1
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
2
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
3
|
Hajaj E, Pozzi S, Erez A. From the Inside Out: Exposing the Roles of Urea Cycle Enzymes in Tumors and Their Micro and Macro Environments. Cold Spring Harb Perspect Med 2024; 14:a041538. [PMID: 37696657 PMCID: PMC10982720 DOI: 10.1101/cshperspect.a041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catabolic pathways change in anabolic diseases such as cancer to maintain metabolic homeostasis. The liver urea cycle (UC) is the main catabolic pathway for disposing excess nitrogen. Outside the liver, the UC enzymes are differentially expressed based on each tissue's needs for UC intermediates. In tumors, there are changes in the expression of UC enzymes selected for promoting tumorigenesis by increasing the availability of essential UC substrates and products. Consequently, there are compensatory changes in the expression of UC enzymes in the cells that compose the tumor microenvironment. Moreover, extrahepatic tumors induce changes in the expression of the liver UC, which contribute to the systemic manifestations of cancer, such as weight loss. Here, we review the multilayer changes in the expression of UC enzymes throughout carcinogenesis. Understanding the changes in UC expression in the tumor and its micro and macro environment can help identify biomarkers for early cancer diagnosis and vulnerabilities that can be targeted for therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Abstract
Gyrate atrophy (GA) of the choroid and retina is a rare autosomal recessive genetic condition characterized by elevation of the plasma level of the amino acid ornithine due to deficiency of the enzyme ornithine ketoacid aminotransferase. Accumulation of ornithine occurs in various body tissues but leads primarily to characteristic ophthalmic manifestations including myopia, cataract, progressive chorioretinal atrophy, and macular changes. Patients usually present with night blindness that starts in the first decade of life followed by visual field constriction and eventually diminution of the central visual acuity and blindness. The condition has been reported worldwide and its differential diagnosis is broad and includes choroideremia and retinitis pigmentosa. Treatment currently depends on life-long dietary modifications including restriction of the amino acid arginine in diet. This article describes in detail the pathogenesis, clinical features, multimodal imaging findings, and treatment options for GA of the choroid and retina and its complications.
Collapse
Affiliation(s)
- Ayman G Elnahry
- Department of Ophthalmology, Faculty of Medicine, 63526Cairo University, Cairo, Egypt
| | - Gehad A Elnahry
- Department of Ophthalmology, Faculty of Medicine, 63526Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell 2021; 81:3749-3759. [PMID: 34469752 DOI: 10.1016/j.molcel.2021.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
The expression of the urea cycle (UC) proteins is dysregulated in multiple cancers, providing metabolic benefits to tumor survival, proliferation, and growth. Here, we review the main changes described in the expression of UC enzymes and metabolites in different cancers at various stages and suggest that these changes are dynamic and should hence be viewed in a context-specific manner. Understanding the evolvability in the activity of the UC pathway in cancer has implications for cancer-immune cell interactions and for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Garcia TM, van Roest M, Vermeulen JLM, Meisner S, Smit WL, Silva J, Koelink PJ, Koster J, Faller WJ, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Early Life Antibiotics Influence In Vivo and In Vitro Mouse Intestinal Epithelium Maturation and Functioning. Cell Mol Gastroenterol Hepatol 2021; 12:943-981. [PMID: 34102314 PMCID: PMC8346670 DOI: 10.1016/j.jcmgh.2021.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The use of antibiotics (ABs) is a common practice during the first months of life. ABs can perturb the intestinal microbiota, indirectly influencing the intestinal epithelial cells (IECs), but can also directly affect IECs independent of the microbiota. Previous studies have focused mostly on the impact of AB treatment during adulthood. However, the difference between the adult and neonatal intestine warrants careful investigation of AB effects in early life. METHODS Neonatal mice were treated with a combination of amoxicillin, vancomycin, and metronidazole from postnatal day 10 to 20. Intestinal permeability and whole-intestine gene and protein expression were analyzed. IECs were sorted by a fluorescence-activated cell sorter and their genome-wide gene expression was analyzed. Mouse fetal intestinal organoids were treated with the same AB combination and their gene and protein expression and metabolic capacity were determined. RESULTS We found that in vivo treatment of neonatal mice led to decreased intestinal permeability and a reduced number of specialized vacuolated cells, characteristic of the neonatal period and necessary for absorption of milk macromolecules. In addition, the expression of genes typically present in the neonatal intestinal epithelium was lower, whereas the adult gene expression signature was higher. Moreover, we found altered epithelial defense and transepithelial-sensing capacity. In vitro treatment of intestinal fetal organoids with AB showed that part of the consequences observed in vivo is a result of the direct action of the ABs on IECs. Lastly, ABs reduced the metabolic capacity of intestinal fetal organoids. CONCLUSIONS Our results show that early life AB treatment induces direct and indirect effects on IECs, influencing their maturation and functioning.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jacqueline L M Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam, the Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| |
Collapse
|
7
|
Mohammad MA, Didelija IC, Stoll B, Burrin DG, Marini JC. Modeling age-dependent developmental changes in the expression of genes involved in citrulline synthesis using pig enteroids. Physiol Rep 2020; 8:e14565. [PMID: 33181004 PMCID: PMC7660678 DOI: 10.14814/phy2.14565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Age-dependent changes in the intestinal gene expression of enzymes involved in the metabolism of citrulline and arginine are well characterized. Enteroids, a novel ex-vivo model that recreates the three-dimensional structure of the intestinal crypt-villus unit, have shown to replicate molecular and physiological profiles of the intestinal segment from where they originated ("location memory"). OBJECTIVE The present study tested the hypothesis that enteroids recapitulate the developmental changes observed in vivo regarding citrulline production in pigs ("developmental memory"). METHODS Preterm (10- and 5-d preterm) and term pigs at birth, together with 7- and 35-d-old pigs were studied. Gene expression was measured in jejunal samples and in enteroids derived from this segment. Whole body citrulline production was measured by isotope dilution and enteroid citrulline production by accumulation in the media. RESULTS With the exception of arginase I and inducible nitric oxide synthase, all the genes investigated expressed in jejunum were expressed by enteroids. In the jejunum, established markers of development (lactase and sucrase-isomaltase), as well as genes that code for enzymes involved in the production and utilization of citrulline and arginine, underwent the ontogenic changes described in the literature. However, enteroid expression of these genes, as well as citrulline production, failed to recapitulate the changes observed in vivo. CONCLUSIONS Under culture conditions used in our study, enteroids derived from jejunal crypts of pigs at different ages failed to replicate the gene expression observed in whole tissue and whole body citrulline production. Additional extracellular cues may be needed to reproduce the age-dependent phenotype.
Collapse
Affiliation(s)
- Mahmoud A. Mohammad
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Food Science and Nutrition DepartmentNational Research CentreDokki, GizaEgypt
| | - Inka C. Didelija
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
| | - Juan C. Marini
- USDA/ARS Children’s Nutrition Research CenterBaylor College of MedicineHoustonTXUSA
- Pediatric Critical Care MedicineDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
8
|
Stettner N, Rosen C, Bernshtein B, Gur-Cohen S, Frug J, Silberman A, Sarver A, Carmel-Neiderman NN, Eilam R, Biton I, Pevsner-Fischer M, Zmora N, Brandis A, Bahar Halpern K, Mazkereth R, di Bernardo D, Brunetti-Pierri N, Premkumar MH, Dank G, Nagamani SCS, Jung S, Harmelin A, Erez A. Induction of Nitric-Oxide Metabolism in Enterocytes Alleviates Colitis and Inflammation-Associated Colon Cancer. Cell Rep 2019; 23:1962-1976. [PMID: 29768197 PMCID: PMC5976577 DOI: 10.1016/j.celrep.2018.04.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/05/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) plays an established role in numerous physiological and pathological processes, but the specific cellular sources of NO in disease pathogenesis remain unclear, preventing the implementation of NO-related therapy. Argininosuccinate lyase (ASL) is the only enzyme able to produce arginine, the substrate for NO generation by nitric oxide synthase (NOS) isoforms. Here, we generated cell-specific conditional ASL knockout mice in combination with genetic and chemical colitis models. We demonstrate that NO derived from enterocytes alleviates colitis by decreasing macrophage infiltration and tissue damage, whereas immune cell-derived NO is associated with macrophage activation, resulting in increased severity of inflammation. We find that induction of endogenous NO production by enterocytes with supplements that upregulate ASL expression and complement its substrates results in improved epithelial integrity and alleviation of colitis and of inflammation-associated colon cancer.
