1
|
Sideri Gugger A, Dimino C, Panigrahi SK, Mayer L, Smiley RM, Korner J, Wardlaw SL. Defining Predictors of Weight Loss Response to Lorcaserin. J Clin Endocrinol Metab 2023; 108:2262-2271. [PMID: 36897161 PMCID: PMC10438887 DOI: 10.1210/clinem/dgad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
CONTEXT Individual responses to weight loss (WL) medications vary widely and prediction of response remains elusive. OBJECTIVE We investigated biomarkers associated with use of lorcaserin (LOR), a 5HT2cR agonist that targets proopiomelanocortin (POMC) neurons that regulate energy and glucose homeostasis, to identify predictors of clinical efficacy. METHODS Thirty individuals with obesity were treated with 7 days of placebo and LOR in a randomized crossover study. Nineteen participants continued on LOR for 6 months. Cerebrospinal fluid (CSF) POMC peptide measurements were used to identify potential biomarkers that predict WL. Insulin, leptin, and food intake during a meal were also studied. RESULTS LOR induced a significant decrease in CSF levels of the POMC prohormone and an increase in its processed peptide β-endorphin after 7 days; β-endorphin/POMC increased by 30% (P < .001). This was accompanied by a substantial decrease in insulin, glucose, and homeostasis model assessment of insulin resistance before WL. Changes in CSF POMC peptides persisted after WL (6.9%) at 6 months that were distinct from prior reports after diet alone. Changes in POMC, food intake, or other hormones did not predict WL. However, baseline CSF POMC correlated negatively with WL (P = .07) and a cutoff level of CSF POMC was identified that predicted more than 10% WL. CONCLUSION Our results provide evidence that LOR affects the brain melanocortin system in humans and that effectiveness is increased in individuals with lower melanocortin activity. Furthermore, early changes in CSF POMC parallel WL-independent improvements in glycemic indexes. Thus, assessment of melanocortin activity could provide a way to personalize pharmacotherapy of obesity with 5HT2cR agonists.
Collapse
Affiliation(s)
- Aristea Sideri Gugger
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Cara Dimino
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sunil K Panigrahi
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Laurel Mayer
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Richard M Smiley
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Judith Korner
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
2
|
Singh U, Saito K, Khan MZ, Jiang J, Toth BA, Rodeghiero SR, Dickey JE, Deng Y, Deng G, Kim YC, Cui H. Collateralizing ventral subiculum melanocortin 4 receptor circuits regulate energy balance and food motivation. Physiol Behav 2023; 262:114105. [PMID: 36736416 PMCID: PMC9981473 DOI: 10.1016/j.physbeh.2023.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael Z. Khan
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A. Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R. Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E. Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Young-Cho Kim
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
3
|
Loss of hypothalamic Furin affects POMC to proACTH cleavage and feeding behavior in high-fat diet-fed mice. Mol Metab 2022; 66:101627. [PMID: 36374777 PMCID: PMC9664468 DOI: 10.1016/j.molmet.2022.101627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The hypothalamus regulates feeding and glucose homeostasis through the balanced action of different neuropeptides, which are cleaved and activated by the proprotein convertases PC1/3 and PC2. However, the recent association of polymorphisms in the proprotein convertase FURIN with type 2 diabetes, metabolic syndrome, and obesity, prompted us to investigate the role of FURIN in hypothalamic neurons controlling glucose and feeding. METHODS POMC-Cre+/- mice were bred with Furinfl/fl mice to generate conditional knockout mice with Furin-deletion in neurons expressing proopiomelanocortin (POMCFurKO), and Furinfl/fl mice were used as controls. POMCFurKO and controls were periodically monitored on both normal chow diet and high fat diet (HFD) for body weight and glucose tolerance by established in-vivo procedures. Food intake was measured in HFD-fed FurKO and controls. Hypothalamic Pomc mRNA was measured by RT-qPCR. ELISAs quantified POMC protein and resulting peptides in the hypothalamic extracts of POMCFurKO mice and controls. The in-vitro processing of POMC was studied by biochemical techniques in HEK293T and CHO cell lines lacking FURIN. RESULTS In control mice, Furin mRNA levels were significantly upregulated on HFD feeding, suggesting an increased demand for FURIN activity in obesogenic conditions. Under these conditions, the POMCFurKO mice were hyperphagic and had increased body weight compared to Furinfl/fl mice. Moreover, protein levels of POMC were elevated and ACTH concentrations markedly reduced. Also, the ratio of α-MSH/POMC was decreased in POMCFurKO mice compared to controls. This indicates that POMC processing was significantly reduced in the hypothalami of POMCFurKO mice, highlighting for the first time the involvement of FURIN in the cleavage of POMC. Importantly, we found that in vitro, the first stage in processing where POMC is cleaved into proACTH was achieved by FURIN but not by PC1/3 or the other proprotein convertases in cell lines lacking a regulated secretory pathway. CONCLUSIONS These results suggest that FURIN processes POMC into proACTH before sorting into the regulated secretory pathway, challenging the dogma that PC1/3 and PC2 are the only convertases responsible for POMC cleavage. Furthermore, its deletion affects feeding behaviors under obesogenic conditions.
Collapse
|
4
|
Cabral A, Fernandez G, Tolosa MJ, Rey Moggia Á, Calfa G, De Francesco PN, Perello M. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor-dependent manner. Mol Metab 2019; 32:69-84. [PMID: 32029231 PMCID: PMC7005150 DOI: 10.1016/j.molmet.2019.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Arcuate nucleus (ARC) neurons producing Agouti-related peptide (AgRP) and neuropeptide Y (NPY; ARCAgRP/NPY neurons) are activated under energy-deficit states. ARCAgRP/NPY neurons innervate the hypothalamic paraventricular nucleus (PVH), and ARC→PVH projections are recognized as key regulators of food intake. Plasma ghrelin levels increase under energy-deficit states and activate ARCAgRP/NPY neurons by acting on the growth hormone secretagogue receptor (GHSR). Here, we hypothesized that activation of ARCAgRP/NPY neurons in fasted mice would promote morphological remodeling of the ARCAgRP/NPY→PVH projections in a GHSR-dependent manner. Methods We performed 1) fluorescent immunohistochemistry, 2) imaging of green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI axonal labeling in brains of ad libitum fed or fasted mice with pharmacological or genetic blockage of the GHSR signaling and then estimated the density and strength of ARCAgRP/NPY→PVH fibers by assessing the mean fluorescence intensity, the absolute area with fluorescent signal, and the intensity of the fluorescent signal in the fluorescent area of the PVH. Results We found that 1) the density and strength of ARCAgRP/NPY fibers increase in the PVH of fasted mice, 2) the morphological remodeling of the ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons, and 3) PVH neurons are not activated in ARC-ablated mice. We also found that fasting-induced remodeling of ARCAgRP/NPY→PVH fibers and PVH activation are impaired in mice with pharmacological or genetic blockage of GHSR signaling. Conclusion This evidence shows that the connectivity between hypothalamic circuits controlling food intake can be remodeled in the adult brain, depending on the energy balance conditions, and that GHSR activity is a key regulator of this phenomenon. The density and strength of ARCAgRP/NPY→PVH fibers increase in fasted mice. Remodeling of ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons. GHSR signaling is required for fasting-induced ARCAgRP/NPY→PVH projection remodeling.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - María J Tolosa
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Ángeles Rey Moggia
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gastón Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Jarvela TS, Shakya M, Bachor T, White A, Low MJ, Lindberg I. Reduced Stability and pH-Dependent Activity of a Common Obesity-Linked PCSK1 Polymorphism, N221D. Endocrinology 2019; 160:2630-2645. [PMID: 31504391 PMCID: PMC6892424 DOI: 10.1210/en.2019-00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Common mutations in the human prohormone convertase (PC)1/3 gene (PCKSI) are linked to increased risk of obesity. Previous work has shown that the rs6232 single-nucleotide polymorphism (N221D) results in slightly decreased activity, although whether this decrease underlies obesity risk is not clear. We observed significantly decreased activity of the N221D PC1/3 enzyme at the pH of the trans-Golgi network; at this pH, the mutant enzyme was less stable than wild-type enzyme. Recombinant N221D PC1/3 also showed enhanced susceptibility to heat stress. Enhanced susceptibility to tunicamycin-induced endoplasmic reticulum stress was observed in AtT-20/PC2 cell clones in which murine PC1/3 was replaced by human N221D PC1/3, as compared with wild-type human PC1/3. However, N221D PC1/3-expressing AtT-20/PC2 clones processed proopiomelanocortin to α-MSH similarly to wild-type PC1/3. We also generated a CRISPR-edited mouse line expressing the N221D mutation in the PCKSI gene. When homozygous N221D mice were fed either a standard or a high-fat diet, we found no increase in body weight compared with their wild-type sibling controls. Sexual dimorphism was observed in pituitary ACTH for both genotypes, with females exhibiting lower levels of pituitary ACTH. In contrast, hypothalamic α-MSH content for both genotypes was higher in females compared with males. Hypothalamic corticotropin-like intermediate peptide content was higher in wild-type females compared with wild-type, but not N221D, males. Taken together, these data suggest that the increased obesity risk linked to the N221D allele in humans may be due in part to PC1/3-induced loss of resilience to stressors rather than strictly to decreased enzymatic activity on peptide precursors.
