1
|
Irons EE, Cortes Gomez E, Andersen VL, Lau JTY. Bacterial colonization and TH17 immunity are shaped by intestinal sialylation in neonatal mice. Glycobiology 2022; 32:414-428. [PMID: 35157771 PMCID: PMC9022908 DOI: 10.1093/glycob/cwac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/14/2022] Open
Abstract
Interactions between the neonate host and its gut microbiome are central to the development of a healthy immune system. However, the mechanisms by which animals alter early colonization of microbiota for their benefit remain unclear. Here, we investigated the role of early-life expression of the α2,6-sialyltransferase ST6GAL1 in microbiome phylogeny and mucosal immunity. Fecal, upper respiratory, and oral microbiomes of pups expressing or lacking St6gal1 were analyzed by 16S rRNA sequencing. At weaning, the fecal microbiome of St6gal1-KO mice had reduced Clostridiodes, Coprobacillus, and Adlercreutzia, but increased Helicobacter and Bilophila. Pooled fecal microbiomes from syngeneic donors were transferred to antibiotic-treated wild-type mice, before analysis of recipient mucosal immune responses by flow cytometry, RT-qPCR, microscopy, and ELISA. Transfer of St6gal1-KO microbiome induced a mucosal Th17 response, with expression of T-bet and IL-17, and IL-22-dependent gut lengthening. Early life intestinal sialylation was characterized by RT-qPCR, immunoblot, microscopy, and sialyltransferase enzyme assays in genetic mouse models at rest or with glucocorticoid receptor modulators. St6gal1 expression was greatest in the duodenum, where it was mediated by the P1 promoter and efficiently inhibited by dexamethasone. Our data show that the inability to produce α2,6-sialyl ligands contributes to microbiome-dependent Th17 inflammation, highlighting a pathway by which the intestinal glycosylation regulates mucosal immunity.
Collapse
Affiliation(s)
- Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Valerie L Andersen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| |
Collapse
|
2
|
Regulatory domains controlling high intestinal vitamin D receptor gene expression are conserved in mouse and human. J Biol Chem 2022; 298:101616. [PMID: 35065959 PMCID: PMC8891975 DOI: 10.1016/j.jbc.2022.101616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin D receptor (VDR) levels are highest in the intestine where it mediates 1,25 dihydroxyvitamin D-induced gene expression. However, the mechanisms controlling high intestinal VDR gene expression are unknown. Here, we used Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to identify the regulatory sites controlling intestine-specific Vdr gene expression in the small intestine (villi and crypts) and colon of developing, adult, and aged mice. We identified 17 ATAC peaks in a 125 kb region from intron 3 to −55.8 kb from exon 1 of the Vdr gene. Interestingly, many of these peaks were missing/reduced in the developing intestine. Chromatin ImmunoPrecipitation-Sequencing (ChIP-Seq) peaks for intestinal transcription factors (TFs) were present within the ATAC peaks and at HiChIP looping attachments that connected the ATAC/TF ChIP peaks to the transcription start site and CCCTF-binding factor sites at the borders of the Vdr gene regulatory domain. Intestine-specific regulatory sites were identified by comparing ATAC peaks to DNAse-Seq data from other tissues that revealed tissue-specific, evolutionary conserved, and species-specific peaks. Bioinformatics analysis of human DNAse-Seq peaks revealed polymorphisms that disrupt TF-binding sites. Our analysis shows that mouse intestinal Vdr gene regulation requires a complex interaction of multiple distal regulatory regions and is controlled by a combination of intestinal TFs. These intestinal regulatory sites are well conserved in humans suggesting that they may be key components of VDR regulation in both mouse and human intestines.
Collapse
|
3
|
Zalewska A. Developmental milestones in neonatal and juvenile C57Bl/6 mouse - Indications for the design of juvenile toxicity studies. Reprod Toxicol 2019; 88:91-128. [PMID: 31386883 DOI: 10.1016/j.reprotox.2019.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
Abstract
There is a growing demand for wild type mice and mouse models of disease that may be more representative of human conditions but there is little information on neonatal and juvenile mouse anatomy. This project produces sound and comprehensive histology background data on the developing neonatal mouse at different time points from Day 0 until Day 28. The work describes optimal methods for tissue harvesting, fixation and processing from the neonatal and juvenile mice which can be used in routine toxicology studies. A review of the available literature revealed inconsistencies in the developmental milestones reported in the mouse. Although it is true that the sequence of events during the development is virtually the same in mice and rats, important developmental milestones in the mouse often happen earlier than in the rat, and these species should not be used interchangeably.
Collapse
Affiliation(s)
- Aleksandra Zalewska
- Sequani Limited, Bromyard Road, Ledbury, HR8 1LH, Herefordshire, United Kingdom.
| |
Collapse
|
4
|
Navis M, Martins Garcia T, Renes IB, Vermeulen JL, Meisner S, Wildenberg ME, van den Brink GR, van Elburg RM, Muncan V. Mouse fetal intestinal organoids: new model to study epithelial maturation from suckling to weaning. EMBO Rep 2018; 20:embr.201846221. [PMID: 30530633 PMCID: PMC6362357 DOI: 10.15252/embr.201846221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
During the suckling-to-weaning transition, the intestinal epithelium matures, allowing digestion of solid food. Transplantation experiments with rodent fetal epithelium into subcutaneous tissue of adult animals suggest that this transition is intrinsically programmed and occurs in the absence of dietary or hormonal signals. Here, we show that organoids derived from mouse primary fetal intestinal epithelial cells express markers of late fetal and neonatal development. In a stable culture medium, these fetal epithelium-derived organoids lose all markers of neonatal epithelium and start expressing hallmarks of adult epithelium in a time frame that mirrors epithelial maturation in vivo In vitro postnatal development of the fetal-derived organoids accelerates by dexamethasone, a drug used to accelerate intestinal maturation in vivo Together, our data show that organoids derived from fetal epithelium undergo suckling-to-weaning transition, that the speed of maturation can be modulated, and that fetal organoids can be used to model the molecular mechanisms of postnatal epithelial maturation.
Collapse
Affiliation(s)
- Marit Navis
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Jacqueline Lm Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Medicines Research Center, London, UK
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Milk growth factors and expression of small intestinal growth factor receptors during the perinatal period in mice. Pediatr Res 2016; 80:759-765. [PMID: 27603563 DOI: 10.1038/pr.2016.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/26/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Growth factors (GFs) are milk bioactive components contributing to the regulation of neonatal small intestinal maturation, and their receptors on the small intestinal epithelium play essential roles in mediating the functions of GFs. There is limited data correlating milk GFs and their receptors in the neonatal small intestine during the perinatal period. METHODS Small intestines of C57BL/6N mouse pups were collected at regular intervals during fetal life and up to postnatal day (PD) 60. Gene expression of GF receptors was determined by real-time qPCR. Milk GF concentrations up to PD21 were analyzed by enzyme-linked immunosorbent assay. RESULTS The majority of GF receptors showed significantly greater expression in the fetus than in postnatal life, and a sharp decrease occurred from PD14 extending to PD60; solid food restriction (PD14 and PD18) did not affect this decrease. Concentrations of five detected milk GFs demonstrated that GFs and the corresponding small intestinal receptors exhibited different correlations, with only milk transforming growth factor β1 (TGF-β1) having a significant positive correlation with TGF-β receptor 1 mRNA. CONCLUSION Gene expression of small intestinal GF receptors is likely a process of neonatal intestinal maturation that is affected concurrently by milk GFs and additional endogenous factors.