Collapse
Affiliation(s)
- Noa Stettner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel; Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel; Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
| | - Chava Rosen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; The Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - Biana Bernshtein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Frug
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alona Sarver
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal Biton
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Niv Zmora
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ram Mazkereth
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Chemical, Materials and Industrial Engineering, Federico II University, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Translational Medicine, Federico II University, Naples, Italy
| | - Muralidhar H Premkumar
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Gillian Dank
- Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
| | - Sandesh C S Nagamani
- Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Inducible Slc7a7 Knockout Mouse Model Recapitulates Lysinuric Protein Intolerance Disease. Int J Mol Sci 2019; 20:ijms20215294. [PMID: 31653080 PMCID: PMC6862226 DOI: 10.3390/ijms20215294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7-/-). The Slc7a7-/- model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7-/- mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7-/- model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression.
Collapse
|
10
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Quantitation of the arginine family amino acids in the blood of full-term infants perinatally in relation to their birth weight. J Pediatr Endocrinol Metab 2019; 32:803-809. [PMID: 31246579 DOI: 10.1515/jpem-2019-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Arginine family amino acids (AFAAs) include glutamine (Gln) plus glutamate (Glu), ornithine (Orn), proline (Pro), citrulline (Cit) and arginine (Arg). We aimed to quantitate these amino acids in the blood of full-term infants in relation to their birth weight (BW) perinatally. Methods Breastfeeding full-term infants (n = 2000, 1000 males, 1000 females) with a BW of 2000-4000 g were divided into four equal groups: group A, 2000-2500 g; B, 2500-3000 g; C, 3000-3500 g and D, 3500-4000 g. Blood samples as dried blood spots (DBS) were collected on the third day of life and analyzed via a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol. Results Gln plus Glu mean values were found to be statistically significantly different between males and females in all studied groups. The highest values of these amino acids were detected in both males and females in group D. Orn mean values were found to be statistically significantly different between males and females of the same BW in all groups except the last one. The lower mean value was determined in group A, whereas the highest was determined in group D. Cit and Arg mean values were determined to be almost similar in all studied groups. Conclusions Gln plus Glu and Orn blood concentrations were directly related to infants' BW. Conversely, Cit and Arg did not vary significantly in all groups.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Agia Sofia Children's Hospital, Athens, Greece
| | | | - Yannis L Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece, Phone: +30 210 7274696, Fax: +30 210 7274039
| |
Collapse
|
11
|
Navis M, Martins Garcia T, Renes IB, Vermeulen JL, Meisner S, Wildenberg ME, van den Brink GR, van Elburg RM, Muncan V. Mouse fetal intestinal organoids: new model to study epithelial maturation from suckling to weaning. EMBO Rep 2018; 20:embr.201846221. [PMID: 30530633 PMCID: PMC6362357 DOI: 10.15252/embr.201846221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
During the suckling-to-weaning transition, the intestinal epithelium matures, allowing digestion of solid food. Transplantation experiments with rodent fetal epithelium into subcutaneous tissue of adult animals suggest that this transition is intrinsically programmed and occurs in the absence of dietary or hormonal signals. Here, we show that organoids derived from mouse primary fetal intestinal epithelial cells express markers of late fetal and neonatal development. In a stable culture medium, these fetal epithelium-derived organoids lose all markers of neonatal epithelium and start expressing hallmarks of adult epithelium in a time frame that mirrors epithelial maturation in vivo In vitro postnatal development of the fetal-derived organoids accelerates by dexamethasone, a drug used to accelerate intestinal maturation in vivo Together, our data show that organoids derived from fetal epithelium undergo suckling-to-weaning transition, that the speed of maturation can be modulated, and that fetal organoids can be used to model the molecular mechanisms of postnatal epithelial maturation.
Collapse
Affiliation(s)
- Marit Navis
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Jacqueline Lm Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Medicines Research Center, London, UK
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Marini JC, Agarwal U, Robinson JL, Yuan Y, Didelija IC, Stoll B, Burrin DG. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig. Am J Physiol Endocrinol Metab 2017; 313:E233-E242. [PMID: 28611027 PMCID: PMC5582884 DOI: 10.1152/ajpendo.00055.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/15/2023]
Abstract
The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for arginine synthesis argininosuccinate synthase (ASS1) and lyase (ASL) are present in the gut. However, evidence of high plasma citrulline concentrations in neonates suggests otherwise. We quantified in vivo citrulline production in premature (10 days preterm), neonatal (7 days old), and young pigs (35 days old) using citrulline tracers. Neonatal pigs had higher fluxes (69 µmol·kg-1·h-1, P < 0.001) than premature and young pigs (43 and 45 µmol·kg-1·h-1, respectively). Plasma citrulline concentration was also greater in neonatal pigs than in the other age groups. We also determined the site of synthesis and utilization of citrulline in neonatal and young pigs by measuring organ balances across the gut and the kidney. Citrulline was released from the gut and utilized by the kidney in both neonatal and young pigs. The abundance and localization of the enzymes involved in the synthesis and utilization were determined in intestinal and kidney tissue. Despite the presence of ASS1 and ASL in the neonatal small intestine, the lack of colocalization with the enzymes that produce citrulline results in the release of citrulline by the PDV and its utilization by the kidney to produce arginine. In conclusion, the intestinal-renal axis for arginine synthesis is present in the neonatal pig.
Collapse
Affiliation(s)
- Juan C Marini
- Pediatric Critical Care Medicine; and
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Umang Agarwal
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jason L Robinson
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yang Yuan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Inka C Didelija
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Douglas G Burrin
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Ginguay A, Cynober L, Curis E, Nicolis I. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways. BIOLOGY 2017; 6:biology6010018. [PMID: 28272331 PMCID: PMC5372011 DOI: 10.3390/biology6010018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme.
Collapse
Affiliation(s)
- Antonin Ginguay
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Luc Cynober
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, Université Paris Descartes, 75006 Paris, France.
- Service de biostatistiques et d'informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France.
| | - Ioannis Nicolis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- EA 4064 "Épidémiologie environnementale: Impact sanitaire des pollutions", Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
14
|
Peng Y, Cooper SK, Li Y, Mei JM, Qiu S, Borchert GL, Donald SP, Kung HF, Phang JM. Ornithine-δ-Aminotransferase Inhibits Neurogenesis During Xenopus Embryonic Development. Invest Ophthalmol Vis Sci 2015; 56:2486-97. [PMID: 25783604 DOI: 10.1167/iovs.15-16509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In humans, deficiency of ornithine-δ-aminotransferase (OAT) results in progressive degeneration of the neural retina (gyrate atrophy) with blindness in the fourth decade. In this study, we used the Xenopus embryonic developmental model to study functions of the OAT gene on embryonic development. METHODS We cloned and sequenced full-length OAT cDNA from Xenopus oocytes (X-OAT) and determined X-OAT expression in various developmental stages of Xenopus embryos and in a variety of adult tissues. The phenotype, gene expression of neural developmental markers, and enzymatic activity were detected by gain-of-function and loss-of-function manipulations. RESULTS We showed that X-OAT is essential for Xenopus embryonic development, and overexpression of X-OAT produces a ventralized phenotype characterized by a small head, lack of axial structure, and defective expression of neural developmental markers. Using X-OAT mutants based on mutations identified in humans, we found that substitution of both Arg 180 and Leu 402 abrogated both X-OAT enzymatic activity and ability to modulate the developmental phenotype. Neurogenesis is inhibited by X-OAT during Xenopus embryonic development. CONCLUSIONS Neurogenesis is inhibited by X-OAT during Xenopus embryonic development, but it is essential for Xenopus embryonic development. The Arg 180 and Leu 402 are crucial for these effects of the OAT molecule in development.