Collapse
Affiliation(s)
- Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Surbhi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tomas Bachor
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
- Correspondence: Iris Lindberg, PhD, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Room S267, Baltimore, Maryland 21210. E-mail:
| |
Collapse
|
6
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
7
|
Kirwan P, Kay RG, Brouwers B, Herranz-Pérez V, Jura M, Larraufie P, Jerber J, Pembroke J, Bartels T, White A, Gribble FM, Reimann F, Farooqi IS, O'Rahilly S, Merkle FT. Quantitative mass spectrometry for human melanocortin peptides in vitro and in vivo suggests prominent roles for β-MSH and desacetyl α-MSH in energy homeostasis. Mol Metab 2018; 17:82-97. [PMID: 30201275 PMCID: PMC6197775 DOI: 10.1016/j.molmet.2018.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The lack of pro-opiomelanocortin (POMC)-derived melanocortin peptides results in hypoadrenalism and severe obesity in both humans and rodents that is treatable with synthetic melanocortins. However, there are significant differences in POMC processing between humans and rodents, and little is known about the relative physiological importance of POMC products in the human brain. The aim of this study was to determine which POMC-derived peptides are present in the human brain, to establish their relative concentrations, and to test if their production is dynamically regulated. METHODS We analysed both fresh post-mortem human hypothalamic tissue and hypothalamic neurons derived from human pluripotent stem cells (hPSCs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the sequence and quantify the production of hypothalamic neuropeptides, including those derived from POMC. RESULTS In both in vitro and in vivo hypothalamic cells, LC-MS/MS revealed the sequence of hundreds of neuropeptides as a resource for the field. Although the existence of β-melanocyte stimulating hormone (MSH) is controversial, we found that both this peptide and desacetyl α-MSH (d-α-MSH) were produced in considerable excess of acetylated α-MSH. In hPSC-derived hypothalamic neurons, these POMC derivatives were appropriately trafficked, secreted, and their production was significantly (P < 0.0001) increased in response to the hormone leptin. CONCLUSIONS Our findings challenge the assumed pre-eminence of α-MSH and suggest that in humans, d-α-MSH and β-MSH are likely to be the predominant physiological products acting on melanocortin receptors.
Collapse
Affiliation(s)
- Peter Kirwan
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Richard G Kay
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Bas Brouwers
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, 46980 Valencia, Spain; Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Magdalena Jura
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Pierre Larraufie
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julie Jerber
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK; Open Targets, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jason Pembroke
- LGC Ltd., Newmarket Road, Fordham, Cambridgeshire, CB7 5WW, UK
| | - Theresa Bartels
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen O'Rahilly
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Florian T Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK.
| |
Collapse
|
8
|
Wittmann G, Lechan RM. Prss56 expression in the rodent hypothalamus: Inverse correlation with pro-opiomelanocortin suggests oscillatory gene expression in adult rat tanycytes. J Comp Neurol 2018; 526:2444-2461. [PMID: 30242838 DOI: 10.1002/cne.24504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 11/11/2022]
Abstract
We recently reported that the number of hypothalamic tanycytes expressing pro-opiomelanocortin (Pomc) is highly variable among brains of adult rats. While its cause and significance remain unknown, identifying other variably expressed genes in tanycytes may help understand this curious phenomenon. In this in situ hybridization study, we report that the Prss56 gene, which encodes a trypsin-like serine protease and is expressed in neural stem/progenitor cells, shows a similarly variable mRNA expression in tanycytes of adult rats and correlates inversely with tanycyte Pomc mRNA. Prss56 was expressed in α1, β1, subsets of α2, and some median eminence γ tanycytes, but virtually absent from β2 tanycytes. Prss56 was also expressed in vimentin positive tanycyte-like cells in the parenchyma of the ventromedial and arcuate nuclei, and in thyrotropin beta subunit-expressing cells of the pars tuberalis of the pituitary. In contrast to adults, Prss56 expression was uniformly high in tanycytes in adolescent rats. In mice, Prss56-expressing tanycytes and parenchymal cells were also observed but fewer in number and without significant variations. The results identify Prss56 as a second gene that is expressed variably in tanycytes of adult rats. We propose that the variable, inversely correlating expression of Prss56 and Pomc reflect periodically oscillating gene expression in tanycytes rather than stable expression levels that vary between individual rats. A possible functional link between Prss56 and POMC, and Prss56 as a potential marker for migrating tanycytes are discussed.
Collapse
Affiliation(s)
- Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
9
|
Chen W, Xia Z, Liu W, He X, Zhang W. Selective Vagotomy Worsens Glucose Control After Ileal Transposition. Obes Surg 2018; 28:2494-2499. [PMID: 29525935 DOI: 10.1007/s11695-018-3192-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSES Our aim was to investigate the effects of selective celiac branch vagotomy on food intake and glycemic control after ileal transposition (IT) and the possible roles of the vagus on the improvement of diabetes. MATERIALS AND METHODS Forty non-obese rats with diabetes underwent either IT, IT + celiac branch vagotomy (ITV), sham IT (SI), or sham IT + celiac branch vagotomy (SIV). They were pair fed, and the food intake, body weight, fasting plasma glucose, and glucagon-like peptide 1 (GLP-1) level were monitored. The number of activated pro-opiomelanocortin (POMC) neurons and POMC-derived peptides were measured after sacrifice. RESULTS The fasting glucose level of the ITV group was higher (7.0 ± 0.7 mmol/L vs. 5.7 ± 0.3, P = 0.01), and the area under the curve of the oral glucose tolerance test (AUCOGTT) value was greater than that of the IT group (1101.8 ± 90.3 (mmol/l) min vs. 986.9 ± 47.7 (mmol/l) min, P = 0.01). There was no significant difference in the postprandial GLP-1 level between these two groups, but the number of activated neurons in the ITV group was less than that of the IT group (10.3 ± 2.1 vs. 14.9 ± 2.3, P < 0.01), while the relative content level of POMC-derived peptides in the ITV group was half that of the IT group (P < 0.01). CONCLUSIONS The celiac branches of the vagus might contribute to less eating and improvement of diabetes after IT. The activating vagus strategy might be a goal for the treatment of diabetes.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Zenan Xia
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Wei Liu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| | - Xiaodong He
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China.
