1
|
Vrselja A, Pillow JJ, Bensley JG, Ahmadi‐Noorbakhsh S, Noble PB, Black MJ. Dose-related cardiac outcomes in response to postnatal dexamethasone treatment in premature lambs. Anat Rec (Hoboken) 2025; 308:1214-1228. [PMID: 36924351 PMCID: PMC11889478 DOI: 10.1002/ar.25202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Postnatal corticosteroids are used in the critical care of preterm infants for the prevention and treatment of bronchopulmonary dysplasia. We aimed to investigate the effects of early postnatal dexamethasone therapy and dose on cardiac maturation and morphology in preterm lambs. METHODS Lambs were delivered prematurely at ~128 days of gestational age and managed postnatally according to best clinical practice. Preterm lambs were administered dexamethasone daily at either a low-dose (n = 9) or a high-dose (n = 7), or were naïve to steroid treatment and administered saline (n = 9), over a 7-day time-course. Hearts were studied at postnatal Day 7 for gene expression and assessment of myocardial structure. RESULTS High-dose dexamethasone treatment in the early postnatal period led to marked differences in cardiac gene expression, altered cardiomyocyte maturation and reduced cardiomyocyte endowment in the right ventricle, as well as increased inflammatory infiltrates into the left ventricle. Low-dose exposure had minimal effects on the preterm heart. CONCLUSION Neonatal dexamethasone treatment led to adverse effects in the preterm heart in a dose-dependent manner within the first week of life. The observed cardiac changes associated with high-dose postnatal dexamethasone treatment may influence postnatal growth and remodeling of the preterm heart and subsequent long-term cardiac function.
Collapse
Affiliation(s)
- Amanda Vrselja
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Jennifer Jane Pillow
- School of Human SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jonathan G. Bensley
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Peter B. Noble
- School of Human SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
Carter SWD, Kemp MW. A review of the potential off-target effects of antenatal steroid exposures on fetal development. J Dev Orig Health Dis 2025; 16:e18. [PMID: 40135629 DOI: 10.1017/s2040174425000078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Antenatal steroids (ANS) are one of the most widely prescribed medications in pregnancy, being administered to women at risk of preterm delivery. In the setting of preterm delivery at or below 35 weeks' gestation, systematic review data show ANS reduce perinatal morbidity and mortality, primarily by promoting fetal lung maturation. However, with the expanding use of this intervention has come a growing appreciation for the potential off-target, adverse effects of ANS therapy on wider fetal development. We undertook a narrative literature review of the animal and clinical literature to assess current evidence for adverse effects of ANS exposure and fetal development. This review presents a summary of the evidence relating to the potential for wide-ranging, off-target, adverse effects of ANS therapy on fetal development and programming. We highlight an urgent need for further animal and clinical studies investigating the effects of ANS on the fetal immune, cardiovascular, renal and hepatic systems given a current sparsity of evidence. We also strongly suggest an emphasis on open disclosure, discussion and education of clinicians and patients with regard to the potential benefits and risks of ANS therapy, particularly in late preterm and term gestations where infants derive relatively few benefits from these drugs. We also propose further studies on the optimisation of ANS therapy through improved patient selection and improved dosing regimens based on a pharmacokinetic-pharmacodynamic informed understanding of ANS action on the fetal lung.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- King Edward Memorial Hospital, Perth, Western Australia, Australia
- Women and Infants Research Foundation, Perth, Western Australia, Australia
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- Women and Infants Research Foundation, Perth, Western Australia, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
3
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
5
|
Kane AD, Herrera EA, Niu Y, Camm EJ, Allison BJ, Tijsseling D, Lusby C, Derks JB, Brain KL, Bronckers IM, Cross CM, Berends L, Giussani DA. Combined Statin and Glucocorticoid Therapy for the Safer Treatment of Preterm Birth. Hypertension 2023; 80:837-851. [PMID: 36724801 PMCID: PMC10017302 DOI: 10.1161/hypertensionaha.122.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Prematurity is strongly associated with poor respiratory function in the neonate. Rescue therapies include treatment with glucocorticoids due to their anti-inflammatory and maturational effects on the developing lung. However, glucocorticoid treatment in the infant can increase the risk of long-term cardiovascular complications including hypertension, cardiac, and endothelial dysfunction. Accumulating evidence implicates a molecular link between glucocorticoid excess and depletion of nitric oxide (NO) bioavailability as a mechanism underlying the detrimental effects of postnatal steroids on the heart and circulation. Therefore, combined glucocorticoid and statin therapy, by increasing NO bioavailability, may protect the developing cardiovascular system while maintaining beneficial effects on the lung. METHODS We investigated combined glucocorticoid and statin therapy using an established rodent model of prematurity and combined experiments of cardiovascular function in vivo, with those in isolated organs as well as measurements at the cellular and molecular levels. RESULTS We show that neonatal glucocorticoid treatment increases the risk of later cardiovascular dysfunction in the offspring. Underlying mechanisms include decreased circulating NO bioavailability, sympathetic hyper-reactivity, and NO-dependent endothelial dysfunction. Combined neonatal glucocorticoid and statin therapy protects the developing cardiovascular system by normalizing NO and sympathetic signaling, without affecting pulmonary maturational or anti-inflammatory effects of glucocorticoids. CONCLUSIONS Therefore, combined glucocorticoid and statin therapy may be safer than glucocorticoids alone for the treatment of preterm birth.
Collapse
Affiliation(s)
- Andrew D. Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Emilio A. Herrera
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile (E.A.H.)
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Beth J. Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Deodata Tijsseling
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Ciara Lusby
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Jan B. Derks
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Kirsty L. Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Inge M. Bronckers
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, the Netherlands (I.M.B.)
| | - Christine M. Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Lindsey Berends
- Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom (L.B.)
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| |
Collapse
|
6
|
Ikuta Y, Miura M, Goto T, Miyama S. Retrospective Echocardiographic Analysis of West Syndrome During Adrenocorticotropic Hormone Therapy. Front Pediatr 2022; 10:889752. [PMID: 35620145 PMCID: PMC9127381 DOI: 10.3389/fped.2022.889752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ventricular hypertrophy is a well-known side effect of adrenocorticotropic hormone (ACTH) therapy in patients with West syndrome (WS), but there are only a few reports of echocardiographic evaluation of these patients' diastolic function. Methods The present, retrospective study analyzed echocardiographic findings in 24 patients with WS treated with ACTH therapy between April 2010 and December 2014. The therapy protocol involved administering tetracosactide acetate 0.01-0.0125 mg/kg via intramuscular injection once a day for weeks 1-2, then gradually tapering off. Echocardiographic evaluation was done before treatment initiation and at weeks 1, 2, and 4 after the initiation of treatment. Results The systolic and diastolic blood pressure values were elevated at week 1 after commencement of the therapy and remained elevated throughout its duration. Both the interventricular septal end-diastolic thickness and left ventricular posterior wall end-diastolic diameter increased in thickness at week 1 and remained thickened. None of the patients experienced heart failure or systolic dysfunction. Early diastolic mitral flow velocity (E)/early diastolic mitral annular velocity (E') increased at week 1 and remained high at weeks 2 and 4. The E wave deceleration time (DcT) was prolonged at week 2 and returned to the baseline at week 4. Conclusion Increased ventricular wall thickness, decreased diastolic capacity, and elevated BP were noted in children with WS during ACTH therapy. Cardiac function, including ventricular wall thickness and diastolic function, should be monitored during ACTH therapy. E/E' and DcT are useful in evaluating diastolic function.
Collapse
Affiliation(s)
- Yoji Ikuta
- Higashi-Koganei Child Neurology and Epilepsy Clinic, Koganei, Japan
- Department of Neurology, Tokyo Metropolitan Children’s Medical Center, Fuchu, Japan
| | - Masaru Miura
- Department of Cardiology, Tokyo Metropolitan Children’s Medical Center, Fuchu, Japan
| | - Tomohide Goto
- Department of Neurology, Tokyo Metropolitan Children’s Medical Center, Fuchu, Japan
- Division of Pediatric Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Sahoko Miyama
- Department of Neurology, Tokyo Metropolitan Children’s Medical Center, Fuchu, Japan
| |
Collapse
|
7
|
Ghnenis A, Padmanabhan V, Vyas A. Sexual dimorphism in testosterone programming of cardiomyocyte development in sheep. Am J Physiol Heart Circ Physiol 2022; 322:H607-H621. [PMID: 35119334 PMCID: PMC8957338 DOI: 10.1152/ajpheart.00691.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Perturbed in utero hormone milieu leads to intrauterine growth retardation (IUGR), a known risk factor for left ventricular (LV) dysfunction later in life. Gestational testosterone (T) excess predisposes offspring to IUGR and leads to LV myocardial disarray and hypertension in adult females. However, the early impact of T excess on LV programming and if it is female specific is unknown. LV tissues were obtained at day 90 gestation from days 30-90 T-treated or control fetuses (n = 6/group/sex) and morphometric and molecular analyses were conducted. Gestational T treatment increased cardiomyocyte number only in female fetuses. T excess upregulated receptor expression of insulin and insulin-like growth factor. Furthermore, in a sex-specific manner, T increased expression of phosphatidylinositol 3-kinase (PI3K) while downregulating phosphorylated mammalian target of rapamycin (pmTOR)-to-mTOR ratio suggestive of compensatory response. T excess 1) upregulated atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), markers of stress and cardiac hypertrophy and 2) upregulated estrogen receptors1 (ESR1) and 2 (ESR2), but not in androgen receptor (AR). Thus, gestational T excess upregulated markers of cardiac stress and hypertrophy in both sexes while inducing cardiomyocyte hyperplasia only in females, likely mediated via insulin and estrogenic programming.NEW & NOTEWORTHY The present study demonstrates sex-specific effects of gestational T excess between days 30 and 90 of gestation on the cardiac phenotype. Furthermore, the sex-specific programming is likely secondary to perturbation in both estrogen and insulin signaling pathways collectively. These findings are supportive of the role of androgen excess to serve as early biomarkers of CVD and could be critical in identifying therapeutic targets for LV hypertrophy and predict long-term CVD.