Collapse
Affiliation(s)
- Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sandra K Cooper
- Basic Research Program, Leidos, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jay M Mei
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Shuwei Qiu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gregory L Borchert
- Basic Research Program, Leidos, Inc., National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Steven P Donald
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| | - Hsiang-Fu Kung
- State Key Laboratory of Oncology in Southern China, and Centre for Emerging Infectious Diseases, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - James M Phang
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, United States
| |
Collapse
|
15
|
Fulde M, Hornef MW. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 2015; 260:21-34. [PMID: 24942679 DOI: 10.1111/imr.12190] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system instructs the host on microbial exposure and infection. This information is critical to mount a protective innate and adaptive host response to microbial challenge, but is also involved in homeostatic and adaptive processes that adjust the organism to meet environmental requirements. This is of particular importance for the neonatal host during the transition from the protected fetal life to the intense and dynamic postnatal interaction with commensal and pathogenic microorganisms. Here, we discuss both adaptive and developmental mechanisms of the mucosal innate immune system that prevent inappropriate stimulation and facilitate establishment of a stable homeostatic host-microbial interaction after birth.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
16
|
Pontoppidan PL, Jordan K, Carlsen AL, Uhlving HH, Kielsen K, Christensen M, Ifversen M, Nielsen CH, Sangild P, Heegaard NHH, Heilmann C, Sengeløv H, Müller K. Associations between gastrointestinal toxicity, micro RNA and cytokine production in patients undergoing myeloablative allogeneic stem cell transplantation. Int Immunopharmacol 2015; 25:180-8. [PMID: 25614225 DOI: 10.1016/j.intimp.2014.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 11/28/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a procedure with a high risk of treatment related mortality. The primary aim of the present study was to examine associations between markers of gastrointestinal toxicity, markers of systemic inflammation, and plasma levels of microRNA (miRNA) -155 and -146a during the first month after HSCT. The secondary aim was to characterize the impact of the toxic-inflammatory response on the function of circulating leukocytes during immune recovery. Thirty HSCT patients were included. Gastrointestinal injury was monitored by toxicity scores, lactulose-mannitol test and plasma citrulline, as a measure of the enterocyte population. Nadir of citrulline and maximum of oral toxicity scores, intestinal permeability, CRP and plasma levels of IL-6 and IL-10 was seen at day +7 post-HSCT. miRNA-155 and mi-RNA-146a showed an inverse relation with significantly elevated miRNA-155 and decreased miRNA-146a levels, from day 0 to day +28 compared with pre-conditioning levels. Citrulline levels below the median at day +7 were associated with higher spontaneous production of IL-6 and TNF-α as well as higher in vitro stimulated production of IL-17A at day +21. This study is the first to demonstrate that toxic responses to chemotherapy are accompanied by differential regulation of miRNAs with opposing effects on immune regulation. We find that a proinflammatory miRNA profile is sustained during the first three weeks after the transplantation, indicating that these miRNAs may play a role in the regulation of the inflammatory environment during immune reconstitution after HSCT.
Collapse
Affiliation(s)
- Peter L Pontoppidan
- Rigshospitalet, Copenhagen, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| | - Karina Jordan
- Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen, Denmark
| | - Anting Liu Carlsen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Denmark
| | - Hilde Hylland Uhlving
- Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen, Denmark
| | - Katrine Kielsen
- Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen, Denmark
| | - Mette Christensen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | | | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen, Denmark
| | - Per Sangild
- Rigshospitalet, Copenhagen, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Niels Henrik Helweg Heegaard
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | | | | | - Klaus Müller
- Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Shiue SC, Huang MZ, Su TS. A transgenic approach to study argininosuccinate synthetase gene expression. J Biomed Sci 2014; 21:42. [PMID: 24884799 PMCID: PMC4025196 DOI: 10.1186/1423-0127-21-42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/21/2014] [Indexed: 12/04/2022] Open
Abstract
Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage. Thus, the time course of EGFP expression in the transgenic mice resembled that of the human ASS gene. Conclusions We demonstrate that the transgenic mouse system reported here has the merit of sensitivity and direct visualization advantage, and is ideal for annotating temporal and spatial expression profiles and the regulation mode of the ASS gene.
Collapse
Affiliation(s)
| | | | - Tsung-Sheng Su
- Institute of Microbiology & Immunology, National Yang-Ming University, 112 Taipei, Taiwan.
| |
Collapse
|
18
|
Hu L, Pandey AV, Eggimann S, Rüfenacht V, Möslinger D, Nuoffer JM, Häberle J. Understanding the role of argininosuccinate lyase transcript variants in the clinical and biochemical variability of the urea cycle disorder argininosuccinic aciduria. J Biol Chem 2013; 288:34599-611. [PMID: 24136197 DOI: 10.1074/jbc.m113.503128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.
Collapse
Affiliation(s)
- Liyan Hu
- From the Division of Metabolism, University Children's Hospital, 8032 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Marion V, Sankaranarayanan S, de Theije C, van Dijk P, Hakvoort TBM, Lamers WH, Köhler ES. Hepatic adaptation compensates inactivation of intestinal arginine biosynthesis in suckling mice. PLoS One 2013; 8:e67021. [PMID: 23785515 PMCID: PMC3681768 DOI: 10.1371/journal.pone.0067021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass) gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass (fl) and Villin-Cre mice. Unexpectedly, Ass (fl/fl) /VilCre (tg/-) mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice). Relative to control mice, citrulline production in the splanchnic region of Ass (fl/fl) /VilCre (tg/-) mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass (fl/fl) /VilCre (tg/-) mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2) and transport (Slc25a13, Slc25a15, and Slc3a2), whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.
Collapse
Affiliation(s)
- Vincent Marion
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Laboratoire de Génetique Médicale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1112, Strasbourg Cedex, France
| | | | - Chiel de Theije
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Paul van Dijk
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Theo B. M. Hakvoort
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Gastrointestinal Research, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter H. Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Gastrointestinal Research, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonore S. Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- *E-mail:
| |
Collapse
|
20
|
Marini JC, Stoll B, Didelija IC, Burrin DG. De novo synthesis is the main source of ornithine for citrulline production in neonatal pigs. Am J Physiol Endocrinol Metab 2012; 303:E1348-53. [PMID: 23074237 PMCID: PMC3774079 DOI: 10.1152/ajpendo.00399.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Citrulline is an amino acid synthesized in the gut and utilized for the synthesis of the conditionally essential amino acid arginine. Recently, the origin of the ornithine utilized for citrulline synthesis has become a matter of discussion. Multiple physiological factors may have contributed to the differences found among different researchers; one of these is the developmental stage of the subjects studied. To test the hypothesis that during the neonatal period de novo synthesis is the main source of ornithine for citrulline synthesis, neonatal piglets were infused intravenously or intragastrically with [U-(13)C(6)]arginine, [U-(13)C(5)]glutamine, or [U-(13)C(5)]proline during the fasted and fed periods. [ureido-(15)N]citrulline and [(2)H(2)]ornithine were infused intravenously for the entire infusion protocol. During fasting, plasma proline (13%) and ornithine (19%) were the main precursors for citrulline synthesis, whereas plasma arginine (62%) was the main precursor for plasma ornithine. During feeding, enteral (27%) and plasma (12%) proline were the main precursors for the ornithine utilized in the synthesis of citrulline, together with plasma ornithine (27%). Enteral proline and glutamine were utilized directly by the gut to produce ornithine utilized for citrulline synthesis. Arginine was not utilized by the gut, which is consistent with the lack of arginase activity in the neonate. Arginine, however, was the main source (47%) of plasma ornithine and in this way contributed to citrulline synthesis. In conclusion, during the neonatal period, the de novo pathway is the predominant source for the ornithine utilized in the synthesis of citrulline, and proline is the preferred precursor.
Collapse
Affiliation(s)
- Juan C Marini
- United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
21
|
Arginine decreases Cryptosporidium parvum infection in undernourished suckling mice involving nitric oxide synthase and arginase. Nutrition 2012; 28:678-85. [PMID: 22261576 DOI: 10.1016/j.nut.2011.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/20/2011] [Accepted: 09/12/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study investigated the role of L-arginine supplementation to undernourished and Cryptosporidium parvum-infected suckling mice. METHODS The following regimens were initiated on the fourth day of life and injected subcutaneously daily. The C. parvum-infected controls received L-arginine (200 mmol/L) or phosphate buffered saline. The L-arginine-treated mice were grouped to receive NG-nitro-arginine methyl ester (L-NAME) (20 mmol/L) or phosphate buffered saline. The infected mice received orally 10(6) excysted C. parvum oocysts on day 6 and were euthanized on day 14 at the infection peak. RESULTS L-arginine improved weight gain compared with the untreated infected controls. L-NAME profoundly impaired body weight gain compared with all other groups. Cryptosporidiosis was associated with ileal crypt hyperplasia, villus blunting, and inflammation. L-arginine improved mucosal histology after the infection. L-NAME abrogated these arginine-induced improvements. The infected control mice showed an intense arginase expression, which was even greater with L-NAME. L-arginine decreased the parasite burden, an effect that was reversed by L-NAME. Cryptosporidium parvum infection increased urine NO(3)(-)/NO(2)(-) concentrations compared with the uninfected controls, which was increased by L-arginine supplementation, an effect that was also reversed by L-NAME. CONCLUSION These findings show a protective role of L-arginine during C. parvum infection in undernourished mice, with involvement of arginase I and nitric oxide synthase enzymatic actions.
