1
|
Kahveci EF, Colvin Zielen AM, Gibbs WJ, McIntyre CA, Modi R, Johnstonbaugh HZ, Washington TH, Brown DR, Hockman MR, Rossman NR, Jensen-Seaman MI. Comparative functional analyses of the prostate-specific KLK3 enzyme in primates reveal the impact of sexual selection. Evolution 2025; 79:611-624. [PMID: 39878341 PMCID: PMC11965614 DOI: 10.1093/evolut/qpaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Male reproductive proteins frequently evolve rapidly in animals, potentially due to adaptive evolution driven by sperm competition, polyspermy avoidance, or pathogen defense. Alternatively, elevated rates of protein change may be due to relaxed constraint. The prostate-specific protease KLK3 has experienced dynamic evolution since its origin stemming from a gene duplication in the ancestor of all Old World primates, with instances of rapid evolution, stasis, and pseudogenization. As we demonstrate with functional assays using recombinant proteins, these changes have resulted in a chimpanzee KLK3 ortholog with greater enzyme velocity and higher efficiency than other apes, including humans. Reduced enzyme efficiency was observed in gorillas and gibbons who both possess a chimeric KLK2/KLK3 enzyme resulting from independent genomic deletions. The relative efficiency of KLK3 homologs among these species correlates well with their presumed levels of sperm competition. Furthermore, the reconstructed protein of the human-chimpanzee last common ancestor has enzyme kinetics identical to modern humans, suggesting that the observed functional differences between humans and chimpanzees are derived in the latter and allowing us to tentatively speculate that their common ancestor did not possess a polygynandrous mating system similar to modern chimpanzees.
Collapse
Affiliation(s)
- Emine F Kahveci
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Amanda M Colvin Zielen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, and UPMC Magee Center of Reproduction and Transplantation, Pittsburgh, PA, United States
| | - William J Gibbs
- College of Criminology and Criminal Justice, Florida State University, Tallahassee, FL, United States
| | - Clancy A McIntyre
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Raahi Modi
- Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Hannah Z Johnstonbaugh
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland Baltimore, Baltimore, MD, United States
| | - Thomas H Washington
- Genetic Counseling, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David R Brown
- Interpace Biosciences, Pittsburgh, PA, United States
| | - Megan R Hockman
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Neil R Rossman
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | | |
Collapse
|
2
|
Nik-Ahd F, De Hoedt AM, Butler C, Anger JT, Carroll PR, Cooperberg MR, Freedland SJ. Prostate-Specific Antigen Values in Transgender Women Receiving Estrogen. JAMA 2024; 332:335-337. [PMID: 38922607 PMCID: PMC11209176 DOI: 10.1001/jama.2024.9997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024]
Abstract
This study examines prostate-specific antigen values among transgender women in the Veterans Health Administration receiving estrogen.
Collapse
Affiliation(s)
| | - Amanda M. De Hoedt
- Section of Urology, Veterans Affairs Health Care System, Durham, North Carolina
| | - Christi Butler
- Department of Urology, University of California San Francisco
| | | | | | | | - Stephen J. Freedland
- Section of Urology, Veterans Affairs Health Care System, Durham, North Carolina
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
3
|
Stuardo-Parada A, López-Muñoz R, Villarroel-Espindola F, Figueroa CD, Ehrenfeld P. Minireview: functional roles of tissue kallikrein, kinins, and kallikrein-related peptidases in lung cancer. Med Oncol 2023; 40:224. [PMID: 37405520 DOI: 10.1007/s12032-023-02090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Despite campaigns and improvements in detection and treatment, lung cancer continues to increase worldwide and represents a major public health problem. One approach to treating patients suffering from lung cancer is to target surface receptors overexpressed on tumor cells, such as GPCR-family kinin receptors, and proteases that control tumor progression, such as kallikrein-related peptidases (KLKs). These proteases have been visualized in recent years due to their contribution to the progression of cancers, such as prostate and ovarian cancer, facilitating the invasive and metastatic capacity of tumor cells in these tissues. In fact, KLK3 is the specific prostate antigen, the only tissue-specific biomarker used to diagnose this malignancy. In lung cancer to date, evidence indicates that KLK5, KLK6, KLK8, KLK11, and KLK14 are the major peptidases regulated and involved in its progression. The expression levels of KLKs in this neoplasm are modulated by the secretome of the different cell types present in the tumor microenvironment, the cancer subtype and the tumor stage, among others. Considering the multiple functions of kinin receptors and KLKs, this review highlights their roles, even considering the SARS-CoV-2 effects. Since lung cancer is often diagnosed in advanced stages, our efforts should focus on early diagnosis, validating for example specific KLKs, especially in high-risk populations such as smokers and people exposed to carcinogenic fumes, oil fields, and contaminated workplaces, unexplored fields to investigate. Furthermore, their modulation could be considered as a promising approach in lung cancer therapeutics.
Collapse
Affiliation(s)
- Adriana Stuardo-Parada
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo López-Muñoz
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | | | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Gil J, Marques-Pamies M, Valassi E, Serra G, Salinas I, Xifra G, Casano-Sancho P, Carrato C, Biagetti B, Sesmilo G, Marcos-Ruiz J, Rodriguez-Lloveras H, Rueda-Pujol A, Aulinas A, Blanco A, Hostalot C, Simó-Servat A, Muñoz F, Rico M, Ibáñez-Domínguez J, Cordero E, Webb SM, Jordà M, Puig-Domingo M. Molecular characterization of epithelial-mesenchymal transition and medical treatment related-genes in non-functioning pituitary neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1129213. [PMID: 37033229 PMCID: PMC10074986 DOI: 10.3389/fendo.2023.1129213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Different medical therapies have been developed for pituitary adenomas. However, Non-Functioning Pituitary Neuroendocrine Tumors (NF-PitNET) have shown little response to them. Furthermore, epithelial-mesenchymal transition (EMT) has been linked to resistance to medical treatment in a significant number of tumors, including pituitary adenomas. Methods We aimed to evaluate the expression of EMT-related markers in 72 NF-PitNET and 16 non-tumoral pituitaries. To further explore the potential usefulness of medical treatment for NF-PitNET we assessed the expression of somatostatin receptors and dopamine-associated genes. Results We found that SNAI1, SNAI2, Vimentin, KLK10, PEBP1, Ki-67 and SSTR2 were associated with invasive NF-PitNET. Furthermore, we found that the EMT phenomenon was more common in NF-PitNET than in GH-secreting pituitary tumors. Interestingly, PEBP1 was overexpressed in recurrent NF-PitNET, and could predict growth recurrence with 100% sensitivity but only 43% specificity. In parallel with previously reported studies, SSTR3 is highly expressed in our NF-PitNET cohort. However, SSTR3 expression is highly heterogeneous among the different histological variants of NF-PitNET with very low levels in silent corticotroph adenomas. Conclusion NF-PitNET showed an enhanced EMT phenomenon. SSTR3 targeting could be a good therapeutic candidate in NF-PitNET except for silent corticotroph adenomas, which express very low levels of this receptor. In addition, PEBP1 could be an informative biomarker of tumor regrowth, useful for predictive medicine in NF-PitNET.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Marques-Pamies
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| | - Elena Valassi
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Serra
- Department of Endocrinology, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Isabel Salinas
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Gemma Xifra
- Department of Endocrinology, Josep Trueta University Hospital, Girona, Spain
| | - Paula Casano-Sancho
- Centro de Investigación en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Pediatric Endocrinology Unit, Institut de Recerca SJS 39-57, Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - Cristina Carrato
- Department of Pathology, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Betina Biagetti
- Department of Endocrinology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Gemma Sesmilo
- Department of Endocrinology, Dexeus University Hospital, Barcelona, Spain
| | - Jennifer Marcos-Ruiz
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Anna Rueda-Pujol
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Anna Aulinas
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Blanco
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Cristina Hostalot
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Andreu Simó-Servat
- Department of Endocrinology, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Fernando Muñoz
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marta Rico
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Esteban Cordero
- Department of Neurosurgery, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Susan M. Webb
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Jordà
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| |
Collapse
|
5
|
Diamandis EP. My scientific genealogy and the Toronto ACDC Laboratory, 1988–2022. Open Life Sci 2022; 17:1515-1518. [PMID: 36405236 PMCID: PMC9644701 DOI: 10.1515/biol-2022-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/24/2022] [Indexed: 11/11/2022] Open
Abstract
There is a saying that as people get older, they prefer to speak more about the past and less about the future. As I go through the last chapter of my scientific career, which spans from 1988–2022, I traced my scientific genealogy and the most important scientific achievements of my laboratory. By examining close to 1,000 PubMed-indexed papers published, I found out that none of them describes best our most important contributions. Also, by realizing that our contributions in science would have likely been discovered by others shortly afterwards, I focused my attention to other metrics. I suggest here that the best metric of success is the number of people that have been trained in my lab, and found their own way in their professional and other endeavors. Over the years, I trained over 250 individuals, of which 49 obtained a PhD, 19 an MSc, 37 were post-doctoral fellows, 5 were clinical fellows and about 150 were co-op/undergraduates and summer students. Many of these individuals now hold important positions in Academia, Government and Industry. My graduates, who have now created their own genealogy and many more individuals with roots to my laboratory, are now serving the society. In conclusion, I consider the development of young trainees as my most important career contribution.