Collapse
Affiliation(s)
- Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Arpita Vyas
- College of Human Medicine, California Northstate University, Elk Grove, California
| |
Collapse
|
8
|
Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. J Clin Med 2021; 10:jcm10173896. [PMID: 34501343 PMCID: PMC8432182 DOI: 10.3390/jcm10173896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Preterm birth coincides with a key developmental window of cardiac growth and maturation, and thus has the potential to influence long-term cardiac function. Individuals born preterm have structural cardiac remodelling and altered cardiac growth and function by early adulthood. The evidence linking preterm birth and cardiovascular disease in later life is mounting. Advances in the perinatal care of preterm infants, such as glucocorticoid therapy, have improved survival rates, but at what cost? This review highlights the short-term and long-term impact of preterm birth on the structure and function of the heart and focuses on the impact of antenatal and postnatal glucocorticoid treatment on the immature preterm heart.
Collapse
|
9
|
Larrasa-Alonso J, Villalba-Orero M, Martí-Gómez C, Ortiz-Sánchez P, López-Olañeta MM, Rey-Martín MA, Sánchez-Cabo F, McNicoll F, Müller-McNicoll M, García-Pavía P, Lara-Pezzi E. The SRSF4-GAS5-Glucocorticoid Receptor Axis Regulates Ventricular Hypertrophy. Circ Res 2021; 129:669-683. [PMID: 34333993 PMCID: PMC8409900 DOI: 10.1161/circresaha.120.318577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. RBPs (RNA-binding proteins) play critical roles in human biology and disease. Aberrant RBP expression affects various steps in RNA processing, altering the function of the target RNAs. The RBP SRSF4 (serine/arginine-rich splicing factor 4) has been linked to neuropathies and cancer. However, its role in the heart is completely unknown.
Collapse
Affiliation(s)
- Javier Larrasa-Alonso
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.).,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.)
| | - Carlos Martí-Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Paula Ortiz-Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Marina M López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - M Ascensión Rey-Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.)
| | - François McNicoll
- Goethe University Frankfurt, Institute of Molecular Biosciences, Frankfurt/Main, Germany (F.M., M.M.-M.)
| | - Michaela Müller-McNicoll
- Goethe University Frankfurt, Institute of Molecular Biosciences, Frankfurt/Main, Germany (F.M., M.M.-M.)
| | - Pablo García-Pavía
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.G.-P.).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.-A., M.V.-O., C.M.-G., P.O.S., M.M.L.-O., M.A.R.-M., F.S.C., E.L.-P.).,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., P.G.-P., E.L.-P.)
| |
Collapse
|
10
|
Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Wang T, Chen H. Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infect Dis Ther 2021; 10:1907-1931. [PMID: 34296386 PMCID: PMC8298044 DOI: 10.1007/s40121-021-00500-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the global healthcare community has raced to find effective therapeutic agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, dexamethasone is the first and an important therapeutic to significantly reduce the risk of death in COVID-19 patients with severe disease. Due to powerful anti-inflammatory and immunosuppressive effects, dexamethasone could attenuate SARS-CoV-2-induced uncontrolled cytokine storm, severe acute respiratory distress syndrome and lung injury. Nevertheless, dexamethasone treatment is a double-edged sword, as numerous studies have revealed that it has significant adverse impacts later in life. In this article, we reviewed the literature regarding the adverse effects of dexamethasone administration on different organ systems as well as related disease pathogenesis in an attempt to clarify the potential harms that may arise in COVID-19 patients receiving dexamethasone treatment. Overall, taking the threat of COVID19 pandemic into account, we think it is necessary to apply dexamethasone as a pharmaceutical therapy in critical patients. However, its adverse side effects cannot be ignored. Our review will help medical professionals in the prognosis and follow-up of patients treated with dexamethasone. In addition, given that a considerable amount of uncertainty, confusion and even controversy still exist, further studies and more clinical trials are urgently needed to improve our understanding of the parameters and the effects of dexamethasone on patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China.
| | - Lanting Hao
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Shiheng Zhu
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xinyuan Yang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Wenhao Shi
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Kai Zheng
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Tenger Wang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Huiran Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| |
Collapse
|
11
|
Severinova E, Alikunju S, Deng W, Dhawan P, Sayed N, Sayed D. Glucocorticoid Receptor-Binding and Transcriptome Signature in Cardiomyocytes. J Am Heart Assoc 2020; 8:e011484. [PMID: 30866692 PMCID: PMC6475044 DOI: 10.1161/jaha.118.011484] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background An increase in serum cortisol has been identified as a risk factor for cardiac failure, which highlights the impact of glucocorticoid signaling in cardiomyocytes and its influence in the progression of failure. Dexamethasone, a synthetic glucocorticoid, is sufficient for induction of cardiomyocyte hypertrophy, but little is known of the glucocorticoid receptor (GR) genome‐binding and ‐dependent transcriptional changes that mediate this phenotype. Methods and Results In this study using high‐resolution sequencing, we identified genomic targets of GR and associated change in the transcriptome after 1 and 24 hours of dexamethasone treatment. We showed that GR associates with 6482 genes in the cardiac genome, with differential regulation of 738 genes. Interestingly, alignment of the chromatin immunoprecipitation and RNA sequencing data show that, after 1 hour, 69% of differentially regulated genes are associated with GR and identify as regulators of RNA pol II–dependent transcription. Conversely, after 24 hours only 45% of regulated genes are associated with GR and involved in dilated and hypertrophic cardiomyopathies as well as other growth‐related pathways. In addition, our data also reveal that a majority of genes (76.42%) associated with GR show incremental changes in transcript abundance and are genes involved in basic cellular processes that might be regulated by the dynamics of promoter‐paused RNA pol II, as seen in hearts undergoing hypertrophy. In vivo administration of dexamethasone resulted in similar changes in the cardiac transcriptome, as seen in isolated cardiomyocytes. Conclusions Our data reveal genome‐wide GR binding sites in cardiomyocytes, identify novel targets and GR‐dependent change in the transcriptome that induces and contributes to cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Elena Severinova
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Saleena Alikunju
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Wei Deng
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| | - Puneet Dhawan
- 2 Genomics Center Department of Microbiology Biochemistry and Molecular Genetics Rutgers New Jersey Medical School Newark NJ
| | - Nazish Sayed
- 3 Cardiovascular Institute Stanford University Stanford CA
| | - Danish Sayed
- 1 Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ
| |
Collapse
|
12
|
Neonatal glucocorticoid overexposure alters cardiovascular function in young adult horses in a sex-linked manner. J Dev Orig Health Dis 2020; 12:309-318. [PMID: 32489168 DOI: 10.1017/s2040174420000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prenatal glucocorticoid overexposure has been shown to programme adult cardiovascular function in a range of species, but much less is known about the long-term effects of neonatal glucocorticoid overexposure. In horses, prenatal maturation of the hypothalamus-pituitary-adrenal axis and the normal prepartum surge in fetal cortisol occur late in gestation compared to other precocious species. Cortisol levels continue to rise in the hours after birth of full-term foals and increase further in the subsequent days in premature, dysmature and maladapted foals. Thus, this study examined the adult cardiovascular consequences of neonatal cortisol overexposure induced by adrenocorticotropic hormone administration to full-term male and female pony foals. After catheterisation at 2-3 years of age, basal arterial blood pressures (BP) and heart rate were measured together with the responses to phenylephrine (PE) and sodium nitroprusside (SNP). These data were used to assess cardiac baroreflex sensitivity. Neonatal cortisol overexposure reduced both the pressor and bradycardic responses to PE in the young adult males, but not females. It also enhanced the initial hypotensive response to SNP, slowed recovery of BP after infusion and reduced the gain of the cardiac baroreflex in the females, but not males. Basal diastolic pressure and cardiac baroreflex sensitivity also differed with sex, irrespective of neonatal treatment. The results show that there is a window of susceptibility for glucocorticoid programming during the immediate neonatal period that alters cardiovascular function in young adult horses in a sex-linked manner.
Collapse
|
13
|
Role of Parkin-mediated mitophagy in glucocorticoid-induced cardiomyocyte maturation. Life Sci 2020; 255:117817. [PMID: 32446845 DOI: 10.1016/j.lfs.2020.117817] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 01/26/2023]
Abstract
Glucocorticoids can promote cardiomyocyte maturation. However, the mechanism underlying glucocorticoid-mediated cardiomyocyte maturation is still unclear. Mitophagy plays a key role in cardiomyocyte maturation. Based on current knowledge, our study evaluated the effects of the glucocorticoid dexamethasone (100 nM) on the maturation of mouse embryonic stem cell-derived cardiomyocytes and the role of mitophagy in this maturation. The results showed that dexamethasone can promote embryonic stem cell-derived cardiomyocyte maturation, inhibit cardiomyocyte proliferation, and promote myocardial fiber arrangement. However, dexamethasone did not affect mitochondrial morphology in cardiomyocytes. Glucocorticoid receptor inhibitors (RU486, 1 nM) can inhibit dexamethasone-mediated cardiomyocyte maturation. Additionally, dexamethasone can promote mitophagy in embryonic stem cell-derived cardiomyocytes and induce LC3 and lysosomal aggregation in mitochondria. The inhibition of mitophagy can inhibit the cardiomyocyte maturation effect of dexamethasone. Furthermore, our research found that dexamethasone may mediate the occurrence of mitophagy in cardiomyocytes through Parkin. The siRNA-mediated inhibition of Parkin expression can inhibit mitochondrial autophagy caused by dexamethasone, thus inhibiting cardiomyocyte maturation. Overall, our study found that dexamethasone can promote embryonic stem cell-derived cardiomyocyte maturation through Parkin-mediated mitophagy.
Collapse
|
14
|
Badmus OO, Olatunji LA. Dexamethasone causes defective glucose-6-phosphate dehydrogenase dependent antioxidant barrier through endoglin in pregnant and nonpregnant rats. Can J Physiol Pharmacol 2020; 98:667-677. [PMID: 32259461 DOI: 10.1139/cjpp-2018-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid therapy has been associated with adverse cardiometabolic effects during pregnancy. Inflammation-mediated cardiac dysfunction, an independent risk factor for morbidity and mortality, has been linked to defective glucose-6-phosphate dehydrogenase (G6PD) dependent antioxidant defenses and increased endoglin expression. We therefore sought to investigate the effects of dexamethasone (DEX) on cardiac endoglin and G6PD-dependent antioxidant defense. Twenty-four rats were randomly assigned to nonpregnant (PRE(-)), DEX-exposed nonpregnant (PRE(-) + DEX), pregnant (PRE(+)), and DEX-exposed pregnant (PRE(+) + DEX) rats, respectively (n = 6 per group). PRE(-) and PRE(+) rats received vehicle (per oral (po)), while PRE(-) + DEX and PRE(+) + DEX groups were administered DEX (0.2 mg/kg po) between gestational days 14 and 19, respectively. Results showed that DEX caused increased cardiac pro-inflammatory markers (adenosine deaminase (ADA) activity, endoglin, vascular cell adhesion molecule-1 (VCAM-1), tissue injury markers (LDH, GGT, AST, ALT, and ALP), metabolic disturbances (elevated fasting plasma glucose, free fatty acid (FFA), lactate, cardiac FFA, and lactate) and depressed G6PD-dependent antioxidant defenses (G6PD activity, reduced glutathione/oxidized glutathione ratio, and nitric oxide) in pregnant and nonpregnant rats. The present study demonstrates that DEX led to increased cardiac endoglin and VCAM-1 that is accompanied by defective G6PD-dependent antioxidant defenses but not cardiac lipid accumulation in both pregnant and nonpregnant rats.
