1
|
Menderes D, Hirfanoğlu T, Serdaroğlu E, Serdaroğlu A, Arhan E. Evaluation of lateralization and localization value of hand postures in Pediatric Epilepsy. Seizure 2025; 127:71-76. [PMID: 40117785 DOI: 10.1016/j.seizure.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025] Open
Abstract
INTRODUCTION Identifying epileptogenic zone is essential for selecting patients for epilepsy surgery and understanding seizure pathophysiology. This study aimed to evaluate the role of ictal hand postures in localization and lateralization value in children. MATERIAL AND METHODS We conducted a retrospective evaluation of 628 individuals utilizing long-term video EEG recordings of Gazi University Video EEG Monitoring Unit (VEMU) between 2013 and 2022. Distinct hand postures were identified in fifty-six patients. The localization and lateralization value of the hand postures identified in these patients were assessed. RESULTS A total of 91 seizures from 56 patients were analyzed, and hand postures were categorized as fist, thumb upside fist (TUF), fanning, holding, index-finger pointing (IFP), and pincer grasp. Fist posture was most frequently observed in frontal lobe seizures, while TUF was dominant in temporal lobe seizures. Fanning was primarily associated with generalized seizures. Lateralization analysis revealed that ipsilateral postures were more common in frontal lobe seizures, whereas contralateral postures were prevalent in temporal lobe seizures (p < 0.05). CONCLUSION In conclusion, ictal hand postures may serve as a straightforward and accessible tool for identifying seizure onset zones in children, especially in resource-limited settings. Semiological classification plays a crucial role in the interpretation of video EEG. Accurate identification of semiological manifestations can facilitate timely referral of patients with suspected drug-resistant focal epilepsy for presurgical evaluation.
Collapse
Affiliation(s)
- Deniz Menderes
- Section of Child Neurology, Department Pediatrics, Ankara Etlik City Hospital, Ankara, Turkey.
| | - Tuğba Hirfanoğlu
- Section of Child Neurology, Department Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Esra Serdaroğlu
- Section of Child Neurology, Department Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayşe Serdaroğlu
- Section of Child Neurology, Department Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ebru Arhan
- Section of Child Neurology, Department Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Jiang H, Zhang Y, Zhang L, Liu L, Wang H, Wang Y, Chen M. Comprehensive Serum Analysis via an AI-Assisted Magnetically Driven SERS Platform for the Diagnosis and Etiological Differentiation of Childhood Epilepsy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11731-11741. [PMID: 39960063 DOI: 10.1021/acsami.4c19603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Timely and accurate diagnosis of childhood epilepsy and identification of its etiology are crucial for early interventional treatment, yet still, effective detection methods are lacking. Blood analysis is a promising strategy for disease diagnosis. However, due to the complex composition and lack of definite childhood epilepsy diagnostic markers in serum, comprehensively profiling serum molecular signals to accurately reveal diagnostic information is still challenging. Herein, we developed a novel magnetically driven SERS platform, which utilized specially designed branched Au nanostructure-embedded magnetic microspheres to achieve simultaneous detection of small molecules and biomacromolecules in serum, thus providing comprehensive serum molecular SERS signals. By using this platform, the SERS data sets of serum samples from 90 healthy controls and 585 epileptic patients were collected to train a self-built lightweight convolutional neural network (MLS-CNN) model, which successfully identified the serum epileptic diagnostic and etiological differentiation information, including causes of autoimmune encephalitis, febrile infection, developmental disability, structural brain lesions, and unknown etiology. The MLS-CNN model exhibits excellent diagnostic accuracy (100%) and etiological differentiation accuracy (>89%) for epilepsy. This AI-assisted magnetically driven SERS platform for comprehensively profiling the molecular information on serum might provide a novel strategy for childhood epilepsy diagnosis and etiological identification.
Collapse
Affiliation(s)
- Hanyu Jiang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lin Zhang
- Department of Clinical Laboratory, Hunan Children's Hospital, Changsha, 410007, China
| | - Lixin Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Haoyang Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Ying Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Miao Chen
- School of Life Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Firoozbakht F, Elkjaer ML, Handy DE, Wang RS, Chervontseva Z, Rarey M, Loscalzo J, Baumbach J, Tsoy O. Exploring common mechanisms of adverse drug reactions and disease phenotypes through network-based analysis. CELL REPORTS METHODS 2025; 5:100990. [PMID: 39954672 PMCID: PMC11955268 DOI: 10.1016/j.crmeth.2025.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
The need for a deeper understanding of adverse drug reaction (ADR) mechanisms is vital for improving drug safety and repurposing. This study introduces Drug Adverse Reaction Mechanism Explainer (DREAMER), a network-based framework that uses a comprehensive knowledge graph to uncover molecular mechanisms underlying ADRs and disease phenotypes. By examining shared phenotypes of drugs and diseases and their effects on protein-protein interaction networks, DREAMER identifies proteins linked to ADR mechanisms. Applied to 649 ADRs, DREAMER identified molecular mechanisms for 67 ADRs, including ventricular arrhythmia and metabolic acidosis, and emphasized pathways like GABAergic signaling and coagulation proteins in personality disorders and intracranial hemorrhage. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol, ranolazine, and diltiazem as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes, emphasizing the importance of network-based analyses with integrative data for enhancing drug safety and accelerating the discovery of novel therapeutic strategies.
Collapse
Affiliation(s)
- Farzaneh Firoozbakht
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany.
| | - Maria Louise Elkjaer
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rui-Sheng Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zoe Chervontseva
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| | - Matthias Rarey
- ZBH - Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany; Department of Mathematics and Computer Science, University of Southern Denmark, 5000 Odense, Denmark
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Yin P, Tian P, Zhang X, Zhang D, Yang X, Yang L, Wang Y, Lei G, Li B. Clinical and pathological risk factors for postencephalitic epilepsy after herpes simplex virus-1 encephalitis in children. Sci Rep 2025; 15:6471. [PMID: 39987356 PMCID: PMC11846938 DOI: 10.1038/s41598-025-91438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/20/2025] [Indexed: 02/24/2025] Open
Abstract
The high rate of postencephalitic epilepsy (PE) contributes to the unfavorable clinical outcome of herpes simplex virus-1 encephalitis (HSE). We aimed to identify the risk factors and explore possible mechanisms of PE in childhood following HSE. We conducted a retrospective review of children diagnosed with HSE and patients were categorized into two groups based on the presence or absence of PE. Multivariate logistic regression analysis was used to analyze factors associated with PE. Furthermore, cytokine and albumin levels in paired cerebrospinal fluid (CSF) and blood samples during acute HSE were also retrospectively reviewed. 97 HSE patients were included in the study and PE was diagnosed in 46. On multivariate analysis, the features predictive of PE (presented as odds ratio [OR] with confidence intervals [CIs]) were status epilepticus (OR 9.38, CI 1.71-10.37), focal seizures (7.41, 1.42-16.97), and restricted diffusion on MRI (6.15, 1.16-20.31). The median QAlb value (CSF to serum albumin ratio, a marker of blood-brain-barrier [BBB] integrity), levels of interleukin (IL)-6 and IL-6:IL-10 ratio in CSF were higher in children with PE during acute HSE. However, CSF levels of IL-10 were higher in non-PE patients. Furthermore, greater CSF IL-6 levels were associated with higher QAlb. These results demonstrated that enhanced BBB impairment and exaggerated proinflammatory response may play a role in the pathogenesis of PE following HSE.
Collapse
Affiliation(s)
- Ping Yin
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Pingping Tian
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Shandong, Jinan, China
| | - Xinyue Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Dongqing Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Lu Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yang Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Gefei Lei
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Abend NS, Wusthoff CJ, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:381-448.e17. [DOI: 10.1016/b978-0-443-10513-5.00015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
7
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
8
|
Lear BA, Zhou KQ, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Preventive, rescue and reparative neuroprotective strategies for the fetus and neonate. Semin Fetal Neonatal Med 2024; 29:101542. [PMID: 39472238 DOI: 10.1016/j.siny.2024.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Neonatal encephalopathy remains a major contributor to death and disability around the world. Acute hypoxia-ischaemia before, during or after birth creates a series of events that can lead to neonatal brain injury. Understanding the evolution of injury underpinned the development of therapeutic hypothermia. This review discusses the determinants of injury, including maturity, the pattern of exposure to HI, impaired placental function, often associated with fetal growth restriction and in the long-term, socio-economic deprivation. Chorioamnionitis has been associated with the presence of NE, but it is important to note that experimentally, inflammation can either sensitize to greater neural injury after HI or alleviate injury, depending on its precise timing. As fetal surveillance tools improve it is likely that improved detection of specific pathways will offer future opportunities for preventive and reparative interventions in utero and after birth.