Collapse
|
6
|
Rautava S, Walker WA, Lu L. Hydrocortisone-induced anti-inflammatory effects in immature human enterocytes depend on the timing of exposure. Am J Physiol Gastrointest Liver Physiol 2016; 310:G920-9. [PMID: 27056727 PMCID: PMC4935478 DOI: 10.1152/ajpgi.00457.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
The immature human gut has a propensity to exaggerated inflammatory responses that are thought to play a role in the pathogenesis of necrotizing enterocolitis (NEC). Prenatal exposure to corticosteroids has been reported to reduce the risk of NEC, while postnatal dexamethasone treatment is associated with adverse neurodevelopmental outcomes in preterm infants. The aim of this study was to investigate the direct role of hydrocortisone in gene expression patterns and inflammatory responses in immature human enterocytes. Time-dependent hydrocortisone effects in nontransformed primary human fetal intestinal epithelial cell line H4 were investigated by cDNA microarray. Fetal intestinal organ culture and cell culture experiments were conducted. Inflammatory responses were induced by stimulation with IL-1β and TNF-α with and without hydrocortisone. IL-8 and IL-6 expression and secretion were measured as functional readout. Here we report time-dependent hydrocortisone-induced changes in gene expression patterns detected by cDNA microarray. Hydrocortisone significantly attenuated IL-1β-induced inflammatory responses in the immature human gut when administered at the time of the proinflammatory insult: IL-1β-induced IL-8 and IL-6 secretion in the fetal ileum as well as H4 cells were significantly reduced. Hydrocortisone also inhibited IL-8 secretion in response to TNF-α. In contrast, TNF-α-induced IL-8 secretion was not reduced in cells treated with hydrocortisone for 48 h before stimulation. Our observations provide a physiological basis for understanding the differential clinical effects of corticosteroids in the immature human gut depending on the timing of treatment.
Collapse
Affiliation(s)
- Samuli Rautava
- 1Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; ,2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - W. Allan Walker
- 2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - Lei Lu
- 2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and ,3Section of Neonatology, Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Moussaoui N, Larauche M, Biraud M, Molet J, Million M, Mayer E, Taché Y. Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats. PLoS One 2016; 11:e0155037. [PMID: 27149676 PMCID: PMC4858303 DOI: 10.1371/journal.pone.0155037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
A few studies indicate that limited nesting stress (LNS) alters maternal behavior and the hypothalamic pituitary adrenal (HPA) axis of dams and offspring in male Sprague Dawley rats. In the present study, we evaluated the impact of LNS on maternal behavior in Wistar rats, and on the HPA axis, glycemia and in vivo intestinal permeability of male and female offspring. Intestinal permeability is known to be elevated during the first week postnatally and influenced by glucocorticoids. Dams and neonatal litters were subjected to LNS or normal nesting conditions (control) from days 2 to 10 postnatally. At day 10, blood was collected from pups for determination of glucose and plasma corticosterone by enzyme immunoassay and in vivo intestinal permeability by oral gavage of fluorescein isothiocyanate-dextran 4kDa. Dams exposed to LNS compared to control showed an increase in the percentage of time spent building a nest (118%), self-grooming (69%), and putting the pups back to the nest (167%). LNS male and female pups exhibited a reduction of body weight by 5% and 4%, adrenal weights/100g body weight by 17% and 18%, corticosterone plasma levels by 64% and 62% and blood glucose by 11% and 12% respectively compared to same sex control pups. In male LNS pups, intestinal permeability was increased by 2.7-fold while no change was observed in females compared to same sex control. There was no sex difference in any of the parameters in control pups except the body weight. These data indicate that Wistar dams subjected to LNS during the first postnatal week have an altered repertoire of maternal behaviors which affects the development of the HPA axis in both sexes and intestinal barrier function in male offspring.
Collapse
Affiliation(s)
- Nabila Moussaoui
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
- * E-mail:
| | - Muriel Larauche
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Mandy Biraud
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Jenny Molet
- Department of Anatomy/Neurobiology, University of California Irvine, Irvine, CA, 92697–4475, United States of America
| | - Mulugeta Million
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Emeran Mayer
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| | - Yvette Taché
- Center for Neurobiology of Stress, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, 90073, United States of America
| |
Collapse
|
8
|
Cortese R, Lu L, Yu Y, Ruden D, Claud EC. Epigenome-Microbiome crosstalk: A potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 2016; 11:205-15. [PMID: 26909656 PMCID: PMC4854540 DOI: 10.1080/15592294.2016.1155011] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Preterm birth is the leading cause of infant morbidity and mortality. Necrotizing enterocolitis (NEC) is an inflammatory bowel disease affecting primarily premature infants, which can be lethal. Microbial intestinal colonization may alter epigenetic signatures of the immature gut establishing inflammatory and barrier properties predisposing to the development of NEC. We hypothesize that a crosstalk exists between the epigenome of the host and the initial intestinal colonizing microbiota at critical neonatal stages. By exposing immature enterocytes to probiotic and pathogenic bacteria, we showed over 200 regions of differential DNA modification, which were specific for each exposure. Reciprocally, using a mouse model of prenatal exposure to dexamethasone we demonstrated that antenatal treatment with glucocorticoids alters the epigenome of the host. We investigated the effects on the expression profiles of genes associated with inflammatory responses and intestinal barrier by qPCR-based gene expression array and verified the DNA modification changes in 5 candidate genes by quantitative methylation specific PCR (qMSP). Importantly, by 16S RNA sequencing-based phylogenetic analysis of intestinal bacteria in mice at 2 weeks of life, we showed that epigenome changes conditioned early microbiota colonization leading to differential bacterial colonization at different taxonomic levels. Our findings support a novel conceptual framework in which epigenetic changes induced by intrauterine influences affect early microbial colonization and intestinal development, which may alter disease susceptibility.