| | - Weimin Zhang
- Clinical Laboratory of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing, 100730, People's Republic of China
| |
Collapse
|
10
|
Lee MN, Kweon HY, Oh GT. N-α-acetyltransferase 10 (NAA10) in development: the role of NAA10. Exp Mol Med 2018; 50:1-11. [PMID: 30054454 PMCID: PMC6063908 DOI: 10.1038/s12276-018-0105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
N-α-acetyltransferase 10 (NAA10) is a subunit of Nα-terminal protein acetyltransferase that plays a role in many biological processes. Among the six N-α-acetyltransferases (NATs) in eukaryotes, the biological significance of the N-terminal acetyl-activity of Naa10 has been the most studied. Recent findings in a few species, including humans, indicate that loss of N-terminal acetylation by NAA10 is associated with developmental defects. However, very little is known about the role of NAA10, and more research is required in relation to the developmental process. This review summarizes recent studies to understand the function of NAA10 in the development of multicellular organisms. Further investigations are needed into the role of a key enzyme in biological development and its encoding gene. The enzyme N-α-acetyltransferase 10 (NAA10), encoded by the NAA10 gene, plays a role in multiple biological processes. While the function of NAA10 has been studied in cancer, less is known about the roles of the gene and the enzyme during development, according to a review by Goo Taeg Oh and co-workers at the Ewha Womans University in Seoul, South Korea. Mutations in NAA10 are found in patients with developmental delay, cardiac problems and skeletal abnormalities, while reduced enzyme activity is associated with developmental defects. Mouse studies suggest a role for NAA10 in neuronal development, bone formation and healthy sperm generation. The impact of variable NAA10 expression in different organs at different developmental stages needs clarification.
Collapse
Affiliation(s)
- Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Perron IJ, Keenan BT, Chellappa K, Lahens NF, Yohn NL, Shockley KR, Pack AI, Veasey SC. Dietary challenges differentially affect activity and sleep/wake behavior in mus musculus: Isolating independent associations with diet/energy balance and body weight. PLoS One 2018; 13:e0196743. [PMID: 29746501 PMCID: PMC5945034 DOI: 10.1371/journal.pone.0196743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. MATERIALS AND METHODS Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. RESULTS Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. CONCLUSIONS Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.
Collapse
Affiliation(s)
- Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: ,
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Lahens
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicole L. Yohn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sigrid C. Veasey
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Do K, Laing BT, Landry T, Bunner W, Mersaud N, Matsubara T, Li P, Yuan Y, Lu Q, Huang H. The effects of exercise on hypothalamic neurodegeneration of Alzheimer's disease mouse model. PLoS One 2018; 13:e0190205. [PMID: 29293568 PMCID: PMC5749759 DOI: 10.1371/journal.pone.0190205] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/11/2017] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabolic abnormalities occurred at early onset in the 3xtg-AD model compared with their counterparts. Analysis of gene expression in the hypothalamus indicated increased mRNA expression of inflammation- and apoptosis-related genes, as well as decreased gene expression of Agouti-related protein (AgRP) and Melanocortin 4 receptor (MC4R) at 12 weeks of age. Immunofluorescence analysis revealed that pro-opiomelanocortin (POMC) and NPY-expressing neurons decreased at 24 weeks in the 3xtg-AD model. Four weeks of voluntary exercise were sufficient to reverse the gene expression of inflammation and apoptotic markers in the hypothalamus, six weeks of exercise improved glucose metabolism, moreover, 8 weeks of voluntary exercise training attenuated apoptosis and augmented POMC and NPY-expressing neuronal populations in the hypothalamus compared to the control group. Our results indicated that early onset of metabolic abnormalities may contribute to the pathology of AD, which is associated with increased inflammation as well as decreased neuronal population and key neuropeptides in the hypothalamus. Furthermore, early intervention by voluntary exercise normalized hypothalamic inflammation and neurodegeneration as well as glucose metabolism in the 3xtg-AD model. The data, taken as a whole, suggests a hypothalamic-mediated mechanism where exercise prevents the progression of dementia and of Alzheimer’s disease.
Collapse
Affiliation(s)
- Khoa Do
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Brenton Thomas Laing
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Taylor Landry
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Wyatt Bunner
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Naderi Mersaud
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Tomoko Matsubara
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Peixin Li
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
| | - Yuan Yuan
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Hu Huang
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States of America
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gordon RJ, Panigrahi SK, Meece K, Atalayer D, Smiley R, Wardlaw SL. Effects of Opioid Antagonism on Cerebrospinal Fluid Melanocortin Peptides and Cortisol Levels in Humans. J Endocr Soc 2017; 1:1235-1246. [PMID: 29264449 PMCID: PMC5686644 DOI: 10.1210/js.2017-00289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Hypothalamic proopiomelanocortin (POMC) is processed to α-melanocyte-stimulating hormone, which interacts with the melanocortin antagonist agouti-related protein (AgRP), to regulate energy balance. The POMC-derived opioid peptide β-endorphin (β-EP) also affects feeding behavior via interactions with brain µ-opioid receptors (MORs), including autoinhibitory interactions with MOR expressed by POMC neurons. The opioid antagonist naltrexone (NTX) stimulates POMC neurons in rodents and decreases food intake. OBJECTIVE AND DESIGN The effect of NTX on brain POMC in humans was assessed by measuring POMC peptide concentrations in lumbar cerebrospinal fluid (CSF). AgRP and cortisol levels were also measured because both are inhibited by opioids. In a double-blinded crossover study, 14 healthy subjects were given NTX (50 mg daily) or placebo for either 2 or 7 days. RESULTS CSF β-EP levels increased after 2 and 7 days of NTX treatment; CSF POMC levels did not change, but the β-EP-to-POMC ratio increased. CSF AgRP levels did not change, but plasma AgRP levels tended to increase after NTX (P = 0.06). Cortisol increased in plasma and CSF after NTX treatment; these changes correlated positively with changes in AgRP levels. CONCLUSION Opioid antagonism stimulates POMC peptide release into CSF in humans. The increase in the CSF β-EP-to-POMC ratio could indicate selective release of processed peptides or an effect on POMC processing. Furthermore, AgRP and cortisol stimulation by NTX may mitigate POMC-induced decrease in food intake. It remains to be determined if biomarkers in CSF and plasma could be used to predict responses to pharmacotherapy targeting the melanocortin system.