Collapse
Affiliation(s)
- Olufunto O Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Public Health, Kwara State University, Malete, Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
15
|
Cruz-Topete D, Oakley RH, Cidlowski JA. Glucocorticoid Signaling and the Aging Heart. Front Endocrinol (Lausanne) 2020; 11:347. [PMID: 32528419 PMCID: PMC7266971 DOI: 10.3389/fendo.2020.00347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023] Open
Abstract
A decline in normal physiological functions characterizes the aging process. While some of these changes are benign, the decrease in the function of the cardiovascular system that occurs during aging leads to the activation of pathological processes associated with an increased risk for heart disease and its complications. Imbalances in endocrine function are also common occurrences during the aging process. Glucocorticoids are primary stress hormones and are critical regulators of energy metabolism, inflammation, and cardiac function. Glucocorticoids exert their actions by binding the glucocorticoid receptor (GR) and, in some instances, to the mineralocorticoid receptor (MR). GR and MR are members of the nuclear receptor family of ligand-activated transcription factors. There is strong evidence that imbalances in GR and MR signaling in the heart have a causal role in cardiac disease. The extent to which glucocorticoids play a role in the aging heart, however, remains unclear. This review will summarize the positive and negative direct and indirect effects of glucocorticoids on the heart and the latest molecular and physiological evidence on how alterations in glucocorticoid signaling lead to changes in cardiac structure and function. We also briefly discuss the effects of other hormones systems such as estrogens and GH/IGF-1 on different cardiovascular cells during aging. We will also review the link between imbalances in glucocorticoid levels and the molecular processes responsible for promoting cardiomyocyte dysfunction in aging. Finally, we will discuss the potential for selectively manipulating glucocorticoid signaling in cardiomyocytes, which may represent an improved therapeutic approach for preventing and treating age-related heart disease.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, Shreveport, LA, United States
- *Correspondence: Diana Cruz-Topete
| | - Robert H. Oakley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - John A. Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- John A. Cidlowski
| |
Collapse
|
16
|
Badmus OO, Olatunji LA. Glucocorticoid exposure causes disrupted glucoregulation, cardiac inflammation and elevated dipeptidyl peptidase-4 activity independent of glycogen synthase kinase-3 in female rats. Arch Physiol Biochem 2019; 125:414-422. [PMID: 29912577 DOI: 10.1080/13813455.2018.1479426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: We tested the hypothesis that glucocorticoid (GC) exposure in female rats would lead to glucose dysregulation and elevated cardiac inflammatory biomarkers, which are dipeptidyl peptidase-4 (DPP-4)- and glycogen synthase kinase-3 (GSK-3)-dependent. Methods: Female Wistar rats received vehicle (control; n = 6) or GC (dexamethasone; n = 6; 0.2 mg/kg; p.o.) for six days. Insulin resistance was determined by HOMA-IR. DPP-4 activity was determined by fluorescence method, whereas vascular cell adhesion molecule-1 (VCAM-1), uric acid, malondialdehyde (MDA), lactate dehydrogenase (LDH) and nitric oxide (NO) from plasma and cardiac homogenate were estimated as cardiac pro-inflammatory biomarkers. Results: Results showed that GC exposure resulted in glucose dysregulation and increased plasma and cardiac pro-inflammatory markers which are associated with elevated DPP-4 activity but reduced GSK-3. Conclusions: The present results demonstrate that GC exposure would cause glucose dysregulation, increased DPP-4 activity and cardiac inflammation that is independent of GSK-3.
Collapse
Affiliation(s)
- Olufunto O Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin , Ilorin , Nigeria
- Department of Public Health, Kwara State University , Malete , Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| |
Collapse
|
17
|
Malkawi AK, Masood A, Shinwari Z, Jacob M, Benabdelkamel H, Matic G, Almuhanna F, Dasouki M, Alaiya AA, Rahman AMA. Proteomic Analysis of Morphologically Changed Tissues after Prolonged Dexamethasone Treatment. Int J Mol Sci 2019; 20:ijms20133122. [PMID: 31247941 PMCID: PMC6650964 DOI: 10.3390/ijms20133122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Prolonged dexamethasone (Dex) administration leads to serious adverse and decrease brain and heart size, muscular atrophy, hemorrhagic liver, and presence of kidney cysts. Herein, we used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous identification of changes in proteomes of the major organs in Sprague–Dawley (SD rats post Dex treatment. The comparative and quantitative proteomic analysis of the brain, heart, muscle, liver, and kidney tissues revealed differential expression of proteins (n = 190, 193, 39, 230, and 53, respectively) between Dex-treated and control rats. Functional network analysis using ingenuity pathway analysis (IPA revealed significant differences in regulation of metabolic pathways within the morphologically changed organs that related to: (i) brain—cell morphology, nervous system development, and function and neurological disease; (ii) heart—cellular development, cellular function and maintenance, connective tissue development and function; (iii) skeletal muscle—nucleic acid metabolism, and small molecule biochemical pathways; (iv) liver—lipid metabolism, small molecular biochemistry, and nucleic acid metabolism; and (v) kidney—drug metabolism, organism injury and abnormalities, and renal damage. Our study provides a comprehensive description of the organ-specific proteomic profilesand differentially altered biochemical pathways, after prolonged Dex treatement to understand the molecular basis for development of side effects.
Collapse
Affiliation(s)
- Abeer K Malkawi
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrook Street West, Montréal, QC H4B 1R6, Canada
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Zakia Shinwari
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
- College of Public Health, Medical, and Veterinary Sciences/Molecular & Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Goran Matic
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Falah Almuhanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Ayodele A Alaiya
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia.
- College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia.
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| |
Collapse
|
18
|
Pesco-Koplowitz L, Gintant G, Ward R, Heon D, Saulnier M, Heilbraun J. Drug-induced cardiac abnormalities in premature infants and neonates. Am Heart J 2018; 195:14-38. [PMID: 29224642 DOI: 10.1016/j.ahj.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
The Cardiac Safety Research Consortium (CSRC) is a transparent, public-private partnership that was established in 2005 as a Critical Path Program and formalized in 2006 under a Memorandum of Understanding between the United States Food and Drug Administration and Duke University. Our continuing goal is to advance paradigms for more efficient regulatory science related to the cardiovascular safety of new therapeutics, both in the United States and globally, particularly where such safety questions add burden to innovative research and development. This White Paper provides a summary of discussions by a cardiovascular committee cosponsored by the CSRC and the US Food and Drug Administration (FDA) that initially met in December 2014, and periodically convened at FDA's White Oak headquarters from March 2015 to September 2016. The committee focused on the lack of information concerning the cardiac effects of medications in the premature infant and neonate population compared with that of the older pediatric and adult populations. Key objectives of this paper are as follows: Provide an overview of human developmental cardiac electrophysiology, as well as the electrophysiology of premature infants and neonates; summarize all published juvenile animal models relevant to drug-induced cardiac toxicity; provide a consolidated source for all reported drug-induced cardiac toxicities by therapeutic area as a resource for neonatologists; present drugs that have a known cardiac effect in an adult population, but no reported toxicity in the premature infant and neonate populations; and summarize what is not currently known about drug-induced cardiac toxicity in premature infants and neonates, and what could be done to address this lack of knowledge. This paper presents the views of the authors and should not be construed to represent the views or policies of the FDA or Health Canada.