Collapse
Affiliation(s)
- Rene Cortese
- Section of Neonatology, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Lei Lu
- Section of Neonatology, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Yueyue Yu
- Section of Neonatology, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Douglas Ruden
- Department of Obstetrics and Gynecology and Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Erika C. Claud
- Section of Neonatology, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Snyder JC, Pack TF, Rochelle LK, Chakraborty SK, Zhang M, Eaton AW, Bai Y, Ernst LA, Barak LS, Waggoner AS, Caron MG. A rapid and affordable screening platform for membrane protein trafficking. BMC Biol 2015; 13:107. [PMID: 26678094 PMCID: PMC4683952 DOI: 10.1186/s12915-015-0216-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Membrane proteins regulate a diversity of physiological processes and are the most successful class of targets in drug discovery. However, the number of targets adequately explored in chemical space and the limited resources available for screening are significant problems shared by drug-discovery centers and small laboratories. Therefore, a low-cost and universally applicable screen for membrane protein trafficking was developed. RESULTS This high-throughput screen (HTS), termed IRFAP-HTS, utilizes the recently described MarsCy1-fluorogen activating protein and the near-infrared and membrane impermeant fluorogen SCi1. The cell surface expression of MarsCy1 epitope-tagged receptors can be visualized by simple addition of SCi1. User-friendly, rapid, and quantitative detection occurs on a standard infrared western-blotting scanner. The reliability and robustness of IRFAP-HTS was validated by confirming human vasopressin-2 receptor and dopamine receptor-2 trafficking in response to agonist or antagonist. The IRFAP-HTS screen was deployed against the leucine-rich G protein-coupled receptor-5 (Lgr5). Lgr5 is expressed in stem cells, modulates Wnt/ß-catenin signaling, and is therefore a promising drug target. However, small molecule modulators have yet to be reported. The constitutive internalization of Lgr5 appears to be one primary mode through which its function is regulated. Therefore, IRFAP-HTS was utilized to screen 11,258 FDA-approved and drug-like small molecules for those that antagonize Lgr5 internalization. Glucocorticoids were found to potently increase Lgr5 expression at the plasma membrane. CONCLUSION The IRFAP-HTS platform provides a versatile solution for screening more targets with fewer resources. Using only a standard western-blotting scanner, we were able to screen 5,000 compounds per hour in a robust and quantitative assay. Multi-purposing standardly available laboratory equipment eliminates the need for idiosyncratic and more expensive high-content imaging systems. The modular and user-friendly IRFAP-HTS is a significant departure from current screening platforms. Small laboratories will have unprecedented access to a robust and reliable screening platform and will no longer be limited by the esoteric nature of assay development, data acquisition, and post-screening analysis. The discovery of glucocorticoids as modulators for Lgr5 trafficking confirms that IRFAP-HTS can accelerate drug-discovery and drug-repurposing for even the most obscure targets.
Collapse
Affiliation(s)
- Joshua C Snyder
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Thomas F Pack
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lauren K Rochelle
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Subhasish K Chakraborty
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ming Zhang
- Department of Biology, Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrew W Eaton
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yushi Bai
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lauren A Ernst
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Larry S Barak
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alan S Waggoner
- Department of Biology, Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Marc G Caron
- Departments of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Departments of Medicine and Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Choijookhuu N, Hino SI, Oo PS, Batmunkh B, Mohmand NA, Kyaw MTH, Hishikawa Y. Ontogenetic changes in the expression of estrogen receptor β in mouse duodenal epithelium. Clin Res Hepatol Gastroenterol 2015; 39:499-507. [PMID: 25726500 DOI: 10.1016/j.clinre.2015.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
Abstract
Estrogen is considered to be involved in duodenal function; however, the details of its receptor expression are largely unknown. The purpose of this study was to determine the expression and localization of estrogen receptors (ERs) in mouse duodenum. Male and female C57BL/6J mouse intestinal tissues were used to investigate the expression of ERα and ERβ by RT-PCR, western blotting, immunohistochemistry, and Southwestern histochemistry. ERβ, but not ERα, was expressed in proximal duodenal epithelium, but not in jejunum and ileum. The expression of ERβ mRNA and protein were confirmed by RT-PCR and western blotting, respectively. At postnatal day 20, the transit period of suckling to weaning, the distribution of ERβ-positive cells was changed in the crypt-villus axis, and cytoplasm/nuclear staining changed to only nuclear staining. Moreover, Southwestern histochemistry was used to detect estrogen response element (ERE)-binding proteins, and their expression pattern was highly similar to that of ERβ. These results suggested that ERβ is the predominant ER type in mouse small intestine, and the highly similar co-localization of ERE-binding proteins reveals that ERβ is functionally active in mouse duodenum. The ERβ expression changes during postnatal development indicate that ERβ may be involved in the differentiation of duodenal epithelium.
Collapse
Affiliation(s)
- Narantsog Choijookhuu
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shin-ichiro Hino
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Phyu Synn Oo
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Baatarsuren Batmunkh
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Noor Ali Mohmand
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Myat Tin Htwe Kyaw
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yoshitaka Hishikawa
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
11
|
Das I, Png CW, Oancea I, Hasnain SZ, Lourie R, Proctor M, Eri RD, Sheng Y, Crane DI, Florin TH, McGuckin MA. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. ACTA ACUST UNITED AC 2013; 210:1201-16. [PMID: 23650437 PMCID: PMC3674691 DOI: 10.1084/jem.20121268] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dexamethasone suppresses ER stress in inflammatory bowel disease by promoting correct protein folding and ER-associated degradation. Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca2+ or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX’s suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER.
Collapse
Affiliation(s)
- Indrajit Das
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun 2011; 2:452. [PMID: 21878906 PMCID: PMC3167062 DOI: 10.1038/ncomms1463] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/28/2011] [Indexed: 02/08/2023] Open
Abstract
In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mother's milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine. We conclude that the suckling to weaning transition is regulated by a single transcriptional repressor that delays epithelial maturation.
Collapse
|
13
|
Chen M, Sun P, Liu XY, Dong D, Du J, Gu L, Ge YB. α-fetoprotein involvement during glucocorticoid-induced precocious maturation in rat colon. World J Gastroenterol 2011; 17:2933-40. [PMID: 21734804 PMCID: PMC3129507 DOI: 10.3748/wjg.v17.i24.2933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 02/15/2011] [Accepted: 02/22/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of α-fetoprotein (AFP), a cancer-associated fetal glycoprotein, in glucocorticoid-induced precocious maturation in rat colon.
METHODS: Colons from suckling Sprague-Dawley rats were used in this study. Corticosterone acetate at a dose of 100 μg/g body weight was given to normal pups on days 7, 9 and 11 after birth to induce hypercorticoidism. Control animals were injected with identical volumes of normal saline. Some rats receiving corticosterone 7 d after birth were also treated with mifepristone (RU38486), a glucocorticoid cytoplasm receptor antagonist to investigate the effects of glucocorticoids (GCs). The morphological changes of the crypt depth and villous height of the villous zone in colon were observed as indices of colon maturation. Expression levels of AFP in colons were detected by reverse transcriptase polymerase chain reaction and Western blotting. To identify the cellular localization of AFP in developing rat colons, double-immunofluorescent staining was performed using antibodies to specific mesenchymal cell marker and AFP.
RESULTS: Corticosterone increased the crypt depth and villous height in the colon of 8- and 10-d-old rats with hypercorticoidism compared with that in the control animals (120% in 8-d-old rats and 118% in 10-d-old rats in villous height, P = 0.021; 145% in 8-d-old rats and 124% in 10-d-old rats in crypt depth, P = 0.017). These increases were accompanied by an increase of AFP expression in both mRNA and protein (2.5-folds in 8-d-old and 2.5-folds in 10-d-old rats higher than in control animals, P = 0.035; 1.8-folds in 8-d-old and 1.3-folds in 10-d-old rats higher than in control animals, P = 0.023). Increased crypt depth and villous height and increased expression of AFP in the colon of rats with hypercorticoidism were blocked by mifepristone. Both had positive staining for AFP or vimentin, and overlapped in mesenchymal cells at each tested colon.
CONCLUSION: GCs promote the development of rat colon. AFP appears to be involved, in part, in mediating the effects of GCs in the developmental colon.