Collapse
Affiliation(s)
- Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Javanshir R, Sedghi M, Esmaeili M, Charsouei S, Anvar LH, Ahmadalipour A. Automatic classification of fatty acid amide hydrolase polymorphism genotype based on EEG signal. Soft comput 2024; 28:12575-12585. [DOI: 10.1007/s00500-024-10306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 02/18/2025]
|
10
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
11
|
Liu Y, Chen Y, Duffy CR, VanLeuven AJ, Byers JB, Schriever HC, Ball RE, Carpenter JM, Gunderson CE, Filipov NM, Ma P, Kner PA, Lauderdale JD. Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612511. [PMID: 39314470 PMCID: PMC11419034 DOI: 10.1101/2024.09.11.612511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yongkai Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Ariel J VanLeuven
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - John Branson Byers
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Hannah C Schriever
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| | - Chelsea E Gunderson
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Peter A Kner
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Hammer MF, Bahramnejad E, Watkins JC, Ronaldson PT. Candesartan restores blood-brain barrier dysfunction, mitigates aberrant gene expression, and extends lifespan in a knockin mouse model of epileptogenesis. Clin Sci (Lond) 2024; 138:1089-1110. [PMID: 39092536 DOI: 10.1042/cs20240771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
Blockade of Angiotensin type 1 receptor (AT1R) has potential therapeutic utility in the treatment of numerous detrimental consequences of epileptogenesis, including oxidative stress, neuroinflammation, and blood-brain barrier (BBB) dysfunction. We have recently shown that many of these pathological processes play a critical role in seizure onset and propagation in the Scn8a-N1768D mouse model. Here we investigate the efficacy and potential mechanism(s) of action of candesartan (CND), an FDA-approved angiotensin receptor blocker (ARB) indicated for hypertension, in improving outcomes in this model of pediatric epilepsy. We compared length of lifespan, seizure frequency, and BBB permeability in juvenile (D/D) and adult (D/+) mice treated with CND at times after seizure onset. We performed RNAseq on hippocampal tissue to quantify differences in genome-wide patterns of transcript abundance and inferred beneficial and detrimental effects of canonical pathways identified by enrichment methods in untreated and treated mice. Our results demonstrate that treatment with CND gives rise to increased survival, longer periods of seizure freedom, and diminished BBB permeability. CND treatment also partially reversed or 'normalized' disease-induced genome-wide gene expression profiles associated with inhibition of NF-κB, TNFα, IL-6, and TGF-β signaling in juvenile and adult mice. Pathway analyses reveal that efficacy of CND is due to its known dual mechanism of action as both an AT1R antagonist and a PPARγ agonist. The robust effectiveness of CND across ages, sexes and mouse strains is a positive indication for its translation to humans and its suitability of use for clinical trials in children with SCN8A epilepsy.
Collapse
Affiliation(s)
- Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Neurology, University of Arizona, Tucson, AZ, U.S.A
| | - Erfan Bahramnejad
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Pharmacology, University of Arizona, Tucson, AZ, U.S.A
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, AZ, U.S.A
| | | |
Collapse
|
13
|
Yu H, Sun Y, Liu C, Wang Y, Liu Q, Ji T, Wang S, Liu X, Jiang Y, Cai L. Clinical characteristics and post-operative outcomes in children with malformation of cortical development related drug-resistant epilepsy: 428 cases in one pediatric epilepsy center. CNS Neurosci Ther 2024; 30:e70031. [PMID: 39233349 PMCID: PMC11374691 DOI: 10.1111/cns.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
AIMS To investigate post-operative seizure outcomes, and predictors of surgical outcomes of the malformation of cortical development (MCD) in children with drug-resistant epilepsy (DRE) and age-specific characteristics. METHODS We retrospectively analyzed clinical data from 428 children with MCD-related DRE who underwent curative surgical treatment. Statistical analyses were conducted to identify correlative characteristics, prognostic predictors, and differences among various age groups. RESULTS After more than 3 years of follow-up, 81.3% of patients achieved Engel I outcomes. Prognosis was correlated with factors such as age at surgery, MRI findings, invasive EEG, pathology, acute postoperative seizures (APOS), and the number of preoperative and postoperative anti-seizure medications (AEDs). Age at surgery and the number of preoperative AEDs (p < 0.001) were significant predictors of seizure recurrence. Distinct clinical characteristics were observed among different age groups. CONCLUSION Surgery is effective in terminating MCD-related DRE. Younger age at surgery and fewer preoperative AEDs are associated with better prognoses. Clinical characteristics vary significantly with age.
Collapse
Affiliation(s)
- Hao Yu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yu Sun
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Chang Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yao Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Taoyun Ji
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Shuang Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Firoozbakht F, Elkjaer ML, Handy D, Wang R, Chervontseva Z, Rarey M, Loscalzo J, Baumbach J, Tsoy O. DREAMER: Exploring Common Mechanisms of Adverse Drug Reactions and Disease Phenotypes through Network-Based Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.602911. [PMID: 39091742 PMCID: PMC11291051 DOI: 10.1101/2024.07.20.602911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Adverse drug reactions (ADRs) are a major concern in clinical healthcare, significantly affecting patient safety and drug development. This study introduces DREAMER, a novel network-based method for exploring the mechanisms underlying ADRs and disease phenotypes at a molecular level by leveraging a comprehensive knowledge graph obtained from various datasets. By considering drugs and diseases that cause similar phenotypes, and investigating their commonalities regarding their impact on specific modules of the protein-protein interaction network, DREAMER can robustly identify protein sets associated with the biological mechanisms underlying ADRs and unravel the causal relationships that contribute to the observed clinical outcomes. Applying DREAMER to 649 ADRs, we identified proteins associated with the mechanism of action for 67 ADRs across multiple organ systems. In particular, DREAMER highlights the importance of GABAergic signaling and proteins of the coagulation pathways for personality disorders and intracranial hemorrhage, respectively. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol, ranolazine, and diltiazem as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes.
Collapse
|
15
|
Vitale C, Natali G, Cerullo MS, Floss T, Michetti C, Grasselli G, Benfenati F. The homeostatic effects of the RE-1 silencing transcription factor on cortical networks are altered under ictogenic conditions in the mouse. Acta Physiol (Oxf) 2024; 240:e14146. [PMID: 38606882 DOI: 10.1111/apha.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/22/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
AIM The Repressor Element-1 Silencing Transcription Factor (REST) is an epigenetic master regulator playing a crucial role in the nervous system. In early developmental stages, REST downregulation promotes neuronal differentiation and the acquisition of the neuronal phenotype. In addition, postnatal fluctuations in REST expression contribute to shaping neuronal networks and maintaining network homeostasis. Here we investigate the role of the early postnatal deletion of neuronal REST in the assembly and strength of excitatory and inhibitory synaptic connections. METHODS We investigated excitatory and inhibitory synaptic transmission by patch-clamp recordings in acute neocortical slices in a conditional knockout mouse model (RestGTi) in which Rest was deleted by delivering PHP.eB adeno-associated viruses encoding CRE recombinase under the control of the human synapsin I promoter in the lateral ventricles of P0-P1 pups. RESULTS We show that, under physiological conditions, Rest deletion increased the intrinsic excitability of principal cortical neurons in the primary visual cortex and the density and strength of excitatory synaptic connections impinging on them, without affecting inhibitory transmission. Conversely, in the presence of a pathological excitation/inhibition imbalance induced by pentylenetetrazol, Rest deletion prevented the increase in synaptic excitation and decreased seizure severity. CONCLUSION The data indicate that REST exerts distinct effects on the excitability of cortical circuits depending on whether it acts under physiological conditions or in the presence of pathologic network hyperexcitability. In the former case, REST preserves a correct excitatory/inhibitory balance in cortical circuits, while in the latter REST loses its homeostatic activity and may become pro-epileptogenic.
Collapse
Affiliation(s)
- Carmela Vitale
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giulia Natali
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Thomas Floss
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Giorgio Grasselli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
16
|
Scott RC, Moshé SL, Holmes GL. Do vaccines cause epilepsy? Review of cases in the National Vaccine Injury Compensation Program. Epilepsia 2024; 65:293-321. [PMID: 37914395 DOI: 10.1111/epi.17794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The National Childhood Vaccine Injury Act of 1986 created the National Vaccine Injury Compensation Program (VICP), a no-fault alternative to the traditional tort system. Since 1988, the total compensation paid exceeds $5 billion. Although epilepsy is one of the leading reasons for filing a claim, there has been no review of the process and validity of the legal outcomes given current medical information. The objectives were to review the evolution of the VICP program in regard to vaccine-related epilepsy and assess the rationale behind decisions made by the court. METHODS Publicly available cases involving epilepsy claims in the VICP were searched through Westlaw and the US Court of Federal Claims websites. All published reports were reviewed for petitioner's theories supporting vaccine-induced epilepsy, respondent's counterarguments, the final decision regarding compensation, and the rationale underlying these decisions. The primary goal was to determine which factors went into decisions regarding whether vaccines caused epilepsy. RESULTS Since the first epilepsy case in 1989, there have been many changes in the program, including the removal of residual seizure disorder as a vaccine-related injury, publication of the Althen prongs, release of the acellular form of pertussis, and recognition that in genetic conditions the underlying genetic abnormality rather than the immunization causes epilepsy. We identified 532 unique cases with epilepsy: 105 with infantile spasms and 427 with epilepsy without infantile spasms. The petitioners' experts often espoused outdated, erroneous causation theories that lacked an acceptable medical or scientific foundation and were frequently criticized by the court. SIGNIFICANCE Despite the lack of epidemiological or mechanistic evidence indicating that childhood vaccines covered by the VICP result in or aggravate epilepsy, these cases continue to be adjudicated. After 35 years of intense litigation, it is time to reconsider whether epilepsy should continue to be a compensable vaccine-induced injury.
