1
|
Zhang W, Qin P, Li M, Pan Z, Wu Z, Zhu Y, Liu Y, Li Y, Fang F. NAGK regulates the onset of puberty in female mice. Theriogenology 2025; 231:228-239. [PMID: 39488153 DOI: 10.1016/j.theriogenology.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This study examines the role of N-acetylglucosamine kinase (NAGK) in initiating puberty in female mice. We employed real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunofluorescence to measure NAGK expression in the hypothalamic-pituitary-ovarian axis across various developmental stages: infant, prepuberty, puberty, and adult. We further investigated the impact of Nagk gene knockdown on puberty in female mice. This included assessing the expression of puberty-related genes both in vivo and in vitro, GT1-7 cells proliferation and apoptosis, concentrations of GnRH and Kisspeptin, puberty onset timing, serum levels of progesterone (P4) and estradiol (E2), and ovarian morphology. Results revealed that Nagk mRNA is present in the hypothalamus, pituitary, and ovaries throughout different developmental stages in female mice. In the hypothalamus, Nagk mRNA levels were comparable during infant and prepuberty, lowest during puberty, and highest in adult. In the pituitary, Nagk mRNA peaked in adult, with no significant variation between infant, prepuberty, and puberty. In the ovaries, Nagk mRNA levels increased during puberty and peaked in adult. NAGK is predominantly located in the arcuate nucleus (ARC), periventricular nucleus (PeN), dorsomedial hypothalamic nucleus (DMH), paraventricular nucleus (PVN), adenohypophysis, and in the ovarian oocytes, interstitium, and granulosa cells across all developmental stages in female mice. Nagk knockdown in GT1-7 cells decreased the transcriptional level of Gnrh, Kiss1, Gpr54, Igf1 and Mapk14 mRNA and cell proliferation but increased the level of β-catenin mRNA and cell apoptosis, while reducing GnRH secretion. Following ICV injection, Nagk gene knockdown mice exhibited delayed the timing of vaginal opening (VO) and reduced hypothalamic levels of Gnrh, Kiss1, Gpr54, Igf1, Mapk14, and β-catenin mRNA. Additionally, serum concentrations of E2 in Nagk gene knockdown mice were significantly lower compared to the control group. These findings indicate that Nagk regulates the expression of Gnrh and Kiss1 mRNA in GT1-7 cells, affects hypothalamus Gnrh mRNA levels and serum E2 concentration, and that its knockdown can delay puberty onset in female mice.
Collapse
Affiliation(s)
- Wei Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ping Qin
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Mengxian Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Zhihao Pan
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Zhuoya Wu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yanyun Zhu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
2
|
Barton BE, Erickson JA, Allred SI, Jeffries JM, Stephens KK, Hunter MI, Woodall KA, Winuthayanon W. Reversible female contraceptives: historical, current, and future perspectives†. Biol Reprod 2024; 110:14-32. [PMID: 37941453 PMCID: PMC10790348 DOI: 10.1093/biolre/ioad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
Contraception is a practice with extensive and complicated social and scientific histories. From cycle tracking, to the very first prescription contraceptive pill, to now having over-the-counter contraceptives on demand, family planning is an aspect of healthcare that has undergone and will continue to undergo several transformations through time. This review provides a comprehensive overview of current reversible hormonal and non-hormonal birth control methods as well as their mechanism of action, safety, and effectiveness specifically for individuals who can become pregnant. Additionally, we discuss the latest Food and Drug Administration (FDA)-approved hormonal method containing estetrol and drospirenone that has not yet been used worldwide as well as the first FDA-approved hormonal over-the-counter progestin-only pills. We also review available data on novel hormonal delivery through microchip, microneedle, and the latest FDA-approved non-hormonal methods such as vaginal pH regulators. Finally, this review will assist in advancing female contraceptive method development by underlining constructive directions for future pursuits. Information was gathered from the NCBI and Google Scholars databases using English and included publications from 1900 to present. Search terms included contraceptive names as well as efficacy, safety, and mechanism of action. In summary, we suggest that investigators consider the side effects and acceptability together with the efficacy of contraceptive candidate towards their development.
Collapse
Affiliation(s)
- Brooke E Barton
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeffery A Erickson
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Stephanie I Allred
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jenna M Jeffries
- College of Art & Science, Washington State University, Pullman, WA, USA
| | - Kalli K Stephens
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
- Translational Bioscience Program, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mark I Hunter
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kirby A Woodall
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Abstract
Reproduction is the biological process by which new individuals are produced by their parents. It is the fundamental feature of all known life and is required for the existence of all species. All mammals reproduce sexually, a process that involves the union of two reproductive cells, one from a male and one from a female. Sexual behaviors are a series of actions leading to reproduction. They are composed of appetitive, action, and refractory phases, each supported by dedicated developmentally-wired neural circuits to ensure high reproduction success. In rodents, successful reproduction can only occur during female ovulation. Thus, female sexual behavior is tightly coupled with ovarian activity, namely the estrous cycle. This is achieved through the close interaction between the female sexual behavior circuit and the hypothalamic-pituitary-gonadal (HPG) axis. In this review, we will summarize our current understanding, learned mainly in rodents, regarding the neural circuits underlying each phase of the female sexual behaviors and their interaction with the HPG axis, highlighting the gaps in our knowledge that require future investigation.
Collapse
Affiliation(s)
- Luping Yin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
McQuillan HJ, Clarkson J, Kauff A, Han SY, Yip SH, Cheong I, Porteous R, Heather AK, Herbison AE. Definition of the estrogen negative feedback pathway controlling the GnRH pulse generator in female mice. Nat Commun 2022; 13:7433. [PMID: 36460649 PMCID: PMC9718805 DOI: 10.1038/s41467-022-35243-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
The mechanisms underlying the homeostatic estrogen negative feedback pathway central to mammalian fertility have remained unresolved. Direct measurement of gonadotropin-releasing hormone (GnRH) pulse generator activity in freely behaving mice with GCaMP photometry demonstrated striking estradiol-dependent plasticity in the frequency, duration, amplitude, and profile of pulse generator synchronization events. Mice with Cre-dependent deletion of ESR1 from all kisspeptin neurons exhibited pulse generator activity identical to that of ovariectomized wild-type mice. An in vivo CRISPR-Cas9 approach was used to knockdown ESR1 expression selectively in arcuate nucleus (ARN) kisspeptin neurons. Mice with >80% deletion of ESR1 in ARN kisspeptin neurons exhibited the ovariectomized pattern of GnRH pulse generator activity and high frequency LH pulses but with very low amplitude due to reduced responsiveness of the pituitary. Together, these studies demonstrate that estrogen utilizes ESR1 in ARN kisspeptin neurons to achieve estrogen negative feedback of the GnRH pulse generator in mice.
Collapse
Affiliation(s)
- H James McQuillan
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand
| | - Jenny Clarkson
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand
| | - Alexia Kauff
- Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand
| | - Su Young Han
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Siew Hoong Yip
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand
| | - Isaiah Cheong
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand
| | - Robert Porteous
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand
| | - Alison K Heather
- Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand. .,Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin, 9054, New Zealand. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
6
|
GABAergic and Glutamatergic Phenotypes of Neurons Expressing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig. Int J Mol Sci 2022; 23:ijms23147963. [PMID: 35887305 PMCID: PMC9320123 DOI: 10.3390/ijms23147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The mammalian preoptic area (POA) has large populations of calbindin (CB), calretinin (CR) and parvalbumin (PV) neurons, but phenotypes of these cells are unknown. Therefore, the question is whether neurons expressing CB, CR, and/or PV are GABAergic or glutamatergic. Double-immunofluorescence staining followed by epifluorescence and confocal microscopy was used to determine the coexpression patterns of CB, CR and PV expressing neurons with vesicular GABA transporters (VGAT) as specific markers of GABAergic neurons and vesicular glutamate transporters (VGLUT 2) as specific markers of glutamatergic neurons. The guinea pig was adopted as, like humans, it has a reproductive cycle with a true luteal phase and a long gestation period. The results demonstrated that in the guinea pig POA of both sexes, ~80% of CB+ and ~90% of CR+ neurons coexpress VGAT; however, one-fifth of CB+ neurons and one-third of CR+ cells coexpress VGLUT. About two-thirds of PV+ neurons express VGAT, and similar proportion of them coexpress VGLUT. Thus, many CB+, CR+ and PV+ neurons may be exclusively GABAergic (VGAT-expressing cells) or glutamatergic (VGLUT-expressing cells); however, at least a small fraction of CR+ cells and at least one-third of PV+ cells are likely neurons with a dual GABA/glutamate phenotype that may coexpress both transporters.