Collapse
|
22
|
Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun 2011; 2:452. [PMID: 21878906 PMCID: PMC3167062 DOI: 10.1038/ncomms1463] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/28/2011] [Indexed: 02/08/2023] Open
Abstract
In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mother's milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine. We conclude that the suckling to weaning transition is regulated by a single transcriptional repressor that delays epithelial maturation.
Collapse
|
23
|
Marion V, Sankaranarayanan S, de Theije C, van Dijk P, Lindsey P, Lamers MC, Harding HP, Ron D, Lamers WH, Köhler SE. Arginine deficiency causes runting in the suckling period by selectively activating the stress kinase GCN2. J Biol Chem 2011; 286:8866-74. [PMID: 21239484 PMCID: PMC3058991 DOI: 10.1074/jbc.m110.216119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/13/2011] [Indexed: 12/18/2022] Open
Abstract
Suckling "F/A2" mice, which overexpress arginase-I in their enterocytes, develop a syndrome (hypoargininemia, reduced hair and muscle growth, impaired B-cell maturation) that resembles IGF1 deficiency. The syndrome may result from an impaired function of the GH-IGF1 axis, activation of the stress-kinase GCN2, and/or blocking of the mTORC1-signaling pathway. Arginine deficiency inhibited GH secretion and decreased liver Igf1 mRNA and plasma IGF1 concentration, but did not change muscle IGF1 concentration. GH supplementation induced Igf1 mRNA synthesis, but did not restore growth, ruling out direct involvement of the GH-IGF1 axis. In C2C12 muscle cells, arginine withdrawal activated GCN2 signaling, without impacting mTORC1 signaling. In F/A2 mice, the reduction of plasma and tissue arginine concentrations to ∼25% of wild-type values activated GCN2 signaling, but mTORC1-mediated signaling remained unaffected. Gcn2-deficient F/A2 mice suffered from hypoglycemia and died shortly after birth. Because common targets of all stress kinases (eIF2α phosphorylation, Chop mRNA expression) were not increased in these mice, the effects of arginine deficiency were solely mediated by GCN2.
Collapse
Affiliation(s)
- Vincent Marion
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| | | | - Chiel de Theije
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| | - Paul van Dijk
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| | - Patrick Lindsey
- the Department of Population Genetics, Genomics & Bioinformatics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marinus C. Lamers
- the Max-Planck Institute of Immunobiology, P.O. Box 1169, D-79011 Freiburg, Germany
| | - Heather P. Harding
- the Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom, and
| | - David Ron
- the Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom, and
| | - Wouter H. Lamers
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
- the AMC Liver Center, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - S. Eleonore Köhler
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| |
Collapse
|
24
|
Abstract
Although glutamine is considered the main precursor for citrulline synthesis, the current literature does not differentiate between the contribution of glutamine carbon skeleton vs. nonspecific nitrogen (i.e., ammonia) and carbon derived from glutamine oxidation. To elucidate the role of glutamine and nonspecific nitrogen in the synthesis of citrulline, l-[2-(15)N]- and l-[5-(15)N]glutamine and (15)N-ammonium acetate were infused intragastrically in mice. The amino group of glutamine labeled the three nitrogen groups of citrulline almost equally. The amido group and ammonium acetate labeled the ureido and amino groups of citrulline, but not the delta-nitrogen. D(5)-glutamine also infused in this arm of the study, which traces the carbon skeleton of glutamine, was utilized poorly, accounting for only 0.2-0.4% of the circulating citrulline. Dietary glutamine nitrogen (both N groups) incorporation was 25-fold higher than the incorporation of its carbon skeleton into citrulline. To investigate the relative contributions of the carbon skeleton and nonspecific carbon of glutamine, arginine, and proline to citrulline synthesis, U-(13)C(n) tracers of these amino acids were infused intragastrically. Dietary arginine was the main precursor for citrulline synthesis, accounting for approximately 40% of the circulating citrulline. Proline contribution was minor (3.4%), and glutamine was negligible (0.4%). However, the glutamine tracer resulted in a higher enrichment in the ureido group, indicating incorporation of nonspecific carbon from glutamine oxidation into carbamylphosphate used for citrulline synthesis. In conclusion, dietary glutamine is a poor carbon skeleton precursor for the synthesis of citrulline, although it contributes both nonspecific nitrogen and carbon to citrulline synthesis.
Collapse
Affiliation(s)
- Juan C Marini
- Children's Nutrition Research Center, Department of Pediatrics, United States Department of Agriculture/Agricultural Research Service, 1100 Bates Street, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
25
|
Guerrant RL, Oriá RB, Moore SR, Oriá MOB, Lima AAM. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev 2009; 66:487-505. [PMID: 18752473 DOI: 10.1111/j.1753-4887.2008.00082.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malnutrition is a major contributor to mortality and is increasingly recognized as a cause of potentially lifelong functional disability. Yet, a rate-limiting step in achieving normal nutrition may be impaired absorptive function due to multiple repeated enteric infections. This is especially problematic in children whose diets are marginal. In malnourished individuals, the infections are even more devastating. This review documents the evidence that intestinal infections lead to malnutrition and that malnutrition worsens intestinal infections. The clinical data presented here derive largely from long-term cohort studies that are supported by controlled animal studies. Also reviewed are the mechanisms by which enteric infections lead to undernutrition and by which malnutrition worsens enteric infections, with implications for potential novel interventions. Further intervention studies are needed to document the relevance of these mechanisms and, most importantly, to interrupt the vicious diarrhea-malnutrition cycle so children may develop their full potential.
Collapse
Affiliation(s)
- Richard L Guerrant
- Department of Medicine, University of Virginia, Charlottesville 22901, USA.
| | | | | | | | | |
Collapse
|
26
|
The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes. BMC DEVELOPMENTAL BIOLOGY 2008; 8:107. [PMID: 19000307 PMCID: PMC2621195 DOI: 10.1186/1471-213x-8-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/10/2008] [Indexed: 11/19/2022]
Abstract
Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS), ornithine aminotransferase (OAT), argininosuccinate synthetase (ASS), arginase-1 (ARG1), arginase-2 (ARG2), and nitric-oxide synthase (NOS) were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.
Collapse
|
27
|
Dekaney CM, Wu G, Yin YL, Jaeger LA. Regulation of ornithine aminotransferase gene expression and activity by all-transretinoic acid in Caco-2 intestinal epithelial cells. J Nutr Biochem 2008; 19:674-81. [DOI: 10.1016/j.jnutbio.2007.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
28
|
New indications and controversies in arginine therapy. Clin Nutr 2008; 27:489-96. [PMID: 18640748 DOI: 10.1016/j.clnu.2008.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 05/18/2008] [Accepted: 05/30/2008] [Indexed: 11/21/2022]
Abstract
Arginine is an important, versatile and a conditionally essential amino acid. Besides serving as a building block for tissue proteins, arginine plays a critical role in ammonia detoxification, and nitric oxide and creatine production. Arginine supplementation is an essential component for the treatment of urea cycle defects but recently some reservations have been raised with regards to the doses used in the treatment regimens of these disorders. In recent years, arginine supplementation or restriction has been proposed and trialled in several disorders, including vascular diseases and asthma, mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), glutaric aciduria type I and disorders of creatine metabolism, both production and transportation into the central nervous system. Herein we present new therapeutic indications and controversies surrounding arginine supplementation or deprivation.