Collapse
Affiliation(s)
- Rebecca J. Gordon
- Department of Pediatrics, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Sunil K. Panigrahi
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Deniz Atalayer
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Richard Smiley
- Department of Anesthesiology, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Sharon L. Wardlaw
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, NY 10032
| |
Collapse
|
14
|
Wang L, Sui L, Panigrahi SK, Meece K, Xin Y, Kim J, Gromada J, Doege CA, Wardlaw SL, Egli D, Leibel RL. PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons. Stem Cell Reports 2017; 8:264-277. [PMID: 28132887 PMCID: PMC5312251 DOI: 10.1016/j.stemcr.2016.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
We recently developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof of principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. The cognate enzyme, PC1/3, processes many prohormones in neuroendocrine and other tissues. We generated PCSK1 (PC1/3)-deficient human embryonic stem cell (hESC) lines using both short hairpin RNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC) processing using hESC-differentiated hypothalamic neurons. The increased levels of unprocessed POMC and the decreased ratios (relative to POMC) of processed POMC-derived peptides in both PCSK1 knockdown and knockout hESC-derived neurons phenocopied POMC processing reported in PC1/3-null mice and PC1/3-deficient patients. PC1/3 deficiency was associated with increased expression of melanocortin receptors and PRCP (prolylcarboxypeptidase, a catabolic enzyme for α-melanocyte stimulating hormone (αMSH)), and reduced adrenocorticotropic hormone secretion. We conclude that the obesity accompanying PCSK1 deficiency may not be primarily due to αMSH deficiency. Stem cell-derived hypothalamic neurons are used to study human obesity shRNA and CRISPR-Cas9 were used to generate models of PCSK1 deficiency PC1/3 deficiency impaired POMC processing in arcuate-like neurons Adaptive changes occurred in “downstream” POMC processing enzymes
Collapse
Affiliation(s)
- Liheng Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA; Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lina Sui
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA
| | - Sunil K Panigrahi
- Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kana Meece
- Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Claudia A Doege
- Department of Pathology and Cell Biology and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sharon L Wardlaw
- Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA; New York Stem Cell Foundation Research Institute, 3960 Broadway, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA; Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Boswell T, Dunn IC. Regulation of Agouti-Related Protein and Pro-Opiomelanocortin Gene Expression in the Avian Arcuate Nucleus. Front Endocrinol (Lausanne) 2017; 8:75. [PMID: 28450851 PMCID: PMC5389969 DOI: 10.3389/fendo.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
The arcuate nucleus is generally conserved across vertebrate taxa in its neuroanatomy and neuropeptide expression. Gene expression of agouti-related protein (AGRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) has been established in the arcuate nucleus of several bird species and co-localization demonstrated for AGRP and NPY. The proteins encoded by these genes exert comparable effects on food intake in birds after central administration to those seen in other vertebrates, with AGRP and NPY being orexigenic and CART and α-melanocyte-stimulating hormone anorexigenic. We have focused on the measurement of arcuate nucleus AGRP and POMC expression in several avian models in relation to the regulation of energy balance, incubation, stress, and growth. AGRP mRNA and POMC mRNA are, respectively, up- and downregulated after energy deprivation and restriction. This suggests that coordinated changes in the activity of AGRP and POMC neurons help to drive the homeostatic response to replace depleted energy stores in birds as in other vertebrates. While AGRP and POMC expression are generally positively and negatively correlated with food intake, respectively, we review here situations in some avian models in which AGRP gene expression is dissociated from the level of food intake and may have an influence on growth independent of changes in appetite. This suggests the possibility that the central melanocortin system exerts more pleiotropic functions in birds. While the neuroanatomical arrangement of AGRP and POMC neurons and the sensitivity of their activity to nutritional state appear generally conserved with other vertebrates, detailed knowledge is lacking of the key nutritional feedback signals acting on the avian arcuate nucleus and there appear to be significant differences between birds and mammals. In particular, recently identified avian leptin genes show differences between bird species in their tissue expression patterns and appear less closely linked in their expression to nutritional state. It is presently uncertain how the regulation of the central melanocortin system in birds is brought about in the situation of the apparently reduced importance of leptin and ghrelin compared to mammals.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
- *Correspondence: Timothy Boswell,
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| |
Collapse
|
16
|
Page-Wilson G, Nguyen KT, Atalayer D, Meece K, Bainbridge HA, Korner J, Gordon RJ, Panigrahi SK, White A, Smiley R, Wardlaw SL. Evaluation of CSF and plasma biomarkers of brain melanocortin activity in response to caloric restriction in humans. Am J Physiol Endocrinol Metab 2017; 312:E19-E26. [PMID: 27894065 PMCID: PMC5283881 DOI: 10.1152/ajpendo.00330.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022]
Abstract
The melanocortin neuronal system, which consists of hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, is a leptin target that regulates energy balance and metabolism, but studies in humans are limited by a lack of reliable biomarkers to assess brain melanocortin activity. The objective of this study was to measure the POMC prohormone and its processed peptide, β-endorphin (β-EP), in cerebrospinal fluid (CSF) and AgRP in CSF and plasma after calorie restriction to validate their utility as biomarkers of brain melanocortin activity. CSF and plasma were obtained from 10 lean and obese subjects after fasting (40 h) and refeeding (24 h), and from 8 obese subjects before and after 6 wk of dieting (800 kcal/day) to assess changes in neuropeptide and hormone levels. After fasting, plasma leptin decreased to 35%, and AgRP increased to 153% of baseline. During refeeding, AgRP declined as leptin increased; CSF β-EP increased, but POMC did not change. Relative changes in plasma and CSF leptin were blunted in obese subjects. After dieting, plasma and CSF leptin decreased to 46% and 70% of baseline, CSF POMC and β-EP decreased, and plasma AgRP increased. At baseline, AgRP correlated negatively with insulin and homeostasis model assessment (HOMA-IR), and positively with the Matsuda index. Thus, following chronic calorie restriction, POMC and β-EP declined in CSF, whereas acutely, only β-EP changed. Plasma AgRP, however, increased after both acute and chronic calorie restriction. These results support the use of CSF POMC and plasma AgRP as biomarkers of hypothalamic melanocortin activity and provide evidence linking AgRP to insulin sensitivity.
Collapse
Affiliation(s)
- Gabrielle Page-Wilson
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Kim T Nguyen
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Deniz Atalayer
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Heather A Bainbridge
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Judith Korner
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Rebecca J Gordon
- Department of Pediatrics, Columbia University College of Physicians & Surgeons, New York, New York
| | - Sunil K Panigrahi
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York
| | - Anne White
- Faculties of Life Sciences and Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Richard Smiley
- Department of Anesthesiology, Columbia University College of Physicians & Surgeons, New York, New York
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York;
| |
Collapse
|
17
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
18
|
Chen W, Xu Q, Xiao Y, Zhou J, Zhang W, Lin G, Gong F. Blockade of Central GLP-1 Receptors Deteriorates the Improvement of Diabetes after Ileal Transposition. Int J Med Sci 2016; 13:955-962. [PMID: 27994501 PMCID: PMC5165689 DOI: 10.7150/ijms.17290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/07/2016] [Indexed: 01/09/2023] Open
Abstract
Background: The mechanism of improvement of type 2 diabetes mellitus induced by ileal transposition (IT) is undefined. Our aim was to investigate the possible role of central glucagon-like peptide 1 (GLP-1) after IT. Methods: Ninety male diabetic rats were randomly divided into the IT, sham IT (S-IT) and control group. The food intake, glucose metabolism and GLP-1 level were measured. Subsequently, we administered GLP-1 antagonist via lateral brain ventricle cannula to block central GLP-1 receptor, and verified whether the food intake, glucose metabolism changed. And the activated pro-opiomelanocortin (POMC) neurons in different groups were compared after sacrifice. Results: IT induced significant diabetic improvement with decreased maximum food intake and higher postprandial GLP-1 level. The GLP-1 level in cerebrospinal fluid increased in correlation with the plasma GLP-1 level. When the central GLP-1 receptor antagonist was given to the IT group rats, the improvement of the glucose level declined. The glucose level surged (169.9 ± 14.2) % during the oral glucose tolerance test, the range was larger than that before central blockade ((67.1 ± 14.2) %, P < 0.001). Moreover, the POMC neuron number in the arcuate nucleus of the hypothalamus were reduced (12.7 ± 6.1 at a magnification of 100×). The relative content level of POMC-derived peptides in the pituitary was lower (0.1 ± 0.05). Conclusions: The central GLP-1 might play an important role in the remission of diabetes after IT. POMC neurons in the hypothalamus may be activated by the enhanced level of GLP-1 after IT.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing 100730, P. R. China
| | - Qianqian Xu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing 100730, P. R. China
| | - Yiding Xiao
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing 100730, P. R. China
| | - Jiaolin Zhou
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing 100730, P. R. China
| | - Weimin Zhang
- Clinical Laboratory of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing 100730, P. R. China
| | - Guole Lin
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing 100730, P. R. China
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology of the Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1#, Beijing 100730, P. R. China
| |
Collapse
|
19
|
Page-Wilson G, Meece K, White A, Rosenbaum M, Leibel RL, Smiley R, Wardlaw SL. Proopiomelanocortin, agouti-related protein, and leptin in human cerebrospinal fluid: correlations with body weight and adiposity. Am J Physiol Endocrinol Metab 2015; 309:E458-65. [PMID: 26152765 PMCID: PMC4556883 DOI: 10.1152/ajpendo.00206.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022]
Abstract
Leptin and its neuronal targets, which produce proopiomelanocortin (POMC) and agouti-related protein (AgRP), regulate energy balance. This study characterized leptin, POMC, and AgRP in the cerebrospinal fluid (CSF) of 47 healthy human subjects, 23 lean and 24 overweight/obese (OW/OB), as related to BMI, adiposity, plasma leptin, soluble leptin receptor (s-OB-R), and insulin. POMC was measured since the POMC prohormone is the predominant POMC peptide in CSF and correlates with hypothalamic POMC in rodents. Plasma AgRP was similarly characterized. CSF leptin was 83-fold lower than in plasma and correlated strongly with BMI, body fat, and insulin. The relative amount of leptin transported into CSF declined with increasing BMI, ranging from 4.5 to 0.52%, consistent with a saturable transport mechanism. CSF sOB-R was 78-fold lower than in plasma and correlated negatively with plasma and CSF leptin. CSF POMC was higher in lean vs. OW/OB subjects (P < 0.001) and correlated negatively with CSF leptin (r = -0.60, P < 0.001) and with plasma leptin, insulin, BMI, and adiposity. CSF AgRP was not different in lean vs. OW/OB; however, plasma AgRP was higher in lean subjects (P = 0.001) and correlated negatively with BMI, adiposity, leptin, insulin, and HOMA (P < 0.005). Thus, CSF measurements may provide useful biomarkers for brain leptin and POMC activity. The striking negative correlation between CSF leptin and POMC could be secondary to leptin resistance and/or neuronal changes associated with obesity but may also indicate that POMC plays a primary role in regulating body weight and adiposity. The role of plasma AgRP as a neuroendocrine biomarker deserves further study.