Collapse
|
7
|
Hu KL, Chen Z, Li X, Cai E, Yang H, Chen Y, Wang C, Ju L, Deng W, Mu L. Advances in clinical applications of kisspeptin-GnRH pathway in female reproduction. Reprod Biol Endocrinol 2022; 20:81. [PMID: 35606759 PMCID: PMC9125910 DOI: 10.1186/s12958-022-00953-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/30/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Kisspeptin is the leading upstream regulator of pulsatile and surge Gonadotrophin-Releasing Hormone secretion (GnRH) in the hypothalamus, which acts as the key governor of the hypothalamic-pituitary-ovary axis. MAIN TEXT Exogenous kisspeptin or its receptor agonist can stimulate GnRH release and subsequent physiological gonadotropin secretion in humans. Based on the role of kisspeptin in the hypothalamus, a broad application of kisspeptin and its receptor agonist has been recently uncovered in humans, including central control of ovulation, oocyte maturation (particularly in women at a high risk of ovarian hyperstimulation syndrome), test for GnRH neuronal function, and gatekeepers of puberty onset. In addition, the kisspeptin analogs, such as TAK-448, showed promising agonistic activity in healthy women as well as in women with hypothalamic amenorrhoea or polycystic ovary syndrome. CONCLUSION More clinical trials should focus on the therapeutic effect of kisspeptin, its receptor agonist and antagonist in women with reproductive disorders, such as hypothalamic amenorrhoea, polycystic ovary syndrome, and endometriosis.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Center for Reproductive Medicine, Peking University Third Hospital, No.49 Huayuan North Road, Haidian District, Beijing, People's Republic of China, 100191
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Zimiao Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Xiaoxue Li
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Enci Cai
- Department of Nutrition and Food Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Yi Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Congying Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Liping Ju
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China, 325006.
| | - Liangshan Mu
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200.
| |
Collapse
|
8
|
Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J Neuroendocrinol 2022; 34:e13094. [PMID: 35107859 PMCID: PMC9948945 DOI: 10.1111/jne.13094] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
The concept that different systems control episodic and surge secretion of gonadotropin-releasing hormone (GnRH) was well established by the time that GnRH was identified and formed the framework for studies of the physiological roles of GnRH, and later kisspeptin. Here, we focus on recent studies identifying the neural mechanisms underlying these two modes of secretion, with an emphasis on their core components. There is now compelling data that kisspeptin neurons in the arcuate nucleus that also contain neurokinin B (NKB) and dynorphin (i.e., KNDy cells) and their projections to GnRH dendrons constitute the GnRH pulse generator in mice and rats. There is also strong evidence for a similar role for KNDy neurons in sheep and goats, and weaker data in monkeys and humans. However, whether KNDy neurons act on GnRH dendrons and/or GnRH soma and dendrites that are found in the mediobasal hypothalamus (MBH) of these species remains unclear. The core components of the GnRH/luteinising hormone surge consist of an endocrine signal that initiates the process and a neural trigger that drives GnRH secretion during the surge. In all spontaneous ovulators, the core endocrine signal is a rise in estradiol secretion from the maturing follicle(s), with the site of estrogen positive feedback being the rostral periventricular kisspeptin neurons in rodents and neurons in the MBH of sheep and primates. There is considerable species variations in the neural trigger, with three major classes. First, in reflex ovulators, this trigger is initiated by coitus and carried to the hypothalamus by neural or vascular pathways. Second, in rodents, there is a time of day signal that originates in the suprachiasmatic nucleus and activates rostral periventricular kisspeptin neurons and GnRH soma and dendrites. Finally, in sheep nitric oxide-producing neurons in the ventromedial nucleus, KNDy neurons and rostral kisspeptin neurons all appear to participate in driving GnRH release during the surge.
Collapse
Affiliation(s)
- Robert L. Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Allan E. Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael N. Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School and Department of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Wang Y, Wang Y, Liu L, Cui H. Ovariectomy induces abdominal fat accumulation by improving gonadotropin-releasing hormone secretion in mouse. Biochem Biophys Res Commun 2021; 588:111-117. [PMID: 34953207 DOI: 10.1016/j.bbrc.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
The ovariectomy would induce the occurrence of obesity, but its regulatory mechanism is not clear. This study aimed to elucidate the regulation on fat accumulation for ovariectomy in mouse. In the current study, the abdominal fat mass dramatically increased in OVX mice compared with sham mice at eighth week after ovariectomy, accompanied with the higher GnRH level in blood and abdominal fat tissue. Also, a decrease of the abdominal fat mass was occurred in OVX mice with a GnRH-antagonist injection. Furthermore, the results in vivo and in vitro confirmed that GnRH promoted the transition of G1/S phase by upregulating CCND1 and CCNE1 mRNA levels by the mediation of GnRHR via the PKA-CREB pathway. Meanwhile, the higher FSH secretion was induced by increase GnRH and accelerate fat deposition in abdominal fat tissue. Our findings are the first to elucidate the effect mechanism of ovariectomy on obesity in mouse. GnRH stimulates fat accumulation in adipocytes via PKA-CREB pathway by directly promoting cell proliferation for driving the cell cycle and simultaneously accelerating differentiation for improving the FSH secretion.
Collapse
Affiliation(s)
- Yongli Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yidong Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Li Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Ma H, Ishida K, Xu C, Takahashi K, Li Y, Zhang C, Kang Q, Jia Y, Hu W, Matsumaru D, Nakanishi T, Hu J. Triphenyl phosphate delayed pubertal timing and induced decline of ovarian reserve in mice as an estrogen receptor antagonist. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118096. [PMID: 34488164 DOI: 10.1016/j.envpol.2021.118096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Although concerns have been raised about the adverse effects of triphenyl phosphate (TPhP) on female fertility, its risk to ovarian functioning remains unknown. In this study, female C57BL/6 mice at postnatal day 21 were exposed on a daily basis to TPhP dose of 2, 10, and 50 mg/kg for 40 days. A significant delay in pubertal timing was observed in the mice exposed to 50 mg/kg of TPhP. An estrogen-responsive reporter transgenic mice assay demonstrated that TPhP significantly downregulated the estrogen receptor (ER) signaling by 45.1% in the whole body in the 50 mg/kg group, and by 14.7-43.7% in the uterus for all exposure groups compared with the control. This strong antagonistic activity of TPhP toward ER explained the delay in pubertal timing. A significant reduction in the number of follicles in all stages was observed in mice after being exposed to TPhP for 40 days at concentrations of 10 and 50 mg/kg, resulting in a decline of the ovarian reserve. The elevation of the follicle-stimulating hormone concentration may have contributed to this phenomenon, as controlled by the antagonistic activity of TPhP toward ER in the brain. The toxic effects of TPhP on ovarian functioning highlight this chemical as a potential risk factor for female fertility.
Collapse
Affiliation(s)
- Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Keishi Ishida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Chenke Xu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kyosuke Takahashi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chenhao Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Qiyue Kang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wenxin Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Schneider F, Wistuba J, Holterhus PM, Kulle A, Schlatt S, Kliesch S, Neuhaus N, Zitzmann M. New Insights Into Extended Steroid Hormone Profiles in Transwomen in a Multi-Center Setting in Germany. J Sex Med 2021; 18:1807-1817. [PMID: 34600646 DOI: 10.1016/j.jsxm.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Little information is available on steroid hormone profiles in transwomen on the day of gender affirming surgery (GAS) after gender affirming hormone therapy (GAHT). AIM We compared extended serum steroid hormone profiles of 77 transwomen with 3 different treatment regimens in order to get more insight on how GAHT changes the hormone system. METHODS Samples were obtained from 3 independent clinics. Individuals in clinic A (n = 13) and B (n = 51) discontinued GAHT 4-6 weeks and 2 weeks before GAS, individuals in clinic C (n = 13) continued treatment. Testicular tissue, blood samples and questionnaires on age, weight, height, and medication use were received from each patient. Steroid hormones were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), 6 sex hormones were determined by immunofluorometric assays, and ELISA. Spermatogenesis was scored using the Bergman/Kliesch score. OUTCOMES Participants were not different with regard to age, BMI, treatment duration, and dosage. Feminized blood serum levels with low LH, low FSH and low testosterone, however, were achieved in persons taking GAHT until GAS. Significantly reduced cortisone levels were seen after stopping GAHT before GAS. RESULTS GAHT had marked effects on the sex-steroid profile in each person. Factor analysis provided a model explaining 78% of the variance and interdependency of sex steroid levels. Stopping treatment was inversely associated with intactness of the corticosteroid-axis with adrenal steroidogenesis as well as it was inversely associated with pituitary-gonadal hormone production. CLINICAL IMPLICATIONS Transwomen generally did not have elevated cortisone levels but differed significantly depending on and when GAHT was stopped. STRENGTHS & LIMITATIONS This is the first study examining the steroid hormone profiles of transgender persons on the day of GAS in a multi-center setting. Additional studies (including follow ups before and after GAS and stress questionnaires) will be necessary to assess these conflicting results about the possible psychological impact on persons undergoing GAS to improve care. CONCLUSION Concerning feminized blood serum levels, continued GAHT seems the better alternative, however stopping treatment 4-6 weeks prior to surgery was associated with reduced cortisone levels. Schneider F, Wistuba J, Holterhus P-M, et al. New Insights Into Extended Steroid Hormone Profiles in Transwomen in a Multi-Center Setting in Germany. J Sex Med 2021;18:1807-1817.
Collapse
Affiliation(s)
- Florian Schneider
- Institute of Reproductive and Regenerative Medicine, Center of Reproductive Medicine and Andrology, Muenster, Germany; Department of Clinical Andrology, Center of Reproductive Medicine and Andrology, Muenster, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Medicine, Center of Reproductive Medicine and Andrology, Muenster, Germany
| | - Paul-Martin Holterhus
- Hormone Centre for Children and Adolescents, Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexandra Kulle
- Hormone Centre for Children and Adolescents, Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schlatt
- Institute of Reproductive and Regenerative Medicine, Center of Reproductive Medicine and Andrology, Muenster, Germany
| | - Sabine Kliesch
- Department of Clinical Andrology, Center of Reproductive Medicine and Andrology, Muenster, Germany
| | - Nina Neuhaus
- Institute of Reproductive and Regenerative Medicine, Center of Reproductive Medicine and Andrology, Muenster, Germany
| | - Michael Zitzmann
- Department of Clinical Andrology, Center of Reproductive Medicine and Andrology, Muenster, Germany.