Collapse
Affiliation(s)
- Rodney C Scott
- Nemours Children's Hospital-Delaware, Wilmington, Delaware, USA
| | - Solomon L Moshé
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Gregory L Holmes
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
17
|
Kanemura H. Therapeutic Strategies in Children with Epilepsy: A Quality-of-Life-Related Perspective. J Clin Med 2024; 13:405. [PMID: 38256539 PMCID: PMC10816334 DOI: 10.3390/jcm13020405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Back ground: Children with epilepsy are affected by several factors, including clinical and social variables. Among these variables, cognitive decline and behavioral disturbances, perceptions of stigma, and fatigue can lead to reductions in quality of life (QOL). Epileptic activities, including seizure severity, frequent seizures, and status epilepticus (SE), have been identified as important predictors of QOL. In addition, the frequency of interictal epileptiform discharges (IEDs) on electroencephalogram (EEG) may also be an important predictor of QOL, because IEDs can lead to cognitive decline and behavioral disturbances. Moreover, frequent seizures and/or IEDs may play a role in emotional mediators, such as stigma and fatigue, in childhood epilepsy. Seizure severity and/or IEDs are, therefore, important QOL-related factors in childhood epilepsy. Seizure severity as a QOL-related factor: Frontal lobe dysfunctions, such as cognitive decline and behavioral disturbances, can result in reduced QOL for both the child and their family. Frontal and prefrontal lobe growth disturbances can be present during active-phase epilepsy in some children with neuropsychological impairments. Recovery from prefrontal lobe growth disturbances may depend on the active seizure period. Children with a shorter active seizure period can recover from disturbances in prefrontal lobe growth more rapidly. In contrast, recovery may be delayed in children with a longer active seizure period. Moreover, frequent seizures can lead to seizure-associated headaches, perceptions of self-stigma and parental stigma, and fatigue. Accordingly, severe seizures can lead to neuropsychological impairments in association with prefrontal lobe growth disturbances in children with epilepsy. EEG abnormalities as QOL-related factors: IEDs on EEG, representing persistent pathological neuronal discharges, may be associated with several pathological aspects. Frontal IEDs can be a risk factor for recurrent seizures, cognitive decline, and behavioral disturbances, and they may also play a role as emotional mediators similar to stigma. In addition, behavioral disturbances may result in the presence of secondary bilateral synchrony (SBS) on EEG. Behavioral disturbances can be improved in association with a reduction in IEDs in children with frontal IEDs and SBS. Therefore, EEG abnormalities, such as frontal IEDs and SBS, can also lead to neuropsychological impairments in children with epilepsy. Therapeutic strategies in children with epilepsy: Seizure severity and IEDs on EEG may be associated with neuropsychological impairments, leading to QOL reduction. Therapeutic management may be desirable to reduce seizures and EEG abnormalities, such as frontal IEDs and SBS, as early as possible to improve QOL in children with epilepsy. During antiseizure medication (ASM) selection and adjustment, physicians should strategize the therapeutic approach to controlling seizures and suppressing EEG abnormalities in children with epilepsy. Among various ASMs, novel ASMs, such as levetiracetam and perampanel, may suppress both clinical seizures and IEDs on EEG; thus, these novel ASMs may represent an important addition to the treatments available for epileptic children presenting with frontal IEDs and SBS.
Collapse
Affiliation(s)
- Hideaki Kanemura
- Department of Pediatrics, Toho University Medical Center Sakura Hospital, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan
| |
Collapse
|
18
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
19
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
20
|
Abdulkareem AA, Zaman Q, Khan H, Khan S, Rehman G, Tariq N, Ahmad M, Owais M, Najumuddin, Muthaffar OY, Bibi F, Khang R, Ryu SW, Naseer MI, Jelani M. Whole exome sequencing identified five novel variants in CNTN2, CARS2, ARSA, and CLCN4 leading to epilepsy in consanguineous families. Front Genet 2023; 14:1185065. [PMID: 37359369 PMCID: PMC10285458 DOI: 10.3389/fgene.2023.1185065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/26/2023] [Indexed: 11/20/2023] Open
Abstract
Introduction: Epilepsy is a group of neurological disorders characterized by recurring seizures and fits. The Epilepsy genes can be classified into four distinct groups, based on involvement of these genes in different pathways leading to Epilepsy as a phenotype. Genetically the disease has been associated with various pathways, leading to pure epilepsy-related disorders caused by CNTN2 variations, or involving physical or systemic issues along with epilepsy caused by CARS2 and ARSA, or developed by genes that are putatively involved in epilepsy lead by CLCN4 variations. Methods: In this study, five families of Pakistani origin (EP-01, EP-02, EP-04, EP-09, and EP-11) were included for molecular diagnosis. Results: Clinical presentations of these patients included neurological symptoms such as delayed development, seizures, regression, myoclonic epilepsy, progressive spastic tetraparesis, vision and hearing impairment, speech problems, muscle fibrillation, tremors, and cognitive decline. Whole exome sequencing in index patients and Sanger sequencing in all available individuals in each family identified four novel homozygous variants in genes CARS2: c.655G>A p.Ala219Thr (EP-01), ARSA: c.338T>C: p.Leu113Pro (EP-02), c.938G>T p.Arg313Leu (EP-11), CNTN2: c.1699G>T p.Glu567Ter (EP-04), and one novel hemizygous variant in gene CLCN4: c.2167C>T p.Arg723Trp (EP-09). Conclusion: To the best of our knowledge these variants were novel and had not been reported in familial epilepsy. These variants were absent in 200 ethnically matched healthy control chromosomes. Three dimensional protein analyses revealed drastic changes in the normal functions of the variant proteins. Furthermore, these variants were designated as "pathogenic" as per guidelines of American College of Medical Genetics 2015. Due to overlapping phenotypes, among the patients, clinical subtyping was not possible. However, whole exome sequencing successfully pinpointed the molecular diagnosis which could be helpful for better management of these patients. Therefore, we recommend that exome sequencing be performed as a first-line molecular diagnostic test in familial cases.
Collapse
Affiliation(s)
- Angham Abdulrhman Abdulkareem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Qaiser Zaman
- Department of Zoology, Government Postgraduate College Dargai, Malakand, Khyber Pakhtunkhwa, Pakistan
- Higher Education Department, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Khan
- Department of Zoology, Government Postgraduate College Dargai, Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Sabar Khan
- Department of Zoology, Government Postgraduate College Dargai, Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Nabeel Tariq
- Department of Zoology, Government Postgraduate College Dargai, Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Mashal Ahmad
- Department of Zoology, Government Postgraduate College Dargai, Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Owais
- Mardan College of Medical Technologies, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Najumuddin
- Programme of Biotechnology, Department of Applied Sciences, Faculty of Engineering, Science and Technology (FEST), Hamdard University, Karachi, Pakistan
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rin Khang
- 3Billion Inc., Seoul, Republic of Korea
| | | | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Musharraf Jelani
- Rare Diseases Genetics and Genomics, Centre for Omic Sciences, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
21
|
Alharbi HM, Pinchefsky EF, Tran MA, Salazar Cerda CI, Parokaran Varghese J, Kamino D, Widjaja E, Mamak E, Ly L, Nevalainen P, Hahn CD, Tam EWY. Seizure Burden and Neurologic Outcomes After Neonatal Encephalopathy. Neurology 2023; 100:e1976-e1984. [PMID: 36990719 PMCID: PMC10186227 DOI: 10.1212/wnl.0000000000207202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Seizures are common during neonatal encephalopathy (NE), but the contribution of seizure burden (SB) to outcomes remains controversial. This study aims to examine the relationship between electrographic SB and neurologic outcomes after NE. METHODS This prospective cohort study recruited newborns ≥36 weeks postmenstrual age around 6 hours of life between August 2014 and November 2019 from a neonatal intensive care unit (NICU). Participants underwent continuous electroencephalography for at least 48 hours, brain MRI within 3-5 days of life, and structured follow-up at 18 months. Electrographic seizures were identified by board-certified neurophysiologists and quantified as total SB and maximum hourly SB. A medication exposure score was calculated based on all antiseizure medications given during NICU admission. Brain MRI injury severity was classified based on basal ganglia and watershed scores. Developmental outcomes were measured using the Bayley Scales of Infant Development, Third Edition. Multivariable regression analyses were performed, adjusting for significant potential confounders. RESULTS Of 108 enrolled infants, 98 had continuous EEG (cEEG) and MRI data collected, of which 5 were lost to follow-up, and 6 died before age 18 months. All infants with moderate-severe encephalopathy completed therapeutic hypothermia. cEEG-confirmed neonatal seizures occurred in 21 (24%) newborns, with a total SB mean of 12.5 ± 36.4 minutes and a maximum hourly SB mean of 4 ± 10 min/h. After adjusting for MRI brain injury severity and medication exposure, total SB was significantly associated with lower cognitive (-0.21, 95% CI -0.33 to -0.08, p = 0.002) and language (-0.25, 95% CI -0.39 to -0.11, p = 0.001) scores at 18 months. Total SB of 60 minutes was associated with 15-point decline in language scores and 70 minutes for cognitive scores. However, SB was not significantly associated with epilepsy, neuromotor score, or cerebral palsy (p > 0.1). DISCUSSION Higher SB during NE was independently associated with worse cognitive and language scores at 18 months, even after adjusting for exposure to antiseizure medications and severity of brain injury. These observations support the hypothesis that neonatal seizures occurring during NE independently contribute to long-term outcomes.
Collapse
Affiliation(s)
- Huda M Alharbi
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Elana F Pinchefsky
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - My-An Tran
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Carlos Ivan Salazar Cerda
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Jessy Parokaran Varghese
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Daphne Kamino
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Elysa Widjaja
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Eva Mamak
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Linh Ly
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland.
| | - Päivi Nevalainen
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Cecil D Hahn
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Emily W Y Tam
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland.
| |
Collapse
|
22
|
Massey N, Vasanthi SS, Samidurai M, Gage M, Rao N, Meyer C, Thippeswamy T. 1400 W, a selective inducible nitric oxide synthase inhibitor, mitigates early neuroinflammation and nitrooxidative stress in diisopropylfluorophosphate-induced short-term neurotoxicity rat model. Front Mol Neurosci 2023; 16:1125934. [PMID: 37008784 PMCID: PMC10064070 DOI: 10.3389/fnmol.2023.1125934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Organophosphate nerve agent (OPNA) exposure induces acute and long-term neurological deficits. OPNA exposure at sub-lethal concentrations induces irreversible inhibition of acetylcholinesterase and cholinergic toxidrome and develops status epilepticus (SE). Persistent seizures have been associated with increased production of ROS/RNS, neuroinflammation, and neurodegeneration. A total of 1400W is a novel small molecule, which irreversibly inhibits inducible nitric oxide synthase (iNOS) and has been shown to effectively reduce ROS/RNS generation. In this study, we investigated the effects of 1400W treatment for a week or two weeks at 10 mg/kg or 15 mg/kg per day in the rat diisopropylfluorophosphate (DFP) model. 1400W significantly reduced the number of microglia, astroglia, and NeuN+FJB positive cells compared to the vehicle in different regions of the brain. 1400W also significantly reduced nitrooxidative stress markers and proinflammatory cytokines in the serum. However, neither of the two concentrations of 1400W for two weeks of treatment had any significant effect on epileptiform spike rate and spontaneous seizures during the treatment period in mixed sex cohorts, males, or females. No significant sex differences were found in response to DFP exposure or 1400W treatment. In conclusion, 1400W treatment at 15 mg/kg per day for two weeks was more effective in significantly reducing DFP-induced nitrooxidative stress, neuroinflammatory and neurodegenerative changes.