Collapse
Affiliation(s)
- Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital, 60 Murray St [Box 32]; Flr 6 – Rm L6-201-1 , Toronto , ON, M5T 3L9 , Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto , Canada
- Department of Clinical Biochemistry, University Health Network , Toronto , Canada
| |
Collapse
|
6
|
Wald NJ, Bestwick JP, Morris JK. Multi-marker risk-based screening for prostate cancer. J Med Screen 2022; 29:123-133. [PMID: 35255236 PMCID: PMC9087319 DOI: 10.1177/09691413221076415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine prostate cancer screening performance using prostate specific antigen (PSA) along with other markers, expressing markers in age-specific multiples of the median (MoM), and age. METHODS A prospective nested case-control study used stored serum from 571 men who died of, or with history of, prostate cancer (cases), and 2169 matched controls. Total, free and intact PSA, human kallikrein-related peptidase 2 (hK2), and microseminoprotein were measured and converted into MoM values. Screening marker distribution parameters were estimated in cases and controls. Monte Carlo simulation used these in a risk-based algorithm to estimate screening performance (detection rates [DRs] and false-positive rates [FPRs]). RESULTS Almost all (99%) cases occurred aged ≥55. Marker values were similar in cases who did and did not die of prostate cancer. Combining age, total PSA and hK2 MoM values (other markers added little or no discrimination) yielded a 1.2% FPR (95% CI 0.2-4.8%) for a 90% DR (59-98%) in men who died of or with a prostate cancer diagnosis within 5 years of blood collection (risk cut-off 1 in 20), two-thirds less than the 4.5% FPR using total PSA alone measured in ng/ml for the same 90% DR (cut-off 3.1 ng/ml). Screening performance over 10 years yielded a 33% (22-46%) FPR for a 90% DR. CONCLUSION Screening performed up to every 5 years from age 55 using the multi-marker risk-based screening algorithm for future prostate cancer achieves a high DR and a much lower FPR than using PSA alone, resulting in reductions in overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Nicholas J Wald
- Institute of Health Informatics, University College London, London, UK
- Population Health Research Institute, St George’s University of
London, London, UK
| | - Jonathan P Bestwick
- Wolfson Institute of Population Health, Queen Mary University of
London, London, UK
| | - Joan K Morris
- Population Health Research Institute, St George’s University of
London, London, UK
| |
Collapse
|
7
|
Lee Y, Zhang H, Seymen F, Kim YJ, Kasimoglu Y, Koruyucu M, Simmer JP, Hu JCC, Kim JW. Novel KLK4 Mutations Cause Hypomaturation Amelogenesis Imperfecta. J Pers Med 2022; 12:jpm12020150. [PMID: 35207639 PMCID: PMC8878363 DOI: 10.3390/jpm12020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of rare genetic diseases affecting the tooth enamel. AI is characterized by an inadequate quantity and/or quality of tooth enamel and can be divided into three major categories: hypoplastic, hypocalcified and hypomaturation types. Even though there are some overlapping phenotypes, hypomaturation AI enamel typically has a yellow to brown discoloration with a dull appearance but a normal thickness indicating a less mineralized enamel matrix. In this study, we recruited four Turkish families with hypomaturation AI and performed mutational analysis using whole exome sequencing. These analyses revealed two novel homozygous mutations in the KLK4 gene: a nonsense mutation in exon 3 (NM_004917.4:c.170C>A, p.(Ser57*)) was found in families 1, 2 and 3 and a missense mutation in exon 6 (c.637T>C, p.(Cys213Arg)) in family 4. Functional analysis showed that the missense mutation transcript could not translate the mutant protein efficiently or generated an unstable protein that lacked functional activity. The two novel inactivating KLK4 mutations we identified caused a hypomaturation AI phenotype similar to those caused by the four previously described KLK4 nonsense and frameshift mutations. This study improves our understanding of the normal and pathologic mechanisms of enamel formation.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Pediatric Dentistry, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea; (Y.L.); (Y.J.K.)
| | - Hong Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - Youn Jung Kim
- Department of Pediatric Dentistry, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea; (Y.L.); (Y.J.K.)
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - James P. Simmer
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jung-Wook Kim
- Department of Pediatric Dentistry, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea; (Y.L.); (Y.J.K.)
- Department of Molecular Genetics, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
8
|
Endoplasmic reticulum stress affects mouse salivary protein secretion induced by chronic administration of an α 1-adrenergic agonist. Histochem Cell Biol 2022; 157:443-457. [PMID: 35037129 DOI: 10.1007/s00418-021-02047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/04/2022]
Abstract
Stress stimulates both the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal axes. Activation of these axes results in the release of catecholamines, which in turn affects salivary secretion. Thus, repetitive stimulation of the α1-adrenergic receptor could be useful for studying the effects of chronic stress on the salivary gland. Salivary protein concentration and kallikrein activity were significantly lower in mice following chronic phenylephrine (PHE) administration. Chronic PHE administration led to significantly increased expression of the 78-kDa glucose-regulated protein, activating transcription factor 4, and activating transcription factor 6. Histological analyses revealed a decrease in the size of the serous cell and apical cytoplasm. These results suggest that repetitive pharmacological stimulation of the sympathetic nervous system elicits ER stress and translational suppression. In addition, PHE-treated mice exhibited a decrease in intracellular Ca2+ influx elicited by carbachol, a muscarine receptor agonist in the submandibular gland. The present findings suggest that chronic psychological, social, and physical stress could adversely affect Ca2+ regulation.
Collapse
|
9
|
Williams D, Mahmoud M, Liu R, Andueza A, Kumar S, Kang DW, Zhang J, Tamargo I, Villa-Roel N, Baek KI, Lee H, An Y, Zhang L, Tate EW, Bagchi P, Pohl J, Mosnier LO, Diamandis EP, Mihara K, Hollenberg MD, Dai Z, Jo H. Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. eLife 2022; 11:e72579. [PMID: 35014606 PMCID: PMC8806187 DOI: 10.7554/elife.72579] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while regions exposed to stable flow (s-flow) are protected. The proatherogenic and atheroprotective effects of d-flow and s-flow are mediated in part by the global changes in endothelial cell (EC) gene expression, which regulates endothelial dysfunction, inflammation, and atherosclerosis. Previously, we identified kallikrein-related peptidase 10 (Klk10, a secreted serine protease) as a flow-sensitive gene in mouse arterial ECs, but its role in endothelial biology and atherosclerosis was unknown. Here, we show that KLK10 is upregulated under s-flow conditions and downregulated under d-flow conditions using in vivo mouse models and in vitro studies with cultured ECs. Single-cell RNA sequencing (scRNAseq) and scATAC sequencing (scATACseq) study using the partial carotid ligation mouse model showed flow-regulated Klk10 expression at the epigenomic and transcription levels. Functionally, KLK10 protected against d-flow-induced permeability dysfunction and inflammation in human artery ECs, as determined by NFκB activation, expression of vascular cell adhesion molecule 1 and intracellular adhesion molecule 1, and monocyte adhesion. Furthermore, treatment of mice in vivo with rKLK10 decreased arterial endothelial inflammation in d-flow regions. Additionally, rKLK10 injection or ultrasound-mediated transfection of Klk10-expressing plasmids inhibited atherosclerosis in Apoe-/- mice. Moreover, KLK10 expression was significantly reduced in human coronary arteries with advanced atherosclerotic plaques compared to those with less severe plaques. KLK10 is a flow-sensitive endothelial protein that serves as an anti-inflammatory, barrier-protective, and anti-atherogenic factor.
Collapse
Affiliation(s)
- Darian Williams
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
| | - Marwa Mahmoud
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Renfa Liu
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Department of Biomedical Engineering, Peking UniversityBeijingChina
| | - Aitor Andueza
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Sandeep Kumar
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Dong-Won Kang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Jiahui Zhang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Ian Tamargo
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
| | - Nicolas Villa-Roel
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Kyung-In Baek
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | | | | | - Leran Zhang
- Department of Chemistry, Imperial College LondonLondonUnited Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College LondonLondonUnited Kingdom
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory UniversityAtlantaUnited States
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Laurent O Mosnier
- Department of Molecular Medicine, Scripps Research InstituteSan DiegoUnited States
| | | | - Koichiro Mihara
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, University of CalgaryCalgaryCanada
| | - Zhifei Dai
- Department of Biomedical Engineering, Peking UniversityBeijingChina
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Molecular and Systems Pharmacology Program, Emory UniversityAtlantaUnited States
- Department of Medicine, Emory UniversityAtlantaUnited States
| |
Collapse
|
10
|
Ge Y, Zhou C, Xiao X, Jin Z, Zhou L, Chen Z, Liu F, Yuan Q, Zhang G, Shan L, Tong P. A Novel Mutation of the KLK6 Gene in a Family With Knee Osteoarthritis. Front Genet 2021; 12:784176. [PMID: 34858488 PMCID: PMC8631809 DOI: 10.3389/fgene.2021.784176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the correlation between gene mutation and knee osteoarthritis (KOA), a whole-exome sequencing (WES) was applied to analyze blood samples of four KOA patients and two normal subjects in a family. Gene mutations were identified by gene-trapping and high-throughput sequencing analysis across the differences between the patients and normal subjects. The interactive gene network analysis on the retrieval of interacting genes (STRING) database and the KOA-related genes expression data sets was performed. A possibly detrimental and nonsynonymous mutation at the kallikrein-related peptidase 6 (KLK6) gene (rs201586262, c. C80A, P27H) was identified and attracted our attention. KLK6 belongs to the kallikrein family of serine proteases and its serum level is known as a prevalent biomarker in inflammatory and malignant diseases. KLK6 expresses in the extracellular compartment for matrix degradation, highlighting that KLK6 plays a role in the pathogenesis of KOA. By using the gene databases, the KOA-related genes were mined after de-duplication and IL6 was selected as the most relevant gene through interactive analysis of protein-protein interaction (PPI) network. The data suggested that KLK6 gene mutation and the related expression alteration of IL6 gene might determine the occurrence of hereditary KOA. The is the first study discovering the gene mutation of KLK6 as a factor of pathogenesis of KOA, especially the hereditary KOA.
Collapse
Affiliation(s)
- Yanzhi Ge
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenfen Zhou
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijiang Jin
- Department of Orthopaedics, The 9th People's Hospital of Hangzhou, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fucun Liu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Zhang
- National Genomics Data Center, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Qing Y, Li Q, Zhao LY, Shi P, Shan JL, Zhang W. LncRNA-PANDAR regulates the progression of thyroid carcinoma by targeting miR-637/KLK4. J Cancer 2021; 12:5879-5887. [PMID: 34476001 PMCID: PMC8408101 DOI: 10.7150/jca.55181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Thyroid gland carcinoma (TC) originates from follicular or parafollicular thyroid cells and is one of the most common endocrine organ malignancies. To explore the molecular mechanism by which long-chain non-coding RNAs regulate the growth and metastasis of thyroid gland carcinoma, in this study we focused on long non-coding RNAs (lncRNAs) that have been reported to be involved in tumorigenesis. We identified Promoter Region of CDKN 1A antisense DNA damage-activated RNA (PANDAR), which was positively correlated with thyroid gland carcinoma risk. PANDAR could promote thyroid gland carcinoma cell proliferation and metastasis. PANDAR negatively correlated with miR-637, and miR-637 overexpression suppressed thyroid gland carcinoma progression, which could be reversed by PANDAR. MiR-637 could target Kallikrein-related peptidases 4 (KLK4) to inhibit its expression, which was high in thyroid gland carcinoma. KLK4 inhibited cell progression in thyroid gland carcinoma cells. Knockdown of PANDAR expression inhibited cancer progression in nude mice. Overall, PANDAR can suppress miR-637 and induce KLK4 to regulate invasion and migration in thyroid gland carcinoma. Additionally, we identified miR-637 as a target of PANDAR in thyroid gland carcinoma, and PANDAR can be used as a novel therapeutic target for the treatment of thyroid gland carcinoma.