| |
Collapse
|
12
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Interplay of KNDy and nNOS neurons: A new possible mechanism of GnRH secretion in the adult brain. Reprod Biol 2021; 21:100558. [PMID: 34509713 DOI: 10.1016/j.repbio.2021.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023]
Abstract
Reproduction in mammals is favoured when there is sufficient energy available to permit the survival of offspring. Neuronal nitric oxide synthase expressing neurons produce nitric oxide in the proximity of the gonadotropin-releasing hormone neurons in the preoptic region. nNOS neurons are an integral part of the neuronal network controlling ovarian cyclicity and ovulation. Nitric oxide can directly regulate the activity of the GnRH neurons and play a vital role neuroendocrine axis. Kisspeptin neurons are essential for the GnRH pulse and surge generation. The anteroventral periventricular nucleus (AVPV), kisspeptin neurons are essential for GnRH surge generation. KNDy neurons are present in the hypothalamus's arcuate nucleus (ARC), co-express NKB and dynorphin, essential for GnRH pulse generation. Kisspeptin-neurokinin B-dynorphin (KNDy) neuroendocrine molecules of the hypothalamus are key components in the central control of GnRH secretion. The hypothalamic neurons kisspeptin, KNDy, nitric oxide synthase (NOS), and other mediators such as leptin, adiponectin, and ghrelin, play an active role in attaining puberty. Kisspeptin signalling is mediated by NOS, which further results in the secretion of GnRH. Neuronal nitric oxide is critical for attaining puberty, but its direct role in adult GnRH secretion is poorly understood. This review mainly focuses on the role of nNOS and its interplay with KNDy neurons in the hormonal regulation of reproduction.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
13
|
Vastagh C, Csillag V, Solymosi N, Farkas I, Liposits Z. Gonadal Cycle-Dependent Expression of Genes Encoding Peptide-, Growth Factor-, and Orphan G-Protein-Coupled Receptors in Gonadotropin- Releasing Hormone Neurons of Mice. Front Mol Neurosci 2021; 13:594119. [PMID: 33551743 PMCID: PMC7863983 DOI: 10.3389/fnmol.2020.594119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Rising serum estradiol triggers the surge release of gonadotropin-releasing hormone (GnRH) at late proestrus leading to ovulation. We hypothesized that proestrus evokes alterations in peptidergic signaling onto GnRH neurons inducing a differential expression of neuropeptide-, growth factor-, and orphan G-protein-coupled receptor (GPCR) genes. Thus, we analyzed the transcriptome of GnRH neurons collected from intact, proestrous and metestrous GnRH-green fluorescent protein (GnRH-GFP) transgenic mice using Affymetrix microarray technique. Proestrus resulted in a differential expression of genes coding for peptide/neuropeptide receptors including Adipor1, Prokr1, Ednrb, Rtn4r, Nmbr, Acvr2b, Sctr, Npr3, Nmur1, Mc3r, Cckbr, and Amhr2. In this gene cluster, Adipor1 mRNA expression was upregulated and the others were downregulated. Expression of growth factor receptors and their related proteins was also altered showing upregulation of Fgfr1, Igf1r, Grb2, Grb10, and Ngfrap1 and downregulation of Egfr and Tgfbr2 genes. Gpr107, an orphan GPCR, was upregulated during proestrus, while others were significantly downregulated (Gpr1, Gpr87, Gpr18, Gpr62, Gpr125, Gpr183, Gpr4, and Gpr88). Further affected receptors included vomeronasal receptors (Vmn1r172, Vmn2r-ps54, and Vmn1r148) and platelet-activating factor receptor (Ptafr), all with marked downregulation. Patch-clamp recordings from mouse GnRH-GFP neurons carried out at metestrus confirmed that the differentially expressed IGF-1, secretin, and GPR107 receptors were operational, as their activation by specific ligands evoked an increase in the frequency of miniature postsynaptic currents (mPSCs). These findings show the contribution of certain novel peptides, growth factors, and ligands of orphan GPCRs to regulation of GnRH neurons and their preparation for the surge release.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Roska Tamás Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
14
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Clément F, Crépieux P, Yvinec R, Monniaux D. Mathematical modeling approaches of cellular endocrinology within the hypothalamo-pituitary-gonadal axis. Mol Cell Endocrinol 2020; 518:110877. [PMID: 32569857 DOI: 10.1016/j.mce.2020.110877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/26/2023]
Abstract
The reproductive neuroendocrine axis, or hypothalamo-pituitary-gonadal (HPG) axis, is a paragon of complex biological system involving numerous cell types, spread over several anatomical levels communicating through entangled endocrine feedback loops. The HPG axis exhibits remarkable dynamic behaviors on multiple time and space scales, which are an inexhaustible source of studies for mathematical and computational biology. In this review, we will describe a variety of modeling approaches of the HPG axis from a cellular endocrinology viewpoint. We will in particular investigate the questions raised by some of the most striking features of the HPG axis: (i) the pulsatile secretion of hypothalamic and pituitary hormones, and its counterpart, the cell signaling induced by frequency-encoded hormonal signals, and (ii) the dual, gametogenic and glandular function of the gonads, which relies on the tight control of the somatic cell populations ensuring the proper maturation and timely release of the germ cells.
Collapse
Affiliation(s)
- Frédérique Clément
- Inria, Centre de Recherche Inria Saclay-Île-de-France, Palaiseau, France.
| | - Pascale Crépieux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Romain Yvinec
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Danielle Monniaux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| |
Collapse
|
16
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
17
|
Oliveira LLB, Del Bianco-Borges B, Franci CR. Estradiol and the feeding state modulate the interaction between leptin and the nitrergic system in female rats. Neuropeptides 2020; 84:102096. [PMID: 33059245 DOI: 10.1016/j.npep.2020.102096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
Leptin mediates the interaction between reproductive function and energy balance. However, leptin receptors are not expressed in neurons that produce gonadotropin-releasing hormone (GnRH), likely indicating an indirect action through interneurons. Among likely neurons that modulate the secretion of GnRH are NO (nitric oxide) neurons. We assessed whether estradiol and feeding conditions modulate a possible interaction between leptin and NO in brain areas related to the control of reproductive function. Estradiol-treated and untreated ovariectomized rats were normally fed or fasted for 48 h. Then, saline (control) or leptin (3 μg/1 μl) intracerebroventricular microinjections were administered, and after thirty minutes, the brains collected subsequent to the decapitation or transcardially perfusion. Leptin and estradiol increased NO synthase (nNOS) gene expression (RT-PCR) and content (Western blotting) in the medial preoptic area (MPOA) and medial basal hypothalamus (MBH) only in fasted rats. Leptin increased: 1-phosphorylated-signal transducer and activator of transcription-3(pSTAT3) (immunohistochemistry) in the MPOA and various hypothalamic nuclei [arcuate (ARC); ventromedial (VMH); dorsal/ventral dorsomedial (dDMH/vDMH); premammilar ventral (PMV)], effects potentiated by estradiol/fasting interaction; 2- nNOS/pSTAT3 coexpression in the MPOA only in estradiol-treated, fasted rats; 3- nNOS-immunoreactive cell expression in the VMH, DMH and PMV (areas related to reproductive function control) of estradiol -treated rats. Thus, when leptin is reduced during fasting, leptin replacement effectively increased the expression of nitric oxide, which activated the HPG axis only in the presence of estradiol. Estradiol modulates the nitrergic system, leptin sensitivity and consequently leptin's effects on the nitrergic system in hypothalamus and in particular vDMH and PMV.
Collapse
Affiliation(s)
- L L B Oliveira
- Ribeirão Preto Medical School, Department of Physiology, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | | | - C R Franci
- Ribeirão Preto Medical School, Department of Physiology, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Khodamoradi K, Khosravizadeh Z, Amini-Khoei H, Hosseini SR, Dehpour AR, Hassanzadeh G. The effects of maternal separation stress experienced by parents on male reproductive potential in the next generation. Heliyon 2020; 6:e04807. [PMID: 33024852 PMCID: PMC7527646 DOI: 10.1016/j.heliyon.2020.e04807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
There is little information available about the effects of early-life parental stress on the reproductive potential of the next generation. The aim of this study is to examine the reproductive potential of male mice whose parents experienced maternal separation stress. In the present study, male first-generation offspring from parents were undergone of maternal separation (MS) were examined. Sperm characteristics, histological changes in testis, reactive oxygen species (ROS) production, expression of apoptotic and inflammatory genes and proteins were assessed. Findings showed that MS experienced by parents significantly decreased the morphology and viability of spermatozoa. Furthermore, significant changes in testicular tissue histology were observed. Increased production of ROS, decreased glutathione peroxidase (GPX) and adenosine triphosphate (ATP) concentrations, and affected the expression of genes and cytokines involved in inflammation. Finally, the mean percentage of caspase-1 and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) positive cells was significantly higher in first-generation group. MS experienced by parents may negatively affect the reproduction of first generation offspring.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Reza Hosseini
- Departent of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Antonson P, Apolinário LM, Shamekh MM, Humire P, Poutanen M, Ohlsson C, Nalvarte I, Gustafsson JÅ. Generation of an all-exon Esr2 deleted mouse line: Effects on fertility. Biochem Biophys Res Commun 2020; 529:231-237. [PMID: 32703416 DOI: 10.1016/j.bbrc.2020.06.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Estrogen receptor beta (ERβ), encoded by the Esr2 gene, is one of two nuclear receptors that mediate the functions of the steroid hormone estradiol. The binding of estradiol to the receptor results in enhanced transcription of many genes that have estrogen response elements in promoter or enhancer regions. Several genetically modified mouse lines with mutations or deletions of exons in the Esr2 gene have been developed and results from analysis of these are not completely consistent, especially regarding ERβ's role in fertility. To address these controversies, we have used the CRISPR/Cas9 genome editing system to make a deletion of the entire Esr2 gene in the mouse genome and determined the effect of this mutation on fertility. We show that female Esr2 deleted mice, Esr2ΔE1-10, are subfertile at young age, with fewer litters and smaller litter size, and that they become infertile/have severely reduced fertility at around six months of age, while the male Esr2ΔE1-10 mice are fertile. Ovaries from Esr2ΔE1-10 mice are smaller than those from wild-type littermates and the morphology of the ovary displays very few corpora lutea, indicating a defect in ovulation. We also show that the estradiol levels are reduced at diestrus, the phase in the estrous cycle when levels are expected to start to increase before ovulation. Our results verify that ERβ has an important function in female reproduction, likely as a regulator of serum estradiol levels, and that its loss does not affect male reproductive function.