Collapse
|
23
|
Quinones Cardona V, Rao R, Zaniletti I, Joe P, Johnson YR, DiGeronimo R, Hamrick SE, Lee KS, Mietzsch U, Natarajan G, Peeples ES, Wu TW, Hossain T, Flibotte J, Chandel A, Distler A, Shenberger JS, Oghifobibi O, Massaro AN, Dizon MLV. Association of Hospital Resource Utilization With Neurodevelopmental Outcomes in Neonates With Hypoxic-Ischemic Encephalopathy. JAMA Netw Open 2023; 6:e233770. [PMID: 36943267 PMCID: PMC10031395 DOI: 10.1001/jamanetworkopen.2023.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
IMPORTANCE Intercenter variation exists in the management of hypoxic-ischemic encephalopathy (HIE). It is unclear whether increased resource utilization translates into improved neurodevelopmental outcomes. OBJECTIVE To determine if higher resource utilization during the first 4 days of age, quantified by hospital costs, is associated with survival without neurodevelopmental impairment (NDI) among infants with HIE. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort analysis of neonates with HIE who underwent therapeutic hypothermia (TH) at US children's hospitals participating in the Children's Hospitals Neonatal Database between 2010 and 2016. Data were analyzed from December 2021 to December 2022. EXPOSURES Infants who survived to 4 days of age and had neurodevelopmental outcomes assessed at greater than 11 months of age were divided into 2 groups: (1) death or NDI and (2) survived without NDI. Resource utilization was defined as costs of hospitalization including neonatal neurocritical care (NNCC). Data were linked with Pediatric Health Information Systems to quantify standardized costs by terciles. MAIN OUTCOMES AND MEASURES The main outcome was death or NDI. Characteristics, outcomes, hospitalization, and NNCC costs were compared. RESULTS Among the 381 patients who were included, median (IQR) gestational age was 39 (38-40) weeks; maternal race included 79 (20.7%) Black mothers, 237 (62.2%) White mothers, and 58 (15.2%) mothers with other race; 80 (21%) died, 64 (17%) survived with NDI (combined death or NDI group: 144 patients [38%]), and 237 (62%) survived without NDI. The combined death or NDI group had a higher rate of infants with Apgar score at 10 minutes less than or equal to 5 (65.3% [94 of 144] vs 39.7% [94 of 237]; P < .001) and a lower rate of infants with mild or moderate HIE (36.1% [52 of 144] vs 82.3% [195 of 237]; P < .001) compared with the survived without NDI group. Compared with low-cost centers, there was no association between high- or medium-hospitalization cost centers and death or NDI. High- and medium-EEG cost centers had lower odds of death or NDI compared with low-cost centers (high vs low: OR, 0.30 [95% CI, 0.16-0.57]; medium vs low: OR, 0.29 [95% CI, 0.13-0.62]). High- and medium-laboratory cost centers had higher odds of death or NDI compared with low-cost centers (high vs low: OR, 2.35 [95% CI, 1.19-4.66]; medium vs low: OR, 1.93 [95% CI, 1.07-3.47]). High-antiseizure medication cost centers had higher odds of death or NDI compared with low-cost centers (high vs. low: OR, 3.72 [95% CI, 1.51-9.18]; medium vs low: OR, 1.56 [95% CI, 0.71-3.42]). CONCLUSIONS AND RELEVANCE Hospitalization costs during the first 4 days of age in neonates with HIE treated with TH were not associated with neurodevelopmental outcomes. Higher EEG costs were associated with lower odds of death or NDI yet higher laboratory and antiseizure medication costs were not. These findings serve as first steps toward identifying aspects of NNCC that are associated with outcomes.
Collapse
Affiliation(s)
- Vilmaris Quinones Cardona
- St Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rakesh Rao
- St Louis Children's Hospital, St Louis, Missouri
| | | | - Priscilla Joe
- UCSF Benioff Children's Hospital, Oakland, California
| | - Yvette R Johnson
- Cook's Children's Medical Center, Department of Pediatrics, Texas Christian University Medical School, Fort Worth
| | | | - Shannon E Hamrick
- Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia
| | - Kyong-Soon Lee
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrike Mietzsch
- Seattle Children's Hospital, University of Washington, Seattle
| | - Girija Natarajan
- Children's Hospital of Michigan, Central Michigan University, Detroit
| | | | - Tai-Wei Wu
- Children's Hospital of Los Angeles, USC Keck School of Medicine, Los Angeles, California
| | | | - John Flibotte
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amit Chandel
- Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Amy Distler
- St Louis Children's Hospital, St Louis, Missouri
| | - Jeffrey S Shenberger
- Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - An N Massaro
- Childrens National Health Systems, Washington, DC
| | - Maria L V Dizon
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
24
|
Seizure Burden, EEG, and Outcome in Neonates With Acute Intracranial Infections: A Prospective Multicenter Cohort Study. Pediatr Neurol 2022; 137:54-61. [PMID: 36270133 DOI: 10.1016/j.pediatrneurol.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Limited data exist regarding seizure burden, electroencephalogram (EEG) background, and associated outcomes in neonates with acute intracranial infections. METHODS This secondary analysis was from a prospective, multicenter study of neonates enrolled in the Neonatal Seizure Registry with seizures due to intracranial infection. Sites used continuous EEG monitoring per American Clinical Neurophysiology Society guidelines. High seizure burden was defined a priori as seven or more EEG-confirmed seizures. EEG background was categorized using standardized terminology. Primary outcome was neurodevelopment at 24-months corrected age using Warner Initial Developmental Evaluation of Adaptive and Functional Skills (WIDEA-FS). Secondary outcomes were postneonatal epilepsy and motor disability. RESULTS Twenty-seven of 303 neonates (8.9%) had seizures due to intracranial infection, including 16 (59.3%) bacterial, 5 (18.5%) viral, and 6 (22.2%) unknown. Twenty-three neonates (85%) had at least one subclinical seizure. Among 23 children with 24-month follow-up, the WIDEA-FS score was, on average, 23 points lower in children with high compared with low seizure burden (95% confidence interval, [-48.4, 2.1]; P = 0.07). After adjusting for gestational age, infection etiology, and presence of an additional potential acute seizure etiology, the effect size remained unchanged (β = -23.8, P = 0.09). EEG background was not significantly associated with WIDEA-FS score. All children with postneonatal epilepsy (n = 4) and motor disability (n = 5) had high seizure burden, although associations were not significant. CONCLUSION High seizure burden may be associated with worse neurodevelopment in neonates with intracranial infection and seizures. EEG monitoring can provide useful management and prognostic information in this population.
Collapse
|
25
|
Optical Monitoring in Neonatal Seizures. Cells 2022; 11:cells11162602. [PMID: 36010678 PMCID: PMC9407001 DOI: 10.3390/cells11162602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neonatal seizures remain a significant cause of morbidity and mortality worldwide. The past decade has resulted in substantial progress in seizure detection and understanding the impact seizures have on the developing brain. Optical monitoring such as cerebral near-infrared spectroscopy (NIRS) and broadband NIRS can provide non-invasive continuous real-time monitoring of the changes in brain metabolism and haemodynamics. AIM To perform a systematic review of optical biomarkers to identify changes in cerebral haemodynamics and metabolism during the pre-ictal, ictal, and post-ictal phases of neonatal seizures. METHOD A systematic search was performed in eight databases. The search combined the three broad categories: (neonates) AND (NIRS) AND (seizures) using the stepwise approach following PRISMA guidance. RESULTS Fifteen papers described the haemodynamic and/or metabolic changes observed with NIRS during neonatal seizures. No randomised controlled trials were identified during the search. Studies reported various changes occurring in the pre-ictal, ictal, and post-ictal phases of seizures. CONCLUSION Clear changes in cerebral haemodynamics and metabolism were noted during the pre-ictal, ictal, and post-ictal phases of seizures in neonates. Further studies are necessary to determine whether NIRS-based methods can be used at the cot-side to provide clear pathophysiological data in real-time during neonatal seizures.