Collapse
|
29
|
Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr 2008; 27:328-339. [PMID: 18440672 DOI: 10.1016/j.clnu.2008.02.005] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS In human, citrulline (plasma concentration about 40 micromol/L) is an amino acid involved in intermediary metabolism and that is not incorporated in proteins. Circulating citrulline is mainly produced by enterocytes of the small bowel. For this reason plasma or serum citrulline concentration has been proposed as a biomarker of remnant small bowel mass and function. This article reviews this concept and its metabolic basis. METHODS Conditions in which there is a significantly reduced small bowel enterocyte mass and function and a plasma or serum citrulline were measured in adults and children. These studies included patients with a short bowel syndrome, villous atrophy states, Crohn's disease, during monitoring of digestive toxicity of chemotherapy and radiotherapy or follow-up of patients after small bowel transplantation. RESULTS In all these situations, with more than 500 studied patients a decreased level of plasma citrulline correlated with the reduced enterocyte mass independently of nutritional and inflammatory status. A close correlation between small bowel remnant length and citrullinemia was found. In addition, diagnosis of intestinal failure was assessed through plasma citrulline levels in severe small bowel diseases in which there is a marked enterocyte mass reduction. DISCUSSION The threshold for establishing a diagnosis of intestinal failure is lower in villous atrophy disease (10mumol/L) than in short bowel syndrome (20mumol/L). Compromised renal function is an important factor when considering plasma citrulline levels as a marker of intestinal failure as this potentially can increase circulating citrulline values. CONCLUSIONS Reduced plasma citrulline levels are an innovative quantitative biomarker of significantly reduced enterocyte mass and function in different disease states in humans.
Collapse
Affiliation(s)
- Pascal Crenn
- Département de Médecine, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France.
| | | | | |
Collapse
|
30
|
Gharbi M, Powroznik B, Mazzucchelli G, Deville C, Nollevaux G, Rusu D, Dandrifosse G, Peulen O. Modulation of intestinal urea cycle by dietary spermine in suckling rat. Biochem Biophys Res Commun 2005; 336:1119-24. [PMID: 16168957 DOI: 10.1016/j.bbrc.2005.08.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Argininosuccinate synthetase, an ubiquitous enzyme in mammals, catalyses the formation of argininosuccinate, the precursor of arginine. Arginine is recognised as an essential amino acid in foetuses and neonates, but also as a conditionally essential amino acid in adults. Argininosuccinate synthetase is initially expressed in enterocytes during the developmental period, it disappeared from this organ then appeared in the kidneys. Although the importance of both intestinal and renal argininosuccinate synthetases has been recognised for a long time, nutrients have not yet been identified as inducers of the gene expression. In the context of a proteomic screening of intestinal modifications induced by dietary spermine in suckling rats, we showed that argininosuccinate synthetase and carbamoyl phosphate synthase disappeared from enterocytes after this treatment. The disappearance of argininosuccinate synthetase in small intestine was confirmed by immunodetection. Expression of carbamoyl phosphate synthase and argininosuccinate synthetase coding genes decreased also after spermine administration. Expression of other urea cycle enzyme coding genes was modulated by spermine administration: argininosuccinate lyase decreased and arginase increased. Our results fit with the developmental variation of argininosuccinate synthetase and carbamoyl phosphate synthase. Modulation of the gene expression for several urea cycle enzymes suggests a coordination between all the pathway steps and switch toward polyamine (or proline and glutamate) biosynthesis from ornithine.
Collapse
Affiliation(s)
- Myriam Gharbi
- Department of Biochemistry and General Physiology, Immunology Center, University of Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kwikkers KL, Ruijter JM, Labruyère WT, McMahon KK, Lamers WH. Effect of arginine deficiency on arginine-dependent post-translational protein modifications in mice. Br J Nutr 2005; 93:183-9. [PMID: 15788111 DOI: 10.1079/bjn20051334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transgenic mice that overexpress arginase-I in their small-intestinal enterocytes suffer from a pronounced, but selective decrease in circulating arginine levels during the suckling period, resulting in impaired growth and development of hair, muscle and immune system. In the present study, we tested the hypothesis that the arginine-deficiency phenotype is caused by arginine-specific post-translational modifications, namely, an increase in the degree of mono-ADP-ribosylation of proteins because of reduced competition by free arginine residues and/or an increase in protein-tyrosine nitration because of an increased O2- production by NO synthases in the presence of limiting amounts of arginine. Arginine ADP-ribosylation and tyrosine nitration of proteins in the affected organs were assayed by Western blot analysis, using specific anti-ADP-ribosylarginine and protein-nitrotyrosine antisera. The composition of the group of proteins that were preferentially arginine ADP-ribosylated or tyrosine-nitrated in the respective organs was strikingly similar. Arginine-deficient mice differed from their controls in a reduced ADP-ribosylation of a 130 kDa and a 65 kDa protein in skin and an increased protein nitration of an 83 kDa protein in bone marrow and a 250 kDa protein in spleen. Since only 20 % of the visualised proteins were differentially modified in a subset of the affected organs, our findings appear to rule out these prominent arginine-dependent post-translational protein modifications as mediators of the characteristic phenotype of severely arginine-deficient mice.
Collapse
Affiliation(s)
- Karin L Kwikkers
- AMC Liver Center and Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Naini A, Kaufmann P, Shanske S, Engelstad K, De Vivo DC, Schon EA. Hypocitrullinemia in patients with MELAS: an insight into the “MELAS paradox”. J Neurol Sci 2005; 229-230:187-93. [PMID: 15760638 DOI: 10.1016/j.jns.2004.11.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
L-citrulline, classified as a nonessential amino acid, is synthesized predominantly via Delta-1-pyrroline carboxylate synthase in the endothelial cells of the small intestine. In mammals, small quantities of citrulline are also produced in nitric oxide synthase-expressing cells. Considering the fact that the enzymes involved in the endogenous synthesis of L-citrulline are all located in the mitochondria and the fact that citrulline is a component of the citrulline-nitric oxide (NO) cycle, we hypothesized that the distinct clinical, biochemical, and morphological characteristics of MELAS, a maternally inherited mitochondrial disorder, might be due to alterations in nitric oxide homeostasis. Analysis of serum from MELAS patients showed that levels of plasma arginine were similar in both patients and in controls. However, levels of citrulline in MELAS patients were significantly lower than in controls, and there was a clear inverse correlation between arginine and citrulline levels in these patients. We found no correlation between the level of heteroplasmy and the plasma levels of either arginine or citrulline. We discuss the depressed citrulline levels in MELAS patients, who have an unusual and paradoxical pattern of vascular respiratory chain expression, in the context of NO homeostasis.
Collapse
Affiliation(s)
- Ali Naini
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
33
|
Yu H, Yoo PK, Aguirre CC, Tsoa RW, Kern RM, Grody WW, Cederbaum SD, Iyer RK. Widespread expression of arginase I in mouse tissues. Biochemical and physiological implications. J Histochem Cytochem 2003; 51:1151-60. [PMID: 12923240 DOI: 10.1177/002215540305100905] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arginase I (AI), the fifth and final enzyme of the urea cycle, detoxifies ammonia as part of the urea cycle. In previous studies from others, AI was not found in extrahepatic tissues except in primate blood cells, and its roles outside the urea cycle have not been well recognized. In this study we undertook an extensive analysis of arginase expression in postnatal mouse tissues by in situ hybridization (ISH) and RT-PCR. We also compared arginase expression patterns with those of ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT). We found that, outside of liver, AI was expressed in many tissues and cells such as the salivary gland, esophagus, stomach, pancreas, thymus, leukocytes, skin, preputial gland, uterus and sympathetic ganglia. The expression was much wider than that of arginase II, which was highly expressed only in the intestine and kidney. Several co-localization patterns of AI, ODC, and OAT have been found: (a) AI was co-localized with ODC alone in some tissues; (b) AI was co-localized with both OAT and ODC in a few tissues; (c) AI was not co-localized with OAT alone in any of the tissues examined; and (d) AI was not co-localized with either ODC or OAT in some tissues. In contrast, AII was not co-localized with either ODC or OAT alone in any of the tissues studied, and co-localization of AII with ODC and OAT was found only in the small intestine. The co-localization patterns of arginase, ODC, and OAT suggested that AI plays different roles in different tissues. The main roles of AI are regulation of arginine concentration by degrading arginine and production of ornithine for polyamine biosynthesis, but AI may not be the principal enzyme for regulating glutamate biosynthesis in tissues and cells.