Collapse
Affiliation(s)
- Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, SE 14157, Huddinge, Sweden.
| | | | - Mohamed M Shamekh
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, SE 14157, Huddinge, Sweden; Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Patricia Humire
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, SE 14157, Huddinge, Sweden
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, SE 14157, Huddinge, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, SE 14157, Huddinge, Sweden; Center for Nuclear Receptors and Cell Signaling, Department of Cell Biology and Biochemistry, University of Houston, TX, USA
| |
Collapse
|
20
|
Inserra PIF, Charif SE, Fidel V, Giacchino M, Schmidt AR, Villarreal FM, Proietto S, Cortasa SA, Corso MC, Gariboldi MC, Leopardo NP, Fraunhoffer NA, Di Giorgio NP, Lux-Lantos VA, Halperin J, Vitullo AD, Dorfman VB. The key action of estradiol and progesterone enables GnRH delivery during gestation in the South American plains vizcacha, Lagostomus maximus. J Steroid Biochem Mol Biol 2020; 200:105627. [PMID: 32070756 DOI: 10.1016/j.jsbmb.2020.105627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/23/2022]
Abstract
The South American plains vizcacha, Lagostomus maximus, is the only mammal described so far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an exceptional model for the study of the effect of steroid hormones on the modulation of the hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an inhibition in the expression of hypothalamic GnRH, while physiological doses produced a differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH release pattern that would be associated with membrane ERs. On the other hand, our in vivo approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release with a decrease in its release frequency. These results suggest different levels of action of steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 constitute the key factor to enable the hypothalamic activity during the pregnancy of this mammal.
Collapse
Affiliation(s)
- Pablo I F Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago E Charif
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Fidel
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2)
| | - Mariela Giacchino
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro R Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Federico M Villarreal
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2)
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago A Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María C Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María C Gariboldi
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia P Leopardo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Nicolás A Fraunhoffer
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria A Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
21
|
Hu KL, Chang HM, Zhao HC, Yu Y, Li R, Qiao J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update 2020; 25:326-343. [PMID: 30649364 PMCID: PMC6450039 DOI: 10.1093/humupd/dmy046] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Initially identified as suppressors of metastasis in various types of cancer, kisspeptins are a family of neuropeptides that are key regulators of the mammalian reproductive axis. Accumulating evidence has shown that kisspeptin is able to control both the pulsatile and surge GnRH release, playing fundamental roles in female reproduction, which include the secretion of gonadotropins, puberty onset, brain sex differentiation, ovulation and the metabolic regulation of fertility. Furthermore, recent studies have demonstrated the involvement of the kisspeptin system in the processes of implantation and placentation. This review summarizes the current knowledge of the pathophysiological role and utility of these local placental regulatory factors as potential biomarkers during the early human gestation. OBJECTIVE AND RATIONALE A successful pregnancy, from the initiation of embryo implantation to parturition, is a complex process that requires the orchestration of a series of events. This review aims to concisely summarize what is known about the role of the kisspeptin system in implantation, placentation, early human pregnancy and pregnancy-related disorders, and to develop strategies for predicting, diagnosing and treating these abnormalities. SEARCH METHODS Using the PubMed and Google Scholar databases, we performed comprehensive literature searches in the English language describing the advancement of kisspeptins and the kisspeptin receptor (KISS1R) in implantation, placentation and early pregnancy in humans, since its initial identification in 1996 and ending in July 2018. OUTCOMES Recent studies have shown the coordinated spatial and temporal expression patterns of kisspeptins and KISS1R during human pregnancy. The experimental data gathered recently suggest putative roles of kisspeptin signaling in the regulation of trophoblast invasion, embryo implantation, placentation and early pregnancy. Dysregulation of the kisspeptin system may negatively affect the processes of implantation as well as placentation. Clinical studies indicate that the circulating levels of kisspeptins or the expression levels of kisspeptin/KISS1R in the placental tissues may be used as potential diagnostic markers for women with miscarriage and gestational trophoblastic neoplasia. WIDER IMPLICATIONS Comprehensive research on the pathophysiological role of the kisspeptin/KISS1R system in implantation and placentation will provide a dynamic and powerful approach to understanding the processes of early pregnancy, with potential applications in observational and analytic screening as well as the diagnosis, prognosis and treatment of implantation failure and early pregnancy-related disorders.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hong-Cui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Herbison AE. A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Front Neuroendocrinol 2020; 57:100837. [PMID: 32240664 DOI: 10.1016/j.yfrne.2020.100837] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
The gonadal steroids estradiol and progesterone exert critical suppressive and stimulatory actions upon the brain to control gonadotropin-releasing hormone (GnRH) release that drives the estrous/menstrual cycle. A simple model for understanding these interactions is proposed in which the activity of the "GnRH pulse generator" is restrained by post-ovulation progesterone secretion to bring about the estrus/luteal phase slowing of pulsatile gonadotropin release, while the activity of the "GnRH surge generator" is primed by the rising follicular phase levels of estradiol to generate the pre-ovulatory surge. The physiological fluctuations in estradiol levels across the cycle are considered to clamp the GnRH pulse generator output at a constant level. Independent pulse and surge generator circuitries regulate the excitability of different compartments of the GnRH neuron. As such, GnRH secretion through the cycle is determined simply by the summed influence of the estradiol-clamped, progesterone-regulated pulse and estradiol-regulated surge generators on the GnRH neuron.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9054, New Zealand.
| |
Collapse
|
23
|
Imamura S, Hur SP, Takeuchi Y, Badruzzaman M, Mahardini A, Rizky D, Takemura A. The mRNA expression patterns of kisspeptins, GnRHs, and gonadotropins in the brain and pituitary gland of a tropical damselfish, Chrysiptera cyanea, during the reproductive cycle. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:277-291. [PMID: 31705423 DOI: 10.1007/s10695-019-00715-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The sapphire devil (Chrysiptera cyanea) is a tropical damselfish that undergoes active reproduction under long-day conditions. To elucidate the physiological regulation of the brain-pituitary-gonadal axis in female sapphire devil, we cloned and characterized the genes of two kisspeptins (kiss1 and kiss2), three gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), and the β-subunit of two gonadotropins (fshβ and lhβ) and investigated the gene expression changes during ovarian development. Quantitative polymerase chain reaction analyses in various brain parts revealed high expression levels of kiss1, kiss2, and gnrh2 in the diencephalon; gnrh2 and gnrh3 in the telencephalon; and fshβ and lhβ in the pituitary. In situ hybridization (ISH) analyses revealed positive signals of kiss1 in the dorsal and ventral habenular nucleus and of kiss2 in the dorsal and ventral parts of the nucleus of the lateral recess. This analysis showed gnrh1 expression in the preoptic area (POA), suggesting that GnRH1 plays a stimulating role in the secretion of gonadotropins from the pituitary of the sapphire devil. High transcription levels of kiss1, kiss2, gnrh1, gnrh2, fshβ, and lhβ were observed in the brain during the late vitellogenic stage, suggesting their involvement in the physiological processes of vitellogenesis. Immersion of fish in estradiol-17β (E2)-containing seawater resulted in increased expression of kiss2 and gnrh1 in their brains. This study showed that kiss-expressing neurons in the diencephalon are influenced by E2, leading to upregulation of gnrh1 in the POA and of fshβ and lhβ in the pituitary during vitellogenesis.
Collapse
Affiliation(s)
- Satoshi Imamura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Sung-Pyo Hur
- Jeju Research Institute, Korea Institute of Ocean Science & Technology, Jeju, 63349, South Korea
| | - Yuki Takeuchi
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
- Okinawa Institute of Science and Technology Graduate School, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh
| | - Angka Mahardini
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Dinda Rizky
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
24
|
Coyle CS, Caso F, Tolla E, Barrett P, Onishi KG, Tello JA, Stevenson TJ. Ovarian hormones induce de novo DNA methyltransferase expression in the Siberian hamster suprachiasmatic nucleus. J Neuroendocrinol 2020; 32:e12819. [PMID: 31800973 DOI: 10.1111/jne.12819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
The present study investigated neuroanatomically localised changes in de novo DNA methyltransferase expression in the female Siberian hamster (Phodopus sungorus). The objectives were to identify the neuroendocrine substrates that exhibit rhythmic Dnmt3a and Dnmt3b expression across the oestrous cycle and also examine the role of ovarian steroids. Hypothalamic Dnmt3a expression was observed to significantly increase during the transition from pro-oestrous to oestrous. A single bolus injection of diethylstilbestrol and progesterone was sufficient to increase Dnmt3a cell numbers and Dnmt3b immunoreactive intensity in the suprachiasmatic nucleus. In vitro analyses using an embryonic rodent cell line revealed that diethylstilbestrol was sufficient to induce Dnmt3b expression. Up-regulating DNA methylation in vitro reduced the expression of vasoactive intestinal polypeptide, Vip, and the circadian clock gene, Bmal1. Together, these data indicate that ovarian steroids drive de novo DNA methyltransferase expression in the mammalian suprachiasmatic nucleus and increased methylation may regulate genes involved in the circadian timing of oestrous: Vip and Bmal1. Overall, epigenetically mediated neuroendocrine reproductive events may reflect an evolutionarily ancient process involved in the timing of female fertility.
