformation occurs rather readily and the insertion of the C-terminal peptide into the active site cavity of its subunit stabilizes the dehydrogenase form. We propose that the intermediate form can be generated (e.g. in endothelial cells) upon interaction of the C-terminal peptide portion of the enzyme with other proteins or the cell membrane. DATABASE Coordinate sets and structure factors for the four crystal structures reported in the present study have been deposited in the Protein Data Bank under the identification numbers 4YRW, 4YTZ, 4YSW, and 4YTY.
Collapse
Affiliation(s)
- Tomoko Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yuko Kawaguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Tomohiro Matsumura
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, ON, Canada
| | - Emil F Pai
- Department of Biochemistry, University of Toronto, ON, Canada
- Departments of Medical Biophysics and Molecular Genetics, University of Toronto, ON, Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Toronto, ON, Canada
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| |
Collapse
|
35
|
Donaldson AE, Lamont IL. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS One 2013; 8:e82011. [PMID: 24278469 PMCID: PMC3836773 DOI: 10.1371/journal.pone.0082011] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/27/2013] [Indexed: 11/18/2022] Open
Abstract
Death is likely to result in very extensive biochemical changes in all body tissues due to lack of circulating oxygen, altered enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites. These biochemical changes may provide chemical markers for helping to more accurately determine the time since death (post-mortem interval), which is challenging to establish with current observation-based methodologies. In this study blood pH and changes in concentration of six metabolites (lactic acid, hypoxanthine, uric acid, ammonia, NADH and formic acid) were examined post-mortem over a 96 hour period in blood taken from animal corpses (rat and pig) and blood from rats and humans stored in vitro. The pH and the concentration of all six metabolites changed post-mortem but the extent and rate of change varied. Blood pH in corpses fell from 7.4 to 5.1. Concentrations of hypoxanthine, ammonia, NADH and formic acid all increased with time and these metabolites may be potential markers for post-mortem interval. The concentration of lactate increased and then remained at an elevated level and changes in the concentration were different in the rat compared to the human and pig. This is the first systematic study of multiple metabolic changes post-mortem and demonstrates the nature and extent of the changes that occur, in addition to identifying potential markers for estimating post-mortem interval.
Collapse
Affiliation(s)
- Andrea E. Donaldson
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- * E-mail: (AED); (ILL)
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- * E-mail: (AED); (ILL)
| |
Collapse
|
36
|
|
37
|
Metabolomic strategy for studying the intervention and the synergistic effects of the shexiang baoxin pill for treating myocardial infarction in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:823121. [PMID: 23533524 PMCID: PMC3603319 DOI: 10.1155/2013/823121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/03/2013] [Accepted: 01/17/2013] [Indexed: 12/19/2022]
Abstract
A metabolomic approach has been developed for evaluating the therapeutic effects of the bioactive components and the synergistic efficacy of the Shexiang Baoxin Pill (SBP) on myocardial infarction (MI) in rats. The MI rats were administered the SBP, muscone, cinnamic acid, bufalin, ginsenoside Re, ginsenoside Rb1, cholic acid, borneol, and a combined version of these bioactive components (SFSBP). Liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) was used to obtain the mass data from the rats' serum. The number of biomarkers that were reversed by SFSBP was greater than any of the monotherapy groups. The PLS-DA score plots demonstrated that the SFSBP group results were located closer to the sham group than any of the monotherapy groups and that the SBP group was located closer to the sham group than the SFSBP treatment group. The reversing results observed with SFSBP showed synergistic effects when compared with those of the individual bioactive components that were used as monotherapy. Meanwhile, the SBP displayed superior regulation efficacy to SFSBP in MI rats, indicating that there must be other active components in the SBP that were responsible for the treatment of MI that were not included in the SFSBP treatment.