Collapse
|
19
|
Seron-Ferre M, Torres-Farfan C, Valenzuela FJ, Castillo-Galan S, Rojas A, Mendez N, Reynolds H, Valenzuela GJ, Llanos AJ. Deciphering the Function of the Blunt Circadian Rhythm of Melatonin in the Newborn Lamb: Impact on Adrenal and Heart. Endocrinology 2017; 158:2895-2905. [PMID: 28911179 DOI: 10.1210/en.2017-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Francisco J Valenzuela
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Sebastian Castillo-Galan
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Auristela Rojas
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Henry Reynolds
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, California 92324
| | - Anibal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
- International Center for Andean Studies, Universidad de Chile, Santiago 16038, Chile
| |
Collapse
|
20
|
Kassotis CD, Bromfield JJ, Klemp KC, Meng CX, Wolfe A, Zoeller RT, Balise VD, Isiguzo CJ, Tillitt DE, Nagel SC. Adverse Reproductive and Developmental Health Outcomes Following Prenatal Exposure to a Hydraulic Fracturing Chemical Mixture in Female C57Bl/6 Mice. Endocrinology 2016; 157:3469-81. [PMID: 27560547 PMCID: PMC5393361 DOI: 10.1210/en.2016-1242] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022]
Abstract
Unconventional oil and gas operations using hydraulic fracturing can contaminate surface and groundwater with endocrine-disrupting chemicals. We have previously shown that 23 of 24 commonly used hydraulic fracturing chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors in a human endometrial cancer cell reporter gene assay and that mixtures can behave synergistically, additively, or antagonistically on these receptors. In the current study, pregnant female C57Bl/6 dams were exposed to a mixture of 23 commonly used unconventional oil and gas chemicals at approximately 3, 30, 300, and 3000 μg/kg·d, flutamide at 50 mg/kg·d, or a 0.2% ethanol control vehicle via their drinking water from gestational day 11 through birth. This prenatal exposure to oil and gas operation chemicals suppressed pituitary hormone concentrations across experimental groups (prolactin, LH, FSH, and others), increased body weights, altered uterine and ovary weights, increased heart weights and collagen deposition, disrupted folliculogenesis, and other adverse health effects. This work suggests potential adverse developmental and reproductive health outcomes in humans and animals exposed to these oil and gas operation chemicals, with adverse outcomes observed even in the lowest dose group tested, equivalent to concentrations reported in drinking water sources. These endpoints suggest potential impacts on fertility, as previously observed in the male siblings, which require careful assessment in future studies.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - John J Bromfield
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Andrew Wolfe
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Animal Sciences (J.J.B.) and D. H. Barron Reproductive and Perinatal Biology Research Program (J.J.B.), University of Florida, Gainesville, Florida 32611; Department of Obstetrics, Gynecology and Women's Health (K.C.K., C.-X.M.,V.D.B., C.J.I., S.C.N.) and Division of Biological Sciences (V.D.B., S.C.N.), University of Missouri, Columbia, Missouri 65211; Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Biology (RTZ), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and United States Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
21
|
Chang HY, Tain YL. Postnatal dexamethasone-induced programmed hypertension is related to the regulation of melatonin and its receptors. Steroids 2016; 108:1-6. [PMID: 26921678 DOI: 10.1016/j.steroids.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 01/08/2023]
Abstract
Adulthood hypertension can be programmed by glucocorticoid exposure in early life. We found that maternal melatonin therapy prevents postnatal dexamethasone (DEX)-induced programmed hypertension. Melatonin acts through specific receptors, including MT1 and MT2 membrane receptors, and retinoid related orphan nuclear receptors of the RZR/ROR family. Thus we tested whether postnatal DEX-induced hypertension is related to changes of melatonin receptors in the kidney and heart, which was preserved by maternal melatonin therapy. Male neonates were assigned to four groups (n=6-8/group): control, DEX, control+melatonin (MEL), and DEX+MEL. Male rat pups were injected i.p. with DEX on d 1 (0.5 mg/kg BW), d 2 (0.3 mg/kg BW), and d 3 (0.1 mg/kg BW) after birth. Melatonin was administered in drinking water (0.01%) during the lactation period. We found DEX group developed hypertension at 16 weeks of age, which melatonin therapy prevented. Postnatal DEX treatment increased mRNA expression of MT1 and MT2, while decreased RORα and RZRβ in the kidney. These changes were prevented by melatonin therapy. Postnatal DEX decreased protein level of MT2 in the kidney, which was attenuated by melatonin therapy. Renal protein level of RORα was higher in DEX+MEL group compared to control and DEX group. Renal melatonin level was higher in the MEL and DEX+MEL groups compared to control. We concluded that melatonin therapy has long-term protection on postnatal DEX-induced programmed hypertension, which is associated with regulation on melatonin receptors in the kidney. Our findings would offer potential therapeutic approaches to prevent programmed hypertension in premature baby receiving glucocorticoids.
Collapse
Affiliation(s)
- Hsin-Yu Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Richardson RV, Batchen EJ, Denvir MA, Gray GA, Chapman KE. Cardiac GR and MR: From Development to Pathology. Trends Endocrinol Metab 2016; 27:35-43. [PMID: 26586027 DOI: 10.1016/j.tem.2015.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022]
Abstract
The efficacy of mineralocorticoid receptor (MR) antagonism in the treatment of certain patients with heart failure has highlighted the pivotal role of aldosterone and MR in heart disease. The glucocorticoid (GC) receptor (GR) is also expressed in heart, but the role of cardiac GR had received much less attention until recently. GR and MR are highly homologous in both structure and function, although not in cellular readout. Recent evidence in animal models has uncovered a tonic role for GC action via GR in cardiomyocytes in prevention of heart disease. Here, we review this evidence and the implications for a balance between GR and MR activation in the early life maturation of the heart and its subsequent health and disease.
Collapse
Affiliation(s)
- Rachel V Richardson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; Current address: Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Emma J Batchen
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Karen E Chapman
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
23
|
Kassotis CD, Klemp KC, Vu DC, Lin CH, Meng CX, Besch-Williford CL, Pinatti L, Zoeller RT, Drobnis EZ, Balise VD, Isiguzo CJ, Williams MA, Tillitt DE, Nagel SC. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology 2015; 156:4458-73. [PMID: 26465197 DOI: 10.1210/en.2015-1375] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Kara C Klemp
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Danh C Vu
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chung-Ho Lin
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chun-Xia Meng
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Cynthia L Besch-Williford
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Lisa Pinatti
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - R Thomas Zoeller
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Erma Z Drobnis
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Victoria D Balise
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Chiamaka J Isiguzo
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Michelle A Williams
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Donald E Tillitt
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| | - Susan C Nagel
- Nicholas School of the Environment (C.D.K.), Duke University, Durham, North Carolina 27708; Department of Obstetrics, Gynecology, and Women's Health (K.C.K., C.-X.M., E.Z.D., V.D.B., C.J.I., S.C.N.), Department of Forestry (D.C.V., C.-H.L.), Division of Biological Sciences (V.D.B., M.A.W., S.C.N.), University of Missouri, Columbia, Missouri 65211; IDEXX RADIL Pathology Services (C.L.B.-W.), Columbia, Missouri 65201; Department of Biology (L.P., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; and US Geological Survey (D.E.T.), Columbia Environmental Research Center, Columbia, Missouri 65201
| |
Collapse
|
24
|
Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J Steroid Biochem Mol Biol 2015; 153:27-34. [PMID: 25804222 PMCID: PMC4568128 DOI: 10.1016/j.jsbmb.2015.03.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Heart failure is one of the leading causes of death in the Western world. Glucocorticoids are primary stress hormones that regulate a vast array of biological processes, and synthetic derivatives of these steroids have been mainstays in the clinic for the last half century. Abnormal levels of glucocorticoids are known to negatively impact the cardiovascular system; however, surprisingly little is known about the direct role of glucocorticoid signaling in the heart. The actions of glucocorticoids are mediated classically by the glucocorticoid receptor (GR). In certain cells, such as cardiomyocytes, glucocorticoid occupancy and activation of the mineralocorticoid receptor (MR) may also contribute to the observed response. Recently, there has been a surge of reports investigating the in vivo function of glucocorticoid signaling in the heart using transgenic mice that specifically target GR or MR in cardiomyocytes. Results from these studies suggest that GR signaling in cardiomyocytes is critical for the normal development and function of the heart. In contrast, MR signaling in cardiomyocytes participates in the development and progression of cardiac disease. In the following review, we discuss these genetic mouse models and the new insights they are providing into the direct role cardiomyocyte glucocorticoid signaling plays in heart physiology and pathophysiology. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Robert H Oakley
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, MD F3-07, Research Triangle Park, North Carolina 27709, USA.
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, MD F3-07, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
25
|
Gay MS, Li Y, Xiong F, Lin T, Zhang L. Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications. PLoS One 2015; 10:e0125033. [PMID: 25923220 PMCID: PMC4414482 DOI: 10.1371/journal.pone.0125033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/19/2015] [Indexed: 01/07/2023] Open
Abstract
The potential adverse effect of synthetic glucocorticoid, dexamethasone therapy on the developing heart remains unknown. The present study investigated the effects of dexamethasone on cardiomyocyte proliferation and binucleation in the developing heart of newborn rats and evaluated DNA methylation as a potential mechanism. Dexamethasone was administered intraperitoneally in a three day tapered dose on postnatal day 1 (P1), 2 and 3 to rat pups in the absence or presence of a glucocorticoid receptor antagonist Ru486, given 30 minutes prior to dexamethasone. Cardiomyocytes from P4, P7 or P14 animals were analyzed for proliferation, binucleation and cell number. Dexamethasone treatment significantly increased the percentage of binucleated cardiomyocytes in the hearts of P4 pups, decreased myocyte proliferation in P4 and P7 pups, reduced cardiomyocyte number and increased the heart to body weight ratio in P14 pups. Ru486 abrogated the effects of dexamethasone. In addition, 5-aza-2'-deoxycytidine (5-AZA) blocked the effects of dexamethasone on binucleation in P4 animals and proliferation at P7, leading to recovered cardiomyocyte number in P14 hearts. 5-AZA alone promoted cardiomyocyte proliferation at P7 and resulted in a higher number of cardiomyocytes in P14 hearts. Dexamethasone significantly decreased cyclin D2, but not p27 expression in P4 hearts. 5-AZA inhibited global DNA methylation and blocked dexamethasone-mediated down-regulation of cyclin D2 in the heart of P4 pups. The findings suggest that dexamethasone acting on glucocorticoid receptors inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via increased DNA methylation in a gene specific manner.
Collapse
Affiliation(s)
- Maresha S. Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
| | - Yong Li
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
| | - Thant Lin
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, 92350, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
- * E-mail:
| |
Collapse
|
26
|
Wu TH, Kuo HC, Lin IC, Chien SJ, Huang LT, Tain YL. Melatonin prevents neonatal dexamethasone induced programmed hypertension: histone deacetylase inhibition. J Steroid Biochem Mol Biol 2014; 144 Pt B:253-9. [PMID: 25090636 DOI: 10.1016/j.jsbmb.2014.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
Abstract
Adulthood hypertension can be programmed by corticosteroid exposure in early life. Oxidative stress, epigenetic regulation by histone deacetylases (HDACs), and alterations of renin-angiotensin system (RAS) are involved in the developmental programming of hypertension. We examined whether melatonin prevented neonatal dexamethasone (DEX)-induced programmed hypertension and how melatonin prevented these processes. We also examined whether HDAC inhibition by trichostatin A (TSA, a HDAC inhibitor) had similar effects. Male offspring were assigned to 5 groups (n=6/group): control, DEX, melatonin, DEX+melatonin, and DEX+TSA. Male rat pups were injected i.p. with DEX on day 1 (0.5mg/kg BW), day 2 (0.3mg/kg BW), and day 3 (0.1mg/kg BW) after birth. Melatonin was administered in drinking water at the dose of 0.01% during the lactation period. The DEX+TSA group received DEX and 0.5mg/kg TSA subcutaneous injection once daily for 1 week. All rats were killed at 16 weeks of age. Neonatal DEX exposure induced hypertension in male offspring at 16 weeks of age, which melatonin prevented. Neonatal DEX exposure decreased gene expression related to apoptosis, nephrogenesis, RAS, and sodium transporters. Yet DEX treatment increased protein levels of HDAC-1, -2, and -3 in the kidney. Melatonin therapy preserved the decreases of gene expression and decreased HDACs. Similarly, HDAC inhibition prevented DEX-induced programmed hypertension. In conclusion, melatonin therapy exerts a long-term protection against neonatal DEX-induced programmed hypertension. Its beneficial effects include alterations of RAS components and inhibition of class I HDACs. Given that the similar protective effects of melatonin and TSA, melatonin might inhibit HDACs to epigenetic regulation of hypertension-related genes to prevent programmed hypertension.