Collapse
Affiliation(s)
- Chris S Coyle
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Federico Caso
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Elisabetta Tolla
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Perry Barrett
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Kenneth G Onishi
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Javier A Tello
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Tyler John Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
26
|
Leptin actions through the nitrergic system to modulate the hypothalamic expression of the kiss1 mRNA in the female rat. Brain Res 2019; 1728:146574. [PMID: 31790683 DOI: 10.1016/j.brainres.2019.146574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is the main controller of the reproductive axis and stimulates the synthesis and secretion of gonadotrophins. Estrogen is the main peripheral factor controlling GnRH secretion, and this action is mainly mediated by the transsynaptic pathway through nitric oxide, kisspeptin, leptin, among other factors. Kisspeptin is the most potent factor known to induce GnRH release. Nitric oxide and leptin also promote GnRH release; however, neurons expressing GnRH do not express the leptin receptor (OB-R). Leptin seems to modulate the expression of genes and proteins involved in the kisspeptin system. However, few kisspeptin-synthesizing cells in the arcuate nucleus (ARC) and few cells, if any, in the preoptic area (POA) express OB-R; this indicates an indirect mechanism of leptin action on kisspeptin. Nitric oxide is an important intermediate in the actions of leptin in the central nervous system. Thus, this work aimed to verify the numbers of nNOS cells were activated by leptin in different hypothalamic areas; the modulatory effects of the nitrergic system on the kisspeptin system; and the indirect regulatory effect of leptin on the kisspeptin system via nitric oxide. Ovariectomized rats were treated with estrogen or a vehicle and received an intracerebroventricular (i.c.v.) injection of a nitric oxide donor, leptin or neuronal nitric oxide synthase (nNOS) enzyme inhibitor. Thirty minutes after the injection, the animals were decapitated. Leptin acts directly on nitrergic neurons in different hypothalamic regions, and the effects on the ventral premammillary nucleus (PMV) and ventral dorsomedial hypothalamus (vDMH) are enhanced. The use of a nitric oxide donor or the administration of leptin stimulates the expression of the kisspeptin mRNA in the ARC of animals with or without estrogenic action; however, these changes are not observed in the POA. In addition, the action of leptin on the expression of the kisspeptin mRNA in the ARC is blocked by a nitric oxide synthesis inhibitor. We concluded that the effects of leptin on the central nervous system are at least partially mediated by the nitrergic system. Also, nitric oxide acts on the kisspeptin system by modulating the expression of the kisspeptin mRNA, and leptin at least partially modulates the kisspeptin system through the nitrergic system, particularly in the ARC.
Collapse
|
27
|
Arrieta-Cruz I, Librado-Osorio R, Flores A, Mendoza-Garcés L, Chavira R, Cárdenas M, Gutiérrez-Juárez R, Domínguez R, Cruz ME. Estrogen Receptors Alpha and Beta in POA-AHA Region Regulate Asymmetrically Ovulation. Cell Mol Neurobiol 2019; 39:1139-1149. [PMID: 31250245 PMCID: PMC11452221 DOI: 10.1007/s10571-019-00708-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
We examined the role of the estrogen receptors alpha (ERα) and beta (ERβ) in of the preoptic-anterior hypothalamic area (POA-AHA) in the regulation of ovulation in rats. The number of ERα- and ERβ-immunoreactive (-ir) cells was determined at 09:00, 13:00, and 17:00 h of each stage of the estrous cycle in intact rats. Additionally, the effects of blocking ERα and ERβ on ovulation rate at 09:00 h on diestrus-2 or proestrus day through the microinjection of methyl-piperidino-pyrazole (MPP) or cyclofenil in either side of POA-AHA were evaluated. The number of ERα-ir and ERβ-ir cells in POA-AHA varied in each phase of estrous cycle. Either MPP or cyclofenil in the right side of POA-AHA on diestrus-2 day reduced the ovulation rate, while at proestrus day it was decreased in rats treated in either side with MPP, and in those treated with cyclofenil in the left side. MPP or cyclofenil produced a decrease in the surge of luteinizing hormone levels (LH) and an increase in progesterone and follicle stimulating hormone (FSH). Replacement with synthetic luteinizing hormone-releasing hormone in non-ovulating rats treated with MPP or cyclofenil restored ovulation. These results suggest that activation of estrogen receptors on the morning of diestrus-2 and proestrus day asymmetrically regulates ovulation and appropriately regulates the secretion of FSH and progesterone in the morning and afternoon of proestrus day. This ensures that both, the preovulatory secretion of LH and ovulation, occur at the right time.
Collapse
Affiliation(s)
- Isabel Arrieta-Cruz
- Department of Basic Research, National Institute of Geriatrics. Ministry of Health, Periférico Sur no. 2767, Col. San Jerónimo Lídice, La Magdalena Contreras, C.P. 10200, Ciudad De México, Mexico.
| | - Raúl Librado-Osorio
- Department of Basic Research, National Institute of Geriatrics. Ministry of Health, Periférico Sur no. 2767, Col. San Jerónimo Lídice, La Magdalena Contreras, C.P. 10200, Ciudad De México, Mexico
| | - Angélica Flores
- Reproductive Biology Research Unit, Neuroendocrinology Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Col. Ejército de Oriente, Campus II, Batalla 5 de mayo s/n esquina, Iztapalapa, Fuerte De Loreto, C.P 09230, Mexico
| | - Luciano Mendoza-Garcés
- Department of Basic Research, National Institute of Geriatrics. Ministry of Health, Periférico Sur no. 2767, Col. San Jerónimo Lídice, La Magdalena Contreras, C.P. 10200, Ciudad De México, Mexico
| | - Roberto Chavira
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Ministry of Health, Mexico City, Mexico
| | - Mario Cárdenas
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Ministry of Health, Mexico City, Mexico
| | - Roger Gutiérrez-Juárez
- Department of Biomedical Sciences, School of Medicine, Facultad de Estudios Superiores Zaragoza, UNAM, Mexico City, Mexico
| | - Roberto Domínguez
- Reproductive Biology Research Unit, Neuroendocrinology Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Col. Ejército de Oriente, Campus II, Batalla 5 de mayo s/n esquina, Iztapalapa, Fuerte De Loreto, C.P 09230, Mexico
| | - María-Esther Cruz
- Reproductive Biology Research Unit, Neuroendocrinology Laboratory, Facultad de Estudios Superiores Zaragoza, UNAM, Col. Ejército de Oriente, Campus II, Batalla 5 de mayo s/n esquina, Iztapalapa, Fuerte De Loreto, C.P 09230, Mexico.
| |
Collapse
|
28
|
Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res 2019; 45:2318-2329. [PMID: 31608564 DOI: 10.1111/jog.14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023]
Abstract
Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jing Chen
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
29
|
Chaube R, Rawat A, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Molecular cloning and characterization of a gonadotropin-releasing hormone 2 precursor cDNA in the catfish Heteropneustes fossilis: Expression profile and regulation by ovarian steroids. Gen Comp Endocrinol 2019; 280:134-146. [PMID: 31015009 DOI: 10.1016/j.ygcen.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
Abstract
Gonadotropin-releasing hormone 2 (Gnrh2) is one of the three classes of Gnrh distributed in vertebrates and is highly conserved. In the present study, the cDNA encoding Gnrh2 was isolated and characterized in the ostariophysan catfish Heteropneustes fossilis (hf). The cDNA is 611 bp long with an open reading frame (ORF) of 261 bp that encodes a highly conserved protein of 86 amino acids. The deduced Gnrh2 precursor protein clustered with the vertebrate Gnrh2 type. The sequence identity of hfgnrh2 is 94% with African catfish (Clarias gariepinus) gnrh2 mRNA (accession no. X78047). The hfgnrh2 transcripts were expressed only in the brain and gonads with a higher expression in the female brain and ovary in both resting and prespawning phases. The expression was higher in the prespawning phase than the resting phase. The gnrh2 expression in the brain and ovary showed significant seasonal variations but with opposite patterns. In the brain, the expression was the highest in the preparatory phase, decreased progressively to low levels in the postspawning and resting phases. In the ovary, the transcript level was low in the resting and preparatory phases, increased sharply in the prespawning phase reaching the peak level in the spawning phase and declined sharply in the postspawning phase. The gnrh2 mRNA showed the highest expression in the hind brain-medulla oblongata and moderate to low expression in forebrain regions and pituitary. Ovariectomy resulted in a duration-dependent inhibition of hfgnrh2 mRNA levels in the resting and prespawning phases. Steroid (E2, testosterone and progesterone) replacement treatments (0.5 μg/g body weight) in the 3- week ovariectomized fish restored the inhibition due to ovariectomy, elevated the expression over and above the sham level in the resting phase (E2 group), and raised the levels almost to that of the sham group (testosterone and progesterone groups) in the prespawning phase. In the sham control groups, the steroid replacement resulted in a significant reduction in the mRNA levels. The expression of the gnrh2 mRNA in the brain-pituitary-gonadal axis and its regulation by gonadal steroids suggest that Gnrh2 may have a reproductive role in the catfish.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - A Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana, Hyderabad 500046, India
| | - S G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
30
|
Ubuka T, Tsutsui K. Reproductive neuroendocrinology of mammalian gonadotropin-inhibitory hormone. Reprod Med Biol 2019; 18:225-233. [PMID: 31312100 PMCID: PMC6613023 DOI: 10.1002/rmb2.12272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gonadotropin-inhibitory hormone (GnIH) was discovered in the Japanese quail brain in 2000 as a hypothalamic neuropeptide that suppresses luteinizing hormone release from cultured quail anterior pituitary. METHODS The authors investigated the existence of mammalian orthologous peptides to GnIH and their physiological functions in the following 19 years of research. MAIN FINDINGS Mammals have orthologous peptide to GnIH, often described RFamide-related peptide, expressed in the hypothalamus and gonads. Mammalian GnIH may also suppress gonadotropin synthesis and release by suppressing gonadotropin-releasing hormone (GnRH) synthesis and release in addition to directly suppressing gonadotropin synthesis and release from the pituitary. Mammalian GnIH may also suppress kisspeptin, a stimulator of GnRH, release. Mammalian GnIH is also expressed in the testis and ovary and suppresses gametogenesis and sex steroid production acting in an autocrine/paracrine manner. Thus, mammalian GnIH may act at all levels of the hypothalamic-pituitary-gonadal axis to suppress reproduction. GnIH may be involved in the regulation of puberty, estrous or menstrual cycle, seasonal reproduction, and stress responses. CONCLUSION Studies suggest that mammalian GnIH is an important neuroendocrine suppressor of reproduction in mammals.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| |
Collapse
|
31
|
Plant TM. The neurobiological mechanism underlying hypothalamic GnRH pulse generation: the role of kisspeptin neurons in the arcuate nucleus. F1000Res 2019; 8. [PMID: 31297186 PMCID: PMC6600864 DOI: 10.12688/f1000research.18356.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 01/21/2023] Open
Abstract
This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby
Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.