Collapse
|
38
|
Abstract
It took more than 30 years from the first observations that oxygen may be toxic during resuscitation till international guidelines changed to recommend that term and near term newborn infants should be resuscitated with air instead of 100% oxygen. There are still a number of unanswered questions related to oxygen therapy of the newborn infant. The newborn brain, lungs and other organs are susceptible to oxygen injury, and newborns still develop injury caused by hyperoxia.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Clinic of Women and Child Health, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.
| |
Collapse
|
39
|
Xiang L, Jiang P, Zhan C, Chen Z, Liu X, Huang X, Wang S, Hu Y, Zhang W, Liu R. The serum metabolomic study of intervention effects of the traditional Chinese medicine Shexiang Baoxin Pill and a multi-component medicine polypill in the treatment of myocardial infarction in rats. MOLECULAR BIOSYSTEMS 2012; 8:2434-42. [DOI: 10.1039/c2mb25172h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Measurement of purine release with microelectrode biosensors. Purinergic Signal 2011; 8:27-40. [PMID: 22095158 DOI: 10.1007/s11302-011-9273-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/19/2011] [Indexed: 12/22/2022] Open
Abstract
Purinergic signalling departs from traditional paradigms of neurotransmission in the variety of release mechanisms and routes of production of extracellular ATP and adenosine. Direct real-time measurements of these purinergic agents have been of great value in understanding the functional roles of this signalling system in a number of diverse contexts. Here, we review the methods for measuring purine release, introduce the concept of microelectrode biosensors for ATP and adenosine and explain how these have been used to provide new mechanistic insight in respiratory chemoreception, synaptic physiology, eye development and purine salvage. We finish by considering the association of purine release with pathological conditions and examine the possibilities that biosensors for purines may one day be a standard part of the clinical diagnostic tool chest.
Collapse
|
41
|
Bellomo G, Venanzi S, Saronio P, Verdura C, Narducci PL. Prognostic significance of serum uric acid in women with gestational hypertension. Hypertension 2011; 58:704-8. [PMID: 21876075 DOI: 10.1161/hypertensionaha.111.177212] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim of our study was to ascertain, prospectively, whether serum uric acid is a suitable predictor of preeclampsia and/or the delivery of small-for-gestational-age infants in women with gestational hypertension. We screened 206 primiparas, with a singleton pregnancy, referred for recent onset of hypertension. At presentation, we measured serum uric acid, creatinine, blood glucose, hemoglobin and platelet level, and 24-hour proteinuria, as well as office and 24-hour blood pressures. We followed the women until 1 month after delivery and recorded pregnancy outcome. After logistic regression analysis, uric acid resulted a significant predictor of preeclampsia, with an unadjusted odds ratio of 9.1 (95% CI: 4.8 to 17.4; P<0.001); after adjustment for age, gestation week, hemoglobin and platelet levels, serum creatinine, office and 24-hour average systolic and diastolic blood pressures, it was 7.1 (95% CI: 3.2 to 15.7; P<0.001). Regarding the association between maternal serum uric acid and the chance of giving birth to a small-for-gestational-age infant, the unadjusted odds ratio was 1.7 (95% CI: 1.4 to 2.2; P<0.001), and it was 1.6 (95% CI: 1.1 to 2.4; P=0.02) after adjustment. Receiver operating characteristic analysis showed that serum uric acid, at a 309-μmol/L cutoff, predicted the development of preeclampsia (area under the curve: 0.955), with 87.7% sensitivity and 93.3% specificity, and the delivery of small-for-gestational-age infants (area under the curve: 0.784) with 83.7% sensitivity and 71.7% specificity. In conclusion, the results of our study show that serum uric acid is a reliable predictor of preeclampsia in women referred for gestational hypertension.