Collapse
Affiliation(s)
- Hong Yu
- Mental Retardation Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1732, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1887-99. [PMID: 12709047 DOI: 10.1046/j.1432-1033.2003.03559.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Argininosuccinate synthetase (ASS, EC 6.3.4.5) catalyses the condensation of citrulline and aspartate to form argininosuccinate, the immediate precursor of arginine. First identified in the liver as the limiting enzyme of the urea cycle, ASS is now recognized as a ubiquitous enzyme in mammalian tissues. Indeed, discovery of the citrulline-NO cycle has increased interest in this enzyme that was found to represent a potential limiting step in NO synthesis. Depending on arginine utilization, location and regulation of ASS are quite different. In the liver, where arginine is hydrolyzed to form urea and ornithine, the ASS gene is highly expressed, and hormones and nutrients constitute the major regulating factors: (a) glucocorticoids, glucagon and insulin, particularly, control the expression of this gene both during development and adult life; (b) dietary protein intake stimulates ASS gene expression, with a particular efficiency of specific amino acids like glutamine. In contrast, in NO-producing cells, where arginine is the direct substrate in the NO synthesis, ASS gene is expressed at a low level and in this way, proinflammatory signals constitute the main factors of regulation of the gene expression. In most cases, regulation of ASS gene expression is exerted at a transcriptional level, but molecular mechanisms are still poorly understood.
Collapse
Affiliation(s)
- Annie Husson
- ADEN, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides no. 23 (IFRMP 23), Rouen, France.
| | | | | | | | | |
Collapse
|
35
|
Dekaney CM, Wu G, Jaeger LA. Gene expression and activity of enzymes in the arginine biosynthetic pathway in porcine fetal small intestine. Pediatr Res 2003; 53:274-80. [PMID: 12538786 DOI: 10.1203/01.pdr.0000047518.24941.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We recently reported the presence of ornithine aminotransferase (OAT) enzymatic activity and mRNA expression in the intestine of fetal pigs from 30 to 110 d of gestation. Here we describe the activities and mRNA expression patterns of other key enzymes in the arginine biosynthetic pathway, specifically carbamoyl phosphate synthase I (CPS-I), ornithine carbamoyl transferase (OCT), and pyrroline-5-carboxylate reductase (P5CR), in the fetal porcine small intestine from 30 to 110 d of gestation. The activities of all three enzymes increased from d 30 to d 110 of gestation, and in situ hybridization demonstrates that 1) CPS-I and OCT genes are expressed in distinct patterns and are confined to the mucosal epithelium and 2) P5CR mRNA is present in mucosal epithelium and lamina propria of the fetal porcine small intestine from d 30 to d 110 of gestation. The presence of CPS-I and OCT in conjunction with the presence of OAT suggests that the fetal porcine small intestine is capable of synthesizing citrulline from P5C. In addition, the presence of P5CR suggests that the fetal porcine small intestine is able to synthesize proline from ornithine via OAT. This ability of the fetal small intestine to synthesize amino acids may be important for development and metabolic activity of the intestine during somatic growth of the fetus.
Collapse
Affiliation(s)
- Chirstopher M Dekaney
- Department of Veterinary Anatomy and Public Health, Institute of Biosciences and Technology
| | | | | |
Collapse
|
36
|
Abstract
The urea cycle is comprised of five enzymes but also requires other enzymes and mitochondrial amino acid transporters to function fully. The complete urea cycle is expressed in liver and to a small degree also in enterocytes. However, highly regulated expression of several enzymes present in the urea cycle occurs also in many other tissues, where these enzymes are involved in synthesis of nitric oxide, polyamines, proline and glutamate. Glucagon, insulin, and glucocorticoids are major regulators of the expression of urea cycle enzymes in liver. In contrast, the "urea cycle" enzymes in nonhepatic cells are regulated by a wide range of pro- and antiinflammatory cytokines and other agents. Regulation of these enzymes is largely transcriptional in virtually all cell types. This review emphasizes recent information regarding roles and regulation of urea cycle and arginine metabolic enzymes in liver and other cell types.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
37
|
de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJH, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 2002; 110:1539-48. [PMID: 12438451 PMCID: PMC151816 DOI: 10.1172/jci16143] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Apart from its role in the synthesis of protein and nitric oxide (NO), and in ammonia detoxification, the amino acid arginine exerts an immunosupportive function. We have studied the role of arginine in immune defense mechanisms in the developing postnatal immune system. In suckling mice, arginine is produced in the small intestine. In F/A-2(+/+) transgenic mice, which overexpress arginase in their enterocytes, circulating and tissue arginine concentrations are reduced to 30-35% of controls. In these mice, the development and composition of the T cell compartment did not reveal abnormalities. However, in peripheral lymphoid organs and the small intestine, B cell cellularity and the number and size of Peyer's patches were drastically reduced, and serum IgM levels were significantly decreased. These phenotypes could be traced to an impaired transition from the pro- to pre-B cell stage in the bone marrow. Cytokine receptor levels in the bone marrow were normal. The development of the few peripheral B cells and their proliferative response after in vitro stimulation was normal. The disturbance in B cell maturation was dependent on decreased arginine levels, as this phenotype disappeared upon arginine supplementation and was not seen in NO synthase- or ornithine transcarbamoylase-deficient mice. We conclude that arginine deficiency impairs early B cell maturation.
Collapse
Affiliation(s)
- Wouter J de Jonge
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 2002. [DOI: 10.1172/jci0216143] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Abstract
L-Arginine (Arg) is classified as an essential amino acid for birds, carnivores and young mammals and a conditionally essential amino acid for adults. It is converted by arginase to L-ornithine, a precursor of polyamines and urea, which is important in the urea cycle. Arg serves as a precursor for creatine, which plays an essential role in the energy metabolism of muscle, nerve and testis and accounts for Arg catabolism and for the synthesis of agmatine and proteins. Via its ability to increase growth hormone secretion it influences immune function. Depending on nutritional status and developmental stage, normal plasma Arg concentrations in humans and animals range from 95 to 250 micromol/l. Systemic or oral Arg administration has been shown to improve cardiovascular function and reduce myocardial ischemia in coronary artery disease patients. It reduces blood pressure and renal vascular resistance in essential hypertensive patients with normal or insufficient renal function. Although Arg plasma concentrations are not altered in hypercholesterolemic individuals, oral or intravenous Arg administration can reverse endothelial dysfunction in hypercholesterolemic patients and in cigarette smokers. The main importance of Arg is attributed to its role as a precursor for the synthesis of nitric oxide (NO), a free radical molecule that is synthesized in all mammalian cells from L-Arg by NO synthase (NOS). NO appears to be a major form of the endothelium-derived relaxing factor (EDRF). NO and EDRF share similar chemical and pharmacological properties and are derived from the oxidation of a terminal guanidine group of L-Arg. Various mechanisms have been implicated in the defect in vascular relaxation. These include, increased diffusional barrier for NO, L-Arg depletion, altered levels of reactive oxygen, inactivation of NO by superoxide anions (O2-). The independent reactions of O2-, NO and their reaction yielding peroxynitrite are critical in the initiation and maintenance of the atherosclerotic state and contribute to the defect in vasorelaxation. NO also plays a role as a neurotransmitter, mediator of immune response and as signaling molecule. The NO synthesized by iNOS in macrophages contributes to their cytotoxic activity against tumor cells, bacteria and protozoa. Our aim here is to review on some amino acids with high functional priority such as Arg and to define their effective activity in human health and pathologies.