Collapse
Affiliation(s)
- Tony M Plant
- Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
Plant TM. The neurobiological mechanism underlying hypothalamic GnRH pulse generation: the role of kisspeptin neurons in the arcuate nucleus. F1000Res 2019; 8:F1000 Faculty Rev-982. [PMID: 31297186 PMCID: PMC6600864 DOI: 10.12688/f1000research.18356.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 03/22/2024] Open
Abstract
This review recounts the origins and development of the concept of the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator. It starts in the late 1960s when striking rhythmic episodes of luteinizing hormone secretion, as reflected by circulating concentrations of this gonadotropin, were first observed in monkeys and ends in the present day. It is currently an exciting time witnessing the application, primarily to the mouse, of contemporary neurobiological approaches to delineate the mechanisms whereby Kiss1/NKB/Dyn (KNDy) neurons in the arcuate nucleus of the hypothalamus generate and time the pulsatile output of kisspeptin from their terminals in the median eminence that in turn dictates intermittent GnRH release and entry of this decapeptide into the primary plexus of the hypophysial portal circulation. The review concludes with an examination of questions that remain to be addressed.
Collapse
Affiliation(s)
- Tony M. Plant
- Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
33
|
Vastagh C, Solymosi N, Farkas I, Liposits Z. Proestrus Differentially Regulates Expression of Ion Channel and Calcium Homeostasis Genes in GnRH Neurons of Mice. Front Mol Neurosci 2019; 12:137. [PMID: 31213979 PMCID: PMC6554425 DOI: 10.3389/fnmol.2019.00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
In proestrus, the changing gonadal hormone milieu alters the physiological properties of GnRH neurons and contributes to the development of the GnRH surge. We hypothesized that proestrus also influences the expression of different ion channel genes in mouse GnRH neurons. Therefore, we performed gene expression profiling of GnRH neurons collected from intact, proestrous and metestrous GnRH-GFP transgenic mice, respectively. Proestrus changed the expression of 37 ion channel and 8 calcium homeostasis-regulating genes. Voltage-gated sodium channels responded with upregulation of three alpha subunits (Scn2a1, Scn3a, and Scn9a). Within the voltage-gated potassium channel class, Kcna1, Kcnd3, Kcnh3, and Kcnq2 were upregulated, while others (Kcna4, Kcnc3, Kcnd2, and Kcng1) underwent downregulation. Proestrus also had impact on inwardly rectifying potassium channel subunits manifested in enhanced expression of Kcnj9 and Kcnj10 genes, whereas Kcnj1, Kcnj11, and Kcnj12 subunit genes were downregulated. The two-pore domain potassium channels also showed differential expression with upregulation of Kcnk1 and reduced expression of three subunit genes (Kcnk7, Kcnk12, and Kcnk16). Changes in expression of chloride channels involved both the voltage-gated (Clcn3 and Clcn6) and the intracellular (Clic1) subtypes. Regarding the pore-forming alpha-1 subunits of voltage-gated calcium channels, two (Cacna1b and Cacna1h) were upregulated, while Cacna1g showed downregulation. The ancillary subunits were also differentially regulated (Cacna2d1, Cacna2d2, Cacnb1, Cacnb3, Cacnb4, Cacng5, Cacng6, and Cacng8). In addition, ryanodine receptor 1 (Ryr1) gene was downregulated, while a transient receptor potential cation channel (Trpm3) gene showed enhanced expression. Genes encoding proteins regulating the intracellular calcium homeostasis were also influenced (Calb1, Hpca, Hpcal1, Hpcal4, Cabp7, Cab 39l, and Cib2). The differential expression of genes coding for ion channel proteins in GnRH neurons at late proestrus indicates that the altering hormone milieu contributes to remodeling of different kinds of ion channels of GnRH neurons, which might be a prerequisite of enhanced cellular activity of GnRH neurons and the subsequent surge release of the neurohormone.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
34
|
Yuan LJ, Peng C, Liu BH, Feng JB, Qiu GF. Identification and Characterization of a Luteinizing Hormone Receptor (LHR) Homolog from the Chinese Mitten Crab Eriocheir sinensis. Int J Mol Sci 2019; 20:ijms20071736. [PMID: 30965614 PMCID: PMC6480239 DOI: 10.3390/ijms20071736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Luteinizing hormone (LH), a pituitary gonadotropin, coupled with LH receptor (LHR) is essential for the regulation of the gonadal maturation in vertebrates. Although LH homolog has been detected by immunocytochemical analysis, and its possible role in ovarian maturation was revealed in decapod crustacean, so far there is no molecular evidence for the existence of LHR. In this study, we cloned a novel LHR homolog (named EsLHR) from the Chinese mitten crab Eriocheir sinensis. The complete sequence of the EsLHR cDNA was 2775bp, encoding a protein of 924 amino acids, sharing 71% amino acids identity with the ant Zootermopsis nevadensis LHR. EsLHR expression was found to be high in the ovary, while low in testis, gill, brain, and heart, and no expression in the thoracic ganglion, eye stalk, muscle, and hepatopancreas. Quantitative PCR revealed that the expression level of EsLHR mRNA was significantly higher in the ovaries in previtellogenic (Pvt), late vitellogenic (Lvt), and germinal vesicle breakdown (GVBD) stages than that in the vitellogenic (Mvt) and early vitellogenic (Evt) stages (P < 0.05), and, the highest and the lowest expression were in Lvt, and Evt, respectively. The strong signal was mainly localized in the ooplasm of Pvt oocyte as detected by in situ hybridization. The crab GnRH homolog can significantly induce the expression of EsLHR mRNA at 36 hours post injection in vivo (P < 0.01), suggesting that EsLHR may be involved in regulating ovarian development through GnRH signaling pathway in the mitten crab.
Collapse
Affiliation(s)
- Li-Juan Yuan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Chao Peng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Bi-Hai Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jiang-Bin Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
35
|
Does kisspeptin participate in GABA-mediated modulation of GnRH and GnRH receptor biosynthesis in the hypothalamic-pituitary unit of follicular-phase ewes? Pharmacol Rep 2019; 71:636-643. [PMID: 31176893 DOI: 10.1016/j.pharep.2019.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The inverse relationship between GnRH transcript level and GABA neurons activity has suggested that GABA at the hypothalamic level may exert a suppressive effect on subsequent steps of the GnRH biosynthesis. In the present study, we analyzed the effects of GABA type A receptor agonist (muscimol) or antagonist (bicuculline) on molecular mechanisms governing GnRH/LH secretion in follicular-phase sheep. METHODS ELISA technique was used to investigate the effects of muscimol and/or bicuculline on levels of post-translational products of genes encoding GnRH ligand and GnRH receptor (GnRHR) in the preoptic area (POA), anterior (AH) and ventromedial (VMH) hypothalamus, stalk/median eminence (SME), and GnRHR in the anterior pituitary (AP). Real-time PCR was chosen for determination of the effect of drugs on kisspeptin (Kiss 1) mRNA level in POA and VMH including arcuate nucleus (VMH/ARC), and on Kiss1 receptor (Kiss1r) mRNA abundance in POA-hypothalamic structures. These analyses were supplemented by RIA method for measurement of plasma LH concentration. RESULTS The study demonstrated that muscimol and bicuculline significantly decreased or increased GnRH biosynthesis in all analyzed structures, respectively, and led to analogous changes in plasma LH concentration. Similar muscimol- and bicuculline-related alterations were observed in levels of GnRHR. However, the expression of Kiss 1 and Kiss1r mRNAs in selected POA-hypothalamic areas of either muscimol- and bicuculline-treated animals remained unaltered. CONCLUSIONS Our data suggest that GABAergic neurotransmission is involved in the regulatory pathways of GnRH/GnRHR biosynthesis and then GnRH/LH release in follicular-phase sheep conceivably via indirect mechanisms that exclude involvement of Kiss 1 neurons.
Collapse
|
36
|
Moore AM, Abbott G, Mair J, Prescott M, Campbell RE. Mapping GABA and glutamate inputs to gonadotrophin-releasing hormone neurones in male and female mice. J Neuroendocrinol 2018; 30:e12657. [PMID: 30415474 DOI: 10.1111/jne.12657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 11/28/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) neurone function is dependent upon gonadal steroid hormone feedback, which is communicated in large part through an afferent neuronal network. The classical neurotransmitters GABA and glutamate are important regulators of GnRH neurone activity and are implicated in mediating feedback signals. In the present study, we aimed to determine whether GABAergic or glutamatergic input to GnRH neurones differs between males and females and/or exhibits morphological plasticity in response to steroid hormone feedback in females. Tissue collected from GnRH-green fluorescent protein (GFP) male and female mice in dioestrus underwent immunofluorescence labelling of GFP and either the vesicular GABA transporter (VGAT) or the vesicular glutamate transporter 2 (VGLUT2). No differences in the densities or absolute numbers of VGAT-immunoreactive (-IR) or VGLUT2-IR puncta apposed to GnRH neurones were identified between males and females. The most significant input from either neurotransmitter was to the proximal dendritic region and 80% of VGAT-IR puncta apposed to GnRH neurones co-localised with synaptophysin. Putative inputs were also assessed in ovariectomised (OVX) female mice treated with negative (OVX+E) or positive (OVX+E+E) feedback levels of oestrogen, and OVX+E+E mice were killed during the expected GnRH/luteinising hormone surge. No differences in VGLUT2-IR contacts to GnRH neurones were identified between animals under the negative-feedback influence of oestrogen (OVX+E) or the positive influence of oestrogen (OVX+E+E), regardless of cFos activation status. By contrast, a significant elevation in putative GABAergic inputs to GnRH neurones at the time of the preovulatory surge was found in the cFos-negative subset of GnRH neurones, both at the level of the soma and at the proximal dendrite. Taken together, these data suggest that, although GABAergic and glutamatergic innervation of GnRH neurones is not sexually differentiated, cyclic fluctuations in steroid hormone feedback over the female oestrous cycle result in plastic changes in GABAergic inputs to a subpopulation of GnRH neurones.