Collapse
Affiliation(s)
- Yi Qing
- Department of Oncology, Affiliated Hospital of Chengdu University, Chengdu 610081, People's Republic of China
| | - Qian Li
- Department of Oncology, Daping hospital, Army Medical University, Chongqing, 400042, China
| | - Ling-Yan Zhao
- Department of respiratory and critical care medicine, Guangyuan Central Hospital, Guangyuan City, Sichuan Province, 628000, China
| | - Ping Shi
- Department of respiratory and critical care medicine, Guangyuan Central Hospital, Guangyuan City, Sichuan Province, 628000, China
| | - Jin-Lu Shan
- Department of Oncology, Daping hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Zhang
- Department of medical oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Centre, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
12
|
Matysiak J, Matuszewska E, Kowalski ML, Kosiński SW, Smorawska-Sabanty E, Matysiak J. Association between Venom Immunotherapy and Changes in Serum Protein-Peptide Patterns. Vaccines (Basel) 2021; 9:249. [PMID: 33809001 PMCID: PMC8001044 DOI: 10.3390/vaccines9030249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
Venom immunotherapy (VIT) is administered to allergic patients to reduce the risk of dangerous systemic reactions following an insect sting. To better understand the mechanism of this treatment and its impact on the human organism, we analysed serum proteomic patterns obtained at five time-points from Hymenoptera-venom-allergic patients undergoing VIT. For statistical analyses, patients were additionally divided into two groups (high responders and low responders) according to serum sIgG4 levels. VIT was found to be associated with changes in seven proteins: the fibrinogen alpha chain, complement C4-A, complement C3, filamin-B, kininogen-1, myosin-9 and inter-alpha-trypsin inhibitor heavy chain H1. The number of discriminative m/z (mass-to-charge ratio) features increased up to the 90th day of VIT, which may be associated with the development of immunity after the administration of increased venom doses. It may also suggest that during VIT, there may occur processes involved not only in protein synthesis but also in protein degradation (caused by proteolytic venom components). The results are consistent with measured serum sIgG4 levels, which increased from 2.04 mgA/I at baseline to 7.25 mgA/I at 90 days. Moreover, the major proteomic changes were detected separately in the high responder group. This may suggest that changes in protein-peptide profiles reflect the actual response to VIT.
Collapse
Affiliation(s)
- Joanna Matysiak
- Faculty of Health Sciences, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, 62-800 Kalisz, Poland;
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznań, Poland;
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, 92-213 Łódź, Poland; (M.L.K.); (S.W.K.); (E.S.-S.)
| | - Sławomir W. Kosiński
- Department of Immunology and Allergy, Medical University of Lodz, 92-213 Łódź, Poland; (M.L.K.); (S.W.K.); (E.S.-S.)
| | - Ewa Smorawska-Sabanty
- Department of Immunology and Allergy, Medical University of Lodz, 92-213 Łódź, Poland; (M.L.K.); (S.W.K.); (E.S.-S.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznań, Poland;
| |
Collapse
|
13
|
Zhao R, Wang S, Liu J, Xu C, Zhang S, Shao Y, Duan X. KLK11 acts as a tumor-inhibitor in laryngeal squamous cell carcinoma through the inactivation of Akt/Wnt/β-catenin signaling. J Bioenerg Biomembr 2021; 53:85-96. [PMID: 33420975 DOI: 10.1007/s10863-020-09870-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022]
Abstract
Kallikrein-associated peptidase 11 (KLK11) has emerged as a key tumor-associated protein that is implicated in a wide spectrum of tumor types. However, the detailed involvement of KLK11 in laryngeal squamous cell carcinoma (LSCC) has not been well studied. The aims of our work were to evaluate whether KLK11 plays a role in LSCC. We found that both the mRNA and protein expression of KLK11 were significantly lower in LSCC tissues than in normal tissues. Low expression of KLK11 was also observed in LSCC cell lines, and the up-regulation of KLK11 caused a significant inhibitory effect on the proliferation, colony formation and invasion of LSCC cells. On the contrary, the knockdown of KLK11 markedly accelerated the proliferative and invasive abilities of LSCC cells. Molecular mechanism research revealed that KLK11 overexpression decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and down-regulated the expression of active β-catenin, leading to the inactivation of Wnt/β-catenin signaling in LSCC cells. Furthermore, GSK-3β inhibition markedly abrogated the KLK11-mediated suppressive effect on Wnt/β-catenin signaling. Notably, the reactivation of Wnt/β-catenin partially reversed KLK11-mediated tumor-inhibition effect in LSCC. In addition, the xenograft tumor assay demonstrated that the up-regulation of KLK11 retarded tumor formation and the growth of LSCC cells in vivo. Taken together, the findings of our work demonstrate that KLK11 exerts a tumor-inhibition role in LSCC by down-regulating Wnt/β-catenin signaling. Our work highlights a pivotal role of KLK11 in LSCC progression and suggests it as an attractive anticancer target for LSCC treatment.
Collapse
Affiliation(s)
- Ruimin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shiyang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yuan Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xiaoyi Duan
- Department of Medical Image and Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
14
|
Kumar DV, Sivaranjani Y, Rao GV. Immunohistochemical expression of kallikrein 7 in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2021; 24:580. [PMID: 33967508 PMCID: PMC8083413 DOI: 10.4103/jomfp.jomfp_244_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Background and Objectives: The kallikrein (KLK) family of genes consists of 15 members, many of which are highly expressed in number of cancers compared to their normal parent tissues. KLK7 was initially characterized as an enzyme implicated in the degradation of intercellular cohesive structures in the stratum corneum of stratified squamous epithelia, preceding desquamation in the skin. It catalyzes the degradation of desmosomes in the outermost layer of skin and permits cell shedding to take place at the skin surface. Overexpression of KLK7 in tumor cells has been reported to significantly enhance the invasive potential in intracranial malignancies and ovarian cancer cells. Thus, KLK7 could contribute to the degradation of extracellular matrices in oral squamous cell carcinoma (OSCC) tissues, promoting invasion of neoplastic cells locally and facilitating metastasis to regional lymph nodes. The objectives of the present study were to compare the expression of KLK 7 in normal subjects and patients with OSCC, to correlate the expression of KLK 7 with respect to the clinical staging of OSCC and to evaluate the expression of KLK 7with respect to different histopathological grades of OSCC. Materials and Methods: Thirty cases of OSCC were staged clinically and graded histopathologically. The immunohistochemical method was used to detect the expression of KLK 7 in OSCC. The scores obtained were documented and compared statistically. Results: KLK 7 immunoreactivity was noticed in all cases of OSCC. A statistically significant difference was observed in immunoreactivity of KLK 7 between the normal and OSCC (P = 0.0001*) and in different histopathological grades (P = 0.0001*) and in different clinical stages (P = 0.0127*) of OSCC using Kruskal–Wallis analysis of variance test. Conclusion: The KLK 7 immunoexpression histopathologically increased from low grade to high grade and clinically from Stage 1 to Stage 4 in OSCC. Hence, increased expression of KLK 7 may be related to poor prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Dodda Venkatesh Kumar
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Telangana, India
| | - Y Sivaranjani
- Department of Oral Pathology and Microbiology, Mamata Dental College, Khammam, Telangana, India
| | | |
Collapse
|
15
|
Park NJ, Bong SK, Lee S, Jung Y, Jegal H, Kim J, Kim SK, Kim YK, Kim SN. Compound K improves skin barrier function by increasing SPINK5 expression. J Ginseng Res 2020; 44:799-807. [PMID: 33192123 PMCID: PMC7655487 DOI: 10.1016/j.jgr.2019.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022] Open
Abstract
Background The skin acts as a barrier to protect organisms against harmful exogenous agents. Compound K (CK) is an active metabolite of ginsenoside Rb1, Rb2 and Rc, and researchers have focused on its skin protective efficacy. In this study, we hypothesized that increased expression of the serine protease inhibitor Kazal type-5 (SPINK5) may improve skin barrier function. Methods We screened several ginsenosides to increase SPINK5 gene promoter activity using a transactivation assay and found that CK can increase SPINK5 expression. To investigate the protective effect of CK on the skin barrier, RT-PCR and Western blotting were performed to investigate the expression levels of SPINK5, kallikrein 5 (KLK5), KLK7 and PAR2 in UVB-irradiated HaCaT cells. Measurement of transepidermal water loss (TEWL) and histological changes associated with the skin barrier were performed in a UVB-irradiated mouse model and a 1-chloro-2,4-dinitrobenzene (DNCB)-induced atopic dermatitis-like model. Results CK treatment increased the expression of SPINK5 and decreased the expression of its downstream genes, such as KLKs and PAR2. In the UVB-irradiated mouse model and the DNCB-induced atopic dermatitis model, CK restored increased TEWL and decreased hydration and epidermal hyperplasia. In addition, CK normalized the reduced SPINK5 expression caused by UVB or DNCB, thereby restoring the expression of the proteins involved in desquamation to a level similar to normal. Conclusions Our data showed that CK contributes to improving skin-barrier function in UVB-irradiated and DNCB-induced atopic dermatitis-like models through SPINK5. These results suggest that therapeutic attempts with CK might be useful in treating barrier-disrupted diseases.
Collapse
Affiliation(s)
- No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Sim-Kyu Bong
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, Republic of Korea
| | - Yujung Jung
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Hyun Jegal
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jinchul Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yong Kee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| |
Collapse
|
16
|
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2020; 335:113518. [PMID: 33144066 DOI: 10.1016/j.expneurol.2020.113518] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of disability and thesecond leading cause of death worldwide. With the global population aged 65 and over growing faster than all other age groups, the incidence of stroke is also increasing. In addition, there is a shift in the overall stroke burden towards younger age groups, particularly in low and middle-income countries. Stroke in most cases is caused due to an abrupt blockage of an artery (ischemic stroke), but in some instances stroke may be caused due to bleeding into brain tissue when a blood vessel ruptures (hemorrhagic stroke). Although treatment options for stroke are still limited, with the advancement in recanalization therapy using both pharmacological and mechanical thrombolysis some progress has been made in helping patients recover from ischemic stroke. However, there is still a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke to protect the brain from damage prior to and during recanalization, extend the therapeutic time window for intervention and further improve functional outcome. The current review has assessed the past challenges in developing neuroprotective strategies, evaluated the recent advances in clinical trials, discussed the recent initiative by the National Institute of Neurological Disorders and Stroke in USA for the search of novel neuroprotectants (Stroke Preclinical Assessment Network, SPAN) and identified emerging neuroprotectants being currently evaluated in preclinical studies. The underlying molecular mechanism of each of the neuroprotective strategies have also been summarized, which could assist in the development of future strategies for combinational therapy in stroke treatment.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Mella C, Figueroa CD, Otth C, Ehrenfeld P. Involvement of Kallikrein-Related Peptidases in Nervous System Disorders. Front Cell Neurosci 2020; 14:166. [PMID: 32655372 PMCID: PMC7324807 DOI: 10.3389/fncel.2020.00166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) are a family of serine proteases that when dysregulated may contribute to neuroinflammation and neurodegeneration. In the present review article, we describe what is known about their physiological and pathological roles with an emphasis on KLK6 and KLK8, two KLKs that are highly expressed in the adult central nervous system (CNS). Altered expression and activity of KLK6 have been linked to brain physiology and the development of multiple sclerosis. On the other hand, altered levels of KLK6 in the brain and serum of people affected by Alzheimer's disease and Parkinson's disease have been documented, pointing out to its function in amyloid metabolism and development of synucleinopathies. People who have structural genetic variants of KLK8 can suffer mental illnesses such as intellectual and learning disabilities, seizures, and autism. Increased expression of KLK8 has also been implicated in schizophrenia, bipolar disorder, and depression. Also, we discuss the possible link that exists between KLKs activity and certain viral infections that can affect the nervous system. Although little is known about the exact mechanisms that mediate KLKs function and their participation in neuroinflammatory and neurodegenerative disorders will open a new field to develop novel therapies to modulate their levels and/or activity and their harmful effects on the CNS.