Collapse
|
14
|
Lu L, Li T, Williams G, Petit E, Borowsky M, Walker WA. Hydrocortisone induces changes in gene expression and differentiation in immature human enterocytes. Am J Physiol Gastrointest Liver Physiol 2011; 300:G425-32. [PMID: 21148402 PMCID: PMC3064117 DOI: 10.1152/ajpgi.00011.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is known that functional maturation of the small intestine occurring during the weaning period is facilitated by glucocorticoids (such as hydrocortisone, HC), including an increased expression of digestive hydrolases. However, the molecular mechanisms are not well understood, particularly in the human gut. Here we report a microarray analysis of HC-induced changes in gene expression in H4 cells (a well-characterized human fetal small intestinal epithelial cell line). This study identified a large number of HC-regulated genes, some involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication. HC also regulates the expression of genes important for cell maturation such as development of cell polarity, tight junction formation, and interactions with extracellular matrices. Using human small intestinal xenografts, we also show that HC can regulate the expression of genes important for intestinal epithelial cell maturation. Our dataset may serve as a useful resource for understanding and dissecting the molecular mechanisms of intestinal epithelial cell maturation.
Collapse
Affiliation(s)
- Lei Lu
- Developmental Gastroenterology Laboratory, Massachusetts General Hospital for Children, Boston, USA.
| | - Tiantian Li
- 1Developmental Gastroenterology Laboratory, Massachusetts General Hospital for Children, Boston;
| | | | - Elizabeth Petit
- 1Developmental Gastroenterology Laboratory, Massachusetts General Hospital for Children, Boston;
| | - Mark Borowsky
- 3Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts; and
| | - W. Allan Walker
- 1Developmental Gastroenterology Laboratory, Massachusetts General Hospital for Children, Boston;
| |
Collapse
|
15
|
Burke KT, Horn PS, Tso P, Heubi JE, Woollett LA. Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels. Am J Physiol Gastrointest Liver Physiol 2009; 297:G144-51. [PMID: 19389801 PMCID: PMC2711759 DOI: 10.1152/ajpgi.90515.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intraluminal concentrations of bile acids are low in newborn infants and increase rapidly after birth, at least partly owing to increased bile acid synthesis rates. The expansion of the bile acid pool is critical since bile acids are required to stimulate bile flow and absorb lipids, a major component of newborn diets. The purpose of the present studies was to determine the mechanism responsible for the increase in bile acid synthesis rates and the subsequent enlargement of bile acid pool sizes (BAPS) during the neonatal period, and how changes in circulating hormone levels might affect BAPS. In the hamster, pool size was low just after birth and increased modestly until 10.5 days postpartum (dpp). BAPS increased more significantly ( approximately 3-fold) between 10.5 and 15.5 dpp. An increase in mRNA and protein levels of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting step in classical bile acid synthesis, immediately preceded an increase in BAPS. In contrast, levels of oxysterol 7alpha-hydroxylase (Cyp7b1), a key enzyme in bile acid synthesis by the alternative pathway, were relatively elevated by 1.5 dpp. farnesyl X receptor (FXR) and short heterodimeric partner (SHP) mRNA levels remained relatively constant at a time when Cyp7a1 levels increased. Finally, although simultaneous increases in circulating cortisol and Cyp7a1 levels occurred, precocious expression of Cyp7a1 could not be induced in neonatal hamsters with dexamethasone. Thus the significant increase in Cyp7a1 levels in neonatal hamsters is due to mechanisms independent of the FXR and SHP pathway and cortisol.
Collapse
Affiliation(s)
- Katie T. Burke
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, and Mathematical Sciences, University of Cincinnati; and Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, General Clinical Research Center, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S. Horn
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, and Mathematical Sciences, University of Cincinnati; and Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, General Clinical Research Center, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Tso
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, and Mathematical Sciences, University of Cincinnati; and Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, General Clinical Research Center, Children's Hospital Medical Center, Cincinnati, Ohio
| | - James E. Heubi
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, and Mathematical Sciences, University of Cincinnati; and Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, General Clinical Research Center, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura A. Woollett
- Departments of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati Medical School, and Mathematical Sciences, University of Cincinnati; and Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, General Clinical Research Center, Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
16
|
McLin VA, Henning SJ, Jamrich M. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 2009; 136:2074-91. [PMID: 19303014 DOI: 10.1053/j.gastro.2009.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 12/11/2022]
Abstract
The gastrointestinal (GI) tract forms from the endoderm (which gives rise to the epithelium) and the mesoderm (which develops into the smooth muscle layer, the mesenchyme, and numerous other cell types). Much of what is known of GI development has been learned from studies of the endoderm and its derivatives, because of the importance of epithelial biology in understanding and treating human diseases. Although the necessity of epithelial-mesenchymal cross talk for GI development is uncontested, the role of the mesoderm remains comparatively less well understood. The transformation of the visceral mesoderm during development is remarkable; it differentiates from a very thin layer of cells into a complex tissue comprising smooth muscle cells, myofibroblasts, neurons, immune cells, endothelial cells, lymphatics, and extracellular matrix molecules, all contributing to the form and function of the digestive system. Understanding the molecular processes that govern the development of these cell types and elucidating their respective contribution to GI patterning could offer insight into the mechanisms that regulate cell fate decisions in the intestine, which has the unique property of rapid cell renewal for the maintenance of epithelial integrity. In reviewing evidence from both mammalian and nonmammalian models, we reveal the important role of the visceral mesoderm in the ontogeny of the GI tract.
Collapse
Affiliation(s)
- Valérie A McLin
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, Texas, USA.
| | | | | |
Collapse
|
17
|
Drozdowski L, Thomson ABR. Intestinal hormones and growth factors: effects on the small intestine. World J Gastroenterol 2009; 15:385-406. [PMID: 19152442 PMCID: PMC2653359 DOI: 10.3748/wjg.15.385] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In part I, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids.
Collapse
|
18
|
Flynn NE, Bird JG, Guthrie AS. Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 2008; 37:123-9. [DOI: 10.1007/s00726-008-0206-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
|
19
|
Miyata T, Minai Y, Haga M. Impaired growth of small intestinal epithelium by adrenalectomy in weaning rats. Acta Histochem Cytochem 2008; 41:83-8. [PMID: 18787680 PMCID: PMC2532488 DOI: 10.1267/ahc.08004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 05/25/2008] [Indexed: 11/22/2022] Open
Abstract
Functional maturation of the small intestine occurs during the weaning period in rats. It is known that this development is facilitated by glucocorticoid. However, the effect of glucocorticoid on morphological development of small intestine has yet to be clarified. The present study evaluated the morphological development and cell proliferation of the small intestine in adrenalectomized (ADX) rat pups. To further understand the mechanism of glucocorticoid effects on intestinal development, we examined the localization of the glucocorticoid receptor in the small intestine. Microscopic analysis showed that growth of villi and crypts is age-dependent, and is significantly attenuated in ADX rats compared with sham-operated rats. BrdU-positive cells, i.e. proliferating cells, were primarily observed in crypt compartments and rapidly increased in number during the early weaning period. The increase in BrdU-positive cells could be attenuated by adrenalectomy. The morphological development of small intestine may be associated with increased proliferation of epithelial cells. On the other hand, glucocorticoid receptors were found in epithelial cells of the mid- and lower villi and not in crypts where BrdU-positive cells were localized. These results indicate that the growth of small intestine is attenuated by adrenalectomy, and that glucocorticoid indirectly acts on proliferation of epithelial cells during the weaning period.