Collapse
Affiliation(s)
- Aleisha M Moore
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Georgina Abbott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jonathan Mair
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons. Horm Behav 2018; 104:146-155. [PMID: 29626486 PMCID: PMC6196116 DOI: 10.1016/j.yhbeh.2018.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. There is now compelling evidence for membrane-associated estrogen receptors in hypothalamic neurons that are critical for the hypothalamic control of homeostatic functions. It has been known for some time that estradiol (E2) can rapidly alter hypothalamic neuronal activity within seconds, indicating that some cellular effects can occur via membrane initiated events. However, our understanding of how E2 signals via membrane-associated receptors and how these signals impact physiological functions is only just emerging. Thus, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell excitability and even gene transcription in hypothalamic neurons. One population of hypothalamic neurons, the anorexigenic proopiomelanocortin (POMC) neurons, has long been considered to be a target of E2's actions based on gene (Pomc) expression studies. However, we now know that E2 can rapidly alter POMC neuronal activity within seconds and activate several intracellular signaling cascades that ultimately affect gene expression, actions which are critical for maintaining sensitivity to insulin in metabolically stressed states. E2 also affects the orexigenic Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons in similarly rapid but antagonistic manner. Therefore, this review will summarize our current state of knowledge of how E2 signals via rapid membrane-initiated and intracellular signaling cascades in POMC and NPY/AgRP neurons to regulate energy homeostasis.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
38
|
Loutchanwoot P, Vortherms T. Effects of puerarin on estrogen-regulated gene expression in gonadotropin-releasing hormone pulse generator of ovariectomized rats. Steroids 2018; 135:54-62. [PMID: 29733861 DOI: 10.1016/j.steroids.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
Effects of puerarin on the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator function is investigated, for the first time, in ovariectomized rats at the level of mRNA expression of estrogen-responsive genes, e.g., estrogen receptor (ER), GnRH and its receptor (GnRHR). Rats were treated orally for 90 days either with a soy-free diet containing two different doses of puerarin (low dose of 600 mg/kg and high dose of 3000 mg/kg) or estradiol benzoate (E2B) at either low dose (4.3 mg/kg) or high dose (17.3 mg/kg). Levels of mRNA expression in the medial preoptic area/anterior hypothalamus (MPOA/AH), mediobasal hypothalamus/median eminence (MBH/ME) and adenohypophysis were measured by quantitative TaqMan® real-time RT-PCR. Plasma levels of luteinizing hormone (LH) and prolactin (PRL) were measured by radioimmunoassay. In the MPOA/AH, both puerarin and E2B decreased ERα mRNA levels without any significant changes in ERβ and GnRH mRNA levels. Both puerarin and E2B did not significantly alter the expression levels of ERα, ERβ and GnRHR in the MBH/ME. E2B exerted significant effects on the down-regulation of adenohypophyseal GnRHR mRNA transcripts and serum LH levels. Puerarin did not cause significant changes in pituitary GnRHR mRNA transcripts and serum LH and PRL levels. This is the first study to demonstrate that in ovariectomized rat models of ovarian hormone deprivation, puerarin acted as a weak estrogen-active compound in the hypothalamic GnRH pulse generator through the downregulation of MPOA/AH ERα mRNA expression.
Collapse
Affiliation(s)
- Panida Loutchanwoot
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang Sub-district, Kantarawichai District, Mahasarakham Province 44150, Thailand.
| | - Tina Vortherms
- Department of Endocrinology, Faculty of Medicine, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
39
|
Carrasco RA, Singh J, Adams GP. Distribution and morphology of gonadotropin-releasing hormone neurons in the hypothalamus of an induced ovulator - The llama (Lama glama). Gen Comp Endocrinol 2018; 263:43-50. [PMID: 29656045 DOI: 10.1016/j.ygcen.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/23/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a decapeptide involved in the regulation of reproduction in all mammals, but the distribution of GnRH neurons within the brain varies widely among species. The objective of the present study was to characterize the number and distribution of GnRH neurons in the hypothalamus and preoptic area of llamas, an induced ovulator. The brains of female llamas (n = 4) were fixed, frozen and sectioned serially every 50 µm in the transverse (coronal) plane. Every 10th section was stained for immunohistochemical detection of GnRH-positive neuron cell bodies and fibers by incubation with 3,3'-diaminobenzidine. The number of counted immunoreactive cells ranged from 222 to 250 (≈241 ± 13 cells in the preoptic area and hypothalamus per animal) and were localized in the medio-basal hypothalamus (44.3%), anterior hypothalamus (27%), preoptic area (14.9%), diagonal band of Broca/medial septum (13.4%), and mammillary area (0.5%). The immunoreactive cells were not localized in specific hypothalamic nuclei, but rather appeared to be distributed diffusely. The highest concentration of immunoreactive neuron fibers was in the median eminence (P < 0.05), but fibers were identified in most of the areas analyzed, including the neurohypophysis. The GnRH neurons within the hypothalamus displayed monopolar (33%), bipolar (39%), and multipolar (28%) morphologies. The bipolar type was most common in the medio-basal region (40%; P < 0.05). We conclude that GnRH neurons and fibers form a network within the anterior and medio-basal hypothalamus of llamas, suggesting the central location of mechanisms controlling reproductive processes in llamas (i.e., induced ovulation).
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
40
|
Tonn Eisinger KR, Larson EB, Boulware MI, Thomas MJ, Mermelstein PG. Membrane estrogen receptor signaling impacts the reward circuitry of the female brain to influence motivated behaviors. Steroids 2018; 133:53-59. [PMID: 29195840 PMCID: PMC5864533 DOI: 10.1016/j.steroids.2017.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
Within the adult female, estrogen signaling is well-described as an integral component of the physiologically significant hypothalamic-pituitary-gonadal axis. In rodents, the timing of ovulation is intrinsically entwined with the display of sexual receptivity. For decades, the importance of estradiol activating intracellular estrogen receptors within the hypothalamus and midbrain/spinal cord lordosis circuits has been appreciated. These signaling pathways primarily account for the ability of the female to reproduce. Yet, often overlooked is that the desire to reproduce is also tightly regulated by estrogen receptor signaling. This lack of emphasis can be attributed to an absence of nuclear estrogen receptors in brain regions associated with reward, such as the nucleus accumbens, which are associated with motivated behaviors. This review outlines how membrane-localized estrogen receptors affect metabotropic glutamate receptor signaling within the rodent nucleus accumbens. In addition, we discuss how, as estrogens drive increased motivation for reproduction, they also produce the untoward side effect of heightening female vulnerability to drug addiction.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin B Larson
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marissa I Boulware
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark J Thomas
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Weems PW, Lehman MN, Coolen LM, Goodman RL. The Roles of Neurokinins and Endogenous Opioid Peptides in Control of Pulsatile LH Secretion. VITAMINS AND HORMONES 2018; 107:89-135. [PMID: 29544644 DOI: 10.1016/bs.vh.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Work over the last 15 years on the control of pulsatile LH secretion has focused largely on a set of neurons in the arcuate nucleus (ARC) that contains two stimulatory neuropeptides, critical for fertility in humans (kisspeptin and neurokinin B (NKB)) and the inhibitory endogenous opioid peptide (EOP), dynorphin, and are now known as KNDy (kisspeptin-NKB-dynorphin) neurons. In this review, we consider the role of each of the KNDy peptides in the generation of GnRH pulses and the negative feedback actions of ovarian steroids, with an emphasis on NKB and dynorphin. With regard to negative feedback, there appear to be important species differences. In sheep, progesterone inhibits GnRH pulse frequency by stimulating dynorphin release, and estradiol inhibits pulse amplitude by suppressing kisspeptin. In rodents, the role of KNDy neurons in estrogen negative feedback remains controversial, progesterone may inhibit GnRH via dynorphin, but the physiological significance of this action is unclear. In primates, an EOP, probably dynorphin, mediates progesterone negative feedback, and estrogen inhibits kisspeptin expression. In contrast, there is now compelling evidence from several species that kisspeptin is the output signal from KNDy neurons that drives GnRH release during a pulse and may also act within the KNDy network to affect pulse frequency. NKB is thought to act within this network to initiate each pulse, although there is some redundancy in tachykinin signaling in rodents. In ruminants, dynorphin terminates GnRH secretion at the end of pulse, most likely acting on both KNDy and GnRH neurons, but the data on the role of this EOP in rodents are conflicting.
Collapse
Affiliation(s)
- Peyton W Weems
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael N Lehman
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- University of Mississippi Medical Center, Jackson, MS, United States
| | | |
Collapse
|
42
|
Ciechanowska M, Łapot M, Paruszewska E, Radawiec W, Przekop F. The influence of dopaminergic system inhibition on biosynthesis of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in anoestrous sheep; hierarchical role of kisspeptin and RFamide-related peptide-3 (RFRP-3). Reprod Fertil Dev 2018; 30:672-680. [DOI: 10.1071/rd16309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/14/2017] [Indexed: 11/23/2022] Open
Abstract
This study aimed to explain how prolonged inhibition of central dopaminergic activity affects the cellular processes governing gonadotrophin-releasing hormone (GnRH) and LH secretion in anoestrous sheep. For this purpose, the study included two experimental approaches: first, we investigated the effect of infusion of sulpiride, a dopaminergic D2 receptor antagonist (D2R), on GnRH and GnRH receptor (GnRHR) biosynthesis in the hypothalamus and on GnRHR in the anterior pituitary using an immunoassay. This analysis was supplemented by analysis of plasma LH levels by radioimmunoassay. Second, we used real-time polymerase chain reaction to analyse the influence of sulpiride on the levels of kisspeptin (Kiss1) mRNA in the preoptic area and ventromedial hypothalamus including arcuate nucleus (VMH/ARC), and RFamide-related peptide-3 (RFRP-3) mRNA in the paraventricular nucleus (PVN) and dorsomedial hypothalamic nucleus. Sulpiride significantly increased plasma LH concentration and the levels of GnRH and GnRHR in the hypothalamic–pituitary unit. The abolition of dopaminergic activity resulted in a significant increase in transcript level of Kiss1 in VMH/ARC and a decrease of RFRP-3 in PVN. The study demonstrates that dopaminergic neurotransmission through D2R is involved in the regulatory pathways of GnRH and GnRHR biosynthesis in the hypothalamic–pituitary unit of anoestrous sheep, conceivably via mechanisms in which Kiss1 and RFRP-3 participate.