Collapse
Affiliation(s)
- Ting-Hsin Wu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan.
| | - Hsuan-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Shao-Ju Chien
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Department of Traditional Chinese Medicine, Chang Gung University, Linkow, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50:233-45. [PMID: 24024524 DOI: 10.1165/rcmb.2013-0014tr] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal chronic lung disease, also known as bronchopulmonary dysplasia (BPD), is the most common complication of premature birth, affecting up to 30% of very low birth weight infants. Improved medical care has allowed for the survival of the most premature infants and has significantly changed the pathology of BPD from a disease marked by severe lung injury to the "new" form characterized by alveolar hypoplasia and impaired vascular development. However, increased patient survival has led to a paucity of pathologic specimens available from infants with BPD. This, combined with the lack of a system to model alveolarization in vitro, has resulted in a great need for animal models that mimic key features of the disease. To this end, a number of animal models have been created by exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and inflammation and most recently by the genetic modification of mice. These animal studies have 1) allowed insight into the mechanisms that determine alveolar growth, 2) delineated factors central to the pathogenesis of neonatal chronic lung disease, and 3) informed the development of new therapies. In this review, we summarize the key findings and limitations of the most common animal models of BPD and discuss how knowledge obtained from these studies has informed clinical care. Future studies should aim to provide a more complete understanding of the pathways that preserve and repair alveolar growth during injury, which might be translated into novel strategies to treat lung diseases in infants and adults.
Collapse
Affiliation(s)
- Anne Hilgendorff
- 1 Department of Perinatology Grosshadern, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | |
Collapse
|
28
|
Paech C, Wolf N, Thome UH, Knüpfer M. Hypertrophic intraventricular flow obstruction after very-low-dose dexamethasone (Minidex) in preterm infants: case presentation and review of the literature. J Perinatol 2014; 34:244-6. [PMID: 24573211 DOI: 10.1038/jp.2013.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Abstract
The use of dexamethasone in preterm infants developing bronchopulmonary dysplasia has been proven to be effective. Hypertrophic cardiomyopathy is a frequently reported, although transient, side effect of high-dose dexamethasone administration. The recent introduction of very low dexamethasone dose, called 'Minidex', promised equal effectiveness compared to high-dose dexamethasone without relevant side effects. Our study presents two patients developing hypertrophic cardiomyopathy with intraventricular cardiac obstruction after administration of 'Minidex'. Marked cardiac side effects may occur even during very-low-dose dexamethasone treatment in preterm neonates. Betablocker and discontinuation of dexamethasone seem to allow spontaneous reversal of myocardial hypertrophy and obstruction. After all, systematic surveys of the incidence of cardiac complications in a larger population of preterm infants treated with very low doses of dexamethasone are needed.
Collapse
Affiliation(s)
- C Paech
- Department of Pediatric Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - N Wolf
- Department of Neonatology, University of Leipzig, Leipzig, Germany
| | - U H Thome
- Department of Neonatology, University of Leipzig, Leipzig, Germany
| | - M Knüpfer
- Department of Neonatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Tijsseling D, Camm EJ, Richter HG, Herrera EA, Kane AD, Niu Y, Cross CM, de Vries WB, Derks JB, Giussani DA. Statins prevent adverse effects of postnatal glucocorticoid therapy on the developing brain in rats. Pediatr Res 2013; 74:639-45. [PMID: 24002330 DOI: 10.1038/pr.2013.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/10/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Postnatal glucocorticoid therapy in the treatment of chronic lung disease benefits lung function, however it adversely affects brain development. We hypothesized that combined postnatal glucocorticoid and statin therapy diminishes adverse effects of glucocorticoids on the developing brain. METHODS On postnatal days (P) 1-3, one male pup per litter received i.p. injections of saline control (C), n = 13) or dexamethasone (0.5, 0.3, 0.1 µg/g; D, n = 13), ± pravastatin (10 mg/kg i.p.; CP, n = 12; DP, n = 15). Statins or saline continued from P4-6. At P21, brains were perfusion fixed for histological and stereological analyses. RESULTS Relative to controls, dexamethasone reduced total (837 ± 23 vs. 723 ± 37), cortical (378 ± 12 vs. 329 ± 15), and deep gray matter (329 ± 12 vs. 284 ± 15) volume (mm(3)), cortical neuronal number (23 ± 1 vs. 19 ± 1 × 10(6)), and hippocampal neuronal soma volume (CA1: 1,206 ± 32 vs. 999 ± 32; dentate gyrus: 679 ± 28 vs. 542 ± 24 µm(3); all P < 0.05). Dexamethasone increased the glial fibrillary acidic protein-positive astrocyte density in the white matter (96 ± 2 vs. 110 ± 4/0.1 mm(2)); P < 0.05. These effects no longer occurred in brains from pups treated with combined dexamethasone and pravastatin. Pravastatin alone had no effect on these variables. CONCLUSION Concomitant dexamethasone with statins in premature infants may be safer for the developing brain than dexamethasone alone in the treatment of chronic lung disease.
Collapse
Affiliation(s)
- Deodata Tijsseling
- Department of Perinatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily J Camm
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Hans G Richter
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Emilio A Herrera
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Willem B de Vries
- Department of Perinatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan B Derks
- Department of Perinatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Niu Y, Herrera EA, Evans RD, Giussani DA. Antioxidant treatment improves neonatal survival and prevents impaired cardiac function at adulthood following neonatal glucocorticoid therapy. J Physiol 2013; 591:5083-93. [PMID: 23940378 DOI: 10.1113/jphysiol.2013.258210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoids are widely used to treat chronic lung disease in premature infants but their longer-term adverse effects on the cardiovascular system raise concerns. We reported that neonatal dexamethasone treatment in rats induced in the short term molecular indices of cardiac oxidative stress and cardiovascular tissue remodelling at weaning, and that neonatal combined antioxidant and dexamethasone treatment was protective at this time. In this study, we investigated whether such effects of neonatal dexamethasone have adverse consequences for NO bioavailability and cardiovascular function at adulthood, and whether neonatal combined antioxidant and dexamethasone treatment is protective in the adult. Newborn rat pups received daily i.p. injections of a human-relevant tapering dose of dexamethasone (D; n = 8; 0.5, 0.3, 0.1 μg g(-1)) or D with vitamins C and E (DCE; n = 8; 200 and 100 mg kg(-1), respectively) on postnatal days 1-3 (P1-3); vitamins were continued from P4 to P6. Controls received equal volumes of vehicle from P1 to P6 (C; n = 8). A fourth group received vitamins alone (CCE; n = 8). At P100, plasma NO metabolites (NOx) was measured and isolated hearts were assessed under both Working and Langendorff preparations. Relative to controls, neonatal dexamethasone therapy increased mortality by 18% (P < 0.05). Surviving D pups at adulthood had lower plasma NOx concentrations (10.6 ± 0.8 vs. 28.0 ± 1.5 μM), an increased relative left ventricular (LV) mass (70 ± 2 vs. 63 ± 1%), enhanced LV end-diastolic pressure (14 ± 2 vs. 8 ± 1 mmHg) and these hearts failed to adapt output with increased preload (cardiac output: 2.9 ± 2.0 vs. 10.6 ± 1.2 ml min(-1)) or afterload (cardiac output: -5.3 ± 2.0 vs.1.4 ± 1.2 ml min(-1)); all P < 0.05. Combined neonatal dexamethasone with antioxidant vitamins improved postnatal survival, restored plasma NOx and protected against cardiac dysfunction at adulthood. In conclusion, neonatal dexamethasone therapy promotes cardiac dysfunction at adulthood. Combined neonatal treatment with antioxidant vitamins is an effective intervention.
Collapse
Affiliation(s)
- Youguo Niu
- D. A. Giussani: Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
31
|
Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA. Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology 2012; 153:5346-60. [PMID: 22989630 PMCID: PMC3473206 DOI: 10.1210/en.2012-1563] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucocorticoids and their synthetic derivatives are known to alter cardiac function in vivo; however, the nature of these effects and whether glucocorticoids act directly on cardiomyocytes are poorly understood. To explore the role of glucocorticoid signaling in the heart, we used rat embryonic H9C2 cardiomyocytes and primary cardiomyocytes as model systems. Dexamethasone (100 nm) treatment of cardiomyocytes caused a significant increase in cell size and up-regulated the expression of cardiac hypertrophic markers, including atrial natriuretic factor, β-myosin heavy chain, and skeletal muscle α-actin. In contrast, serum deprivation and TNFα exposure triggered cardiomyocyte apoptosis, and these apoptotic effects were inhibited by dexamethasone. Both the hypertrophic and anti-apoptotic actions of glucocorticoids were abolished by the glucocorticoid receptor (GR) antagonist RU486 and by short hairpin RNA-mediated GR depletion. Blocking the activity of the mineralocorticoid receptor had no effect on these glucocorticoid-dependent cardiomyocyte responses. Aldosterone (1 μm) activation of GR also promoted cardiomyocyte hypertrophy and cell survival. To elucidate the mechanism of the dual glucocorticoid actions, a genome-wide microarray was performed on H9C2 cardiomyocytes treated with vehicle or dexamethasone in the absence or presence of serum. Serum dramatically influenced the transcriptome regulated by GR, revealing potential glucocorticoid signaling mediators in both cardiomyocyte hypertrophy and apoptosis. These studies reveal a direct and dynamic role for glucocorticoids and GR signaling in the modulation of cardiomyocyte function.