Collapse
Affiliation(s)
- H Tapiero
- Faculté de pharmacie, université de Paris, CNRS UMR 8612, 5, rue Jean-Baptiste-Clément, 94200 Chatenay-Malabry, France.
| | | | | | | |
Collapse
|
40
|
del Arco A, Morcillo J, Martínez-Morales JR, Galián C, Martos V, Bovolenta P, Satrústegui J. Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in adult rat tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3313-20. [PMID: 12084073 DOI: 10.1046/j.1432-1033.2002.03018.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aralar1 and citrin are members of the subfamily of calcium-binding mitochondrial carriers and correspond to two isoforms of the mitochondrial aspartate/glutamate carrier (AGC). These proteins are activated by Ca2+ acting on the external side of the inner mitochondrial membrane. Although it is known that aralar1 is expressed mainly in skeletal muscle, heart and brain, whereas citrin is present in liver, kidney and heart, the precise tissue distribution of the two proteins in embryonic and adult tissues is largely unknown. We investigated the pattern of expression of aralar1 and citrin in murine embryonic and adult tissues at the mRNA and protein levels. In situ hybridization analysis indicates that both isoforms are expressed strongly in the branchial arches, dermomyotome, limb and tail buds at early embryonic stages. However, citrin was more abundant in the ectodermal components of these structures whereas aralarl had a predominantly mesenchymal localization. The strong expression of citrin in the liver was acquired postnatally, whereas the characteristic expression of aralar1 in skeletal muscle was detected at E18 and that in the heart began early in development (E11) and was preferentially localized to auricular myocardium in late embryonic stages. Aralar1 was also expressed in bone marrow, T-lymphocytes and macrophages, including Kupffer cells in the liver, indicating that this is the major AGC isoform present in the hematopoietic system. Both aralar1 and citrin were expressed in fetal gut and adult stomach, ovary, testis, and pancreas, but only aralar1 is enriched in lung and insulin-secreting beta cells. These results show that aralar1 is expressed in many more tissues than originally believed and is absent from hepatocytes, where citrin is the only AGC isoform present. This explains why citrin deficiency in humans (type II citrullinemia) only affects the liver and suggests that aralar1 may compensate for the lack of citrin in other tissues.
Collapse
Affiliation(s)
- Araceli del Arco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
de Jonge WJ, Hallemeesch MM, Kwikkers KL, Ruijter JM, de Gier-de Vries C, van Roon MA, Meijer AJ, Marescau B, de Deyn PP, Deutz NEP, Lamers WH. Overexpression of arginase I in enterocytes of transgenic mice elicits a selective arginine deficiency and affects skin, muscle, and lymphoid development. Am J Clin Nutr 2002; 76:128-40. [PMID: 12081826 DOI: 10.1093/ajcn/76.1.128] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Arginine is required for the detoxification of ammonia and the synthesis of proteins, nitric oxide, agmatine, creatine, and polyamines, and it may promote lymphocyte function. In suckling mammals, arginine is synthesized in the enterocytes of the small intestine, but this capacity is lost after weaning. OBJECTIVE We investigated the significance of intestinal arginine production for neonatal development in a murine model of chronic arginine deficiency. DESIGN Two lines of transgenic mice that express different levels of arginase I in their enterocytes were analyzed. RESULTS Both lines suffer from a selective but quantitatively different reduction in circulating arginine concentration. The degree of arginine deficiency correlated with the degree of retardation of hair and muscle growth and with the development of the lymphoid tissue, in particular Peyer's patches. Expression of arginase in all enterocytes was necessary to elicit this phenotype. Phenotypic abnormalities were reversed by daily injections of arginine but not of creatine. The expression level of the very arginine-rich skin protein trichohyalin was not affected in transgenic mice. Finally, nitric oxide synthase-deficient mice did not show any of the features of arginine deficiency. CONCLUSIONS Enterocytes are important for maintaining arginine homeostasis in neonatal mice. Graded arginine deficiency causes graded impairment of skin, muscle, and lymphoid development. The effects of arginine deficiency are not mediated by impaired synthesis of creatine or by incomplete charging of arginyl-transfer RNA.
Collapse
Affiliation(s)
- Wouter J de Jonge
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Begum L, Jalil MA, Kobayashi K, Iijima M, Li MX, Yasuda T, Horiuchi M, del Arco A, Satrústegui J, Saheki T. Expression of three mitochondrial solute carriers, citrin, aralar1 and ornithine transporter, in relation to urea cycle in mice. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:283-92. [PMID: 11997094 DOI: 10.1016/s0167-4781(01)00376-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present report describes the expression profiles of different tissues and developmental changes of mouse aspartate/glutamate carrier (AGC) genes, Slc25a13 and Slc25a12, and an ornithine transporter gene, Ornt1, in relation to urea cycle enzyme genes, carbamoylphosphate synthetase I (CPS) and argininosuccinate synthetase (ASS). Slc25a13 encodes citrin, recently found to be deficient in adult-onset type II citrullinemia and to function as AGC together with its isoform and product of Slc25a12, aralar1. Citrin was broadly distributed, but mainly in the liver, kidney and heart. Aralar1 was expressed in diaphragm, skeletal muscle, heart, brain and kidney, but not in the liver. These distribution profiles are different from the restricted of Ornt1, ASS and CPS. Citrin, ASS, CPS and Ornt1 showed similar patterns of developmental changes in the liver and small intestine, where they play a role in urea and arginine synthesis. Dietary, hormonal and physical manipulations caused varied changes of CPS, ASS and Ornt1 in the liver, but the change of citrin was not so marked as that of the others. Analysis using RT-PCR and restriction enzyme digestion revealed that the ornithine transporter most expressed is Ornt1, although Ornt2 is detectable at a minute level. All these results suggest that citrin as AGC plays a role in urea synthesis as well as many fundamental metabolic pathways in the liver, and shares metabolic functions with aralar1 in other tissues, and that Ornt1 is an important component in urea synthesis in the liver and in arginine synthesis in the small intestine during the neonatal period.
Collapse
Affiliation(s)
- Laila Begum
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, 890-8520, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Burrin D. Chapter 24 Gastrointestinal protein and amino acid metabolism in growing animals. BIOLOGY OF GROWING ANIMALS 2002. [DOI: 10.1016/s1877-1823(09)70140-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
de Jonge WJ, Marescau B, D'Hooge R, De Deyn PP, Hallemeesch MM, Deutz NE, Ruijter JM, Lamers WH. Overexpression of arginase alters circulating and tissue amino acids and guanidino compounds and affects neuromotor behavior in mice. J Nutr 2001; 131:2732-40. [PMID: 11584097 DOI: 10.1093/jn/131.10.2732] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arginine is an intermediate of the ornithine cycle and serves as a precursor for the synthesis of nitric oxide, creatine, agmatine and proteins. It is considered to be a conditionally essential amino acid because endogenous synthesis only barely meets daily requirements. In rapidly growing suckling neonates, endogenous arginine biosynthesis is crucial to compensate for the insufficient supply of arginine via the milk. Evidence is accumulating that the intestine rather than the kidney plays a major role in arginine synthesis in this period. Accordingly, ectopic expression of hepatic arginase in murine enterocytes by genetic modification induces a selective arginine deficiency. The ensuing phenotype, whose severity correlates with the level of transgene expression in the enterocytes, could be reversed with arginine supplementation. We analyzed the effect of arginine deficiency on guanidine metabolism and neuromotor behavior. Arginine-deficient transgenic mice continued to suffer from an arginine deficiency after the arginine biosynthetic enzymes had disappeared from the enterocytes. Postweaning catch-up growth in arginine-deficient mice was characterized by increased levels of all measured amino acids except arginine. Furthermore, plasma total amino acid concentration, including arginine, was significantly lower in adult male than in adult female transgenic mice. Decreases in the concentration of plasma and tissue arginine led to significant decreases in most metabolites of arginine. However, the accumulation of the toxic guanidino compounds, guanidinosuccinic acid and methylguanidine, corresponded inversely with circulating arginine concentration, possibly reflecting a higher oxidative stress under hypoargininemic conditions. In addition, hypoargininemia was associated with disturbed neuromotor behavior, although brain levels of toxic guanidino compounds and ammonia were normal.