Collapse
|
26
|
Auvin S. Finally, a controversy about neonatal seizure treatment. Epilepsia 2022; 63:1880-1882. [PMID: 35524439 DOI: 10.1111/epi.17277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Stéphane Auvin
- APHP. Service de Neurologie Pédiatrique, Hôpital Universitaire Robert Debré, Université Paris-Cité, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
27
|
Geng H, Chen X. Development and validation of a nomogram for the early prediction of drug resistance in children with epilepsy. Front Pediatr 2022; 10:905177. [PMID: 36110106 PMCID: PMC9468368 DOI: 10.3389/fped.2022.905177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to effectively identify children with drug-resistant epilepsy (DRE) in the early stage of epilepsy, and take personalized interventions, to improve patients' prognosis, reduce serious comorbidity, and save social resources. Herein, we developed and validated a nomogram prediction model for children with DRE. METHODS The training set was patients with epilepsy who visited the Children's Hospital of Soochow University (Suzhou Industrial Park, Jiangsu Province, China) between January 2015 and December 2017. The independent risk factors for DRE were screened by univariate and multivariate logistic regression analyses using SPSS21 software. The nomogram was designed according to the regression coefficient. The nomogram was validated in the training and validation sets. Internal validation was conducted using bootstrapping analyses. We also externally validated this instrument in patients with epilepsy from the Children's Hospital of Soochow University (Gusu District, Jiangsu Province, China) and Yancheng Maternal and Child Health Hospital between January 2018 and December 2018. The nomogram's performance was assessed by concordance (C-index), calibration curves, as well as GiViTI calibration belts. RESULTS Multivariate logistic regression analysis of 679 children with epilepsy from the Children's Hospital of Soochow University (Suzhou Industrial Park, Jiangsu Province, China) showed that onset age<1, status epilepticus (SE), focal seizure, > 20 pre-treatment seizures, clear etiology (caused by genetic, structural, metabolic, or infectious), development and epileptic encephalopathy (DEE), and neurological abnormalities were all independent risk factors for DRE. The AUC of 0.92 for the training set compared to that of 0.91 for the validation set suggested a good discrimination ability of the prediction model. The C-index was 0.92 and 0.91 in the training and validation sets. Additionally, both good calibration curves and GiViTI calibration belts (P-value: 0.849 and 0.291, respectively) demonstrated that the predicted risks had strong consistency with the observed outcomes, suggesting that the prediction model in both groups was perfectly calibrated. CONCLUSION A nomogram prediction model for DRE was developed, with good discrimination and calibration in the training set and the validation set. Furthermore, the model demonstrated great accuracy, consistency, and prediction ability. Therefore, the nomogram prediction model can aid in the timely identification of DRE in children.
Collapse
Affiliation(s)
- Hua Geng
- Neurology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Xuqin Chen
- Neurology Department, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Ray S, Kenchaiah R, Asranna A, Padmanabha H, Kulanthaivelu K, Mundlamuri RC, Viswanathan LG, Chatterjee A, Thennarasu K, Sinha S. Clinical spectrum of pediatric drug refractory epilepsy secondary to parieto-occipital gliosis. Epilepsy Res 2021; 178:106804. [PMID: 34753071 DOI: 10.1016/j.eplepsyres.2021.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Parieto-occipital (PO) gliosis secondary to perinatal insult, is often associated with neurologic sequelae such as epilepsy, which can be drug resistant. OBJECTIVE To evaluate the spectrum of epilepsy among patients presenting with seizures in association with PO gliosis and to determine factors that influence the development of epileptic encephalopathy (EE) in these patients. METHODS We retrospectively evaluated patients aged < 16 years with drug refractory epilepsy and PO gliosis who underwent video electroencephalography (Video EEG). We evaluated the clinical, electrophysiological and radiological profile including treatment responsiveness of subjects with EE. RESULTS One hundred one patients (M: F=3:1) with mean age of onset of epilepsy at 28.9 ± 33.1 months were recruited into the study. Based on video EEG findings, Based on video EEG findings, the commonest type of focal onset ictus was tonic seizures with impaired awareness (n = 26, 29.9%). Myoclonic jerks (n = 20, 23%) were the commonest type of generalised onset seizures. Ictal onset from parieto occipital region were observed in 28 patients. Ictal onset from frontal, temporal and fronto temporal region were observed in 6 (6.8%), 7(7.9%) and 9 (8.9%) patients, respectively. Comparison of the seizure types and ictal onset among subgroups of patients with occipital gliosis, parieto-occipital gliosis and parieto-occipital with frontal gliosis revealed that the extent of gliosis did not significantly affect seizure semiology or ictal onset. EE was significantly associated with presence of neonatal seizures (p = 0.04), hypoglycaemia (p = 0.005), longer duration of ICU stay (Z score = -3.55, p < 0.001) and younger age of onset of seizures (Z score = - 2.97, p = 0.03). Eleven out of eighteen (64.7%) subjects with EE showed greater than 50% improvement in seizure frequency following three months of pulse intravenous methylprednisolone therapy. CONCLUSIONS Among subjects with PO gliosis on MRI, the seizure semiology is unaffected by laterality, radiologic extension beyond the occipital cortex or presence of ulegyria. Patients with PO gliosis can have florid interictal epileptiform discharges anteriorly and can have seizures with ictal onset from frontal and temporal region. Development of EE is strongly related to the age of onset of seizures, neonatal seizures, prolonged NICU admission, rather than the radiological findings. Subjects with EE and PO gliosis show good response to intravenous pulse methylprednisolone.
Collapse
Affiliation(s)
- Somdattaa Ray
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Raghavendra Kenchaiah
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ajay Asranna
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Karthik Kulanthaivelu
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | | - L G Viswanathan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Aparajita Chatterjee
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Kandavel Thennarasu
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India.
| |
Collapse
|
29
|
Zhai J, Zhou YY, Lagrutta A. Sensitivity, specificity and limitation of in vitro hippocampal slice and neuron-based assays for assessment of drug-induced seizure liability. Toxicol Appl Pharmacol 2021; 430:115725. [PMID: 34536444 DOI: 10.1016/j.taap.2021.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
An effective in vitro screening assay to detect seizure liability in preclinical development can contribute to better lead molecule optimization prior to candidate selection, providing higher throughput and overcoming potential brain exposure limitations in animal studies. This study explored effects of 26 positive and 14 negative reference pharmacological agents acting through different mechanisms, including 18 reference agents acting on glutamate signaling pathways, in a brain slice assay (BSA) of adult rat to define the assay's sensitivity, specificity, and limitations. Evoked population spikes (PS) were recorded from CA1 pyramidal neurons of hippocampus (HPC) in the BSA. Endpoints for analysis were PS area and PS number. Most positive references (24/26) elicited a concentration-dependent increase in PS area and/or PS number. The negative references (14/14) had little effect on the PS. Moreover, we studied the effects of 15 reference agents testing positive in the BSA on spontaneous activity in E18 rat HPC neurons monitored with microelectrode arrays (MEA), and compared these effects to the BSA results. From these in vitro studies we conclude that the BSA provides 93% sensitivity and 100% specificity in prediction of drug-induced seizure liability, including detecting seizurogenicity by 3 groups of metabotropic glutamate receptor (mGluR) ligands. The MEA results seemed more variable, both quantitatively and directionally, particularly for endpoints capturing synchronized electrical activity. We discuss these results from the two models, comparing each with published results, and provide potential explanations for differences and future directions.
Collapse
Affiliation(s)
- Jin Zhai
- Department of Genetic Toxicology and In Vitro Cellular Toxicity, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA.
| | - Ying-Ying Zhou
- Program Discovery and Development, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA
| | - Armando Lagrutta
- Program Discovery and Development, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
30
|
Schramm S, Mehta A, Auguste KI, Tarapore PE. Navigated transcranial magnetic stimulation mapping of the motor cortex for preoperative diagnostics in pediatric epilepsy. J Neurosurg Pediatr 2021; 28:287-294. [PMID: 34171834 DOI: 10.3171/2021.2.peds20901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy. METHODS A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses. RESULTS Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0-17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients). CONCLUSIONS Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.
Collapse
Affiliation(s)
- Severin Schramm
- 1Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Aashna Mehta
- 2Berkeley School of Public Health, University of California, Berkeley; and
| | - Kurtis I Auguste
- 3Department of Neurosurgery, University of California, San Francisco, California
| | - Phiroz E Tarapore
- 3Department of Neurosurgery, University of California, San Francisco, California
| |
Collapse
|
31
|
Meyer C, Kettner A, Hochenegg U, Rubi L, Hilber K, Koenig X, Boehm S, Hotka M, Kubista H. On the Origin of Paroxysmal Depolarization Shifts: The Contribution of Ca v1.x Channels as the Common Denominator of a Polymorphous Neuronal Discharge Pattern. Neuroscience 2021; 468:265-281. [PMID: 34015369 DOI: 10.1016/j.neuroscience.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022]
Abstract
Since their discovery in the 1960s, the term paroxysmal depolarization shift (PDS) has been applied to a wide variety of reinforced neuronal discharge patterns. Occurrence of PDS as cellular correlates of electrographic spikes during latent phases of insult-induced rodent epilepsy models and their resemblance to giant depolarizing potentials (GDPs) nourished the idea that PDS may be involved in epileptogenesis. Both GDPs and - in analogy - PDS may lead to progressive changes of neuronal properties by generation of pulsatile intracellular Ca2+ elevations. Herein, a key element is the gating of L-type voltage gated Ca2+ channels (LTCCs, Cav1.x family), which may convey Ca2+ signals to the nucleus. Accordingly, the present study investigates various insult-associated neuronal challenges for their propensities to trigger PDS in a LTCC-dependent manner. Our data demonstrate that diverse disturbances of neuronal function are variably suited to induce PDS-like events, and the contribution of LTCCs is essential to evoke PDS in rat hippocampal neurons that closely resemble GDPs. These PDS appear to be initiated in the dendritic sub-compartment. Their morphology critically depends on the position of recording electrodes and on their rate of occurrence. These results provide novel insight into induction mechanisms, origin, variability, and co-existence of PDS with other discharge patterns and thereby pave the way for future investigations regarding the role of PDS in epileptogenesis.