Collapse
Affiliation(s)
- Gianni Bellomo
- Department of Nephrology, San Giovanni Battista Hospital, Foligno, Italy.
| | | | | | | | | |
Collapse
|
42
|
Plank MS, Boskovic DS, Tagge E, Chrisler J, Slater L, Angeles KR, Angeles DM. An animal model for measuring the effect of common NICU procedures on ATP metabolism. Biol Res Nurs 2011; 13:283-8. [PMID: 21406502 DOI: 10.1177/1099800411400407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neonates exposed to common neonatal intensive care unit (NICU) procedures show alterations in heart rate, blood pressure, and oxygen saturation. However, it is unclear if these physiologic changes increase adenosine triphosphate (ATP) utilization, thus potentially increasing the risk for tissue hypoxia in medically fragile neonates. Plasma uric acid is a commonly used marker of increased ATP utilization because uric acid levels increase when ATP consumption is enhanced. To examine the effect of a common NICU procedure on plasma uric acid concentration, we developed a model that allows for acute monitoring of this biochemical marker in plasma in 7- to 9-day-old rabbits. In our pilot study, we exposed neonatal rabbits to a single heel lance 2.5 hr after catheter placement. We measured uric acid concentration before and 30 min after the heel lance and compared findings to levels in control animals not exposed to the heel lance. Our pilot data shows a significant difference in uric acid concentration over time between the control and heel lance groups (46.2 ± 7.1 μM vs. 54.7 ± 5.8 μM, respectively, p = .027). Calculation of percentage change from baseline showed uric acid concentration increasing in rabbits exposed to heel lance and decreasing in control rabbits (1.5 ± 4.7% vs. -16.1 ± 4.2%, respectively, p = .03). These data suggest that this animal model can be successfully used to examine the biochemical effect of common NICU procedures, such as heel lance, on markers of ATP breakdown and purine metabolism.
Collapse
Affiliation(s)
- Megan S Plank
- School of Medicine, Loma Linda University Loma Linda, CA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Ola Didrik Saugstad
- Department of Paediatric Research, Oslo University Hospital, Rikshospitalet, University of Oslo, 0027 Oslo, Norway.
| |
Collapse
|
44
|
Effects of extracellular purines on cytotoxicity of methotrexate. Cancer Chemother Pharmacol 2009; 66:121-7. [PMID: 19784836 DOI: 10.1007/s00280-009-1142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/12/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Nucleoside and base modulation of the cytotoxicity of nucleic acid and folate antimetabolite drugs has been widely discussed. Many investigators have observed reduced toxicity due to circumvention of drug-induced inhibition of de novo purine and pyrimidine synthesis. However, exogenous purine nucleosides and bases may also enhance the cytotoxicity of even moderate concentrations of antifolate drugs (MTX and PTX) which inhibit dihydrofolate reductase. In this study, the effects of nucleosides in the medium on the cytotoxicity and deoxyribonucleoside triphosphate pools after brief exposure of cultured cells to methotrexate have been studied in cultured L1210 murine leukaemia cells. METHODS Cell viability was determined by trypan blue exclusion assay. Colony formation was assessed by microtitration cloning assay. The deoxyribonucleotides were measured by a modification of the DNA polymerase assay. Purines were extracted with trioctylamine and 1,1,2-trichlorotrifluoroethane buffer and concentrations of purine bases were determined by HPLC. RESULTS Subculture of drug-treated cells in fresh medium containing 10% FCS led to greater toxicity than sub culture in 'conditioned' medium, i.e. fresh medium in which logarithmically growing cells had been cultured for 24 h before separation. Cells resuspended in fresh medium had increased dATP and sustained inhibition of dTTP levels, while cells subcultured in 'conditioned' medium had no elevation of dATP. Hypoxanthine concentration determined by HPLC in 'conditioned' medium was 0.9 microM compared to 6.7 microM in fresh medium. Resuspension of drug-treated cells in conditioned medium supplemented with 10 or 100 microM HX enhanced cytotoxicity and increased the dATP levels. CONCLUSION These results add further evidence that purines present in normal culture conditions are important determinants of methotrexate cytotoxicity. Elevation of dATP levels after methotrexate treatment is an important modulator of cytotoxicity.