Collapse
Affiliation(s)
- Tohru Miyata
- Department of Bioresource Science, College of Agriculture, Tamagawa University
| | - Yuji Minai
- Department of Life Science, College of Agriculture, Tamagawa University
| | - Minoru Haga
- Department of Life Science, College of Agriculture, Tamagawa University
| |
Collapse
|
20
|
Douard V, Choi HI, Elshenawy S, Lagunoff D, Ferraris RP. Developmental reprogramming of rat GLUT5 requires glucocorticoid receptor translocation to the nucleus. J Physiol 2008; 586:3657-73. [PMID: 18556366 DOI: 10.1113/jphysiol.2008.155226] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fructose consumption has increased dramatically but little is known about mechanisms regulating the intestinal fructose transporter GLUT5 in vivo. In neonatal rats, GLUT5 can be induced only by luminal fructose and only after 14 days of age, unless the gut is primed with dexamethasone prior to fructose perfusion. To elucidate the mechanisms underlying dexamethasone modulation of GLUT5 development, we first identified the receptor mediating its effects then determined whether those effects were genomic. The glucocorticoid receptor (GR) antagonist RU486 dose-dependently prevented the dexamethasone-mediated effects on body weight, intestinal arginase2 (a known GR-regulated gene) and GLUT5. In contrast, an antagonist of the mineralocorticoid receptor as well as agonists of progesterone (PR) and pregnane-X (PXR) receptors did not block the effects of dexamethasone. These receptor antagonists and agonists had no effect on the intestinal glucose transporter SGLT1. Translocation of the GR into the enterocyte nucleus occurred only in dexamethasone-injected pups perfused with fructose, was accompanied by marked increases in brush border GLUT5 abundance, and was blocked by RU486. A priming duration of approximately 24 h is optimal for induction but actinomycin D injection before dexamethasone priming prevented dexamethasone from allowing luminal fructose to induce GLUT5. Actinomycin D had no effect on dexamethasone-independent fructose-induced increases in glucose-6-phosphatase mRNA abundance, suggesting that it did not prevent fructose-induction of GLUT5, but instead prevented dexamethasone-induced synthesis of an intermediate required by fructose for GLUT5 regulation. In suckling rats < 14 days old, developmental regulation of transporters may involve cross-talk between hormonal signals modulating intestinal maturation and nutrient signals regulating specific transporters.
Collapse
Affiliation(s)
- Véronique Douard
- Department of Pharmacology and Physiology, NJ Medical School, 185 S. Orange Avenue, Newark, NJ 07101, USA
| | | | | | | | | |
Collapse
|
21
|
Yaylaoglu MB, Agbemafle BM, Oesterreicher TJ, Finegold MJ, Thaller C, Henning SJ. Diverse patterns of cell-specific gene expression in response to glucocorticoid in the developing small intestine. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1041-50. [PMID: 16825705 DOI: 10.1152/ajpgi.00139.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although glucocorticoids are known to elicit functional maturation of the gastrointestinal tract, the molecular mechanisms of glucocorticoid action on the developing intestine have not been fully elucidated. Our previous microarray studies identified 66 transcripts as being rapidly induced in the jejunum following dexamethasone (Dex) administration to suckling mice. Now we report the specific cellular location of a subset of these transcripts. Mouse pups at P8 received Dex or vehicle and intestinal segments were collected 3-4 h later. Robotic-based in situ hybridization (ISH) was performed with digoxygenin-labeled riboprobes. Transcripts studied included Ndrg1, Sgk1, Fos, and two unknown genes (Gene 9 and Gene 36). As predicted, ISH revealed marked diversity of cellular expression. In small intestinal segments, Sgk1 mRNA was in all epithelial cells; Fos mRNA was confined to epithelial cells at the villus tip; and Ndrg1 and Gene 36 mRNAs were localized to epithelial cells of the upper crypt and villus base. The remaining transcript (Gene 9) was induced modestly in villus stroma and strongly in the muscle layers. In the colon, Ndrg1, Sgk1, and Gene 36 were induced in all epithelial cells; Gene 9 was in muscle layers only; and Fos was not detectable. For jejunal segments, quantitation of ISH signals in tissue from Dex-treated and vehicle-treated mice demonstrated mRNA increases very similar to those measured by Northern blotting. We conclude that glucocorticoid action in the intestine reflects diverse molecular mechanisms operating in different cell types and that quantitative ISH is a valuable tool for studying hormone action in this tissue.
Collapse
Affiliation(s)
- Murat B Yaylaoglu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Drozdowski LA, Iordache C, Clandinin MT, Wild G, Todd Z, Thomson ABR. A combination of dexamethasone and glucagon-like peptide-2 increase intestinal morphology and glucose uptake in suckling rats. J Pediatr Gastroenterol Nutr 2006; 42:32-9. [PMID: 16385251 DOI: 10.1097/01.mpg.0000187246.60560.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Glucagon-like peptide (GLP)-2 enhances nutrient uptake in adult animals. Glucocorticosteroids accelerate intestinal ontogeny and increase nutrient uptake in adult animals. We hypothesized that administering GLP-2 and dexamethasone (DEX) to suckling rats will enhance sugar uptake and that this effect persists into the postweaning period. METHODS Suckling rats were treated for 10 days with GLP-2 (0.1 microg/g/d, twice daily), DEX (0.128 microg/g/d, once daily), GLP-2 + Dex (same doses as above), or placebo. The rate of intestinal uptake of glucose and fructose in sucklings (19-21 days old) and weanlings (49 days old) was assessed using an in vitro ring technique. RESULTS DEX reduced body weight in weanlings, whereas GLP-2 + DEX prevented this effect. In sucklings, GLP-2 + DEX increased ileal villous height and jejunal and ileal villous width and crypt depth. In sucklings, GLP-2 + DEX increased the maximal transport rate (Vmax) for jejunal glucose uptake, whereas DEX reduced the ileal Vmax. In weanlings, GLP-2 + DEX increased jejunal villous height, whereas ileal villous width and crypt depth were reduced. DEX increased the ileal Vmax and apparent affinity constant for glucose in weanlings. CONCLUSIONS The combination of these hormones may be useful in stimulating glucose uptake in the developing intestine, and giving DEX to sucklings may enhance glucose uptake in later life.
Collapse
Affiliation(s)
- Laurie A Drozdowski
- Nutrition and Metabolism Group, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Elnif J, Buddington RK, Hansen NE, Sangild PT. Cortisol increases the activities of intestinal apical membrane hydrolases and nutrient transporters before weaning in mink (Mustela vison). J Comp Physiol B 2005; 176:233-41. [PMID: 16344990 DOI: 10.1007/s00360-005-0044-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 08/10/2005] [Accepted: 10/05/2005] [Indexed: 01/13/2023]
Abstract
Glucocorticoids from endogenous and exogenous sources accelerate maturation of brush-border membrane (BBM) hydrolases in omnivorous laboratory rodents and pigs. Less is known for carnivores, and whether the route of administration (oral or systemic) has an influence. The present study examined the influence of administering cortisol (hydrocortisone succinate, 5 mg/kg-day) to mink during postnatal week 4, just prior to weaning, on small intestine glucose and amino acid (aspartate, leucine, lysine, methionine, proline) absorption and on the activities of BBM disaccharidases and peptidases. Kits treated with cortisol were smaller (P<0.05), but had small intestines that were proportionally larger (P<0.05 for length and mass per kg body weight, but not for mucosal mass) than control kits with higher rates of absorption for most nutrients, except leucine, and increased activities of most BBM hydrolases, except lactase. As a consequence, cortisol increased hydrolytic and absorptive capacities of the entire small intestine, with the responses more pronounced when the cortisol was given orally. These findings indicate administration of cortisol stimulates growth of the developing mink small intestine, but does not accelerate the postnatal declines in nutrient transport, and may be a dam-to-kit signal that prepares suckling mink to digest and absorb the adult diet.