Collapse
Affiliation(s)
- Gabrielle Page-Wilson
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Kana Meece
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Anne White
- Faculties of Life Sciences and Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael Rosenbaum
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - Rudolph L Leibel
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - Richard Smiley
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York;
| |
Collapse
|
20
|
Kuhla B, Laeger T, Husi H, Mullen W. Cerebrospinal Fluid Prohormone Processing and Neuropeptides Stimulating Feed Intake of Dairy Cows during Early Lactation. J Proteome Res 2015; 14:823-8. [DOI: 10.1021/pr500872k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Björn Kuhla
- Institute of Nutritional
Physiology “Oskar Kellner”, Leibniz Institute for Farm
Animal Biology (FBN), Wilhelm-Stahl-Allee
2, 18196 Dummerstorf, Germany
| | - Thomas Laeger
- Institute of Nutritional
Physiology “Oskar Kellner”, Leibniz Institute for Farm
Animal Biology (FBN), Wilhelm-Stahl-Allee
2, 18196 Dummerstorf, Germany
| | - Holger Husi
- College
of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - William Mullen
- College
of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
21
|
Molecular, Cellular, and Physiological Significance of N-Terminal Acetylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:267-305. [DOI: 10.1016/bs.ircmb.2015.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
22
|
Wardlaw SL, Burant CF, Klein S, Meece K, White A, Kasten T, Lucey BP, Bateman RJ. Continuous 24-hour leptin, proopiomelanocortin, and amino acid measurements in human cerebrospinal fluid: correlations with plasma leptin, soluble leptin receptor, and amino acid levels. J Clin Endocrinol Metab 2014; 99:2540-8. [PMID: 24670082 PMCID: PMC4079306 DOI: 10.1210/jc.2013-4087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT In order to characterize diurnal changes in central leptin and its target neuropeptide, proopiomelanocortin (POMC), we measured leptin and POMC in cerebrospinal fluid (CSF) as related to changes in plasma leptin and soluble leptin receptor (sOB-R) levels. CSF and plasma levels of 20 amino acids (AA) were also measured because AA can affect brain POMC. DESIGN AND PARTICIPANTS Stored CSF and plasma samples obtained from eight healthy subjects who served as controls for a previous study were evaluated. CSF was collected hourly over 33 h via indwelling subarachnoid catheter. Leptin, sOB-R, and POMC were measured by sensitive ELISA and AA by gas chromatography-mass spectrometry. RESULTS There was a diurnal rhythm for plasma leptin with a peak at 2200 h (144% of baseline) and there was a similar diurnal rhythm for CSF leptin with a peak (117%) 3-5 h after the plasma peak. Plasma sOB-R was lowest at 0300 h and correlated negatively with plasma and CSF leptin. A diurnal rhythm for POMC in CSF was also detected with a peak (125%) at 0100 h. A positive correlation existed between CSF POMC and leptin in individual subjects over time. CSF levels of many AA increased at night. There was a significant correlation between CSF POMC and 10 AA, including leucine, isoleucine, tryptophan, and tyrosine. CONCLUSIONS Diurnal changes occur in leptin and POMC in human CSF that likely reflect changes in central leptin and melanocortin activity. Our results suggest that nocturnal elevations in leptin, AA, and POMC may help to suppress appetite and feeding at night.
Collapse
Affiliation(s)
- Sharon L Wardlaw
- Department of Medicine (S.L.W., K.M.), Columbia University College of Physicians & Surgeons, New York, New York 10032; Department of Internal Medicine (C.F.B.), University of Michigan Medical School, Ann Arbor, Michigan 48019; Center for Human Nutrition and Atkins Center for Excellence in Obesity Medicine (S.K.), Washington University School of Medicine, St Louis, Missouri 63110; Faculties of Life Sciences and Medical and Human Sciences (A.W.), University of Manchester, Manchester M13 9PL, United Kingdom; and Department of Neurology (T.K., B.P.L., R.J.B), Washington University School of Medicine, St Louis, Missouri 63110
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Food-intake regulation during stress by the hypothalamo-pituitary-adrenal axis. Brain Res Bull 2013; 95:46-53. [PMID: 23590931 DOI: 10.1016/j.brainresbull.2013.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/14/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity is increasing worldwide with serious consequences such as diabetes mellitus type 2 and cardiovascular diseases. Emotional stress is considered to be one of the main reasons of obesity development in humans. However, there are some contradictory results, which should be addressed. First of all stress induces anorexia, but not overeating in laboratory animals. Glucocorticoids, the effector molecules of the hypothalamo-pituitary-adrenocortical (HPA) axis stimulate and stress inhibits food intake. It is also not clear if stress is diabetogenic or an antidiabetogenic factor. The review will discusses these issues and the involvement of the whole HPA axis and its separate molecules (glucocorticoids, adrenocorticotropin, corticotropin-releasing hormone) in food intake regulation under stress.
Collapse
|
24
|
Page-Wilson G, Reitman-Ivashkov E, Meece K, White A, Rosenbaum M, Smiley RM, Wardlaw SL. Cerebrospinal fluid levels of leptin, proopiomelanocortin, and agouti-related protein in human pregnancy: evidence for leptin resistance. J Clin Endocrinol Metab 2013; 98:264-71. [PMID: 23118421 PMCID: PMC3537103 DOI: 10.1210/jc.2012-2309] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin suppresses appetite by modulating the expression of hypothalamic neuropeptides including proopiomelanocortin (POMC) and agouti-related peptide (AgRP). Yet during pregnancy, caloric consumption increases despite elevated plasma leptin levels. DESIGN AND PARTICIPANTS To investigate this paradox, we measured leptin and soluble leptin receptor in plasma and leptin, POMC, and AgRP in cerebrospinal fluid (CSF) from 21 fasting pregnant women before delivery by cesarean section at a university hospital and from 14 fasting nonpregnant women. RESULTS Prepregnancy body mass index was 24.6 ± 1.1 (SE) vs. 31.3 ± 1.3 at term vs. 26.5 ± 1.6 kg/m(2) in controls. Plasma leptin (32.9 ± 4.6 vs. 16.7 ± 3.0 ng/ml) and soluble leptin receptor (30.9 ± 2.3 vs. 22.1 ± 1.4 ng/ml) levels were significantly higher in pregnant women. However, mean CSF leptin did not differ between the two groups (283 ± 34 vs. 311 ± 32 pg/ml), consistent with a relative decrease in leptin transport into CSF during pregnancy. Accordingly, the CSF/plasma leptin percentage was 1.0 ± 0.01% in pregnant subjects vs. 2.1 ± 0.2% in controls (P < 0.0001). Mean CSF AgRP was significantly higher in pregnant subjects (32.3 ± 2.7 vs. 23.5 ± 2.5 pg/ml; P = 0.03). Mean CSF POMC was not significantly different in pregnant subjects (200 ± 13.6 vs. 229 ± 17.3 fmol/ml; P = 0.190). However, the mean AgRP/POMC ratio was significantly higher among pregnant women (P = 0.003), consistent with an overall decrease in melanocortin tone favoring increased food intake during pregnancy. CONCLUSIONS These data demonstrate that despite peripheral hyperleptinemia, positive energy balance is achieved during pregnancy by a relative decrease in central leptin concentrations and resistance to leptin's effects on target neuropeptides that regulate energy balance.