Collapse
Affiliation(s)
- Christiane Meyer
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Annika Kettner
- University of Applied Sciences (FH Campus Wien), Favoritenstrasse 226, 1100 Vienna, Austria.
| | - Ulla Hochenegg
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Lena Rubi
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Xaver Koenig
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Hayase Y, Amano S, Hashizume K, Tominaga T, Miyamoto H, Kanno Y, Ueno-Inoue Y, Inoue T, Yamada M, Ogata S, Balan S, Hayashi K, Miura Y, Tokudome K, Ohno Y, Nishijo T, Momiyama T, Yanagawa Y, Takizawa A, Mashimo T, Serikawa T, Sekine A, Nakagawa E, Takeshita E, Yoshikawa T, Waga C, Inoue K, Goto YI, Nabeshima Y, Ihara N, Yamakawa K, Taya S, Hoshino M. Down syndrome cell adhesion molecule like-1 (DSCAML1) links the GABA system and seizure susceptibility. Acta Neuropathol Commun 2020; 8:206. [PMID: 33256836 PMCID: PMC7706048 DOI: 10.1186/s40478-020-01082-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.
Collapse
Affiliation(s)
- Yoneko Hayase
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shigeru Amano
- Graduate School of Medicine Faculty of Health Science, Department of Laboratory Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Takashi Tominaga
- Laboratory for Neural Circuit System, Institute of Neuroscience, Tokushima Bunri University, Sanuki, 769-2300, Japan
| | - Hiroyuki Miyamoto
- International Research Center for Neurointelligence (IRCN), The University of Tokyo, Tokyo, 187-8502, Japan
| | - Yukie Kanno
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yukiko Ueno-Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Mayumi Yamada
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Shigehiro Ogata
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ken Hayashi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yoshiki Miura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kentaro Tokudome
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, 569-1094, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, 569-1094, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yuchio Yanagawa
- Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Akiko Takizawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-839, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiro Sekine
- Omics-Based Medicine, Center for Preventive Medical Science, Chiba University, Chiba, 260-0856, Japan
| | - Eiji Nakagawa
- Department of Pediatric Neurology, National Center Hospital, NCNP, Tokyo, 187-8551, Japan
| | - Eri Takeshita
- Department of Pediatric Neurology, National Center Hospital, NCNP, Tokyo, 187-8551, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chikako Waga
- Department of Mental Retardation and Birth Defect Research, NCNP, Tokyo, 187-8551, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, NCNP, Tokyo, 187-8551, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, NCNP, Tokyo, 187-8551, Japan
| | - Yoichi Nabeshima
- Foundation for Biomedical Research and Innovation, Kobe, 650-0047, Japan
| | - Nobuo Ihara
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazuhiro Yamakawa
- Graduate School of Medical Science, Nagoya City University, Nagoya, 467-8601, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
33
|
Zhang H, Shen Z, Zhao Q, Yan L, Du L, Deng Z. Dynamic Transitions of Epilepsy Waveforms Induced by Astrocyte Dysfunction and Electrical Stimulation. Neural Plast 2020; 2020:8867509. [PMID: 33281896 PMCID: PMC7685866 DOI: 10.1155/2020/8867509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental studies have shown that astrocytes participate in epilepsy through inducing the release of glutamate. Meanwhile, considering the disinhibition circuit among inhibitory neuronal populations with different time scales and the feedforward inhibition connection from thalamic relay nucleus to cortical inhibitory neuronal population, here, we propose a modified thalamocortical field model to systematically investigate the mechanism of epilepsy. Firstly, our results show that rich firing activities can be induced by astrocyte dysfunction, including high or low saturated state, high- or low-frequency clonic, spike-wave discharge (SWD), and tonic. More importantly, with the enhancement of feedforward inhibition connection, SWD and tonic oscillations will disappear. In other words, all these pathological waveforms can be suppressed or eliminated. Then, we explore the control effects after different external stimulations applying to thalamic neuronal population. We find that single-pulse stimulation can not only suppress but also induce pathological firing patterns, such as SWD, tonic, and clonic oscillations. And we further verify that deep brain stimulation can control absence epilepsy by regulating the amplitude and pulse width of stimulation. In addition, based on our modified model, 3 : 2 coordinated reset stimulation strategies with different intensities are compared and a more effective and safer stimulation mode is proposed. Our conclusions are expected to give more theoretical insights into the treatment of epilepsy.
Collapse
Affiliation(s)
- Honghui Zhang
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhuan Shen
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiangui Zhao
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luyao Yan
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Du
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zichen Deng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
34
|
Moreira JD, Siqueira LV, Müller AP, Porciúncula LO, Vinadé L, Souza DO. Dietary omega-3 fatty acids prevent neonatal seizure-induced early alterations in the hippocampal glutamatergic system and memory deficits in adulthood. Nutr Neurosci 2020; 25:1066-1077. [PMID: 33107813 DOI: 10.1080/1028415x.2020.1837569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We investigated the influence of dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) on glutamatergic system modulation after a single episode of neonatal seizures and their possible effects on seizure-induced long-lasting behavioral deficits. METHODS Male Wistar rats receiving an omega-3 diet (n-3) or an n-3 deficient diet (D) from the prenatal period were subjected to a kainate-induced seizure model at P7. Glutamate transporter activity and immunocontents (GLT-1 and GLAST) were assessed in the hippocampus at 12, 24, and 48 h after the seizure episode. Fluorescence intensity for glial cells (GFAP) and neurons (NeuN) was assessed 24 h after seizure in the hippocampus. Behavioral analysis (elevated-plus maze and inhibitory avoidance memory task) was performed at 60 days of age. RESULTS The D group showed a decrease in glutamate uptake 24 h after seizure. In this group only, the GLT1 content increased at 12 h, followed by a decrease at 24 h. GLAST increased up to 24 h after seizure. GFAP fluorescence was higher, and NeuN fluorescence decreased, in the D group independent of seizures. In adulthood, the D group presented memory deficits independent of seizures, but short-term memory (1.5 h after a training session) was abolished in the D group treated with kainate. SIGNIFICANCE N-3 PUFA positively influenced the glutamatergic system during seizure and prevented seizure-related memory deficits in adulthood.
Collapse
Affiliation(s)
- Júlia D Moreira
- Postgraduate Program in Nutrition, Translational Nutrition Neuroscience Working Group, Health Science Centre, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - Letícia Vicari Siqueira
- Postgraduate Program in Biological Science - Biochemistry, Basic Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre P Müller
- Postgraduate Program in Pharmacology, Health Science Centre, Universidade Federal de Santa Catarina, Brazil
| | - Lisiane O Porciúncula
- Postgraduate Program in Biological Science - Biochemistry, Basic Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lúcia Vinadé
- Master Graduation Program in Biological Sciences (Programa de Pós-Graduação em Ciências Biológicas), Universidade Federal do Pampa - UNIPAMPA, Campus São Gabriel, São Gabriel, Brazil
| | - Diogo O Souza
- Postgraduate Program in Biological Science - Biochemistry, Basic Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
35
|
Wirrell EC, Bieber ED, Vanderwiel A, Kreps S, Weaver AL. Self-injurious and suicidal behavior in young adults, teens, and children with epilepsy: A population-based study. Epilepsia 2020; 61:1919-1930. [PMID: 32697369 PMCID: PMC10032032 DOI: 10.1111/epi.16618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Whereas studies in adult epilepsy patients have shown higher rates of suicidal ideation and attempt, such studies in children are limited. Using the Rochester Epidemiology Project database, we compared the risk of self-injurious behavior and suicidal ideation in a population-based cohort of childhood epilepsy to controls. METHODS We studied 339 cases with epilepsy and 678 age- and sex-matched controls followed to a median age of 24.7 and 23.4 years, and identified 98 subjects with self-injurious behavior or suicidal ideation (43 with epilepsy and 55 controls). All behaviors were categorized using the Columbia Suicide Severity Rating Scale. RESULTS Those with epilepsy had a significantly higher rate of any self-injurious behavior and suicidal ideation (hazard ratio [HR] = 1.56, 95% confidence interval [CI] = 1.04-2.35) and tended to have an increased risk of suicidal ideation and attempt (HR = 1.48, 95% CI = 0.93-2.37). The prevalence of preceding mood and substance abuse disorders was similarly high in both cases and controls with self-injurious behavior or suicidal ideation; however, preceding attention-deficit/hyperactivity disorder was more than twice as common in the epilepsy cases. Among cases with epilepsy, we did not identify any specific epilepsy-related variable that was significantly correlated with risk of self-injurious behavior or suicidal ideation. SIGNIFICANCE Children, teens, and young adults with a history of childhood epilepsy are at greater risk of self-injurious behavior, highlighting the need for careful screening of mental health concerns as part of routine epilepsy care.
Collapse
Affiliation(s)
- Elaine C. Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Ewa D. Bieber
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Alexander Vanderwiel
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Samantha Kreps
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Amy L. Weaver
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Dozières-Puyravel B, Nasser H, Bellavoine V, Ilea A, Delanoe C, Auvin S. Felbamate for infantile spasms syndrome resistant to first-line treatments. Dev Med Child Neurol 2020; 62:581-586. [PMID: 31850517 DOI: 10.1111/dmcn.14427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
AIM To analyse the effects of felbamate in refractory infantile spasms/West syndrome. METHOD We conducted a 10-year retrospective study of infants (including all infants younger than 18mo) treated with felbamate for electroencephalography-recorded epileptic spasms persisting after first-line treatment. RESULTS In total, 29 infants (17 males, 12 females) were included in the study. Felbamate was initiated at a mean age of 13.8 months (range 4.5-66mo) after sequential administration or combination of vigabatrin and oral steroids; a ketogenic diet was implemented in 23 infants. Eight infants became spasm-free at a mean dose of 34.6mg/kg/day felbamate (range 26-45mg/kg/day). Mean duration of felbamate use was 19 months (range 1-67mo) for the 19 infants whose treatment was terminated. No severe side effects were observed. Reversible neutropenia led to withdrawal of felbamate in six patients. One spasm-free patient demonstrated recurrence when felbamate was withdrawn. INTERPRETATION N-methyl-d-aspartate receptors with felbamate controlled epileptic spasms in eight infants resistant to first-line treatment should be targeted.