Collapse
Affiliation(s)
- J Elnif
- Department of Animal Science and Animal Health, The Royal Veterinary and Agricultural University, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
24
|
Nanthakumar NN, Young C, Ko JS, Meng D, Chen J, Buie T, Walker WA. Glucocorticoid responsiveness in developing human intestine: possible role in prevention of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2005; 288:G85-92. [PMID: 15591589 DOI: 10.1152/ajpgi.00169.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a major inflammatory disease of the premature human intestine that can be prevented by glucocorticoids if given prenatally before the 34th wk of gestation. This observation suggests that a finite period of steroid responsiveness exists as has been demonstrated in animal models. Human intestinal xenografts were used to determine whether a glucocorticoid responsive period exists in the developing human intestine. Developmental responsiveness was measured by lactase activity and inflammatory responsiveness by IL-8, IL-6, and monocyte chemotactic protein-1 (MCP-1) induction after an endogenous (IL-1 beta) or exogenous (LPS) proinflammatory stimulus, respectively. Functional development of ileal xenografts were monitored for 30 wk posttransplantation, and the lactase activity recapitulated that predicted by in utero development. Cortisone acetate accelerated the ontogeny of lactase at 20 wk (immature) but the effect was lost by 30 wk (mature) posttransplant. Concomitant with accelerated maturation, the IL-8 response to both IL-1 beta and LPS was significantly dampened (from 6- to 3-fold) by glucocorticoid pretreatment in the immature but not mature xenografts. The induction of IL-8 was reflected at the level of IL-8 mRNA, suggesting transcriptional regulation. The excessive activation of IL-8 in the immature gut was mediated by a prolonged activation of ERK and p38 kinases and nuclear translocation of NF-kappa B due to low levels of I kappa B. Steroid pretreatment in immature intestine dampens activation of all three signaling pathways in response to proinflammatory stimuli. Therefore, accelerating intestinal maturation by glucocorticoids within the responsive period by accelerating functional and inflammatory maturation may provide an effective preventive therapy for NEC.
Collapse
Affiliation(s)
- N Nanda Nanthakumar
- Developmental Gastroenterology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Jensen BL, Stubbe J, Madsen K, Nielsen FT, Skøtt O. The renin-angiotensin system in kidney development: role of COX-2 and adrenal steroids. ACTA ACUST UNITED AC 2004; 181:549-59. [PMID: 15283770 DOI: 10.1111/j.1365-201x.2004.01330.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent data from studies in rodents with targeted gene disruption and pharmacological antagonists have shown that the renin-angiotensin-aldosterone system (RAAS) and cyclooxygenase type-2 (COX-2) are necessary for late stages of kidney development. The present review summarizes data on the developmental changes of RAAS and COX-2 and the pathways by which they are activated; their possible interplay and the mechanisms by which they affect kidney development. Intrarenal and circulating renin and angiotensin II (ANG II) are stimulated at birth in most mammals. In rats, renin and ANG II stay significantly elevated in the suckling period while aldosterone stabilizes at an adult level. COX-2 is stimulated in thick ascending limb of Henle's loop in the suckling period at a time when urine concentrating ability is not developed. Data suggest that this induction is mediated by combined low plasma glucocorticoid concentration and by a low NaCl intake. Studies with selective inhibitors of COX-2 and COX-2 null mice show that COX-2 activity stimulates renin secretion from JG-cells during postnatal kidney development and that lack of COX-2 activity leads to pathological change in cortical architecture and eventually to renal failure. In the postnatal period, ANG II initiates and maintains pelvic and ureteric contractions necessary for urine flow. Lack of ANG II in the neonatal period is thought to cause injury by a chronic increase of renal pelvic pressure. Aldosterone is crucial for survival and growth in the neonatal period through its effects on sodium reabsorption and the intrarenal sensitivity to aldosterone is increased in the postnatal period. Final maturation of the kidney occurs through an intimate interplay between a low dietary sodium intake and a non-responsive HPA-axis which stimulates cortical COX-2 activity. COX-2 supports increased activity of the RAAS and may contribute to a low concentrating ability.
Collapse
Affiliation(s)
- B L Jensen
- Department of Physiology and Pharmacology, Institute of Medical Biology, University of Southern Denmark, Denmark
| | | | | | | | | |
Collapse
|
26
|
Oesterreicher TJ, Henning SJ. Rapid induction of GATA transcription factors in developing mouse intestine following glucocorticoid administration. Am J Physiol Gastrointest Liver Physiol 2004; 286:G947-53. [PMID: 14739144 DOI: 10.1152/ajpgi.00470.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the developing intestine, transcription of alpha-glucosidase genes such as sucrase-isomaltase and trehalase is stimulated by glucocorticoid administration. The consequent increase of their respective mRNAs is characterized by a 12-h lag, suggesting that the response to glucocorticoids represents a secondary effect. We hypothesized that the primary response of the tissue to glucocorticoids includes induction of one or more intestinal transcription factors. To investigate this hypothesis, we identified a region in the mouse trehalase promoter (located at nucleotides -406 to -377 from the transcription start site) with potential binding sites for three transcription factors: Cdx-2, GATA, and C/EBP. Gel shifts were performed using labeled oligonucleotides from this region with nuclear extracts from jejunums of either control 8-day-old mouse pups or littermates treated with dexamethasone (DEX) 4 h before death. A specific shifted band was observed with DEX extracts but not with control extracts. Supershift assays indicated the presence of GATA-4 and GATA-6 but not GATA-5 nor Cdx-2, C/EBP alpha, C/EBP beta, or C/EBP delta. GATA binding was further implicated by competition studies with mutated oligonucleotides. Finally, Western blot analysis showed GATA-4 and GATA-6 proteins in DEX but not control nuclear extracts. For GATA-4, the same pattern was demonstrated with whole cell extracts and with the cytosol fraction. We conclude that expression of GATA-4 and GATA-6 proteins in the suckling mouse jejunum is stimulated by DEX. This novel finding constitutes an important first step in understanding the molecular mechanism of glucocorticoid action on the developing intestine.
Collapse
|
27
|
Gordon PV, Paxton JB, Herman AC, Carlisle EM, Fox NS. Igf-I accelerates ileal epithelial cell migration in culture and newborn mice and may be a mediator of steroid-induced maturation. Pediatr Res 2004; 55:34-41. [PMID: 14605256 DOI: 10.1203/01.pdr.0000100461.00878.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously hypothesized that IGF-I is a mediator of dexamethasone (DEX) effect in the newborn mouse ileum-a model designed to mimic the precocious mucosal maturation associated with spontaneous ileal perforations in extremely premature neonates. We have further investigated this hypothesis using in vivo and in vitro models of accelerated epithelial migration (a transient property, temporally associated with mucosal maturation). These experiments include a steroid-treatment model comparing IGF-I immunolocalization with bromo-deoxyuridine (BrdU)-pulse-labeling, as a means of assessing epithelial cell migration, within the ileum of newborn mice that received either daily intraperitoneal injections of DEX (1 microg/gm) or vehicle. Likewise, a transgenic newborn mouse model was used to compare the effect of IGF-I overexpression upon the clearance of BrdU-pulse-labeled epithelial cells traveling up the villus during the same time period. For our in vitro model, rat ileal epithelial cells (IEC-18) were cultured to confluence in serum-free media then treated with DEX, a stable IGF-I agonist, or nothing before being subjected to linear scarification. Serial photomicrographs of migrating cells were taken over time and the average speed was determined for each treatment condition. Our data demonstrate that IGF-I accelerates ileal epithelial cell migration in every model. However, DEX was only associated with accelerated epithelial cell migration in models where IGF-I (or a synthetic agonist) was highly abundant. In contrast, DEX by itself slowed migration speed in cell culture. These findings suggest that IGF-I may be a mediator of steroid effect during precocious maturation of the ileal mucosa.