Collapse
|
25
|
Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS 2012; 9:16. [PMID: 22883598 PMCID: PMC3439317 DOI: 10.1186/2045-8118-9-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/07/2012] [Indexed: 02/08/2023] Open
Abstract
There is increasing evidence that non-synaptic communication by volume transmission in the flowing CSF plays an important role in neural mechanisms, especially for extending the duration of behavioral effects. In the present review, we explore the mechanisms involved in the behavioral and physiological effects of β-endorphin (β-END), especially those involving the cerebrospinal fluid (CSF), as a message transport system to reach distant brain areas. The major source of β-END are the pro-opio-melano-cortin (POMC) neurons, located in the arcuate hypothalamic nucleus (ARH), bordering the 3rd ventricle. In addition, numerous varicose β-END-immunoreactive fibers are situated close to the ventricular surfaces. In the present paper we surveyed the evidence that volume transmission via the CSF can be considered as an option for messages to reach remote brain areas. Some of the points discussed in the present review are: release mechanisms of β-END, independence of peripheral versus central levels, central β-END migration over considerable distances, behavioral effects of β-END depend on location of ventricular administration, and abundance of mu and delta opioid receptors in the periventricular regions of the brain.
Collapse
|
26
|
Early weaning is associated with higher neuropeptide Y (NPY) and lower cocaine- and amphetamine-regulated transcript (CART) expressions in the paraventricular nucleus (PVN) in adulthood. Br J Nutr 2012; 108:2286-95. [DOI: 10.1017/s0007114512000487] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interruption of lactation for a short period, without the use of pharmacological substances or maternal separation, causes offspring malnutrition and hypoleptinaemia and programmes for metabolic disorders such as higher body weight and adiposity, hyperphagia, hyperleptinaemia and central leptin resistance in adulthood. Here, in order to clarify the mechanisms underlying the phenotype observed in adult early-weaned (EW) rats, we studied the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in different hypothalamic nuclei by immunohistochemistry and Western blot. In the EW group, the teats of lactating rats were blocked with a bandage to interrupt lactation during the last 3 d, while control pups had free access to milk throughout the entire lactation period. At age 180 d, EW offspring showed higher NPY staining in the paraventricular nucleus (PVN), as well as NPY protein content (+68 %) in total hypothalamus than control ones. AgRP showed no changes in staining or Western blot. POMC content was not affected; however, its distribution pattern was altered. CART-positive cells of EW offspring had lower immunoreactivity associated with reduced cell number in the PVN and lower protein content ( − 38 %) in total hypothalamus. The present data indicate that precocious weaning can imprint the neuronal circuitry, especially in the PVN, and cause a long-term effect on the expression of specific orexigenic and anorexigenic neuropeptides, such as NPY and CART, that can be caused by leptin resistance and are coherent with the hyperphagia observed in these animals.
Collapse
|
27
|
Landmann EM, Schellong K, Melchior K, Rodekamp E, Ziska T, Harder T, Plagemann A. Short-term regulation of the hypothalamic melanocortinergic system under fasting and defined glucose-refeeding conditions in rats: a laser capture microdissection (LMD)-based study. Neurosci Lett 2012; 515:87-91. [PMID: 22450045 DOI: 10.1016/j.neulet.2012.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/27/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
It is well established that under fasting conditions the expression of the orexigenic neuropeptide agouti-related peptide (AGRP) is up-regulated in the hypothalamic arcuate nucleus (ARC), while inconsistent data exist regarding fasting regulation of the anorexigenic neurohormone proopiomelanocortin (POMC). Inconsistencies might have methodological reasons, especially concerning neuromorphological and/or experimental (nutritional) specificity. We analyzed the expression of both neuropeptides in ARC neurons, using lasercapture microdissection (LMD) and real-time PCR in 12h fasted vs. fed Wistar rats as well as after a standardized glucose load, i.e., under clinically relevant conditions in terms of diagnosing glucose intolerance in the human. Under fasting conditions, clear up-regulation of AGRP was observed, with increasing magnitude in ARC single neurons (SNP) as compared to ARC cell layers (+125% vs. +23%, resp.), closely correlated to hypoinsulinemia and hypoleptinemia. Surprisingly, in the fasting state POMC was not found to be down-regulated, neither in ARC cell layers nor in ARC single neurons (+9% vs. +6%). However, glucose-refeeding under diagnostically relevant conditions led to strong neuronal up-regulation of POMC expression in ARC SNP (+128%), and AGRP down-regulation (-50%). In conclusion, experimentally, topographically, and analytically specific and standardized conditions confirmed AGRP in ARC neurons as being neuronally up- and down-regulated, resp., depending on the general nutritional state, while POMC was found to be (up-) regulated only after peripheral glucose load. Findings suggest that POMC in ARC neurons acts glucose-mediated as an "anti-orexigenic" neurohormone, specifically responding to hyperglycemia.
Collapse
Affiliation(s)
- Emelie M Landmann
- Clinic of Obstetrics, Research Group Experimental Obstetrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
The changes of pro-opiomelanocortin neurons in type 2 diabetes mellitus rats after ileal transposition: the role of POMC neurons. J Gastrointest Surg 2011; 15:1618-24. [PMID: 21717281 DOI: 10.1007/s11605-011-1606-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/20/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Ileal transposition (IT) can effectively resolve obesity and improve type 2 diabetes. IT is associated with increased glucagon-like peptide 1 secretion. The mechanisms mediating the effects of IT on obesity and diabetes remain undefined. Given the role of pro-opiomelanocortin neurons in energy balance, we sought to determine its potential role in these processes. METHODS Twenty non-obese diabetic Goto-Kakizaki rats underwent either IT or sham operation. Various measures including food intake, body weight, fasting plasma glucose, glucagon-like peptide 1 level, activated pro-opiomelanocortin neuron number, and pro-opiomelanocortin mRNA expression were evaluated. RESULTS The IT group demonstrated significantly improved plasma glucose homeostasis with increased glucagon-like peptide 1 secretion. The IT group ate less and demonstrated reduced body weight gain over time. These effects were also associated with increased central neuronal activity with increased pro-opiomelanocortin and derivative gene expression in the hypothalamus and increased protein expression in the pituitary gland. CONCLUSIONS More pro-opiomelanocortin neurons in the hypothalamus of diabetes rats were activated after ileal transposition. These data suggest a potential important role for pro-opiomelanocortin neurons in the resolution of diabetes after IT.
Collapse
|
29
|
Breit A, Büch TRH, Boekhoff I, Solinski HJ, Damm E, Gudermann T. Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol Cell Endocrinol 2011; 331:232-40. [PMID: 20674667 DOI: 10.1016/j.mce.2010.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 07/13/2010] [Indexed: 11/20/2022]
Abstract
The melanocortin-4 receptor (MC4R) is a prototypical G protein-coupled receptor (GPCR) that plays a considerable role in controlling appetite and energy homeostasis. Signalling initiated by MC4R is orchestrated by multiple agonists, inverse agonism and by interactions with accessory proteins. The exact molecular events translating MC4R signalling into its physiological role, however, are not fully understood. This review is an attempt to summarize new aspects of MC4R signalling in the context of its recently discovered alternative G protein coupling, and to give a perspective on how future research could improve our knowledge about the intertwining molecular mechanisms that are responsible for the regulation of energy homeostasis by the melanocortin system.