Collapse
Affiliation(s)
| | - Hala Nasser
- Service des Explorations Fonctionnelles, Hôpital Robert-Debré, Paris, France
| | - Vanina Bellavoine
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, Paris, France
| | - Adina Ilea
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, Paris, France
| | - Catherine Delanoe
- Service des Explorations Fonctionnelles, Hôpital Robert-Debré, Paris, France
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, Paris, France.,INSERM U1141, Université de Paris, Paris, France
| |
Collapse
|
37
|
MacEachern SJ, Santoro JD, Hahn KJ, Medress ZA, Stecher X, Li MD, Hahn JS, Yeom KW, Forkert ND. Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala. Neuroradiology 2019; 62:389-397. [PMID: 31853588 DOI: 10.1007/s00234-019-02332-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Despite evidence for macrostructural alteration in epilepsy patients later in life, little is known about the underlying pathological or compensatory mechanisms at younger ages causing these alterations. The aim of this work was to investigate the impact of pediatric epilepsy on the central nervous system, including gray matter volume, cerebral blood flow, and water diffusion, compared with neurologically normal children. METHODS Inter-ictal magnetic resonance imaging data was obtained from 30 children with epilepsy ages 1-16 (73% F, 27% M). An atlas-based approach was used to determine values for volume, cerebral blood flow, and apparent diffusion coefficient in the cerebral cortex, hippocampus, thalamus, caudate, putamen, globus pallidus, amygdala, and nucleus accumbens. These values were then compared with previously published values from 100 neurologically normal children using a MANCOVA analysis. RESULTS Most brain volumes of children with epilepsy followed a pattern similar to typically developing children, except for significantly larger putamen and amygdala. Cerebral blood flow was also comparable between the groups, except for the putamen, which demonstrated decreased blood flow in children with epilepsy. Diffusion (apparent diffusion coefficient) showed a trend towards higher values in children with epilepsy, with significantly elevated diffusion within the thalamus in children with epilepsy compared with neurologically normal children. CONCLUSION Children with epilepsy show statistically significant differences in volume, diffusion, and cerebral blood flow within their thalamus, putamen, and amygdala, suggesting that epilepsy is associated with structural changes of the central nervous system influencing brain development and potentially leading to poorer neurocognitive outcomes.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Santoro
- Division of Neurology, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kara J Hahn
- Department of Neurology, Division of Child Neurology, Stanford University, Stanford, CA, USA
| | | | - Ximena Stecher
- Radiology Department, Universidad del Desarrollo, Santiago, Chile.,Radiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Matthew D Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jin S Hahn
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Nils D Forkert
- Department of Radiology, Cumming School of Medicine, Universityof Calgary, Calgary, AB, Canada. .,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
38
|
Mechanistic insights into autocrine and paracrine roles of endothelial GABA signaling in the embryonic forebrain. Sci Rep 2019; 9:16256. [PMID: 31700116 PMCID: PMC6838150 DOI: 10.1038/s41598-019-52729-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
The developing cerebral cortex uses a complex developmental plan involving angiogenesis, neurogenesis and neuronal migration. Our recent studies have highlighted the importance of endothelial cell secreted GABA signaling in the embryonic forebrain and established novel autonomous links between blood vessels and the origin of neuropsychiatric diseases. A GABA pathway operates in both endothelial cells and GABAergic neurons of the embryonic telencephalon; however, while the neuronal GABA pathway has been extensively studied, little is known about the endothelial GABA pathway. Our recently generated Vgat endothelial cell knockout mouse model that blocks GABA release from endothelial cells, serves as a new tool to study how endothelial GABA signaling shapes angiogenesis and neurovascular interactions during prenatal development. Quantitative gene expression profiling reveals that the endothelial GABA signaling pathway influences genes connected to specific processes like endothelial cell proliferation, differentiation, migration, tight junction formation, vascular sprouting and integrity. It also shows how components of the neuronal GABA pathway, for instance receptor mediated signaling, cell cycle related components and transcription factors are affected in the absence of endothelial GABA release. Taken together, our findings delineate the close relationship between vascular and nervous systems that begin early in embryogenesis establishing their future interactions and interdependence.
Collapse
|
39
|
Huang LL, Wang YY, Liu LY, Tang HP, Zhang MN, Ma SF, Zou LP. Home Videos as a Cost-Effective Tool for the Diagnosis of Paroxysmal Events in Infants: Prospective Study. JMIR Mhealth Uhealth 2019; 7:e11229. [PMID: 31516128 PMCID: PMC6746063 DOI: 10.2196/11229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/01/2019] [Accepted: 06/12/2019] [Indexed: 01/30/2023] Open
Abstract
Background The diagnosis of paroxysmal events in infants is often challenging. Reasons include the child’s inability to express discomfort and the inability to record video electroencephalography at home. The prevalence of mobile phones, which can record videos, may be beneficial to these patients. In China, this advantage may be even more significant given the vast population and the uneven distribution of medical resources. Objective The aim of this study is to investigate the value of mobile phone videos in increasing the diagnostic accuracy and cost savings of paroxysmal events in infants. Methods Clinical data, including descriptions and home videos of episodes, from 12 patients with paroxysmal events were collected. The investigation was conducted in six centers during pediatric academic conferences. All 452 practitioners present were asked to make their diagnoses by just the descriptions of the events, and then remake their diagnoses after watching the corresponding home videos of the episodes. The doctor’s information, including educational background, profession, working years, and working hospital level, was also recorded. The cost savings from accurate diagnoses were measured on the basis of using online consultation, which can also be done easily by mobile phone. All data were recorded in the form of questionnaires designed for this study. Results We collected 452 questionnaires, 301 of which met the criteria (66.6%) and were analyzed. The mean correct diagnoses with and without videos was 8.4 (SD 1.7) of 12 and 7.5 (SD 1.7) of 12, respectively. For epileptic seizures, mobile phone videos increased the mean accurate diagnoses by 3.9%; for nonepileptic events, it was 11.5% and both were statistically different (P=.006 for epileptic events; P<.001 for nonepileptic events). Pediatric neurologists with longer working years had higher diagnostic accuracy; whereas, their working hospital level and educational background made no difference. For patients with paroxysmal events, at least US $673.90 per capita and US $128 million nationwide could be saved annually, which is 12.02% of the total cost for correct diagnosis. Conclusions Home videos made on mobile phones are a cost-effective tool for the diagnosis of paroxysmal events in infants. They can facilitate the diagnosis of paroxysmal events in infants and thereby save costs. The best choice for infants with paroxysmal events on their initial visit is to record their events first and then show the video to a neurologist with longer working years through online consultation.
Collapse
Affiliation(s)
- Lu-Lu Huang
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yang-Yang Wang
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Li-Ying Liu
- Chinese People's Liberation Army General Hospital, Beijing, China
| | | | - Meng-Na Zhang
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shu-Fang Ma
- Chinese People's Liberation Army General Hospital, Beijing, China
| | - Li-Ping Zou
- Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
40
|
Effects of hypercaloric enteral intervention on malnutrition patients with a history of febrile seizure before the age of six. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.788917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Li F, Wong R, Luo Z, Du L, Turlova E, Britto LRG, Feng ZP, Sun HS. Neuroprotective Effects of AG490 in Neonatal Hypoxic-Ischemic Brain Injury. Mol Neurobiol 2019; 56:8109-8123. [PMID: 31190145 DOI: 10.1007/s12035-019-01656-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022]
Abstract
In infants and children, neonatal hypoxic-ischemic (HI) brain injury represents a major cause of chronic neurological morbidity. The transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel that conducts calcium, can mediate neuronal death following HI brain injury. An important endogenous activator of TRPM2 is H2O2, which has previously been reported to be upregulated in the neonatal brain after hypoxic ischemic injury. Here, incorporating both in vitro (H2O2-induced neuronal cell death model) and in vivo (mouse HI brain injury model) approaches, we examined the effects of AG490, which can inhibit the H2O2-induced TRPM2 channel. We found that AG490 elicited neuroprotective effects. We confirmed that AG490 reduced H2O2-induced TRPM2 currents. Specifically, application of AG490 to neurons ameliorated H2O2-induced cell injury in vitro. In addition, AG490 administration reduced brain damage and improved neurobehavioral performance following HI brain injury in vivo. The neuroprotective benefits of AG490 suggest that pharmacological inhibition of H2O2-activated TRPM2 currents can be exploited as a potential therapeutic strategy to treat HI-induced neurological complications.
Collapse
Affiliation(s)
- Feiya Li
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Zhengwei Luo
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Lida Du
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Luiz R G Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
42
|
Kubista H, Boehm S, Hotka M. The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. Int J Mol Sci 2019; 20:ijms20030577. [PMID: 30699993 PMCID: PMC6387313 DOI: 10.3390/ijms20030577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022] Open
Abstract
Paroxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy. Evidence for the roles of PDS has often been obtained from investigations of the multi-unit correlate of PDS, an electrographic spike termed “interictal” because of its occurrence during seizure-free periods of epilepsy patients. Meanwhile, interictal spikes have been found to be associated with neuronal diseases other than epilepsy, e.g., Alzheimer’s disease, which may indicate a broader implication of PDS in neuropathologies. In this article, we give an introduction to PDS and review evidence that links PDS to pro- as well as anti-epileptic mechanisms, and to other types of neuronal dysfunction. The perturbation of neuronal membrane voltage and of intracellular Ca2+ that comes with PDS offers many conceivable pathomechanisms of neuronal dysfunction. Out of these, the operation of L-type voltage-gated calcium channels, which play a major role in coupling excitation to long-lasting neuronal changes, is addressed in detail.