Collapse
Affiliation(s)
- Phillip V Gordon
- Department of Pediatrics, Division of Neomatology, University of Virginia Health Sciences, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
28
|
Jenkins SL, Wang J, Vazir M, Vela J, Sahagun O, Gabbay P, Hoang L, Diaz RL, Aranda R, Martín MG. Role of passive and adaptive immunity in influencing enterocyte-specific gene expression. Am J Physiol Gastrointest Liver Physiol 2003; 285:G714-25. [PMID: 12969828 DOI: 10.1152/ajpgi.00130.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Numerous genes expressed by intestinal epithelial cells are developmentally regulated, and the influence that adaptive (AI) and passive (PI) immunity have in controlling their expression has not been evaluated. In this study, we tested the hypothesis that both PI and AI influenced enterocyte gene expression by developing a breeding scheme that used T and B cell-deficient recombination-activating gene (RAG) mice. RNA was isolated from the liver and proximal/distal small intestine at various ages, and the steady-state levels of six different transcripts were evaluated by RNase protection assay. In wild-type (WT) pups, all transcripts [Fc receptor of the neonate (FcRn), polymeric IgA receptor (pIgR), GLUT5, lactase-phlorizin hydrolase (lactase), apical sodium-dependent bile acid transporter (ASBT), and Na+/glucose cotransporter (SGLT1)] studied were developmentally regulated at the time of weaning, and all transcripts except ASBT had the highest levels of expression in the proximal small intestine. In WT suckling pups reared in the absence of PI, pIgR mRNA levels were increased 100% during the early phase of development. In mice lacking AI, the expression of pIgR and lactase were significantly attenuated, whereas FcRn and GLUT5 levels were higher compared with WT mice. Finally, in the absence of both passive and active immunity, expression levels of pIgR and lactase were significantly lower than similarly aged WT mice. In summary, we report that the adaptive and passive immune status of mice influences steady-state mRNA levels of several important, developmentally regulated enterocyte genes during the suckling and weaning periods of life.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- B-Lymphocytes/immunology
- Carrier Proteins/genetics
- Enterocytes/chemistry
- Enterocytes/immunology
- Enterocytes/metabolism
- Gene Expression Regulation, Developmental/immunology
- Genes, RAG-1/genetics
- Genes, RAG-1/immunology
- Glucose Transporter Type 5
- Immunity
- Immunity, Active/physiology
- Immunity, Maternally-Acquired/physiology
- Intestine, Small/chemistry
- Lactase-Phlorizin Hydrolase/genetics
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monosaccharide Transport Proteins/genetics
- Organic Anion Transporters, Sodium-Dependent
- RNA, Messenger/analysis
- Receptors, Fc/genetics
- Sodium-Glucose Transporter 1
- Symporters
- T-Lymphocytes/immunology
- Weaning
Collapse
Affiliation(s)
- Shannon L Jenkins
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yu J, Gonzalez-Reyes S, Diez-Pardo JA, Tovar JA. Effects of prenatal dexamethasone on the intestine of rats with gastroschisis. J Pediatr Surg 2003; 38:1032-5. [PMID: 12861532 DOI: 10.1016/s0022-3468(03)00185-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND/PURPOSE Intestinal lesions observed in gastroschisis (Gx) are accompanied by neonatal gastrointestinal dysfunction. This study examines the effects of transplacental dexamethasone on the eviscerated intestine of fetal rats with Gx. METHODS Gx was created surgically in rat fetuses on gestational day 18, and the dams were treated either with 0.4 mg/kg intraperitoneal dexamethasone or with vehicle only on days 19 and 20. The intestine recovered on day 21 were processed for total DNA and protein. Immuno-histochemical staining for ki-67, TUNEL, and synaptophysin were used for assessing the proportions of proliferating and apoptotic cells and the density of intramural ganglia. Analysis of variance (ANOVA) was used for comparison among groups. Significance level was set at P less than.05. RESULTS Body weight was reduced in Gx fetuses in comparison with controls. Intestinal weight per centimeter and mucosal and seromuscular layer thicknesses were increased in Gx and Gx + dexa groups. Total intestinal DNA was diminished in Gx animals but it was near normal in Gx + dexa ones. Total intestinal protein was similar in all groups. DNA and protein per centimeter of bowel were very increased in Gx animals but only slightly in Gx + dexa ones. Proliferating cells were decreased in Gx animals and increased in Gx+dexa ones, whereas the opposite was observed for apoptosis. Density of intramural ganglia was decreased significantly in both Gx groups. CONCLUSIONS Late intrauterine exposure to dexamethasone of rat fetuses with Gx decreased wall thickening, normalized total DNA, and induced proliferation in the exposed bowel while limiting apoptosis. This medication could have some yet incompletely defined beneficial effects on the wall of the eviscerated bowel in Gx.
Collapse
Affiliation(s)
- Jiakang Yu
- Research Laboratory, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Ronald J Wapner
- Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
31
|
Affiliation(s)
- Endla K Anday
- Department of Pediatrics, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
32
|
Biol-N'garagba MC, Niepceron E, Mathian B, Louisot P. Glucocorticoid-induced maturation of glycoprotein galactosylation and fucosylation processes in the rat small intestine. J Steroid Biochem Mol Biol 2003; 84:411-22. [PMID: 12732286 DOI: 10.1016/s0960-0760(03)00062-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We determined the role of glucocorticoids in the maturation of glycoprotein galactosylation and fucosylation processes in the rat small intestine during postnatal development. Treatment of suckling rats with hydrocortisone (HC) increased activities of an O-glycan: galactosyltransferase, and of an alpha-1,2-fucosyltransferase, through transcriptional regulation of the FTB gene. The activities of a fucosyltransferase inhibitor and of the enzymes responsible for the synthesis and degradation of GDP-fucose were unaffected by the treatment, whereas a fall in the activity of alpha-L-fucosidase was observed. These changes were accompanied by the precocious appearance of alpha-1,2-fucose residues in complex glycan chains of brush-border membrane glycoproteins that normally appear after weaning, and with a trend to increase in alpha-1,2-fucose residues in mucins. Thus, treatment of suckling rats with hydrocortisone speeds up the maturation of glycoprotein galactosylation and fucosylation processes in the small intestine. The delayed increase in glucocorticoid levels induced by prolonged nursing, or the suppression of glucocorticoids by adrenalectomy (AD) before the normal rise in the hormone, both induced a delay in the increases in activities of the O-glycan: galactosyltransferase and alpha-1,2-fucosyltransferase observed normally after glucocorticoid enhancement. Thus, glucocorticoids might play at least a partial role in the maturation of glycoprotein glycosylation observed at weaning.