Collapse
Affiliation(s)
- Cinthia Mella
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
18
|
Di Paolo CT, Diamandis EP, Prassas I. The role of kallikreins in inflammatory skin disorders and their potential as therapeutic targets. Crit Rev Clin Lab Sci 2020; 58:1-16. [PMID: 32568598 DOI: 10.1080/10408363.2020.1775171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is a vital organ of the human body, serving numerous protective and functional roles that are essential for survival. Residing in the epidermis are various epidermal proteases responsible for the establishment and regulation of barrier function. The human tissue kallikrein-related peptidase family conserves homeostasis of the skin barrier through their roles in desquamation, antimicrobial defense, innate immune response, and barrier maintenance. The activity of kallikreins is tightly regulated and dysregulation of kallikrein activity is seen to contribute to the formation of several inflammatory skin disorders. This review highlights the roles of kallikreins in skin homeostasis and pathologies. Due to their part in these skin disorders, inhibitors of the skin kallikreins have become attractive therapeutics. Over the past few years, both natural and synthetic inhibitors of several kallikreins have been identified and are undergoing further development as treatments to restore compromised barrier function. This review summarizes the kallikrein inhibitors under development for this purpose. These inhibitors remain promising therapeutics in cases of severe skin inflammation not well managed by current therapies.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
19
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
De Vita E, Smits N, van den Hurk H, Beck EM, Hewitt J, Baillie G, Russell E, Pannifer A, Hamon V, Morrison A, McElroy SP, Jones P, Ignatenko NA, Gunkel N, Miller AK. Synthesis and Structure-Activity Relationships of N-(4-Benzamidino)-Oxazolidinones: Potent and Selective Inhibitors of Kallikrein-Related Peptidase 6. ChemMedChem 2020; 15:79-95. [PMID: 31675166 PMCID: PMC7004151 DOI: 10.1002/cmdc.201900536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease that belongs to the family of tissue kallikreins. Aberrant expression of KLK6 has been found in different cancers and neurodegenerative diseases, and KLK6 is currently studied as a potential target in these pathologies. We report a novel series of KLK6 inhibitors discovered in a high-throughput screen within the European Lead Factory program. Structure-guided design based on docking studies enabled rapid progression of a hit cluster to inhibitors with improved potency, selectivity and pharmacokinetic properties. In particular, inhibitors 32 ((5R)-3-(4-carbamimidoylphenyl)-N-((S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) and 34 ((5R)-3-(6-carbamimidoylpyridin-3-yl)-N-((1S)-1-(naphthalen-1-yl)propyl)-2-oxooxazolidine-5-carboxamide) have single-digit nanomolar potency against KLK6, with over 25-fold and 100-fold selectivities against the closely related enzyme trypsin, respectively. The most potent compound, 32, effectively reduces KLK6-dependent invasion of HCT116 cells. The high potency in combination with good solubility and low clearance of 32 make it a good chemical probe for KLK6 target validation in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Elena De Vita
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Faculty of BiosciencesUniversity of Heidelberg69120HeidelbergGermany
| | - Niels Smits
- Pivot Park Screening CentreKloosterstraat 95349 ABOss (TheNetherlands
| | | | - Elizabeth M. Beck
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Joanne Hewitt
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Gemma Baillie
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Emily Russell
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Andrew Pannifer
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Véronique Hamon
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Angus Morrison
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Stuart P. McElroy
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Philip Jones
- European Screening Centre Newhouse (ESC) Biocity ScotlandBo'ness RoadML15UHNewhouseScotland
| | - Natalia A. Ignatenko
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZ 85721USA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZ 85721USA
| | - Nikolas Gunkel
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
21
|
Ishii K, Matsuoka I, Sasaki T, Nishikawa K, Kanda H, Imai H, Hirokawa Y, Iguchi K, Arima K, Sugimura Y. Loss of Fibroblast-Dependent Androgen Receptor Activation in Prostate Cancer Cells is Involved in the Mechanism of Acquired Resistance to Castration. J Clin Med 2019; 8:jcm8091379. [PMID: 31484364 PMCID: PMC6780155 DOI: 10.3390/jcm8091379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Loss of androgen receptor (AR) dependency in prostate cancer (PCa) cells is associated with progression to castration-resistant prostate cancer (CRPC). The tumor stroma is enriched in fibroblasts that secrete AR-activating factors. To investigate the roles of fibroblasts in AR activation under androgen deprivation, we used three sublines of androgen-sensitive LNCaP cells (E9 and F10 cells: low androgen sensitivity; and AIDL cells: androgen insensitivity) and original fibroblasts derived from patients with PCa. We performed in vivo experiments using three sublines of LNCaP cells and original fibroblasts to form homotypic tumors. The volume of tumors derived from E9 cells plus fibroblasts was reduced following androgen deprivation therapy (ADT), whereas that of F10 or AIDL cells plus fibroblasts was increased even after ADT. In tumors derived from E9 cells plus fibroblasts, serum prostate-specific antigen (PSA) decreased rapidly after ADT, but was still detectable. In contrast, serum PSA was increased even in F10 cells inoculated alone. In indirect cocultures with fibroblasts, PSA production was increased in E9 cells. Epidermal growth factor treatment stimulated Akt and p44/42 mitogen-activated protein kinase phosphorylation in E9 cells. Notably, AR splice variant 7 was detected in F10 cells. Overall, we found that fibroblast-secreted AR-activating factors modulated AR signaling in E9 cells after ADT and loss of fibroblast-dependent AR activation in F10 cells may be responsible for CRPC progression.
Collapse
Affiliation(s)
- Kenichiro Ishii
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Izumi Matsuoka
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kohei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hideki Kanda
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Hiroshi Imai
- Pathology Division, Mie University Hospital, Tsu, Mie 514-8507, Japan.
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Gifu 501-1196, Japan.
| | - Kiminobu Arima
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
22
|
Kurabuchi S, Yao C, Chen G, Hosoi K. Reversible Conversion among Subtypes of Salivary Gland Duct Cells as Identified by Production of a Variety of Bioactive Polypeptides. Acta Histochem Cytochem 2019; 52:59-65. [PMID: 31602049 PMCID: PMC6773612 DOI: 10.1267/ahc.19014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 11/24/2022] Open
Abstract
Four major kallikreins (mK1, mK22, mK9, and mK13) were identified in the mouse submandibular gland (SMG). mK1, a true tissue kallikrein, was used as a protein marker to identify different types of SMG granular convoluted tubule (GCT) cells along with epidermal growth factor (EGF), nerve growth factor (NGF), and renin. Kallikrein mK1 was localized in a very small number (~5%) of GCT cells, which were scattered throughout the GCT, indicating that the majority of GCT cells are mK1-negative. Among mK1-positive cells, particularly strong signals were observed in a small number of narrow cells, recognized as slender granular cells (SG cells, Type IV), in the GCT. After postnatal development of the SMG, GCT cells are no longer uniform based on the bioactive substances (mK1, EGF, NGF, and renin) that they produce and secrete. GCT cells were classified into four subtypes, Types I–IV, and it became clear that these subtypes are complicatedly and reversibly converted by the endocrine hormones 5α-dihydrotestosterone (DHT) and triiodothyronine (T3). Duct segments with similar morphology or hormone dependency were recognized in the sublingual and parotid glands. The presence of duct cells with such characteristics is therefore a common feature of the three major salivary glands of rodents.
Collapse
Affiliation(s)
- Shingo Kurabuchi
- Department of Histology, The Nippon Dental University School of Life Dentistry
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University
| | - Kazuo Hosoi
- Department of Molecular Oral Physiology, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
23
|
Development of Chemical Tools to Monitor Human Kallikrein 13 (KLK13) Activity. Int J Mol Sci 2019; 20:ijms20071557. [PMID: 30925705 PMCID: PMC6479877 DOI: 10.3390/ijms20071557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Kallikrein 13 (KLK13) was first identified as an enzyme that is downregulated in a subset of breast tumors. This serine protease has since been implicated in a number of pathological processes including ovarian, lung and gastric cancers. Here we report the design, synthesis and deconvolution of libraries of internally quenched fluorogenic peptide substrates to determine the specificity of substrate binding subsites of KLK13 in prime and non-prime regions (according to the Schechter and Berger convention). The substrate with the consensus sequential motive ABZ-Val-Arg-Phe-Arg-ANB-NH2 demonstrated selectivity towards KLK13 and was successfully converted into an activity-based probe by the incorporation of a chloromethylketone warhead and biotin bait. The compounds described may serve as suitable tools to detect KLK13 activity in diverse biological samples, as exemplified by overexpression experiments and targeted labeling of KLK13 in cell lysates and saliva. In addition, we describe the development of selective activity-based probes targeting KLK13, to our knowledge the first tool to analyze the presence of the active enzyme in biological samples.
Collapse
|
24
|
Alexander-Curtis M, Pauls R, Chao J, Volpi JJ, Bath PM, Verdoorn TA. Human tissue kallikrein in the treatment of acute ischemic stroke. Ther Adv Neurol Disord 2019; 12:1756286418821918. [PMID: 30719079 PMCID: PMC6348491 DOI: 10.1177/1756286418821918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of death and disability throughout the world. The most severe form of stroke results from large vessel occlusion of the major branches of the Circle of Willis. The treatment strategies currently available in western countries for large vessel occlusion involve rapid restoration of blood flow through removal of the offending blood clot using mechanical or pharmacological means (e.g. tissue plasma activator; tPA). This review assesses prospects for a novel pharmacological approach to enhance the availability of the natural enzyme tissue kallikrein (KLK1), an important regulator of local blood flow. KLK1 is responsible for the generation of kinins (bradykinin and kallidin), which promote local vasodilation and long-term vascularization. Moreover, KLK1 has been used clinically as a direct treatment for multiple diseases associated with impaired local blood flow including AIS. A form of human KLK1 isolated from human urine is approved in the People's Republic of China for subacute treatment of AIS. Here we review the rationale for using KLK1 as an additional pharmacological treatment for AIS by providing the biochemical mechanism as well as the human clinical data that support this approach.