Collapse
|
43
|
Abstract
Reproductive behavior is the behavior related to the production of offspring and includes all aspects from the establishment of mating systems, courtship, sexual behavior, and parturition to the care of young. In this chapter, I outline the hormonal regulation of the estrous cycle, followed by a description of the neural regulation of female sexual behavior. Ovarian hormones play an important role in the induction of ovulation and behavioral estrus, in which they interact closely with several neurotransmitters and neuropeptides to induce sexual behavior. This chapter discusses the latest research on the role of estrogen, progesterone, serotonin, dopamine, noradrenaline, oxytocin, and GABA in female mating behavior. In addition, the most relevant brain areas, such as the preoptic area and the ventromedial nucleus of the hypothalamus, in which these regulations take place, are discussed.
Collapse
Affiliation(s)
- Eelke M S Snoeren
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
44
|
On the role of brain aromatase in females: why are estrogens produced locally when they are available systemically? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:31-49. [PMID: 29086012 DOI: 10.1007/s00359-017-1224-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 01/27/2023]
Abstract
The ovaries are often thought of as the main and only source of estrogens involved in the regulation of female behavior. However, aromatase, the key enzyme for estrogen synthesis, although it is more abundant in males, is expressed and active in the brain of females where it is regulated by similar mechanisms as in males. Early work had shown that estrogens produced in the ventromedial hypothalamus are involved in the regulation of female sexual behavior in musk shrews. However, the question of the role of central aromatase in general had not received much attention until recently. Here, I will review the emerging concept that central aromatization plays a role in the regulation of physiological and behavioral endpoints in females. The data support the notion that in females, brain aromatase is not simply a non-functional evolutionary vestige, and provide support for the importance of locally produced estrogens for brain function in females. These observations should also have an impact for clinical research.
Collapse
|
45
|
Charif SE, Inserra PIF, Schmidt AR, Di Giorgio NP, Cortasa SA, Gonzalez CR, Lux-Lantos V, Halperin J, Vitullo AD, Dorfman VB. Local production of neurostradiol affects gonadotropin-releasing hormone (GnRH) secretion at mid-gestation in Lagostomus maximus (Rodentia, Caviomorpha). Physiol Rep 2017; 5:5/19/e13439. [PMID: 29038356 PMCID: PMC5641931 DOI: 10.14814/phy2.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Females of the South American plains vizcacha, Lagostomus maximus, show peculiar reproductive features such as massive polyovulation up to 800 oocytes per estrous cycle and an ovulatory process around mid‐gestation arising from the reactivation of the hypothalamic–hypophyseal–ovary (H.H.O.) axis. Estradiol (E2) regulates gonadotropin‐releasing hormone (GnRH) expression. Biosynthesis of estrogens results from the aromatization of androgens by aromatase, which mainly occurs in the gonads, but has also been described in the hypothalamus. The recently described correlation between GnRH and ERα expression patterns in the hypothalamus of the vizcacha during pregnancy, with coexpression in the same neurons of the medial preoptic area, suggests that hypothalamic synthesis of E2 may affect GnRH neurons and contribute with systemic E2 to modulate GnRH delivery during the gestation. To elucidate this hypothesis, hypothalamic expression and the action of aromatase on GnRH release were evaluated in female vizcachas throughout pregnancy. Aromatase and GnRH expression was increased significantly in mid‐pregnant and term‐pregnant vizcachas compared to early‐pregnant and nonpregnant females. In addition, aromatase and GnRH were colocalized in neurons of the medial preoptic area of the hypothalamus throughout gestation. The blockage of the negative feedback of E2 induced by the inhibition of aromatase resulted in a significant increment of GnRH‐secreted mass by hypothalamic explants. E2 produced in the same neurons as GnRH may drive intracellular E2 to higher levels than those obtained from systemic circulation alone. This may trigger for a prompt GnRH availability enabling H.H.O. activity at mid‐gestation with ovulation and formation of accessory corpora lutea with steroidogenic activity that produce the necessary progesterone to maintain gestation to term and guarantee the reproductive success.
Collapse
Affiliation(s)
- Santiago E Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro R Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago A Cortasa
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Candela R Gonzalez
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina .,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
46
|
Qi X, Zhou W, Wang Q, Guo L, Lu D, Lin H. Gonadotropin-Inhibitory Hormone, the Piscine Ortholog of LPXRFa, Participates in 17β-Estradiol Feedback in Female Goldfish Reproduction. Endocrinology 2017; 158:860-873. [PMID: 28324026 DOI: 10.1210/en.2016-1550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) plays a critical role in regulating gonadotropin-releasing hormone, gonadotropin hormone, and steroidogenesis in teleosts. In the present study, we sought to determine whether 17β-estradiol (E2) acts directly on GnIH neurons to regulate reproduction in goldfish, a seasonal breeder, and we investigated the role of estrogen receptors (ERs) in mediating this process. We found that GnIH neurons coexpress three types of ERs. Ovariectomy and letrozole implantation into female goldfish at the vitellogenic stage elicited a substantial decrease in the expression of GnIH messenger RNA (mRNA), and E2 supplementation abolished this effect. In primary cultured hypothalamus cells, E2 increased GnIH mRNA levels; surprisingly, selective ERα and ERβ agonists showed opposite effects in regulating GnIH mRNA levels. Using genome walking, we isolated a 2329-bp section of the GnIH promoter sequence, and 7 half-estrogen response elements (EREs) were found in the promoter region. Luciferase assays and electrophoretic mobility shift assay results show that the half-ERE element at -2203 is the key site for competitive binding between ERα and ERβ. Ovariectomy and letrozole implantation into female goldfish in the maturating stage did not change the GnIH mRNA expression levels. Taken together, these findings suggest that E2 binds to multiple types of ERs, which competitively bind to the same half-ERE binding site of the GnIH promoter to achieve both positive and negative feedback in response to estrogen to regulate goldfish reproduction at different stages of ovarian development.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenyi Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qingqing Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liang Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
47
|
Ciechanowska M, Łapot M, Mateusiak K, Paruszewska E, Malewski T, Przekop F. Biosynthesis of gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) in hypothalamic–pituitary unit of anoestrous and cyclic ewes. Can J Physiol Pharmacol 2017; 95:178-184. [DOI: 10.1139/cjpp-2016-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was performed to explain how the molecular processes governing the biosynthesis of gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) in the hypothalamic–pituitary unit are reflected by luteinizing hormone (LH) secretion in sheep during anoestrous period and during luteal and follicular phases of the oestrous cycle. Using an enzyme-linked immunosorbent assay (ELISA), we analyzed the levels of GnRH and GnRHR in preoptic area (POA), anterior (AH) and ventromedial hypothalamus (VM), stalk–median eminence (SME), and GnRHR in the anterior pituitary gland (AP). Radioimmunoassay has also been used to define changes in plasma LH concentrations. The study provides evidence that the levels of GnRH in the whole hypothalamus of anoestrous ewes were lower than that in sheep during the follicular phase of the oestrous cycle (POA: p < 0.001, AH: p < 0.001, VM: p < 0.01, SME: p < 0.001) and not always than in luteal phase animals (POA: p < 0.05, SME: p < 0.05). It has also been demonstrated that the GnRHR amount in the hypothalamus–anterior pituitary unit, as well as LH level, in the blood in anoestrous ewes were significantly lower than those detected in animals of both cyclic groups. Our data suggest that decrease in LH secretion during the long photoperiod in sheep may be due to low translational activity of genes encoding both GnRH and GnRHR.
Collapse
Affiliation(s)
- M.O. Ciechanowska
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - M. Łapot
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - K. Mateusiak
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - E. Paruszewska
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - T. Malewski
- The Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland
| | - F. Przekop
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Neuroendocrinology, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
48
|
Mittelman-Smith MA, Rudolph LM, Mohr MA, Micevych PE. Rodent Models of Non-classical Progesterone Action Regulating Ovulation. Front Endocrinol (Lausanne) 2017; 8:165. [PMID: 28790975 PMCID: PMC5522857 DOI: 10.3389/fendo.2017.00165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4) can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components). This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.
Collapse
Affiliation(s)
- Melinda A. Mittelman-Smith
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Melinda A. Mittelman-Smith,
| | - Lauren M. Rudolph
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Margaret A. Mohr
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Paul E. Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
49
|
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front Endocrinol (Lausanne) 2017; 8:365. [PMID: 29354093 PMCID: PMC5758547 DOI: 10.3389/fendo.2017.00365] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
50
|
Vastagh C, Rodolosse A, Solymosi N, Liposits Z. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice. Front Cell Neurosci 2016; 10:230. [PMID: 27774052 PMCID: PMC5054603 DOI: 10.3389/fncel.2016.00230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2), glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6), cholinergic (Chrnb2, Chrm4) and dopaminergic (Drd3, Drd4), adrenergic (Adra1b, Adra2a, Adra2c), adenosinergic (Adora2a, Adora2b), glycinergic (Glra), purinergic (P2rx7), and serotonergic (Htr1b) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins (Gnai1, Gnai2, Gnas), adenylate-cyclases (Adcy3, Adcy5), protein kinase A (Prkaca, Prkacb) protein kinase C (Prkca) and certain transporters (Slc1a4, Slc17a6, Slc6a17) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB Barcelona)Barcelona, Spain
| | - Norbert Solymosi
- Department of Animal Hygiene, Herd-Health and Veterinary Ethology, University of Veterinary MedicineBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|