Collapse
Affiliation(s)
- Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, Ludwig-Maximilians-Universität München, 80336 München, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Wardlaw SL. Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur J Pharmacol 2011; 660:213-9. [PMID: 21208604 DOI: 10.1016/j.ejphar.2010.10.107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/27/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons play a key role in regulating energy balance and neuroendocrine function. Much attention has been focused on the regulation of POMC gene expression with less emphasis on regulated peptide processing. This is particularly important given the complexity of posttranslational POMC processing which is essential for the generation of biologically active MSH peptides. Mutations that impair POMC sorting and processing are associated with obesity in humans and in animals. Specifically, mutations in the POMC processing enzymes prohormone convertase 1/3 (PC1/3) and in carboxypeptidase E (CPE) and in the α-MSH degrading enzyme, PRCP, are associated with changes in energy balance. There is increasing evidence that POMC processing is regulated with respect to energy balance. Studies have implicated both the leptin and insulin signaling pathways in the regulation of POMC at various steps in the processing pathway. This article will review the role of hypothalamic POMC in regulating energy balance with a focus on POMC processing.
Collapse
Affiliation(s)
- Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| |
Collapse
|
31
|
Stevens A, Begum G, White A. Epigenetic changes in the hypothalamic pro-opiomelanocortin gene: a mechanism linking maternal undernutrition to obesity in the offspring? Eur J Pharmacol 2011; 660:194-201. [PMID: 21211530 DOI: 10.1016/j.ejphar.2010.10.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/06/2010] [Accepted: 10/29/2010] [Indexed: 11/28/2022]
Abstract
Maternal undernutrition is associated with programming of obesity in offspring. While previous evidence has linked programming to the hypothalamic, pituitary, and adrenal (HPA) axis it could also affect the hypothalamic neuropeptides which regulate food intake and energy balance. Alpha melanocyte stimulating hormone (αMSH), a key regulator of these neuronal pathways, is derived from pro-opiomelanocortin (POMC) which is therefore a prime target for the programming of obesity. Several models of maternal undernutrition have identified changes in POMC in hypothalami from foetuses or offspring at various ages. These models have also shown that the offspring go on to develop obesity and/or glucose intolerance. It is our hypothesis that programming leads to epigenetic changes in hypothalamic neuropeptide genes. Therefore when there is subsequent increased food availability, the epigenetic changes could cause dysfunctional transcriptional regulation of energy balance. We present evidence of epigenetic changes in the POMC gene promoter in foetal hypothalami after peri-conceptional undernutrition. In this model there are also epigenetic changes in the hypothalamic glucocorticoid receptor with consequent up-regulation of the receptor which could lead to alterations in the regulation of POMC and neuropeptide Y (NPY) in the hypothalamus. Thus maternal undernutrition could cause epigenetic changes in the POMC and glucocorticoid receptor genes, in the foetal hypothalamus, which may predispose the offspring to altered regulation of food intake, energy expenditure and glucose homeostasis, later in life.
Collapse
Affiliation(s)
- Adam Stevens
- Faculty of Medical and Human Sciences, University of Manchester, UK
| | | | | |
Collapse
|
32
|
Soos S, Petervari E, Szekely M, Jech-Mihalffy A, Balasko M. Complex catabolic effects of central alpha-MSH infusion in rats of altered nutritional states: differences from leptin. J Mol Neurosci 2010; 43:209-16. [PMID: 20953734 DOI: 10.1007/s12031-010-9462-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/05/2010] [Indexed: 01/15/2023]
Abstract
The hypothalamic melanocortin (MC) system is a major catabolic regulator of energy balance: it suppresses food intake (FI), elevates metabolic rate, and reduces body weight (BW). The primary activator of the MC system [mainly via the alpha-melanocyte stimulating hormone (alpha-MSH)] is the adipocyte-derived leptin. With increasing BW, resistance develops to leptin-induced anorexia, but independent of this, in genetically modified animals, some alpha-MSH actions were maintained. We investigated the responsiveness of the MC system in its complexity (FI vs. metabolic correlates) in genetically intact male Wistar rats of different nutritional states (and different leptin sensitivities), i.e., in rats aged 2 months [normally fed (NF2)] or 6 months [calorie-restricted (CR6), fed ad libitum (NF6), and high-fat diet-induced obese (HF6) groups]. A 7-day-long, 1-μg/μl/h intracerebroventricular infusion of alpha-MSH reduced BW in all groups, particularly in NF6 and NF2 animals, and even CR6 rats lost BW upon alpha-MSH infusion (in contrast to leptin administration). Anorexia developed in NF2-NF6 and less in CR6 groups, and some FI fall was also seen in HF6 rats. The hypermetabolic effects (temperature/heart rate elevations) were most pronounced in CR6 and next in HF6 rats. These data suggest that alpha-MSH responsiveness is maintained in various forms (depending on nutritional state), despite obesity-induced leptin resistance.
Collapse
Affiliation(s)
- Szilvia Soos
- Department of Pathophysiology and Gerontology, Medical School, University of Pecs, 12 Szigeti ut, Pecs H-7624, Hungary
| | | | | | | | | |
Collapse
|
33
|
Stevens A, Begum G, Cook A, Connor K, Rumball C, Oliver M, Challis J, Bloomfield F, White A. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 2010; 151:3652-64. [PMID: 20573728 DOI: 10.1210/en.2010-0094] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal food restriction is associated with the development of obesity in offspring. This study examined how maternal undernutrition in sheep affects the fetal hypothalamic glucocorticoid receptor (GR) and the appetite-regulating neuropeptides, proopiomelanocortin (POMC) and neuropeptide Y, which it regulates. In fetuses from ewes undernourished from -60 to +30 d around conception, there was increased histone H3K9 acetylation (1.63-fold) and marked hypomethylation (62% decrease) of the POMC gene promoter but no change in POMC expression. In the same group, acetylation of histone H3K9 associated with the hypothalamic GR gene was increased 1.60-fold and the GR promoter region was hypomethylated (53% decrease). In addition, there was a 4.7-fold increase in hypothalamic GR expression but no change in methylation of GR gene expression in the anterior pituitary or hippocampus. Interestingly, hypomethylation of both POMC and GR promoter markers in fetal hypothalami was also identified after maternal undernutrition from -60 to 0 d and -2 to +30 d. In comparison, the Oct4 gene, was hypermethylated in both control and underfed groups. Periconceptional undernutrition is therefore associated with marked epigenetic changes in hypothalamic genes. Increase in GR expression in the undernourished group may contribute to fetal programming of a predisposition to obesity, via altered GR regulation of POMC and neuropeptide Y. These epigenetic changes in GR and POMC in the hypothalamus may also predispose the offspring to altered regulation of food intake, energy expenditure, and glucose homeostasis later in life.
Collapse
Affiliation(s)
- Adam Stevens
- Faculties of Life Sciences and Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
D'Agostino G, Diano S. Alpha-melanocyte stimulating hormone: production and degradation. J Mol Med (Berl) 2010; 88:1195-201. [PMID: 20617297 DOI: 10.1007/s00109-010-0651-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Proopiomelanocortin (POMC) is a polypeptide hormone precursor that is expressed in the brain and in peripheral tissues such as in the pituitary gland, immune system, and skin. In the brain, POMC is processed to form several peptides including alpha-melanocyte stimulating hormone (α-MSH). alpha-MSH is expressed in the hypothalamic arcuate nucleus and in the nucleus tractus solitarius of the brainstem where it has a crucial role in the regulation of metabolic functions. Specifically, α-MSH is an anorexigenic peptide. Its production and maturation processes have been shown to be regulated according to the metabolic condition of the organism. This review summarizes our current knowledge on α-MSH processing including its maturation and degradation processes and pharmacological aspects of its manipulation.