Collapse
|
45
|
|
46
|
Maltepe E, Saugstad OD. Oxygen in health and disease: regulation of oxygen homeostasis--clinical implications. Pediatr Res 2009; 65:261-8. [PMID: 18852690 DOI: 10.1203/pdr.0b013e31818fc83f] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxygen is critical for multicellular existence. Its reduction to water by the mitochondrial electron transport chain helps supply the metabolic demands of human life. The incompletely reduced, reactive oxygen byproducts of this reaction, however, can be quite toxic. In this review, we explore the mechanisms responsible for maintaining oxygen homeostasis and the consequences of their dysfunction. With an eye toward defining clinical care guidelines for the management of critically ill neonates, we present evidence describing the role of physiologic hypoxia during development and the adverse consequences of hyperoxia in-term as well as preterm infants.
Collapse
Affiliation(s)
- Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
47
|
Dalen ML, Frøyland E, Saugstad OD, Mollnes TE, Rootwelt T. Post-hypoxic hypothermia is protective in human NT2-N neurons regardless of oxygen concentration during reoxygenation. Brain Res 2009; 1259:80-9. [DOI: 10.1016/j.brainres.2008.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 01/08/2023]
|
48
|
|
49
|
Aliefendioğlu D, Gürsoy T, Hayran KM, Aslan AT. Can cerebrospinal fluid uric acid levels differentiate intraventricular hemorrhage from traumatic tap? Neonatology 2006; 90:268-72. [PMID: 16809910 DOI: 10.1159/000094319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 02/13/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To measure blood and cerebrospinal fluid (CSF) uric acid (UA) levels of neonates with intraventricular hemorrhage (IVH), and to examine whether or not UA can be used to differentiate traumatic tap from IVH. MATERIAL AND METHODS The control group (n = 19, group I) consisted of neonates presenting with signs requiring analysis of CSF but whose CSF indices proved to be normal. Traumatic taps (n = 15, group II) were mimicked by adding 2 drops of homologous blood to normal CSF samples. The IVH group (n = 21, group III) consisted of neonates who had been diagnosed by cranial ultrasonography or computed tomography scans. Data are presented as median (range). RESULTS There was no significant difference between groups with respect to serum UA levels. While no significant difference was observed between CSF UA levels of the control [0.6 (0.1-1.8) mg/dl] and traumatic tap group [0.5 (0.3-1.1) mg/dl], the IVH group [1.6 (0.7-6.9) mg/dl] was found to have significantly higher CSF UA levels than groups I and II. Furthermore, although there were significant correlations between serum and CSF UA levels in the control and traumatic tap groups, no correlation was observed in the IVH group. CONCLUSION CSF UA levels are increased in neonates with IVH and they may be used to differentiate a real hemorrhage from a traumatic tap.
Collapse
Affiliation(s)
- Didem Aliefendioğlu
- Neonatology Unit, Department of Pediatrics, Kirikkale University Faculty of Medicine, Kirikkale, Turkey.
| | | | | | | |
Collapse
|
50
|
Abstract
The use of 100% oxygen for delivery room resuscitation is currently the recommended standard of the American Academy of Pediatrics and the Neonatal Resuscitation Program. However, there is mounting evidence from animal and human studies suggesting that resuscitation with room air (RA, 21% oxygen), including positive pressure ventilation with bag and face mask, may be as effective as that with 100% oxygen, and that the use of 100% oxygen may pose a risk of adverse physiologic sequelae. Resuscitation with RA has been demonstrated to result in faster recovery and improved neonatal mortality in comparison to 100% oxygen resuscitation. In addition, studies of normal oxygen saturation immediately after birth suggest delivery room personnel may be rushing to high saturation unnecessarily. The question for perinatal medical and nursing personnel involved in newborn resuscitation in the delivery room is whether the use of RA reduces the possible adverse effects of 100% oxygen, including delay in short-term stabilization, death, neurological disability, and possible secondary oxygen free radical injury. A systematic synopsis of both animal studies and human studies involving the advantages, disadvantages, possible risks, and short- and long-term effects of these 2 methods of resuscitation is presented.
Collapse
Affiliation(s)
- Karen E Corff
- Children's Hospital, Department of Pediatrics, Section of Neonatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | |
Collapse
|