Collapse
Affiliation(s)
- W J de Jonge
- Department of Anatomy & Embryology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Iijima M, Jalil A, Begum L, Yasuda T, Yamaguchi N, Xian Li M, Kawada N, Endou H, Kobayashi K, Saheki T. Pathogenesis of adult-onset type II citrullinemia caused by deficiency of citrin, a mitochondrial solute carrier protein: tissue and subcellular localization of citrin. ADVANCES IN ENZYME REGULATION 2001; 41:325-42. [PMID: 11384753 DOI: 10.1016/s0065-2571(00)00022-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M Iijima
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, 890-8520, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The biochemistry and physiology of L-arginine have to be reconsidered in the light of the recent discovery that the amino acid is the only substrate of all isoforms of nitric oxide synthase (NOS). Generation of nitric oxide, NO, a versatile molecule in signaling processes and unspecific immune defense, is intertwined with synthesis, catabolism and transport of arginine which thus ultimately participates in the regulation of a fine-tuned balance between normal and pathophysiological consequences of NO production. The complex composition of the brain at the cellular level is reflected in a complex differential distribution of the enzymes of arginine metabolism. Argininosuccinate synthetase (ASS) and argininosuccinate lyase which together can recycle the NOS coproduct L-citrulline to L-arginine are expressed constitutively in neurons, but hardly colocalize with each other or with NOS in the same neuron. Therefore, trafficking of citrulline and arginine between neurons necessitates transport capacities in these cells which are fulfilled by well-described carriers for cationic and neutral amino acids. The mechanism of intercellular exchange of argininosuccinate, a prerequisite also for its proposed function as a neuromodulator, remains to be elucidated. In cultured astrocytes transcription and protein expression of arginine transport system y(+) and of ASS are upregulated concomittantly with immunostimulant-mediated induction of NOS-2. In vivo ASS-immunoreactivity was found in microglial cells in a rat model of brain inflammation and in neurons and glial cells in the brains of Alzheimer patients. Any attempt to estimate the contributions of arginine transport and synthesis to substrate supply for NOS has to consider competition for arginine between NOS and arginase, the latter enzyme being expressed as mitochondrial isoform II in nervous tissue. Generation of NOS inhibitors agmatine and methylarginines is documented for the nervous system. Suboptimal supply of NOS with arginine leads to production of detrimental peroxynitrite which may result in neuronal cell death. Data have been gathered recently which point to a particular role of astrocytes in neural arginine metabolism. Arginine appears to be accumulated in astroglial cells and can be released after stimulation with a variety of signals. It is proposed that an intercellular citrulline-NO cycle is operating in brain with astrocytes storing arginine for the benefit of neighbouring cells in need of the amino acid for a proper synthesis of NO.
Collapse
Affiliation(s)
- H Wiesinger
- Physiologisch-Chemisches Institut der Universität, Hoppe-Seyler-Strasse 4, D-72076, Tübingen, Germany.
| |
Collapse
|
47
|
Dekaney CM, Wu G, Jaeger LA. Ornithine aminotransferase messenger RNA expression and enzymatic activity in fetal porcine intestine. Pediatr Res 2001; 50:104-9. [PMID: 11420426 DOI: 10.1203/00006450-200107000-00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In most neonatal animals, the small intestinal epithelium is responsible for endogenous arginine production. The ability of neonatal enterocytes to synthesize arginine immediately after birth suggests that the enzymes involved are present prenatally. Pyrroline-5-carboxylate is the common intermediate in the intestinal pathways for the synthesis of citrulline and arginine from both glutamine and proline and is interconverted into ornithine by ornithine aminotransferase (OAT). In this study, OAT enzymatic activity and mRNA expression in the intestine of fetal pigs from 30 to 110 d of gestation were determined. Enzymatic activity (nanomoles per minute per milligram of protein) peaked at d 45 of gestation and increased again between d 60 and 110 of gestation. At 30 and 35 d of gestation, OAT mRNA expression was detected throughout the mucosal epithelium of the small intestine. Throughout the remainder of gestation, OAT expression was notably higher in the villus epithelium than in the crypt epithelium. The presence of OAT in the small intestinal epithelium throughout gestation suggests that the porcine small intestine is capable of interconverting ornithine and pyrroline-5-carboxylate during fetal development. This capability may be important for synthesis of arginine, proline, ornithine, and polyamines for development and metabolic activity of the intestine during gestation or for somatic growth of the fetus.
Collapse
Affiliation(s)
- C M Dekaney
- Department of Veterinary Anatomy and Public Health, Institute of Biosciences and Technology, Texas A&M University, College Station, Texas 77843-4458 USA
| | | | | |
Collapse
|
48
|
Wang T, Steel G, Milam AH, Valle D. Correction of ornithine accumulation prevents retinal degeneration in a mouse model of gyrate atrophy of the choroid and retina. Proc Natl Acad Sci U S A 2000; 97:1224-9. [PMID: 10655512 PMCID: PMC15576 DOI: 10.1073/pnas.97.3.1224] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiency of ornithine-delta-aminotransferase (OAT) in humans results in gyrate atrophy of the choroid and retina (GA), an autosomal recessive disorder characterized by ornithine accumulation and a progressive chorioretinal degeneration of unknown pathogenesis. To determine whether chronic, systemic reduction of ornithine can prevent this form of retinal degeneration, we used an arginine-restricted diet to maintain long term reduction of ornithine in a mouse model of OAT-deficiency (Oat(-/-)) produced by gene targeting. We evaluated the mice over a 12-month period by measurement of plasma amino acids, electroretinograms, and retinal histologic and ultrastructural studies. We found that an arginine-restricted diet substantially reduces plasma ornithine levels and completely prevents retinal degeneration in Oat(-/-). This result indicates that ornithine accumulation is a necessary factor in the pathophysiology of the retinal degeneration in GA and that restoration of OAT activity in retina is not required for effective treatment of GA.
Collapse
Affiliation(s)
- T Wang
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
49
|
Sinasac DS, Crackower MA, Lee JR, Kobayashi K, Saheki T, Scherer SW, Tsui LC. Genomic structure of the adult-onset type II citrullinemia gene, SLC25A13, and cloning and expression of its mouse homologue. Genomics 1999; 62:289-92. [PMID: 10610724 DOI: 10.1006/geno.1999.6006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Citrullinemia is an autosomal recessive disease characterized by an argininosuccinate synthetase (ASS) deficiency. Adult-onset type II citrullinemia (CTLN2) is a form of the disease that is defined by a quantitative decrease in ASS protein, but with normal kinetic properties. The gene causing CTLN2 (SLC25A13) was identified by positional cloning (from 7q21.3) and found to encode a putative calcium-dependent mitochondrial carrier protein. To facilitate mutation analysis, here we describe the intron-exon boundaries of the human SLC25A13 gene. We have also cloned and characterized the mouse homologue (Slc25a13), which is predicted to encode a protein of 676 amino acids with 96% amino acid identity to SLC25A13. RNA in situ hybridization analysis shows that Slc25a13 is expressed in the branchial arches, as well as the limb and tail buds, during mouse embryonic development (E10.5). At E13.5 expression of Slc25a13 is most predominant in epithelial structures, in addition to the forebrain, kidney, and liver.
Collapse
Affiliation(s)
- D S Sinasac
- Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Flynn NE, Meininger CJ, Kelly K, Ing NH, Morris SM, Wu G. Glucocorticoids mediate the enhanced expression of intestinal type II arginase and argininosuccinate lyase in postweaning pigs. J Nutr 1999; 129:799-803. [PMID: 10203553 DOI: 10.1093/jn/129.4.799] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arginine metabolism is enhanced in the small intestine of weanling pigs, but the molecular mechanism(s) involved is not known. The objectives of this study were to determine the following: 1) whether glucocorticoids play a role in induction of intestinal arginine metabolic enzymes during weaning; 2) whether the induction of enzyme activities was due to increases in corresponding mRNA levels; and 3) the identity of the arginase isoform(s) expressed in the small intestine. Jejunum was obtained from 29-d-old weaned pigs that were or were not treated with 17-beta-hydroxy-11beta-(4-dimethylaminophenyl)17alpha-(prop- 1-ynyl)es tra-4,9-dien-3-one (RU486, an antagonist of glucocorticoid receptors), or from age-matched suckling pigs. Activities and mRNA levels for type I and type II arginases, argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) were determined. Activities of arginase, ASL and ASS increased by 635, 56 and 106%, respectively, in weanling pigs, compared with suckling pigs. RU486 treatment attenuated the increase in arginase activity by 74% and completely prevented the ASL induction in weanling pigs, but had no effect on ASS activity. Pig intestine expresses both type I and type II arginases. On the basis of immunoblot analyses, there was no significant difference in levels of intestinal type I arginase among these three groups of pigs, indicating that changes in arginase activity were due only to type II arginase. The mRNA levels for type II arginase and ASL increased by 135 and 198%, respectively, in weanling pigs compared with suckling pigs, and this induction was completely prevented by RU486. In contrast, ASS mRNA levels did not differ between suckling and weanling pigs. These results suggest that intestinal type II arginase, ASS and ASL are regulated differentially at transcriptional and post-translational levels and that glucocorticoids play a major role in the induction of type II arginase and ASL mRNAs in the small intestine of weanling pigs.
Collapse
Affiliation(s)
- N E Flynn
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|