Collapse
Affiliation(s)
| | - Rick Pauls
- DiaMedica Therapeutics, Minneapolis, MN, USA
| | - Julie Chao
- Medical University of South Carolina, Department of Biochemistry and Molecular Biology, Charleston, SC, USA
| | - John J Volpi
- Houston Methodist, Stanley H. Appel Department of Neurology, Houston, TX, USA
| | - Philip M Bath
- Stroke Trials Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
| | | |
Collapse
|
25
|
The Importance of Time to Prostate-Specific Antigen (PSA) Nadir after Primary Androgen Deprivation Therapy in Hormone-Naïve Prostate Cancer Patients. J Clin Med 2018; 7:jcm7120565. [PMID: 30567361 PMCID: PMC6306761 DOI: 10.3390/jcm7120565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prostate-specific antigen (PSA) is currently the most useful biomarker for detection of prostate cancer (PCa). The ability to measure serum PSA levels has affected all aspects of PCa management over the past two decades. The standard initial systemic therapy for advanced PCa is androgen-deprivation therapy (ADT). Although PCa patients with metastatic disease initially respond well to ADT, they often progress to castration-resistant prostate cancer (CRPC), which has a high mortality rate. We have demonstrated that time to PSA nadir (TTN) after primary ADT is an important early predictor of overall survival and progression-free survival for advanced PCa patients. In in vivo experiments, we demonstrated that the presence of fibroblasts in the PCa tumor microenvironment can prolong the period for serum PSA decline after ADT, and enhance the efficacy of ADT. Clarification of the mechanisms that affect TTN after ADT could be useful to guide selection of optimal PCa treatment strategies. In this review, we discuss recent in vitro and in vivo findings concerning the involvement of stromal–epithelial interactions in the biological mechanism of TTN after ADT to support the novel concept of “tumor regulating fibroblasts”.
Collapse
|
26
|
Biosynthesis and Secretion of Human Tissue Kallikrein in Transgenic Chlamydomonas reinhardtii. Mar Drugs 2018; 16:md16120493. [PMID: 30544606 PMCID: PMC6316579 DOI: 10.3390/md16120493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022] Open
Abstract
The green alga Chlamydomonas reinhardtii was recently been shown to be an effective bio-manufacturing platform for the production of recombinant proteins. The advantage of using C. reinhardtii is that it is fast to grow, inexpensive to culture, and relatively safe. However, the expression of foreign proteins is always low and difficult to purify in C. reinhardtii. Human kallikrein has the potential to be developed into certain drugs, like insulin. Therefore, its biosynthesis is important to drug development. In this study, we synthesized the sg gene, a signal peptide sequence of alkaline phosphatase, and inserted it into a pH124 plasmid, which contains a HSP70A-RBCS2 promoter and a RBCS2 terminator. Then, we inserted the human kallikrein gene klk1 behind the sg sequence to make a pHsgk124 vector. The pHsgk124 were transferred into a cell-wall deficient strain of C. reinhardtii, cc-503, by using the glass bead method. Southern blot analysis showed that sg and klk1 were incorporated into genes of the transgenic C. reinhardtii. RT-PCR analysis showed that it had an active transcription and its expression increased three times under heat stress. Western blot analyses of proteins inside and outside cells (in the culture medium) showed that klk1 was expressed in the cell and the resulting protein was secreted into medium. An enzyme activity assay showed that the recombinant protein had the ability to hydrolyze the specific substrate H-D-Val-Leu-Arg-Pna. In conclusion, we successfully bioengineered C. reinhardtii to produce and secrete human kallikrein protein, which has important biomedical implications.
Collapse
|
27
|
Zhu S, Shi J, Zhang S, Li Z. KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells. J Gastric Cancer 2018; 18:356-367. [PMID: 30607299 PMCID: PMC6310766 DOI: 10.5230/jgc.2018.18.e35] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 11/20/2022] Open
Abstract
Purpose Kallikrein (KLK) proteases are hormone-like signaling molecules with critical functions in different cancers. This study investigated the expression of KLK6 in gastric cancer and its potential role in the growth, migration, and invasion of gastric cancer cells. Materials and Methods In this study, we compared protein levels of KLK6, vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP) 9 in normal gastric epithelial and gastric cancer cell lines by western blot. Fluorescence-activated cell sorting was employed to sort 2 clones of SGC-7901 cells with distinct KLK6 expression, namely, KLK6-high (KLK6high) and KLK6-low (KLK6low), which were then expanded. Lastly, immunohistochemical analysis was performed to investigate KLK6 expression in gastric cancer patients. Results The expression levels of KLK6, VEGF, and MMP 9, were significantly higher in the gastric cancer cell lines SGC-7901, BGC-823, MKN-28, and MGC-803 than in the normal gastric epithelial cell line GES-1. Compared to KLK6low cells, KLK6high cells showed enhanced viability, colony-forming ability, migration, and invasion potential in vitro. Importantly, immunohistochemical analysis of a human gastric cancer tissue cohort revealed that the staining for KLK6, VEGF, and MMP9 was markedly stronger in the cancerous tissues than in the adjacent normal tissues. KLK6 expression also correlated with that of VEGF and MMP9 expression, as well as several key clinicopathological parameters. Conclusions Together, these results suggest an important role for KLK6 in human gastric cancer progression.
Collapse
Affiliation(s)
- Shengxing Zhu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of The Second General Surgery, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jihua Shi
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanfeng Zhang
- School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Wang HE, Lin CL, Pan TL, Yeh CT. Increase of Serum Kallikrein-8 Level After Long-term Telbivudine Treatment. In Vivo 2018; 32:955-960. [PMID: 29936485 DOI: 10.21873/invivo.11334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIM Our previous cDNA microarray study revealed increased cellular mRNA levels of a panel of genes, including kallikrein-8 (KLK8), after long-term telbivudine treatment in chronic hepatitis B patients. The aim of this study was to verify whether serum protein levels of KLK8, a cancer-related enzyme, are indeed increased after telbivudine treatment. PATIENTS AND METHODS A total of 83 chronic hepatitis B patients receiving telbivudine for >2 years were retrospectively analyzed. Serum KLK8 protein and estimated glomerular filtration rate (eGFR) changes were compared before and after treatment. RESULTS Both serum KLK8 protein and eGFR increased significantly after long-term telbivudine treatment (paired t-test: KLK8, p<0.001; eGFR, p=0.001). No direct correlation was found between KLK8 increase and eGFR change. However, eGFR change was positively associated with post-treatment KLK8 levels following adjustment for body height (p<0.001). CONCLUSION Telbivudine treatment resulted in increased levels of serum KLK8 protein. Furthermore, eGFR increase was associated with body height-adjusted, post-treatment KLK8 levels.
Collapse
Affiliation(s)
- Haw-En Wang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C
| | - Chih-Lang Lin
- Liver Research Unit, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan, R.O.C
| | - Tai-Long Pan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, R.O.C.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, R.O.C.
| |
Collapse
|
29
|
Dawood MF, Khalaf SM, Suleiman AA. Physiological variables and molecular study of KLK2 and KLK3 among patient with benign prostatic hyperplasia. ALEXANDRIA JOURNAL OF MEDICINE 2018. [DOI: 10.1016/j.ajme.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Mustafa F. Dawood
- Anbar University, College of Education for Pure Science, IraqAnbar University, College of Education for Pure Science, Iraq
| | - Sameer M. Khalaf
- Anbar University, College of Education for Pure Science, IraqAnbar University, College of Education for Pure Science, Iraq
| | - Ahmed A. Suleiman
- Anbar University, College of Science, IraqAnbar University, College of Science, Iraq
| |
Collapse
|
30
|
Morrison MD, Jackson-Boeters L, Khan ZA, Shimizu MS, Franklin JH, Fung K, Yoo JHJ, Darling MR. Identifying Candidate Biomarkers for Pleomorphic Adenoma: A Case-Control Study. Head Neck Pathol 2018; 13:286-297. [PMID: 30120721 PMCID: PMC6684674 DOI: 10.1007/s12105-018-0959-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
Pleomorphic adenoma (PA) is the most common benign salivary gland tumor. Kallikrein-related peptidases have been identified as biomarkers in many human tumors and may influence tumor behavior. We investigated KLK1-15 messenger ribonucleic acid and proteins in PA specimens to determine a KLK expression profile for this tumor. Fresh frozen PA tissue specimens (n = 26) and matched controls were subjected to quantitative real-time reverse transcription polymerase chain reaction to detect KLK1-15 mRNA. Expression of KLK1, KLK12, KLK13, and KLK8 proteins were then evaluated via immunostaining techniques. Statistical analyses were performed with the level of significance set at P < .05. We observed downregulation of KLK1, KLK12, and KLK13 mRNA expression, and immunostaining studies revealed downregulation of the corresponding proteins. Histologic evidence of capsular perforation was associated with increased KLK1 protein expression. Tumor size was not associated with capsular invasion and/or perforation. This study is the first to detail a KLK expression profile for PA at both the transcriptional level and the protein level. Future work is required to develop clinical applications of these findings.