Collapse
Affiliation(s)
- Rongqin Ren
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
32
|
Camm EJ, Tijsseling D, Richter HG, Adler A, Hansell JA, Derks JB, Cross CM, Giussani DA. Oxidative stress in the developing brain: effects of postnatal glucocorticoid therapy and antioxidants in the rat. PLoS One 2011; 6:e21142. [PMID: 21698270 PMCID: PMC3115992 DOI: 10.1371/journal.pone.0021142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/20/2011] [Indexed: 02/07/2023] Open
Abstract
In premature infants, glucocorticoids ameliorate chronic lung disease, but have adverse effects on long-term neurological function. Glucocorticoid excess promotes free radical overproduction. We hypothesised that the adverse effects of postnatal glucocorticoid therapy on the developing brain are secondary to oxidative stress and that antioxidant treatment would diminish unwanted effects. Male rat pups received a clinically-relevant tapering course of dexamethasone (DEX; 0.5, 0.3, and 0.1 mg.kg−1.day−1), with or without antioxidant vitamins C and E (DEXCE; 200 mg.kg−1.day−1 and 100 mg.kg−1.day−1, respectively), on postnatal days 1–6 (P1–6). Controls received saline or saline with vitamins. At weaning, relative to controls, DEX decreased total brain volume (704.4±34.7 mm3 vs. 564.0±20.0 mm3), the soma volume of neurons in the CA1 (1172.6±30.4 µm3 vs. 1002.4±11.8 µm3) and in the dentate gyrus (525.9±27.2 µm3 vs. 421.5±24.6 µm3) of the hippocampus, and induced oxidative stress in the cortex (protein expression: heat shock protein 70 [Hsp70]: +68%; 4-hydroxynonenal [4-HNE]: +118% and nitrotyrosine [NT]: +20%). Dexamethasone in combination with vitamins resulted in improvements in total brain volume (637.5±43.1 mm3), and soma volume of neurons in the CA1 (1157.5±42.4 µm3) and the dentate gyrus (536.1±27.2 µm3). Hsp70 protein expression was unaltered in the cortex (+9%), however, 4-HNE (+95%) and NT (+24%) protein expression remained upregulated. Treatment of neonates with vitamins alone induced oxidative stress in the cortex (Hsp70: +67%; 4-HNE: +73%; NT: +22%) and in the hippocampus (NT: +35%). Combined glucocorticoid and antioxidant therapy in premature infants may be safer for the developing brain than glucocorticoids alone in the treatment of chronic lung disease. However, antioxidant therapy in healthy offspring is not recommended.
Collapse
Affiliation(s)
- Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Deodata Tijsseling
- Department of Obstetrics, University Medical Center, Utrecht, The Netherlands
| | - Hans G. Richter
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexandra Adler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy A. Hansell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jan B. Derks
- Department of Obstetrics, University Medical Center, Utrecht, The Netherlands
| | - Christine M. Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Bruder ED, Kamer KJ, Guenther MA, Raff H. Adrenocorticotropic hormone and corticosterone responses to acute hypoxia in the neonatal rat: effects of body temperature maintenance. Am J Physiol Regul Integr Comp Physiol 2011; 300:R708-15. [DOI: 10.1152/ajpregu.00708.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The corticosterone response to acute hypoxia in neonatal rats develops in the 1st wk of life, with a shift from ACTH independence to ACTH dependence. Acute hypoxia also leads to hypothermia, which may be protective. There is little information about the endocrine effects of body temperature maintenance during periods of neonatal hypoxia. We hypothesized that prevention of hypothermia during neonatal hypoxia would augment the adrenocortical stress response. Rat pups separated from their dams were studied at postnatal days 2 and 8 ( PD2 and PD8). In one group of pups, body temperature was allowed to spontaneously decrease during a 30-min prehypoxia period. Pups were then exposed to 8% O2 for 3 h and allowed to become spontaneously hypothermic or externally warmed (via servo-controlled heat) to maintain isothermia. In another group, external warming was used to maintain isothermia during the prehypoxia period, and then hypoxia with or without isothermia was applied. Plasma ACTH and corticosterone and mRNA expression of genes for upstream proteins involved in the steroidogenic pathway were measured. Maintenance of isothermia during the prehypoxia period increased baseline plasma ACTH at both ages. Hypothermic hypoxia caused an increase in plasma corticosterone; this response was augmented by isothermia at PD2, when the response was ACTH-independent, and at PD8, when the response was ACTH-dependent. In PD8 rats, isothermia also augmented the plasma ACTH response to hypoxia. We conclude that maintenance of isothermia augments the adrenocortical response to acute hypoxia in the neonate. Prevention of hypothermia may increase the stress response during neonatal hypoxia, becoming more pronounced with increased age.
Collapse
Affiliation(s)
- Eric D. Bruder
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, and
| | - Kimberli J. Kamer
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, and
| | | | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, and
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
34
|
Herrera EA, Verkerk MM, Derks JB, Giussani DA. Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats. PLoS One 2010; 5:e9250. [PMID: 20174656 PMCID: PMC2822858 DOI: 10.1371/journal.pone.0009250] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/18/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects. METHODOLOGY/PRINCIPAL FINDINGS Male rat pups received a course of dexamethasone (Dex), or Dex with vitamins C and E (DexCE), on postnatal days 1-6 (P1-6). Controls received vehicle (Ctrl) or vehicle with vitamins (CtrlCE). At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05). Constrictor responses to phenylephrine (PE) and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05); effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05). Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05); however, this effect was not restored in DexCE (68.3+/-8.3, AUC). Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax) and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05). CONCLUSIONS/SIGNIFICANCE Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function.
Collapse
Affiliation(s)
- Emilio A. Herrera
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Misha M. Verkerk
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jan B. Derks
- Department of Perinatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dino A. Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Yoshikawa N, Nagasaki M, Sano M, Tokudome S, Ueno K, Shimizu N, Imoto S, Miyano S, Suematsu M, Fukuda K, Morimoto C, Tanaka H. Ligand-based gene expression profiling reveals novel roles of glucocorticoid receptor in cardiac metabolism. Am J Physiol Endocrinol Metab 2009; 296:E1363-73. [PMID: 19293335 DOI: 10.1152/ajpendo.90767.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent studies have documented various roles of adrenal corticosteroid signaling in cardiac physiology and pathophysiology. It is known that glucocorticoids and aldosterone are able to bind glucocorticoid receptor (GR) and mineralocorticoid receptor, and these ligand-receptor interactions are redundant. It, therefore, has been impossible to delineate how these nuclear receptors couple with corticosteroid ligands and differentially regulate gene expression for operation of their distinct functions in the heart. Here, to particularly define the role of GR in cardiac muscle cells, we applied a ligand-based approach involving the GR-specific agonist cortivazol (CVZ) and the GR antagonist RU-486 and performed microarray analysis using rat neonatal cardiomyocytes. We indicated that glucocorticoids appear to be a major determinant of GR-mediated gene expression when compared with aldosterone. Moreover, expression profiles of these genes highlighted numerous roles of glucocorticoids in various aspects of cardiac physiology. At first, we identified that glucocorticoids, via GR, induce mRNA and protein expression of a transcription factor Kruppel-like factor 15 and its downstream target genes, including branched-chain aminotransferase 2, a key enzyme for amino acid catabolism in the muscle. CVZ treatment or overexpression of KLF15 decreased cellular branched-chain amino acid concentrations and introduction of small-interfering RNA against KLF15 cancelled these CVZ actions in cardiomyocytes. Second, glucocorticoid-GR signaling promoted gene expression of the enzymes involved in the prostaglandin biosynthesis, including cyclooxygenase-2 and phospholipase A2 in cardiomyocytes. Together, we may conclude that GR signaling should have distinct roles for maintenance of cardiac function, for example, in amino acid catabolism and prostaglandin biosynthesis in the heart.
Collapse
Affiliation(s)
- Noritada Yoshikawa
- Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, Univ. of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rademaker KJ, de Vries WB. Long-term effects of neonatal hydrocortisone treatment for chronic lung disease on the developing brain and heart. Semin Fetal Neonatal Med 2009; 14:171-7. [PMID: 19101215 DOI: 10.1016/j.siny.2008.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite modern perinatal intensive care techniques, chronic lung disease remains a problem in preterm-born infants. The most commonly and almost exclusively prescribed drug to treat this disorder is dexamethasone. Corticosteroids improve short-term respiratory function; however, many side-effects have been reported and the adverse long-term effects of dexamethasone on neurodevelopment are particularly alarming. Hydrocortisone could be a suitable alternative for dexamethasone, if equally effective with fewer side-effects. This review evaluates the current literature on neonatal hydrocortisone treatment for chronic lung disease with regards to long-term neurodevelopmental outcome and cardiovascular effects. The neurodevelopmental studies do not show any adverse effects of hydrocortisone on neurocognitive and motor outcome, nor on incidence of brain abnormalities on magnetic resonance imaging or on long-lasting programming effects on the hypothalamus-pituitary-adrenal axis. At school age, cardiovascular stress response was the same in hydrocortisone-treated children compared with a reference group. Hydrocortisone seems a safe alternative to dexamethasone, but more double-blind randomised studies are needed.
Collapse
Affiliation(s)
- Karin J Rademaker
- Department of Neonatology, KE 04.123.1, University Medical Center Utrecht/Wilhelmina Children's Hospital, 3508 AB Utrecht, University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
37
|
Hadoke PWF, Iqbal J, Walker BR. Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease. Br J Pharmacol 2009; 156:689-712. [PMID: 19239478 DOI: 10.1111/j.1476-5381.2008.00047.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The therapeutic potential for manipulation of glucocorticoid metabolism in cardiovascular disease was revolutionized by the recognition that access of glucocorticoids to their receptors is regulated in a tissue-specific manner by the isozymes of 11beta-hydroxysteroid dehydrogenase. Selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 have been shown recently to ameliorate cardiovascular risk factors and inhibit the development of atherosclerosis. This article addresses the possibility that inhibition of 11beta-hydroxsteroid dehydrogenase type 1 activity in cells of the cardiovascular system contributes to this beneficial action. The link between glucocorticoids and cardiovascular disease is complex as glucocorticoid excess is linked with increased cardiovascular events but glucocorticoid administration can reduce atherogenesis and restenosis in animal models. There is considerable evidence that glucocorticoids can interact directly with cells of the cardiovascular system to alter their function and structure and the inflammatory response to injury. These actions may be regulated by glucocorticoid and/or mineralocorticoid receptors but are also dependent on the 11beta-hydroxysteroid dehydrogenases which may be expressed in cardiac, vascular (endothelial, smooth muscle) and inflammatory (macrophages, neutrophils) cells. The activity of 11beta-hydroxysteroid dehydrogenases in these cells is dependent upon differentiation state, the action of pro-inflammaotory cytokines and the influence of endogenous inhibitors (oxysterols, bile acids). Further investigations are required to clarify the link between glucocorticoid excess and cardiovascular events and to determine the mechanism through which glucocorticoid treatment inhibits atherosclerosis/restenosis. This will provide greater insights into the potential benefit of selective 11beta-hydroxysteroid dehydrogenase inhibitors in treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Patrick W F Hadoke
- Centre for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
| | | | | |
Collapse
|
38
|
Porrello ER, Widdop RE, Delbridge LMD. Early origins of cardiac hypertrophy: does cardiomyocyte attrition programme for pathological 'catch-up' growth of the heart? Clin Exp Pharmacol Physiol 2008; 35:1358-64. [PMID: 18759854 DOI: 10.1111/j.1440-1681.2008.05036.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Epidemiological and experimental evidence suggests that adult development of cardiovascular disease is influenced by events of prenatal and early postnatal life. Cardiac hypertrophy is recognized as an important predictor of cardiovascular morbidity and mortality, but the developmental origins of this condition are not well understood. 2. In the heart, a switch from hyperplastic to hypertrophic cellular growth occurs during late prenatal or early postnatal life. Postnatal growth of the heart is almost entirely reliant on hypertrophy of individual cardiomyocytes, and damage to heart muscle in adulthood is typically not reparable by cell replacement. Therefore, a reduced number of cardiomyocytes may render the heart more vulnerable in situations where an increased workload is required. 3. A number of different animal models have been used to study fetal programming of adult diseases, including nutritional, hypoxic, maternal/neonatal endocrine stress and genetic models. Although studies investigating the cellular basis of myocardial disease in growth-restricted models are limited, a reduction in cardiomyocyte number through either reduced cellular proliferation or increased apoptosis appears to be a central feature. 4. The mechanisms responsible for the programming of adult cardiovascular disease are poorly understood. We hypothesize that cardiac hypertrophy can have a developmental origin in excess cardiomyocyte attrition during a critical perinatal growth window. Findings that have directly assessed the impact of fetal growth restriction on the myocardium are considered and cellular and molecular mechanisms involved in the potential pathological 'catch-up' growth of the heart during later maturation are identified.