Collapse
Affiliation(s)
- Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
43
|
Abstract
The brain is the most complex organ of the body, and many pathological processes underlying various brain disorders are poorly understood. Limited accessibility hinders observation of such processes in the in vivo brain, and experimental freedom is often insufficient to enable informative manipulations. In vitro preparations (brain slices or cultures of dissociated neurons) offer much better accessibility and reduced complexity and have yielded valuable new insights into various brain disorders. Both types of preparations have their advantages and limitations with regard to lifespan, preservation of in vivo brain structure, composition of cell types, and the link to behavioral outcome is often unclear in in vitro models. While these limitations hamper general usage of in vitro preparations to study, e.g., brain development, in vitro preparations are very useful to study neuronal and synaptic functioning under pathologic conditions. This chapter addresses several brain disorders, focusing on neuronal and synaptic functioning, as well as network aspects. Recent progress in the fields of brain circulation disorders, excitability disorders, and memory disorders will be discussed, as well as limitations of current in vitro models.
Collapse
|
44
|
Rigas P, Sigalas C, Nikita M, Kaplanian A, Armaos K, Leontiadis LJ, Zlatanos C, Kapogiannatou A, Peta C, Katri A, Skaliora I. Long-Term Effects of Early Life Seizures on Endogenous Local Network Activity of the Mouse Neocortex. Front Synaptic Neurosci 2018; 10:43. [PMID: 30538627 PMCID: PMC6277496 DOI: 10.3389/fnsyn.2018.00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding the long term impact of early life seizures (ELS) is of vital importance both for researchers and clinicians. Most experimental studies of how seizures affect the developing brain have drawn their conclusions based on changes detected at the cellular or behavioral level, rather than on intermediate levels of analysis, such as the physiology of neuronal networks. Neurons work as part of networks and network dynamics integrate the function of molecules, cells and synapses in the emergent properties of brain circuits that reflect the balance of excitation and inhibition in the brain. Therefore, studying network dynamics could help bridge the cell-to-behavior gap in our understanding of the neurobiological effects of seizures. To this end we investigated the long-term effects of ELS on local network dynamics in mouse neocortex. By using the pentylenetetrazole (PTZ)-induced animal model of generalized seizures, single or multiple seizures were induced at two different developmental stages (P9-15 or P19-23) in order to examine how seizure severity and brain maturational status interact to affect the brain's vulnerability to ELS. Cortical physiology was assessed by comparing spontaneous network activity (in the form of recurring Up states) in brain slices of adult (>5 mo) mice. In these experiments we examined two distinct cortical regions, the primary motor (M1) and somatosensory (S1) cortex in order to investigate regional differences in vulnerability to ELS. We find that the effects of ELSs vary depending on (i) the severity of the seizures (e.g., single intermittent ELS at P19-23 had no effect on Up state activity, but multiple seizures induced during the same period caused a significant change in the spectral content of spontaneous Up states), (ii) the cortical area examined, and (iii) the developmental stage at which the seizures are administered. These results reveal that even moderate experiences of ELS can have long lasting age- and region-specific effects in local cortical network dynamics.
Collapse
Affiliation(s)
- Pavlos Rigas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Maria Nikita
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ani Kaplanian
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - Christos Zlatanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Charoula Peta
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anna Katri
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Irini Skaliora
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
45
|
Pisani F, Pavlidis E. What is new: Talk about status epilepticus in the neonatal period. Eur J Paediatr Neurol 2018; 22:757-762. [PMID: 29861333 DOI: 10.1016/j.ejpn.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/30/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022]
Abstract
Nowadays, no general consensus was achieved regarding neonatal status epilepticus and its definition. Indeed, different criteria (mainly based on seizure duration) were used. Whereas a recent proposal has been developed to define status epilepticus in older ages, it seems that the peculiar characteristics of neonatal seizures and of the immature brain make difficult to find a tailored definition for this period of life. Achieving a consensus on this entity would mean to make the first step toward a targeted therapeutic strategy of intervention.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Medicine & Surgery Department, University of Parma, Italy
| | - Elena Pavlidis
- Child Neuropsychiatry Unit, Medicine & Surgery Department, University of Parma, Italy.
| |
Collapse
|
46
|
Ebrahimzadeh-Bideskan AR, Mansouri S, Ataei ML, Jahanshahi M, Hosseini M. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats. Anat Sci Int 2018; 93:218-230. [PMID: 28283880 DOI: 10.1007/s12565-017-0398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.
Collapse
Affiliation(s)
- Ali Reza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mariam Lale Ataei
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Jahanshahi
- Department of Anatomy, School of Medicine, Golestan University of Medical Sciences, Grogan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
47
|
Brain responses to auditory oddball task in children with benign childhood epilepsy with centrotemporal spikes: Quantitative analysis and correlation with neuropsychological assessment scores. Epilepsy Behav 2018; 80:272-279. [PMID: 29398625 DOI: 10.1016/j.yebeh.2018.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/06/2018] [Accepted: 01/12/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Variable degrees of cognitive dysfunction have been reported in children with benign childhood epilepsy with centrotemporal spikes (BCECTS). Our aim was to perform quantitative analyses of the brain responses to cognitive tasks using event-related desynchronization (ERD) and event-related synchronization (ERS) and correlating the results with the scores of neuropsychological tests in patients with BCECTS. METHODS This case control study included 30 patients with BCECTS and 20 controls. Clinical assessment, neuropsychological tests, the Positive wave at 300 msec (P300) parameters recording, and quantitative electroencephalography (EEG) analysis were carried out for both groups. Alpha power ERD and ERS were measured in six different brain regions during an auditory oddball paradigm. RESULTS Children with epilepsy showed a statistically significant poorer performance in verbal intelligence quotient (IQ), performance IQ, and total scale IQ and lower number of correct responses. Moreover, both groups showed diffuse alpha power attenuation in response to the target tones. After summation of the alpha power ERD over all brain regions to get the net diffuse ERD, the patients' group showed a statistically significant smaller net alpha ERD compared with that of the control group (P=0.001). No significant correlations between the alpha ERD percentage, recorded P300 parameters, and neuropsychological tests scores were found. CONCLUSIONS Children with BCECTS have subtle cognitive dysfunction proved by significantly lower scores of verbal IQ and performance IQ subtests. The significantly smaller net diffuse alpha power ERD detected in children with epilepsy may be an electrophysiological indicator of disruptive brain activation in relation to cognitive attentional tasks; however, its correlation with neuropsychological tests was insignificant.
Collapse
|
48
|
Martínez-François JR, Fernández-Agüera MC, Nathwani N, Lahmann C, Burnham VL, Danial NN, Yellen G. BAD and K ATP channels regulate neuron excitability and epileptiform activity. eLife 2018; 7:32721. [PMID: 29368690 PMCID: PMC5785210 DOI: 10.7554/elife.32721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity.
Collapse
Affiliation(s)
| | | | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Carolina Lahmann
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Veronica L Burnham
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Nika N Danial
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
49
|
Abend NS, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:275-321.e14. [DOI: 10.1016/b978-0-323-42876-7.00012-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Li S, Kumar T P, Joshee S, Kirschstein T, Subburaju S, Khalili JS, Kloepper J, Du C, Elkhal A, Szabó G, Jain RK, Köhling R, Vasudevan A. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res 2017; 28:221-248. [PMID: 29086765 PMCID: PMC5799810 DOI: 10.1038/cr.2017.135] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/06/2017] [Accepted: 09/07/2017] [Indexed: 01/27/2023] Open
Abstract
The cerebral cortex is essential for integration and processing of information
that is required for most behaviors. The exquisitely precise laminar
organization of the cerebral cortex arises during embryonic development when
neurons migrate successively from ventricular zones to coalesce into specific
cortical layers. While radial glia act as guide rails for projection neuron
migration, pre-formed vascular networks provide support and guidance cues for
GABAergic interneuron migration. This study provides novel conceptual and
mechanistic insights into this paradigm of vascular-neuronal interactions,
revealing new mechanisms of GABA and its receptor-mediated signaling via
embryonic forebrain endothelial cells. With the use of two new endothelial cell
specific conditional mouse models of the GABA pathway
(Gabrb3ΔTie2-Cre and
VgatΔTie2-Cre), we show that partial or
complete loss of GABA release from endothelial cells during embryogenesis
results in vascular defects and impairs long-distance migration and positioning
of cortical interneurons. The downstream effects of perturbed endothelial
cell-derived GABA signaling are critical, leading to lasting changes to cortical
circuits and persistent behavioral deficits. Furthermore, we illustrate new
mechanisms of activation of GABA signaling in forebrain endothelial cells that
promotes their migration, angiogenesis and acquisition of blood-brain barrier
properties. Our findings uncover and elucidate a novel endothelial GABA
signaling pathway in the CNS that is distinct from the classical neuronal GABA
signaling pathway and shed new light on the etiology and pathophysiology of
neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety,
depression and schizophrenia.
Collapse
Affiliation(s)
- Suyan Li
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Peeyush Kumar T
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Sampada Joshee
- Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Sivan Subburaju
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.,Program in Structural and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | | | - Jonas Kloepper
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chuang Du
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02148, USA
| | - Abdallah Elkhal
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.,Division of Transplantation, Brigham and Women's Hospital, 221 Longwood Avenue, EBRC 309, Boston, MA 02115, USA
| | - Gábor Szabó
- Laboratory of Molecular Biology and Genetics, Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Anju Vasudevan
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| |
Collapse
|