Collapse
Affiliation(s)
- Matthew D Morrison
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada.
| | - Linda Jackson-Boeters
- Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Michael S Shimizu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada
| | - Jason H Franklin
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Kingston Health Sciences Centre, 144 Brock Street, Kingston, ON, K7L 5G2, Canada
| | - Kevin Fung
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada
| | - John H J Yoo
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, London Health Sciences Centre, 339 Windermere Road, London, ON, N6A 5A5, Canada
| | - Mark R Darling
- Division of Oral and Maxillofacial Pathology, Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| |
Collapse
|
31
|
Al-Awadhi FH, Gao B, Rezaei MA, Kwan JC, Li C, Ye T, Paul VJ, Luesch H. Discovery, Synthesis, Pharmacological Profiling, and Biological Characterization of Brintonamides A-E, Novel Dual Protease and GPCR Modulators from a Marine Cyanobacterium. J Med Chem 2018; 61:6364-6378. [PMID: 30015488 PMCID: PMC7341966 DOI: 10.1021/acs.jmedchem.8b00885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Five novel modified linear peptides named brintonamides A-E (1-5) were discovered from a marine cyanobacterial sample collected from Brinton Channel, Florida Keys. The total synthesis of 1-5 in addition to two other structurally related analogues (6 and 7) was achieved, which provided more material to allow rigorous biological evaluation and SAR studies. Compounds were subjected to cancer-focused phenotypic cell viability and migration assays and orthogonal target-based pharmacological screening platforms to identify their protease and GPCR modulatory activity profiles. The cancer related serine protease kallikrein 7 (KLK7) was inhibited to similar extents with an IC50 near 20 μM by both representative members 1 and 4, which differed in the presence or lack of the N-terminal unit. In contrast to the biochemical protease profiling study, clear SAR was observed in the functional GPCR screens, where five GPCRs in antagonist mode (CCR10, OXTR, SSTR3, TACR2) and agonist mode (CXCR7) were modulated by compounds 1-7 to varying extents. Chemokine receptor type 10 (CCR10) was potently modulated by brintonamide D (4) with an IC50 of 0.44 μM. We performed in silico modeling to understand the structural basis underlying the differences in the antagonistic activity among brintonamides toward CCR10. Because of the significance of KLK7 and CCR10 in cancer progression and metastasis, we demonstrated the ability of brintonamide D (4) at 10 μM to significantly target downstream cellular substrates of KLK7 (Dsg-2 and E-cad) in vitro and to inhibit CCL27-induced CCR10-mediated proliferation and the migration of highly invasive breast cancer cells.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Bowen Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Mohammad A. Rezaei
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jason C. Kwan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Valerie J. Paul
- Smithsonian Marine Station, Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
32
|
A serine protease KLK8 emerges as a regulator of regulators in memory: Microtubule protein dependent neuronal morphology and PKA-CREB signaling. Sci Rep 2018; 8:9928. [PMID: 29967374 PMCID: PMC6028475 DOI: 10.1038/s41598-018-27640-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
The multitude of molecular pathways underlying memory impairment in neurological disorders and aging-related disorders has been a major hurdle against therapeutic targeting. Over the years, neuronal growth promoting factors, intracellular kinases, and specific transcription factors, particularly cyclic AMP response element-binding protein (CREB), have emerged as crucial players of memory storage, and their disruption accompanies many cognitive disabilities. However, a molecular link that can influence these major players and can be a potential recovery target has been elusive. Recent reports suggest that extracellular cues at the synapses might evoke an intracellular signaling cascade and regulate memory function. Herein, we report novel function of an extracellular serine protease, kallikrein 8 (KLK8/Neuropsin) in regulating the expression of microtubule associated dendrite growth marker microtubule-associated protein (MAP2)c, dendrite architecture and protein kinase A (PKA)-CREB signaling. Both knockdown of KLK8 via siRNA transfection in mouse primary hippocampal neurons and via intra-hippocampal administration of KLK8 antisense oligonucleotides in vivo reduced expression of MAP2c, dendrite length, dendrite branching and spine density. The KLK8 mediated MAP2c deficiency in turn inactivated PKA and downstream transcription factor phosphorylated CREB (pCREB), leading to downregulation of memory-linked genes and consequent impaired memory consolidation. These findings revealed a protease associated novel pathway of memory impairment in which KLK8 may act as a “regulator of regulators”, suggesting its exploration as an important therapeutic target of memory disorders.
Collapse
|
33
|
Amiri Dash Atan N, Koushki M, Rezaei Tavirani M, Ahmadi NA. Protein-Protein Interaction Network Analysis of Salivary Proteomic Data in Oral Cancer Cases. Asian Pac J Cancer Prev 2018; 19:1639-1645. [PMID: 29937423 PMCID: PMC6103602 DOI: 10.22034/apjcp.2018.19.6.1639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Oral cancer is a frequently encountered neoplasm of the head and neck region, being the eight most common type of human malignancy worldwide. Despite improvement in its control, morbidity and mortality rates have improved little in the past decades. Therefore, prevention and/or early detection are a high priority. Proteomics with network analysis have emerged as a powerful tool to identify important proteins associated with cancer development and progression that can be potential targets for early diagnosis. In the present study, network- based protein- protein interactions (PPI) for oral cancer were identified and then analyzed for use as key proteins/potential biomarkers. Material and Methods: Gene expression data in articles which focused on saliva proteomics of oral cancer were collected and 74 candidate genes or proteins were extracted. Related protein networks of differentially expressed proteins were explored and visualized using cytoscape software. Further PPI analysis was performed by Molecular Complex Detection (MCODE) and BiNGO methods. Results: Network analysis of genes/proteins related to oral cancer identified kininogen-1, angiotensinogen, annexin A1, IL-8, IgG heavy variable and constant chains, CRP, collagen alpha-1 and fibronectin as 9 hub-bottleneck proteins. In addition, based on clustering with the MCODE tool, vitronectin, collagen alpha-2, IL-8 and integrin alpha-v were established as 5 distinct seed proteins. Conclusion: A hub-bottleneck protein panel may offer a potential /candidate biomarker pattern for diagnosis and treatment of oral cancer disease. Further investigation and validation of these proteins are warranted.
Collapse
Affiliation(s)
- Nasrin Amiri Dash Atan
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
34
|
Zhang Y, Xin Q, Wu Z, Wang C, Wang Y, Wu Q, Niu R. Application of Isobaric Tags for Relative and Absolute Quantification (iTRAQ) Coupled with Two-Dimensional Liquid Chromatography/Tandem Mass Spectrometry in Quantitative Proteomic Analysis for Discovery of Serum Biomarkers for Idiopathic Pulmonary Fibrosis. Med Sci Monit 2018; 24:4146-4153. [PMID: 29909421 PMCID: PMC6036962 DOI: 10.12659/msm.908702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The present study was performed to explore the presence of informative protein biomarkers of human serum proteome in idiopathic pulmonary fibrosis (IPF). Material/Methods Serum samples were profiled using iTRAQ coupled with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) technique, and ELISA was used to validate candidate biomarkers. Results A total of 394 proteins were identified and 97 proteins were associated with IPF. Four biomarker candidates generated from iTRAQ experiments – CRP, fibrinogen-α chain, haptoglobin, and kininogen-1 – were successfully verified using ELISA. Conclusions The present study demonstrates that levels of CRP and fibrinogen-α are higher and levels of haptoglobin and kininogen-1 are lower in patients with IPF compared to levels in healthy controls. We found they are useful candidate biomarkers for IPF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Xin
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhen Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Chaochao Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Niu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
35
|
Wei Z, Lyu Y, Yang X, Chen X, Zhong P, Wu D. Therapeutic Values of Human Urinary Kallidinogenase on Cerebrovascular Diseases. Front Neurol 2018; 9:403. [PMID: 29922218 PMCID: PMC5996104 DOI: 10.3389/fneur.2018.00403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
The term “tissue kallikrein” is used to describe a group of serine proteases shared considerable sequence homology and colocalize in the same chromosomal locus 19q13. 2–q13.4. It has been widely discovered in various tissues and has been proved to be involved in kinds of pathophysiological processes, such as inhibiting oxidative stress, inflammation, apoptosis, fibrosis and promoting angiogenesis, and neurogenesis. Human Urinary Kallidinogenase (HUK) extracted from human urine is a member of tissue kallikrein which could convert kininogen to kinin and hence improve the plasma kinin level. Medical value of HUK has been widely investigated in China, especially on acute ischemic stroke. In this review, we will summarize the therapeutic values of Human Urinary Kallidinogenase on acute ischemic stroke and its potential mechanisms.
Collapse
Affiliation(s)
- Zhenyu Wei
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yi Lyu
- Department of Medical Affairs, Techpool Bio-Pharma Co. Ltd., Guangzhou, China
| | - XiaoLi Yang
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shanghai TCM Integrated Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
da Costa PLN, Wynne D, Fifis T, Nguyen L, Perini M, Christophi C. The kallikrein-Kinin system modulates the progression of colorectal liver metastases in a mouse model. BMC Cancer 2018; 18:382. [PMID: 29618333 PMCID: PMC5885419 DOI: 10.1186/s12885-018-4260-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/20/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The Kallikrein-Kinin System (KKS) has been found to play a role in tumor progression in several cancers. The KKS metabolic cascade depends on signalling through two cross talking receptors; bradykinin receptor 1 (B1R) and bradykinin receptor 2 (B2R). Activation of the Kinin receptor is responsible for multiple pathophysiologic functions including increase of vascular permeability and induction of host inflammatory responses that exert diverse effects on tumor growth. METHODS B1R and B2R expression on mouse and human CRC cell lines was investigated. Changes in tumor growth and progression was assessed in male CBA mice bearing colorectal liver metastases (CRLM) following treatment with B1R or B2R blockers. In vitro cultures of human SW-480 and mouse colorectal cancer (MoCR) cell lines were examined for changes in their proliferation and migration properties following treatment with B1R or B2R blockers. RESULTS Both colorectal cancer cell lines tested strongly positive for B1R and B2R expression. Inhibition of both receptors retarded tumor growth but only B1R blockade significantly reduced tumor load and increased tumor apoptosis. Blockade of either receptor reduced tumor vascularization in vivo and significantly inhibited proliferation and migration of colorectal cancer cells in vitro. CONCLUSION Taken together, the present study demonstrated that kinin receptor blockade inhibited tumor growth and reduced its invading properties suggesting that KKS manipulation could be a novel target in colorectal cancer therapy.
Collapse
Affiliation(s)
- Patricia Luiza Nunes da Costa
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
- Laboratório de Oncologia Experimental, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - David Wynne
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia.