Collapse
Affiliation(s)
- Enzo R Porrello
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
39
|
Kilic I, Dagdeviren E, Kaya E. Effects of neonatal dexamethasone or methylprednisolone on rat growth and neurodevelopment. Pediatr Int 2008; 50:489-94. [PMID: 19143972 DOI: 10.1111/j.1442-200x.2008.02588.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Clinical studies have demonstrated that premature infants receiving long-term dexamethasone therapy have reduced linear growth, decreased weight gain, and smaller head circumferences. The purpose of the present study was to investigate the effects of the same equivalent doses for anti-inflammatory potency of neonatal dexamethasone and methylprednisolone on rat growth and neurodevelopment. METHODS The pups were randomly separated into three treatment groups on postnatal day (PD) 3. At postnatal 3-5 days, tapering doses of corticosteroids or sterile saline were administered subcutaneously. Group 1 was the dexamethasone group (n = 12; PD 3, 0.5 mg/kg; PD 4, 0.25 mg/kg; PD 5, 0.125 mg/kg; PD 6, 0.05 mg/kg s.c.); group 2, methylprednisolone group (n = 12; PD 3, 2.6 mg/kg; PD 4, 1.3 mg/kg; PD 5, 0.650 mg/kg; PD 6, 0.325 mg/kg; group 3, control group (n = 12; normal saline injected). Weight was recorded on PD 3-6, 8, 14, 22, length was recorded on PD 3, 7, 14, 21 for each group. Neurological responses and physical development were tested on PD 7, 14, 21. RESULTS On PD 4-6, 8, 14, 22 the weight in the dexamethasone and methylprednisolone groups was lower than in the control group, but the weight in the dexamethasone group was the lowest (P < 0.05). The length in the dexamethasone group was significantly shorter than in the methylprednisolone group on PD 14 and 21. Dexamethasone-treated animals had a reduced total neurological score compared with the methylprednisolone and control groups on PD 7, 14, 21. Although methylprednisolone-treated animals had lower total neurological score than that of the control group on PD 7 and PD 14 (P < 0.05), total neurological scores were not different in the methylprednisolone and control groups on PD 21. CONCLUSIONS Postnatal methylprednisolone treatment might be safer than dexamethasone treatment in newborns.
Collapse
Affiliation(s)
- Ilknur Kilic
- Department of Pediatrics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | | | | |
Collapse
|
40
|
Giozzet VAG, Rafacho A, Boschero AC, Carneiro EM, Bosqueiro JR. Dexamethasone treatment in vivo counteracts the functional pancreatic islet alterations caused by malnourishment in rats. Metabolism 2008; 57:617-24. [PMID: 18442623 DOI: 10.1016/j.metabol.2007.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 12/05/2007] [Indexed: 11/24/2022]
Abstract
The effects of dexamethasone (Dex) on the metabolic parameters, peripheral insulin, and glucose sensitivity in vivo as well as on islet function ex vivo of rats submitted to low-protein diet were analyzed. Dexamethasone (1.0 mg/kg body weight) was administered intraperitoneally daily to adult Wistar rats fed on a normal-protein diet or low-protein diet (LPD) for 5 days, whereas control rats fed on a normal-protein diet or low-protein diet (LP) received saline alone. At the end of the experimental period, LP rats showed a significant reduction in serum insulin, total serum protein, and serum albumin levels compared with rats fed on a normal-protein diet (P<.05). All these parameters tended to be normalized in LPD rats (P<.05); furthermore, these rats exhibited increased serum glucose and nonesterified fatty acid levels compared with LP rats (P<.05). Rats submitted to the low-protein diet demonstrated normal peripheral glucose sensitivity and improved peripheral insulin sensitivity, which was reversed by Dex treatment. A reduced area of islets from LP rats was partially recovered in LPD rats (P<.05). At 16.7 mmol/L glucose, insulin secretion from LPD islets was also partially recovered and was significantly higher than that from LP islets (P<.05). In conclusion, induction of insulin resistance by Dex treatment reverses most of the metabolic alterations in rats submitted to a low-protein diet. In addition, several islet functions were also improved by Dex, confirming the plasticity of pancreatic islets in adverse conditions.
Collapse
Affiliation(s)
- Vanessa A G Giozzet
- Department of Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
Noorlander C, Visser G, Ramakers G, Nikkels P, de Graan P. Prenatal corticosteroid exposure affects hippocampal plasticity and reduces lifespan. Dev Neurobiol 2008; 68:237-46. [DOI: 10.1002/dneu.20583] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Bal MP, de Vries WB, van Oosterhout MFM, Baan J, van der Wall EE, van Bel F, Steendijk P. Long-term cardiovascular effects of neonatal dexamethasone treatment: hemodynamic follow-up by left ventricular pressure-volume loops in rats. J Appl Physiol (1985) 2007; 104:446-50. [PMID: 18079273 DOI: 10.1152/japplphysiol.00951.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dexamethasone is clinically applied in preterm infants to treat or prevent chronic lung disease. However, concern has emerged about adverse side effects. The cardiovascular short-term side effects of neonatal dexamethasone treatment are well documented, but long-term consequences are unknown. Previous studies showed suppressed mitosis during dexamethasone treatment, leading to reduced ventricular weight, depressed systolic function, and compensatory dilatation in prepubertal rats. In addition, recent data indicated a reduced life expectancy. Therefore, we investigated the long-term effects of neonatal dexamethasone treatment on cardiovascular function. Neonatal rats were treated with dexamethasone or received saline. Cardiac function was determined in 8-, 50-, and 80-wk-old animals, representing young adult, middle-aged, and elderly stages. A pressure-conductance catheter was introduced into the left ventricle to measure pressure-volume loops. Subsequently, the hearts were collected for histological examination. Our results showed reduced ventricular and body weights in dexamethasone-treated rats at 8 and 80 wk, but not at 50 wk. Cardiac output and diastolic function were unchanged, but systolic function was depressed at 50 and 80 wk, evidenced by reduced ejection fractions and rightward shifts of the end-systolic pressure-volume relationships. We concluded that previously demonstrated early adverse effects of neonatal dexamethasone treatment are transient but that reduced ventricular weight and systolic dysfunction become manifest again in elderly rats. Presumably, cellular hypertrophy initially compensates for the dexamethasone treatment-induced lower number of cardiomyocytes, but this mechanism falls short at a later stage, leading to systolic dysfunction. If applicable to humans, cardiac screening of a relatively large patient group to enable secondary prevention may be indicated.
Collapse
Affiliation(s)
- Miriam P Bal
- Department of Cardiology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Qi D, Rodrigues B. Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab 2007; 292:E654-67. [PMID: 17077342 DOI: 10.1152/ajpendo.00453.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulin resistance is viewed as an insufficiency in insulin action, with glucocorticoids being recognized to play a key role in its pathogenesis. With insulin resistance, metabolism in multiple organ systems such as skeletal muscle, liver, and adipose tissue is altered. These metabolic alterations are widely believed to be important factors in the morbidity and mortality of cardiovascular disease. More importantly, clinical and experimental studies have established that metabolic abnormalities in the heart per se also play a crucial role in the development of heart failure. Following glucocorticoids, glucose utilization is compromised in the heart. This attenuated glucose metabolism is associated with altered fatty acid supply, composition, and utilization. In the heart, elevated fatty acid use has been implicated in a number of metabolic, morphological, and mechanical changes and, more recently, in "lipotoxicity". In the present article, we review the action of glucocorticoids, their role in insulin resistance, and their influence in modulating peripheral and cardiac metabolism and heart disease.
Collapse
Affiliation(s)
- Dake Qi
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
44
|
Abstract
The most common reason for heart failure in children is volume overload secondary to a left-to-right shunt. Therefore, an accurate diagnosis with identification of possible surgical or interventional reactions should be the first priority. Medical therapy is mainly based on diuretics, angiotensin-converting enzyme inhibitors, cardiac glycosides and beta-blockers. There are few prospective trials in pediatric cardiology, but the available data reach a similar conclusion to that of adults with heart failure. Diuretics are an important tool in patients with fluid retention, and angiotensin-converting enzyme inhibitors are helpful in patients with volume overload of the ventricles. Cardiac glycosides are still in use, but there is a trend toward primary use of diuretics. Angiotensin-converting enzyme inhibitors and beta-blockers have been used successfully in the treatment of heart failure in children, but there are limited data on its efficacy.