Collapse
Affiliation(s)
- Marie-Claire Biol-N'garagba
- Département de Biochimie, Faculté de Médecine Lyon-Sud, Unité INSERM 189-SDI CNRS, BP 12, 69600 Oullins, France.
| | | | | | | |
Collapse
|
33
|
Gartner H, Graul MC, Oesterreicher TJ, Finegold MJ, Henning SJ. Development of the fetal intestine in mice lacking the glucocorticoid receptor (GR). J Cell Physiol 2003; 194:80-7. [PMID: 12447992 DOI: 10.1002/jcp.10189] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During rodent development there are two surges of circulating corticosterone: one just prior to birth and then one in the third postnatal week. Prior studies have shown that the latter controls the rate of intestinal development in the postnatal period. To date, a role for the earlier surge in the prenatal phase of intestinal development has not been investigated. We hypothesized that the late fetal surge of circulating corticosterone is involved in both morphologic and functional maturation of the intestinal epithelium, and thus that such maturation would be delayed if glucocorticoid action was abrogated. The hypothesis was tested by studying intestinal development in mice lacking a functional glucocorticoid receptor (GR). After GR+/- mice were bred onto a C57Bl/6 background, heterozygote matings yielded the expected ratios of -/-, +/-, and +/+ offspring. Analysis of GR mRNA in intestines of +/+ and -/- fetuses confirmed expression in wild-type mice but not in the GR-null mice. Intestinal histology of GR+/+ and -/- littermates at E13.5, E15.5, and E18.5 showed no effect of GR genotype on morphologic development. Further studies at E18.5 showed that GR-/- mice have normal functional maturation of the intestinal epithelium as assessed by: lactase activity in the enterocyte lineage, normal numbers of goblet and enteroendocrine cells, and normal numbers of proliferating cells in the intestinal crypts. Neither the minerolocorticoid receptor (MR) nor the pregnane X receptor (PXR) showed compensatory up-regulation in GR-/- mice. We conclude that, in contrast to our original hypothesis, the rodent intestine passes through a phase of glucocorticoid independence (late fetal) prior to becoming responsive to glucocorticoids in the postnatal period. These findings have implications for the clinical use of corticosteroids to enhance intestinal maturation in preterm infants.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Corticosterone/metabolism
- Female
- Fetus
- Genotype
- Goblet Cells/cytology
- Goblet Cells/metabolism
- Intestinal Mucosa/cytology
- Intestinal Mucosa/embryology
- Intestinal Mucosa/metabolism
- Intestine, Small/cytology
- Intestine, Small/embryology
- Intestine, Small/metabolism
- Ki-67 Antigen/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Paneth Cells/cytology
- Paneth Cells/metabolism
- Pregnane X Receptor
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Receptors, Mineralocorticoid/genetics
- Receptors, Steroid/genetics
Collapse
Affiliation(s)
- Hans Gartner
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Ghishan FK. Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-P(i) cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol 2002; 283:G426-34. [PMID: 12121891 DOI: 10.1152/ajpgi.00319.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We sought to characterize expression of an apically expressed intestinal Na-P(i) cotransporter (Na-P(i)-IIb) during mouse ontogeny and to assess the effects of methylprednisolone (MP) treatment. In control mice, Na-P(i) uptake by intestinal brush-border membrane vesicles was highest at 14 days of age, lower at 21 days, and further reduced at 8 wk and 8-9 mo of age. Na-P(i)-IIb mRNA and immunoreactive protein levels in 14-day-old animals were markedly higher than in older groups. MP treatment significantly decreased Na-P(i) uptake and Na-P(i)-IIb mRNA and protein expression in 14-day-old mice. Additionally, the size of the protein was smaller in 14-day-old mice. Deglycosylation of protein from 14-day-old and 8-wk-old animals with peptide N-glycosidase reduced the molecular weight to the predicted size. We conclude that intestinal Na-P(i) uptake and Na-P(i)-IIb expression are highest at 14 days and decrease with age. Furthermore, MP treatment reduced intestinal Na-P(i) uptake approximately threefold in 14-day-old mice and this reduction correlates with reduced Na-P(i)-IIb mRNA and protein expression. We also demonstrate that Na-P(i)-IIb is an N-linked glycoprotein and that glycosylation is age dependent.
Collapse
Affiliation(s)
- Kayo Arima
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson 85724, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hwang ST, Urizar NL, Moore DD, Henning SJ. Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology 2002; 122:1483-92. [PMID: 11984532 DOI: 10.1053/gast.2002.32982] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS In the rat, an increase in ileal bile acid binding protein (IBABP) expression occurs during the third postnatal week. In vitro studies suggest that bile acids (BAs) increase IBABP transcription by activating the BA receptor, farnesoid X receptor (FXR). Thus, we investigated the role of BAs on the ontogenic expression of IBABP and whether FXR may mediate these effects. METHODS Suckling rats were gavage-fed taurocholate for 3 days or were allowed to develop normally. Ileums were collected for Northern and Western blot analyses. Electrophoretic mobility shift assays for functional FXR were performed using nuclear extracts from ileums of both adult and developing rats. RESULTS Taurocholate gavage significantly elevated IBABP messenger RNA and protein levels in suckling animals. Gelshift assays using adult ileal nuclear extracts incubated with a radiolabeled consensus inverted repeat-1 oligonucleotide (response element for FXR) revealed a high-molecular weight DNA/protein complex. Cold competition and supershift assays showed that this complex is sequence specific and confirmed that FXR is a component of the complex. Gelshift assays with nuclear extracts from rat ileum at different ages revealed absence of the DNA/protein complex in the second postnatal week when there is lack of IBABP expression and presence of these complexes at later ages when there is normally high expression. Western blot analyses showed FXR and its heterodimer partner, retinoid X receptor alpha, protein levels are low in the ileum during the suckling period and increase during the third postnatal week. CONCLUSIONS BAs play a role in the normal developmental expression of IBABP through FXR activation, and decreased functional FXR in ileal nuclei during the suckling period may account, in part, for the lack of IBABP expression at this time.
Collapse
Affiliation(s)
- Sandy T Hwang
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
36
|
Gartner H, Shukla P, Markesich DC, Solomon NS, Oesterreicher TJ, Henning SJ. Developmental expression of trehalase: role of transcriptional activation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:329-36. [PMID: 11997099 DOI: 10.1016/s0167-4781(02)00231-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The third postnatal week of mouse development is characterized by dramatic changes of gene expression in the small intestine. Although these changes are often assumed to reflect regulation at the level of transcription, to date there have been no direct investigations of this. In the current study we have used trehalase as a marker of intestinal maturation. Highly sensitive reverse transcriptase-polymerase chain reaction methods were developed for semi-quantitative analysis of both initial and mature transcripts, i.e., hnRNA and mRNA. Jejunums collected during normal development (specifically from postnatal days 8-21) showed parallel increases in the levels of trehalase hnRNA and mRNA. Likewise, when precocious gut maturation was elicited by dexamethasone administration on days 8-10, both initial and mature trehalase transcripts were significantly increased, although with a relatively slow time course. We conclude that both normal and glucocorticoid-induced maturation of trehalase expression reflect transcriptional activation. However, the slow time course of the glucocorticoid effect suggests that trehalase may not be a primary response gene.
Collapse
Affiliation(s)
- Hans Gartner
- Department of Pediatrics, Baylor College of Medicine, One Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|