| | - Linh Nguyen
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Marcos Perini
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Christopher Christophi
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
37
|
Du JP, Li L, Zheng J, Zhang D, Liu W, Zheng WH, Li XS, Yao RC, Wang F, Liu S, Tan X. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer. Oncotarget 2018; 9:12894-12906. [PMID: 29560118 PMCID: PMC5849182 DOI: 10.18632/oncotarget.24132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is one of the deadliest cancers with very poor prognosis, and the five-year survival rate of the patients is less than 5% after diagnosis. Kallikrein-related peptidases (KLKs) belong to a serine protease family with 15 members that play important roles in cellular physiological behavior and diseases. The high expression level of KLK7 in pancreatic cancer tissues is considered to be a marker for the poor prognosis of this disease. In this work, we set out to investigate whether KLK7 could be a target for the treatment of pancreatic cancer. Short hairpin RNAs (shRNAs) were designed and constructed in lentivirus to knock down KLK7 in pancreatic cancer cell line PANC-1, and the real time cellular analysis (RTCA) was used to evaluate cell proliferation, migration and invasion abilities. Small molecules inhibiting KLK7 were discovered by computer-aided drug screening and used to inhibit PANC-1 cells. Our results confirmed that KLK7 is significantly up-regulated in pancreatic cancer tissue, and knocking down or inhibiting KLK7 efficiently inhibited the proliferation, migration and invasion of pancreatic cancer cells. This study suggested that KLK7 could be a potential chemotherapy target for treatment of pancreatic cancer, which would provide us a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Jian Ping Du
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang 443003, P.R. China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical School of China Three Gorges University, Yichang 443002, P.R. China
- Department of Vascular surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437100, P.R. China
| | - Lin Li
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang 443003, P.R. China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
| | - Jun Zheng
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang 443003, P.R. China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
| | - Ding Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
| | - Wei Liu
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang 443003, P.R. China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
| | - Wei Hong Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical School of China Three Gorges University, Yichang 443002, P.R. China
| | - Xiao Song Li
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang 443003, P.R. China
| | - Ru Cheng Yao
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang 443003, P.R. China
| | - Fangyu Wang
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, P.R. China
| | - Sen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical School of China Three Gorges University, Yichang 443002, P.R. China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, P.R. China
| | - Xiao Tan
- Institute of Hepatopancreatobilary Surgery, China Three Gorges University, Yichang 443003, P.R. China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical School of China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
38
|
Adamopoulos PG, Kontos CK, Scorilas A. Molecular cloning of novel transcripts of human kallikrein-related peptidases 5, 6, 7, 8 and 9 (KLK5 - KLK9), using Next-generation sequencing. Sci Rep 2017; 7:17299. [PMID: 29229980 PMCID: PMC5725587 DOI: 10.1038/s41598-017-16269-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Alternative splicing of cancer-related genes is a common cellular mechanism accounting for cancer cell transcriptome complexity and affecting cell cycle control, proliferation, apoptosis, angiogenesis, invasion, and metastasis. In this study, we describe the discovery and molecular cloning of thirty novel transcripts of the human KLK5, KLK6, KLK7, KLK8 and KLK9 genes, using 3′ rapid amplification of cDNA ends (3′ RACE) and NGS technology, as well as their expression analysis in many established cell lines, originating from several distinct cancerous and normal tissues. Extensive bioinformatic analysis revealed novel splice variants of these five members of the KLK family, comprising entirely new exons, previously unknown boundaries of the already annotated exons (extensions and truncations) as well as alternative splicing events between these exons. Nested RT-PCR in a panel of human cell lines originating from seventeen cancerous and two normal tissues with the use of variant-specific pairs of primers was carried out for expression analysis of these novel splice variants, and Sanger sequencing of the respective amplicons confirmed our NGS results. Given that some splice variants of KLK family members possess clinical value, novel alternatively spliced transcripts appear as new candidate biomarkers for diagnostic and/or prognostic purposes and as targets for therapeutic strategies.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, 15701, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, 15701, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, 15701, Greece.
| |
Collapse
|
39
|
Cai Z, Lv H, Cao W, Zhou C, Liu Q, Li H, Zhou F. Targeting strategies of adenovirus‑mediated gene therapy and virotherapy for prostate cancer (Review). Mol Med Rep 2017; 16:6443-6458. [PMID: 28901490 PMCID: PMC5865813 DOI: 10.3892/mmr.2017.7487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) poses a high risk to older men and it is the second most common type of male malignant tumor in western developed countries. Additionally, there is a lack of effective therapies for PCa at advanced stages. Novel treatment strategies such as adenovirus-mediated gene therapy and virotherapy involve the expression of a specific therapeutic gene to induce death in cancer cells, however, wild-type adenoviruses are also able to infect normal human cells, which leads to undesirable toxicity. Various PCa-targeting strategies in adenovirus-mediated therapy have been developed to improve tumor-targeting effects and human safety. The present review summarizes the relevant knowledge regarding available adenoviruses and PCa-targeting strategies. In addition, future directions in this area are also discussed. In conclusion, although they remain in the early stages of basic research, adenovirus-mediated gene therapy and virotherapy are expected to become important therapies for tumors in the future due to their potential targeting strategies.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Haidi Lv
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Wenjuan Cao
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Chuan Zhou
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiangzhao Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hui Li
- Department of Neurosurgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Fenghai Zhou
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
40
|
Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017; 184:3049-3067. [PMID: 29109592 PMCID: PMC5669453 DOI: 10.1007/s00604-017-2410-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles. It also covers electrochemical methods based on the enzyme-like activity of PSA, on DNA-, aptamer- and biofuel cell-based methods, and on the detection of PSA via its glycan part. The next main section covers optical biosensors, with subsections on methods making use of surface plasmon resonance (SPR), localized SPR and plasmonic ELISA-like schemes. This is followed by subsections on methods based on the use of fiber optics, fluorescence, chemiluminescence, Raman scattering and SERS, electrochemiluminescence and cantilever-based methods. The most sensitive biosensors are the electrochemical ones, with lowest limits of detection (down to attomolar concentrations), followed by mass cantilever sensing and electrochemilumenescent strategies. Optical biosensors show lower performance, but are still more sensitive compared to standard ELISA. The most commonly applied nanomaterials are metal and carbon-based ones and their hybrid composites used for different amplification strategies. The most attractive sensing schemes are summarized in a Table. The review ends with a section on conclusions and perspectives.
Collapse
Affiliation(s)
- Dominika Damborska
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Erika Dosekova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Alena Holazova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
41
|
Biochemical and functional characterization of the human tissue kallikrein 9. Biochem J 2017; 474:2417-2433. [DOI: 10.1042/bcj20170174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022]
Abstract
Human tissue kallikrein 9 (KLK9) is a member of the kallikrein-related family of proteases. Despite its known expression profile, much less is known about the functional roles of this protease and its implications in normal physiology and disease. We present here the first data on the biochemical characterization of KLK9, investigate parameters that affect its enzymatic activity (such as inhibitors) and provide preliminary insights into its putative substrates. We show that mature KLK9 is a glycosylated chymotrypsin-like enzyme with strong preference for tyrosine over phenylalanine at the P1 cleavage position. The enzyme activity is enhanced by Mg2+ and Ca2+, but is reversibly attenuated by Zn2+. KLK9 is inhibited in vitro by many naturally occurring or synthetic protease inhibitors. Using a combination of degradomic and substrate specificity assays, we identified candidate KLK9 substrates in two different epithelial cell lines [the non-tumorigenic human keratinocyte cells (HaCaT) and the tumorigenic tongue squamous carcinoma cells (SCC9)]. Two potential KLK9 substrates [KLK10 and midkine (MDK)] were subjected to further validation. Taken together, our data delineate some functional and biochemical properties of KLK9 for future elucidation of the role of this enzyme in health and disease.
Collapse
|
42
|
Li S, Garcia M, Gewiss RL, Winuthayanon W. Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo. PLoS Genet 2017; 13:e1006743. [PMID: 28414719 PMCID: PMC5411094 DOI: 10.1371/journal.pgen.1006743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/01/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Semen liquefaction changes semen from a gel-like to watery consistency and is required for sperm to gain mobility and swim to the fertilization site in the Fallopian tubes. Kallikrein-related peptidases 3 (KLK3) and other kallikrein-related peptidases from male prostate glands are responsible for semen liquefaction by cleaving gel-forming proteins (semenogelin and collagen). In a physiological context, the liquefaction process occurs within the female reproductive tract. How seminal proteins interact with the female reproductive environment is still largely unexplored. We previously reported that conditional genetic ablation of Esr1 (estrogen receptor α) in the epithelial cells of the female reproductive tract (Wnt7aCre/+;Esr1f/f) causes female infertility, partly due to a drastic reduction in the number of motile sperm entering the oviduct. In this study, we found that post-ejaculated semen from fertile wild-type males was solidified and the sperm were entrapped in Wnt7aCre/+;Esr1f/f uteri, compared to the watery semen (liquefied) found in Esr1f/f controls. In addition, semenogelin and collagen were not degraded in Wnt7aCre/+;Esr1f/f uteri. Amongst multiple gene families aberrantly expressed in the absence of epithelial ESR1, we have identified that a lack of Klks in the uterus is a potential cause for the liquefaction defect. Pharmacological inhibition of KLKs in the uterus replicated the phenotype observed in Wnt7aCre/+;Esr1f/f uteri, suggesting that loss of uterine and seminal KLK function causes this liquefaction defect. In human cervical cell culture, expression of several KLKs and their inhibitors (SPINKs) was regulated by estrogen in an ESR1-dependent manner. Our study demonstrates that estrogen/ESR1 signaling in the female reproductive tract plays an indispensable role in normal semen liquefaction, providing fundamental evidence that exposure of post-ejaculated semen to the suboptimal microenvironment in the female reproductive tract leads to faulty liquefaction and subsequently causes a fertility defect. Semen liquefaction has been considered to be solely modulated by prostate-derived kallikrein-related peptidases (KLKs), especially KLK3 (or prostate specific antigen). However, our research demonstrated that female mice lacking estrogen receptor alpha (ERα) in the uterine epithelial cells had a drastic decrease in Klk transcripts and semen from fertile males fails to liquefy within the uteri of these females. Therefore, our results provide a novel aspect that, due to an interplay between semen and female reproductive tract secretions, the physiology of semen liquefaction is more complicated than previously assumed. This information will advance research on semen liquefaction in the female reproductive tract, an area that has never been explored, and could lead to the development of diagnostic tools for unexplained infertility cases and non-invasive contraception technologies.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Marleny Garcia
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Rachel L. Gewiss
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
43
|
Tokas T, Avgeris M, Alamanis C, Scorilas A, Stravodimos KG, Constantinides CA. Downregulated KLK13 expression in bladder cancer highlights tumor aggressiveness and unfavorable patients' prognosis. J Cancer Res Clin Oncol 2017; 143:521-532. [PMID: 27858162 DOI: 10.1007/s00432-016-2301-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Despite recent research advantages on the molecular and subcellular background, bladder cancer (BlCa) remains a clinically neglected malignancy. This is strongly reflected by the generic approach of disease diagnosis and management. Additionally, patients' prognosis became a rather demanding task due to the great disease heterogeneity. Here, we aimed to evaluate, for the first time, the clinical value of KLK13 in BlCa. METHODS A total of 279 bladder specimens (137 tumors, 107 adjacent normal tissues and 35 healthy samples) were included. Total RNA was extracted, reverse transcribed, and KLK13 expression was assessed by quantitative real-time PCR. RESULTS KLK13 expression is significantly increased in bladder tumors compared to normal adjacent epithelium. However, reduced KLK13 expression is correlated with disease aggressiveness, including higher tumor stage and grade, and high-risk TaT1 tumors according to the EORTC stratification. Moreover, Kaplan-Meier and Cox regression analysis highlighted the prognostic value of the reduced KLK13 expression for the prediction of TaT1 patients' recurrence and shorter disease-free survival following TURBT. Finally, the combination of KLK13 expression with EORTC-risk stratification results to an improved prediction of TaT1 patients' outcome. CONCLUSION This first clinical study of KLK13 in BlCa reveals its deregulated expression in bladder tumors and highlights KLK13 as a promising marker for improving TaT1 patients' prognosis following treatment.