Collapse
|
45
|
Mildenhall LFJ, Battin MR, Morton SMB, Bevan C, Kuschel CA, Harding JE. Exposure to repeat doses of antenatal glucocorticoids is associated with altered cardiovascular status after birth. Arch Dis Child Fetal Neonatal Ed 2006; 91:F56-60. [PMID: 16174665 PMCID: PMC2672653 DOI: 10.1136/adc.2004.065300] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2005] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine if exposure to more than one course of antenatal glucocorticoids is associated with changes in infant blood pressure and myocardial wall thickness in the first month after birth. DESIGN Prospective cohort study. SETTING Tertiary neonatal intensive care unit. PARTICIPANTS Mothers who were eligible for but declined to enter a randomised trial of repeated doses of antenatal glucocorticoids (ACTORDS)-that is, who had a singleton, twin, or triplet pregnancy at <32 weeks gestation, had received an initial course of glucocorticoids seven or more days previously, and were considered to be at continued risk of preterm birth. MAIN OUTCOME MEASURES Blood pressure daily for the first week then weekly until 4 weeks of age. End diastolic interventricular septal and left ventricular posterior wall (EDIVS and EDLVPW) thickness at 48-72 hours after birth. RESULTS Thirty seven women were enrolled and delivered 50 infants. Thirty mothers (39 infants) were exposed to one course of glucocorticoids, and seven mothers (11 infants) to more than one course. Blood pressures were higher in the first week after birth in infants exposed to multiple courses of glucocorticoids, and in infants with a latency between last exposure and delivery of less than seven days. Systolic blood pressure on day 1 was >2SD above published normal ranges in 67% of babies exposed to multiple courses and 24% of babies exposed to a single course of glucocorticoids (p = 0.04). There was no difference between groups in thickness of the EDIVS or EDLVPW. However, 44/50 (88%) babies had EDIVS and 49/50 (98%) babies had EDLVPW thickness >2 SD above the expected mean for birth weight and gestation. EDIVS but not EDLVPW thickness increased with increasing latency (mean 0.02 mm/day, p = 0.03). CONCLUSION Future randomised trials should assess the long term effects of exposure to antenatal glucocorticoids, particularly multiple courses, on the cardiovascular status of the infant.
Collapse
|
46
|
de Vries WB, Bal MP, Homoet-van der Kraak P, Kamphuis PJGH, van der Leij FR, Baan J, Steendijk P, de Weger RA, van Bel F, van Oosterhout MFM. Suppression of physiological cardiomyocyte proliferation in the rat pup after neonatal glucocorticosteroid treatment. Basic Res Cardiol 2005; 101:36-42. [PMID: 16283594 DOI: 10.1007/s00395-005-0557-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/01/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Glucocorticosteroids (mostly dexamethasone) are widely used to prevent chronic lung disease in premature infants. Neonatal rats treated with dexamethasone have been shown to have reduced cardiac mass and cardiomyocyte hypertrophy, suggesting a lower number of cardiomyocytes at adult age, and a severely reduced life expectancy. In the present study we tested the hypothesis that a lower number of cardiomyocytes in later life is caused by a reduced cardiomyocyte proliferation and/or by early cell death (apoptosis). METHODS AND RESULTS Rat pups received dexamethasone or saline control on day 1, 2 and 3 and were sacrificed at day 0, 2, 4, 7 and 21. The cardiomyocytes of dexamethasone treated pups showed a reduced proliferation as indicated by a lower mitotic index and reduced number of Ki-67 positive cardiomyocytes on day 2 and 4 as compared to day 0 and day 7 and also as compared to the age-matched saline pups. On day 7 and day 21 the mitotic index was not different between groups. From day 2 onward up to day 21 dexamethasone treated pups showed a lower number of cardiomyocytes. The cardiomyocytes showed no signs (<<1%) of apoptosis (Caspase-3 and cleaved-PARP) in any group. CONCLUSION The temporary suppression of cardiomyocyte hyperplasia found in dexamethasone treated pups eventually leads to a reduced number and hypertrophy of cardiomyocytes during adult life.
Collapse
Affiliation(s)
- Willem B de Vries
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital Roomnr. KE.04.123.1, 85090, 3508 AB, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bruder ED, Lee PC, Raff H. Dexamethasone treatment in the newborn rat: fatty acid profiling of lung, brain, and serum lipids. J Appl Physiol (1985) 2004; 98:981-90. [PMID: 15542569 DOI: 10.1152/japplphysiol.01029.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dexamethasone is used as treatment for a variety of neonatal syndromes, including respiratory distress. The present study utilized the power of comprehensive lipid profiling to characterize changes in lipid metabolism in the neonatal lung and brain associated with dexamethasone treatment and also determined the interaction of dexamethasone with hypoxia. A 4-day tapering-dose regimen of dexamethasone was administered at 0800 on postnatal days 3 (0.5 mg/kg), 4 (0.25 mg/kg), 5 (0.125 mg/kg), and 6 (0.05 mg/kg). A subgroup of rats was exposed to hypoxia from birth to 7 days of age. Dexamethasone treatment elicited numerous specific changes in the lipid profile of the normoxic lung, such as increased concentrations of saturated fatty acids in the phosphatidylcholine and cholesterol ester classes. These increases were more profound in the lungs of hypoxic pups. Additional increases in cardiolipin concentrations were also measured in lungs of hypoxic pups treated with dexamethasone. We measured widespread increases in serum lipids after dexamethasone treatment, but the effects were not equivalent between normoxic and hypoxic pups. Dexamethasone treatment in hypoxic pups increased 20:4n6 and 22:6n3 concentrations in the free fatty acid class of the brain. Our results suggest that dexamethasone treatment in neonates elicits specific changes in lung lipid metabolism associated with surfactant production, independent of changes in serum lipids. These findings illustrate the benefits of dexamethasone on lung function but also raise the potential for negative effects due to hyperlipidemia and subtle changes in brain lipid metabolism.
Collapse
Affiliation(s)
- Eric D Bruder
- Endocrinology Research Laboratory, St. Luke's Medical Center, Milwaukee, WI 53215, USA
| | | | | |
Collapse
|
48
|
Bruder ED, Lee PC, Raff H. Metabolic consequences of hypoxia from birth and dexamethasone treatment in the neonatal rat: comprehensive hepatic lipid and fatty acid profiling. Endocrinology 2004; 145:5364-72. [PMID: 15271879 DOI: 10.1210/en.2004-0582] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal hypoxia is a common condition resulting from pulmonary and/or cardiac dysfunction. Dexamethasone therapy is a common treatment for many causes of neonatal distress, including hypoxia. The present study examined the effects of dexamethasone treatment on both normoxic and hypoxic neonatal rats. We performed comprehensive hepatic fatty acid/lipid profiling and evaluated changes in pertinent plasma hormones and lipids and a functional hepatic correlate, i.e. hepatic lipase activity. Rats were exposed to hypoxia from birth to 7 d of age. A 4-d tapering dose regimen of dexamethasone was administered on: postnatal day (PD)3 (0.5 mg/kg), PD4 (0.25 mg/kg), PD5 (0.125 mg/kg), and PD6 (0.05 mg/kg). The most significant finding was that dexamethasone attenuated nearly all hypoxia-induced changes in hepatic lipid profiles. Hypoxia increased the concentration of hepatic triacylglyceride and free fatty acids and, more specifically, increased a number of fatty acid metabolites within these lipid classes. Administration of dexamethasone blocked these increases. Hypoxia alone increased the plasma concentration of cholesterol and triacylglyceride, had no effect on plasma glucose, and only tended to increase plasma insulin. Dexamethasone administration to hypoxic pups resulted in an additional increase in plasma lipid concentrations, an increase in insulin, and a decrease in plasma glucose. Hypoxia and dexamethasone treatment each decreased total hepatic lipase activity. Normoxic pups treated with dexamethasone displayed increased plasma lipids and insulin. The effects of dexamethasone on hepatic function in the hypoxic neonate are dramatic and have significant implications in the assessment and treatment of metabolic dysfunction in the newborn.
Collapse
Affiliation(s)
- Eric D Bruder
- Endocrinology, St. Luke's Physician's Office Building, 2801 West Kinnickinnic River Parkway, Suite 245, Milwaukee, Wisconsin 53215, USA
| | | | | |
Collapse
|
49
|
Abstract
Iatrogenic damage from a therapeutic procedure in the neonatal period can have serious consequences. Although most side effects are minor, some may result in a major handicap or death of the infant. The development of new therapeutic strategies may result in not previously observed combinations of pathology. This review focuses on iatrogenic damage occurring in several organs and after several different therapeutic interventions. Special attention is given to pulmonary and gastrointestinal damage and iatrogenic damage as a result of systemic treatments. Valuable information and early detection of serious side effects is only possible when the pathologist is very well informed about the therapeutic interventions used, all medical devices are left in situ and a thorough autopsy is performed as completely as is permitted. However, the decline in autopsy rates could make it more difficult to determine the incidence of iatrogenic lesions.
Collapse
Affiliation(s)
- Peter G J Nikkels
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
50
|
Neal CR, Weidemann G, Kabbaj M, Vázquez DM. Effect of neonatal dexamethasone exposure on growth and neurological development in the adult rat. Am J Physiol Regul Integr Comp Physiol 2004; 287:R375-85. [PMID: 15117721 DOI: 10.1152/ajpregu.00012.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, the synthetic glucocorticoid dexamethasone was commonly used to lessen the morbidity of chronic lung disease in premature infants. This practice diminished as dexamethasone use was linked to an increased incidence of cerebral palsy and short-term neurodevelopmental delay. Of more concern is the fact that we know little regarding dexamethasone effects on long-term neurodevelopment. To study the effects of neonatal dexamethasone exposure on long-term neurodevelopment, we have developed a rat model where newborn pups are exposed to tapering doses of dexamethasone at time points corresponding to the neurodevelopmental age when human infants are traditionally exposed to this drug in the neonatal intensive care unit. Using a within-litter design, pups were assigned to one of three groups on postnatal day 2 (P2): handled controls, saline-injected controls, and animals receiving intramuscular dexamethasone between P3 and P6. Somatic growth was decreased in dexamethasone-treated animals. Dexamethasone-treated animals demonstrated slight delays in indexes of neurodevelopment and physical maturation at P7 and P14, but not P20. In adolescence (P45), there was no difference between groups in an open field test. However, as adult dexamethasone-treated animals were less active in the open field and spent more time in closed arms of the elevated plus maze. The serum corticosterone response to crowding stress in dexamethasone-treated animals was no different from controls, but they demonstrate a delay in return of corticosterone levels to baseline. These differences in behavior and hormonal stress responsiveness suggest that neonatal dexamethasone exposure may permanently alter function of the neuroendocrine stress axis.
Collapse
Affiliation(s)
- Charles R Neal
- Mental Health Research Institute and Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0720, USA.
| | | | | | | |
Collapse
|