Collapse
Affiliation(s)
- Theodoros Tokas
- First Department of Urology, "Laiko" General Hospital, Medical School, University of Athens, Agiou Thoma 17, 11527, Athens, Greece.
- Department of Urology and Andrology, General Hospital Hall in Tirol, Milser Str. 10, 6060, Hall in Tirol, Austria.
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Christos Alamanis
- First Department of Urology, "Laiko" General Hospital, Medical School, University of Athens, Agiou Thoma 17, 11527, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Konstantinos G Stravodimos
- First Department of Urology, "Laiko" General Hospital, Medical School, University of Athens, Agiou Thoma 17, 11527, Athens, Greece
| | - Constantinos A Constantinides
- First Department of Urology, "Laiko" General Hospital, Medical School, University of Athens, Agiou Thoma 17, 11527, Athens, Greece
| |
Collapse
|
44
|
Grande G, Vincenzoni F, Milardi D, Pompa G, Ricciardi D, Fruscella E, Mancini F, Pontecorvi A, Castagnola M, Marana R. Cervical mucus proteome in endometriosis. Clin Proteomics 2017; 14:7. [PMID: 28174513 PMCID: PMC5290661 DOI: 10.1186/s12014-017-9142-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Background Endometriosis is a chronic gynecological inflammatory disease characterized by the presence of functional endometrial glands and stroma outside of the uterine cavity. It affects 7–10% of women of reproductive age and up to 50% of women with infertility. The current gold standard for the diagnosis combines laparoscopic evaluation and biopsy of the visualized lesions. However, laparoscopy requires general anesthesia and developed surgical skills and it has a high procedural cost. In addition, it is associated with the risk, although rare, of potential intraoperative or postoperative complications. To date, several noninvasive biomarkers have been proposed; however, no definite diagnostic biomarker is yet available. The aim of this study was to characterize the CM proteome in patients with endometriosis using high resolution mass spectrometry—based proteomics, implemented by bioinformatic tools for quantitative analysis, in order to investigate the pathophysiological mechanisms of endometriosis. Methods Cervical mucus samples were collected from patients affected by endometriosis and fertile controls. An aliquot of the soluble acidic fraction of each cervical mucus sample, corresponding to 0.5 mg of total protein, was left to digest with sequencing grade modified porcine trypsin. The peptides were analyzed by LC–MS/MS on a high resolution Orbitrap Elite mass spectrometer and data were evaluated using bioinformatic tools. Results We aimed at the first total profiling of the cervical mucus proteome in endometriosis. From the list of identified proteins, we detected a number of differentially expressed proteins, including some functionally significant proteins. Six proteins were quantitatively increased in endometriosis, almost all being involved in the inflammatory pattern. Nine proteins were quantitatively reduced in endometriosis, including some proteins related with local innate immunity (CRISP-3 and Pglyrp1) and protection against oxidative stress (HSPB1). Fifteen proteins were not detected in endometriosis samples including certain proteins involved in antimicrobial activity (SLURP1 and KLK13) and related to seminal plasma liquefaction and male fertility (KLK13). Conclusions This is the first application of high resolution mass spectrometry—based proteomics aimed in detecting an array of proteins in CM to be proposed for the noninvasive diagnosis of endometriosis. This chronic disease presents in CM an inflammatory protein pattern. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9142-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Grande
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, L.go F. Vito 1, 00168 Rome, Italy
| | - Domenico Milardi
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Giuseppina Pompa
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Domenico Ricciardi
- Department of Obstetrics and Gynecology, Fondazione Policlinico Universitario A. Gemelli, L.go F. Vito 1, 00168 Rome, Italy
| | - Erika Fruscella
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Francesca Mancini
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Division of Endocrinology, Catholic University, L.go F. Vito 1, 00168 Rome, Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, L.go F. Vito 1, 00168 Rome, Italy
| | - Riccardo Marana
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy.,Department of Obstetrics and Gynecology, Fondazione Policlinico Universitario A. Gemelli, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
45
|
Filippou P, Korbakis D, Farkona S, Soosaipillai A, Karakosta T, Diamandis EP. A new enzyme-linked immunosorbent assay (ELISA) for human free and bound kallikrein 9. Clin Proteomics 2017; 14:4. [PMID: 28115917 PMCID: PMC5241945 DOI: 10.1186/s12014-017-9140-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Kallikrein 9 (KLK9) is a member of the human kallikrein-related peptidases family, whose physiological role and implications in disease processes remain unclear. The active form of the enzyme is predicted to have chymotryptic activity. In the present study, we produced for the first time the active recombinant protein and monoclonal antibodies, and developed novel immunoassays for the quantification of free and bound KLK9 in biological samples. Methods The coding sequence of mature KLK9 isoform (mat-KLK9) was expressed in an Expi293F mammalian system and the synthesized polypeptide was purified through a two-step protocol. The purified protein was used as an immunogen for production of monoclonal antibodies in mice. Hybridomas were further expanded and antibodies were purified. Newly-produced monoclonal antibodies were screened for reaction with the KLK9 recombinant protein by a state-of-the-art immunocapture/parallel reaction monitoring mass spectrometry-based methodology. Results Anti-KLK9 antibodies were combined in pairs, resulting in the development of a highly sensitive (limit of detection: 15 pg/mL) and specific (no cross-reactivity with other KLKs) sandwich-type ELISA. Highest KLK9 protein levels were found in tonsil and sweat and lower levels in the heart, kidney and liver. Hybrid immunoassays using an anti-KLK9 antibody for antigen capture and various anti-serine protease inhibitor polyclonal antibodies, revealed the presence of an a1-antichymotrypsin-bound KLK9 isoform in biological samples. Conclusions The ELISAs for free and bound forms of KLK9 may be highly useful for the detection of KLK9 in a broad range of biological samples, thus enabling the clarification of KLK9 function and use as a potential disease biomarker. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9140-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Panagiota Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Sofia Farkona
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | - Theano Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Mount Sinai Hospital, Joseph & Wolf Lebovic Ctr., 60 Murray St [Box 32], Flr 6 - Rm L6-201, Toronto, ON M5T 3L9 Canada
| |
Collapse
|
46
|
Abstract
Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.
Collapse
|
47
|
Karakosta TD, Soosaipillai A, Diamandis EP, Batruch I, Drabovich AP. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays. Mol Cell Proteomics 2016; 15:2863-76. [PMID: 27371727 DOI: 10.1074/mcp.m115.057695] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples revealed no statistically significant differences between patients with confirmed prostate cancer and negative biopsy. The presented multiplex targeted proteomic assays are an alternative analytical tool to study the biological and pathological roles of human KLKs.
Collapse
Affiliation(s)
- Theano D Karakosta
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ihor Batruch
- ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada;
| |
Collapse
|
48
|
Yang F, Hu ZDE, Chen Y, Hu CJ. Diagnostic value of KLK6 as an ovarian cancer biomarker: A meta-analysis. Biomed Rep 2016; 4:681-686. [PMID: 27284406 PMCID: PMC4887959 DOI: 10.3892/br.2016.662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/05/2016] [Indexed: 01/29/2023] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) is a new potential serum biomarker of ovarian cancer. The aim of the present study was to assess the diagnostic value of KLK6 systematically for ovarian cancer. All the selected studies regarding the changes of KLK6 in ovarian cancer were published prior to April 2015. Five studies involving 485 patients with ovarian cancer, 420 benign cysts and 245 healthy controls met the inclusion criteria. The value of sensitivity, specificity, positive-likelihood ratio (LR+), negative-likelihood ratio (LR-) and area under the receiver operating characteristic curve (ROC) were obtained. All these indices were used to evaluate the diagnostic value of KLK6 for ovarian cancer. The values of sensitivity, specificity, LR+ and LR- (95% confidence interval) of KLK6 were 0.50 (0.47–0.54), 0.91 (0.89–0.93), 7.20 (3.34–15.52) and 0.51 (0.43–0.62), respectively. The area under the summary ROC of KLK6 was 0.86. The index of Q* was 0.79. In conclusion, KLK6 showed high specificity for the diagnosis of ovarian cancer. It can improve the diagnostic accuracy of cancer antigen 125 (CA125). A combined panel of CA125 and KL K6 shows a high diagnostic efficiency for advanced ovarian cancer. Owing to the small number of studies and lack of samples, additional studies meeting the inclusion criteria are required to further analyze the diagnostic value of KLK6 for ovarian cancer.
Collapse
Affiliation(s)
- Fan Yang
- Graduate School of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhi-DE Hu
- Department of Laboratory Medicine, General Hospital of Ji'nan Military Command Region, Ji'nan, Shandong 250031, P.R. China
| | - Yingjian Chen
- Department of Laboratory Medicine, General Hospital of Ji'nan Military Command Region, Ji'nan, Shandong 250031, P.R. China
| | - Cheng-Jin Hu
- Department of Laboratory Medicine, General Hospital of Ji'nan Military Command Region, Ji'nan, Shandong 250031, P.R. China
| |
Collapse
|
49
|
Konar A, Singh P, Thakur MK. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues. Aging Dis 2016; 7:121-9. [PMID: 27114845 PMCID: PMC4809604 DOI: 10.14336/ad.2015.1004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
Abstract
Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets.
Collapse
Affiliation(s)
- Arpita Konar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Padmanabh Singh
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Mahendra K Thakur
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
50
|
Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Ther Targets 2016; 20:801-18. [PMID: 26941073 DOI: 10.1517/14728222.2016.1147560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Tissue kallikrein and the kallikrein-related peptidases (KLKs) constitute a family of 15 homologous secreted serine proteases with trypsin- or chymotrypsin-like activities, which participate in a broad spectrum of physiological procedures. Deregulated expression and/or activation of the majority of the family members have been reported in several human diseases, thereby making KLKs ideal targets for therapeutic intervention. AREAS COVERED In the present review, we summarize the role of KLKs in normal human physiology and pathology, focusing on prostate cancer and skin diseases. Furthermore, we discuss the recent advances in the development of KLK-based therapies. A great number of diverse engineered KLKs inhibitors with improved potency, selectivity and immunogenicity have been synthesized by redesigning examples that are endogenous and naturally occurring. Moreover, encouraging results have been documented using KLKs-based vaccines and immunotherapies, as well as KLKs-mediated activation of pro-drugs. Finally, KLKs-targeting aptamers and KLKs-based imaging tools represent novel approaches towards the exploitation of KLKs' therapeutic value. EXPERT OPINION The central/critical roles of KLK family in several human pathologies highlight KLKs as attractive molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Margaritis Avgeris
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| | - Andreas Scorilas
- a Department of Biochemistry and Molecular Biology, Faculty of Biology , University of Athens , Athens , Greece
| |
Collapse
|