Collapse
Affiliation(s)
- Giuseppe D'Agostino
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
35
|
Xiao E, Kim AJ, Dutia R, Conwell I, Ferin M, Wardlaw SL. Effects of estradiol on cerebrospinal fluid levels of agouti-related protein in ovariectomized rhesus monkeys. Endocrinology 2010; 151:1002-9. [PMID: 20056830 PMCID: PMC2840683 DOI: 10.1210/en.2009-0853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC)-derived MSH peptides and the melanocortin receptor antagonist, agouti-related protein (AgRP), interact to regulate energy balance. Both POMC and AgRP neurons express estrogen receptors, but little is known about estrogen regulation of the melanocortin system in the primate. We have therefore examined the effects of physiological doses of estradiol (E2) on POMC and AgRP in lumbar cerebrospinal fluid (CSF) of ovariectomized monkeys. POMC prohormone was measured by ELISA. AgRP was measured by RIA (sensitive for the more biologically active C-terminal AgRP(83-132) but also detects full-length AgRP) and by ELISA (measures primarily full length AgRP). In the first experiment, 14 animals were studied before and after 3 wk of E2. CSF POMC did not change, but AgRP(RIA) decreased from 7.9 +/- 1.2 to 4.7 +/- 1.2 fmol/ml after E2 (P = 0.03) and the POMC/AgRP(RIA) ratio increased from 4.2 +/- 0.89 to 6.8 +/- 1.04 (P = 0.04). AgRP(ELISA) did not change, but the ratio of AgRP(RIA) compared with AgRP(ELISA) was reduced after E2 (P = 0.02). In the second experiment, 11 animals were studied after 6 wk of E2, and similar changes were noted. The degree of AgRP(RIA) suppression with E2 was inversely related to body mass index (r = 0.569; P = 0.03). These results show for the first time that E2 suppresses AgRP(C-terminal) in CSF, increases the POMC to AgRP ratio, and may decrease AgRP processing, thus leading to increased melanocortin signaling. Furthermore, obesity was associated with resistance to the suppressive effects of E2 on AgRP, analogous to what is seen with obesity and leptin resistance.
Collapse
Affiliation(s)
- Ennian Xiao
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
36
|
Schulz C, Paulus K, Lobmann R, Dallman M, Lehnert H. Endogenous ACTH, not only alpha-melanocyte-stimulating hormone, reduces food intake mediated by hypothalamic mechanisms. Am J Physiol Endocrinol Metab 2010; 298:E237-44. [PMID: 19920221 DOI: 10.1152/ajpendo.00408.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH) are both consecutively processed from proopiomelanocortin (POMC), which is synthesized in hypothalamic arcuate neurons innervating the paraventricular nuclei (PVN). POMC secretion/synthesis is regulated by energy availability. ACTH and alpha-MSH bind with equal affinity to melanocortin-4 receptors and elicit similar effects on signal transduction in-vitro. Endogenous alpha-MSH thus far is believed to be the major physiological agonist and to act in an anorexigenic manner. Until now, it was fully unknown whether endogenous ACTH is also involved in the regulation of appetite and food intake. In this study in rats, we now show that icv ACTH as well as alpha-MSH possess anorexigenic effects in the PVN or areas in close proximity in vivo and that the effect of ACTH is direct and not mediated via alpha-MSH. We investigated the roles of endogenous ACTH and alpha-MSH by PVN application of the respective antibodies under different physiological conditions. In satiated rats with high levels of ACTH and alpha-MSH in the PVN, antibody administration increased food intake and body weight gain; hungry animals were unaffected. Finally, repeated injections of ACTH antibodies into PVN resulted in persistently increased food intake during the light period. These data now provide robust evidence that endogenous ACTH without further processing acts in the PVN or areas in close proximity to reduce food intake under conditions of feeding-induced satiety.
Collapse
Affiliation(s)
- Carla Schulz
- Department of Internal Medicine I, Luebeck University, Germany.
| | | | | | | | | |
Collapse
|
37
|
Murphy BA, Fioramonti X, Jochnowitz N, Fakira K, Gagen K, Contie S, Lorsignol A, Penicaud L, Martin WJ, Routh VH. Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose. Am J Physiol Cell Physiol 2009; 296:C746-56. [PMID: 19211911 DOI: 10.1152/ajpcell.00641.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fasting increases neuropeptide Y (NPY) expression, peptide levels, and the excitability of NPY-expressing neurons in the hypothalamic arcuate (ARC) nucleus. A subpopulation of ARC-NPY neurons ( approximately 40%) are glucose-inhibited (GI)-type glucose-sensing neurons. Hence, they depolarize in response to decreased glucose. Because fasting enhances NPY neurotransmission, we propose that during fasting, GI neurons depolarize in response to smaller decreases in glucose. This increased excitation in response to glucose decreases would increase NPY-GI neuronal excitability and enhance NPY neurotransmission. Using an in vitro hypothalamic explant system, we show that fasting enhances NPY release in response to decreased glucose concentration. By measuring relative changes in membrane potential using a membrane potential-sensitive dye, we demonstrate that during fasting, a smaller decrease in glucose depolarizes NPY-GI neurons. Furthermore, incubation in low (0.7 mM) glucose enhanced while leptin (10 nM) blocked depolarization of GI neurons in response to decreased glucose. Fasting, leptin, and glucose-induced changes in NPY-GI neuron glucose sensing were mediated by 5'-AMP-activated protein kinase (AMPK). We conclude that during energy sufficiency, leptin reduces the ability of NPY-GI neurons to sense decreased glucose. However, after a fast, decreased leptin and glucose activate AMPK in NPY-GI neurons. As a result, NPY-GI neurons become depolarized in response to smaller glucose fluctuations. Increased excitation of NPY-GI neurons enhances NPY release. NPY, in turn, shifts energy homeostasis toward increased food intake and decreased energy expenditure to restore energy balance.
Collapse
Affiliation(s)
- Beth Ann Murphy
- Department of Pharmacology, Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stevens A, White A. ACTH: cellular peptide hormone synthesis and secretory pathways. Results Probl Cell Differ 2009; 50:63-84. [PMID: 19888563 DOI: 10.1007/400_2009_30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocorticotrophic hormone (ACTH) is derived from the prohormone, pro-opiomelanocortin (POMC). This precursor undergoes proteolytic cleavage to yield a number of different peptides which vary depending on the tissue. In the anterior pituitary, POMC is processed to ACTH by the prohormone convertase, PC1 and packaged in secretory granules ready for stimulated secretion. In response to stress, corticotrophin releasing hormone (CRH), stimulates release of ACTH from the pituitary cell which in turn causes release of glucocorticoids from the adrenal gland. In tissues, such as the hypothalamus and skin, ACTH is further processed intracellularly to alpha melanocyte stimulating hormone (alphaMSH) which has distinct roles in these tissues. The prohormone, POMC, is itself released from cells and found in the human circulation at concentrations greater than ACTH. While much is known about the tightly regulated synthesis of POMC, there is still a lot to learn about the mechanisms for differentiating secretion of POMC, and the POMC-derived peptides. Understanding what happens to the POMC released from cells will provide new insights into its function.
Collapse
Affiliation(s)
- Adam Stevens
- Endocrine Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9PT, UK.
| | | |
Collapse
|
39
|
Baltatzi M, Hatzitolios A, Tziomalos K, Iliadis F, Zamboulis C. Neuropeptide Y and alpha-melanocyte-stimulating hormone: interaction in obesity and possible role in the development of hypertension. Int J Clin Pract 2008; 62:1432-1440. [PMID: 18793378 DOI: 10.1111/j.1742-1241.2008.01823.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM Obesity and hypertension frequently coexist and both represent important risk factors for cardiovascular disease. The mechanisms implicated in the regulation of food intake have not been completely elucidated. Recent data suggests that peripheral and central neuropeptides play an important role in the maintenance of energy balance. More specifically, leptin, neuropeptide Y (NPY) and alpha-melanocyte-stimulating hormone (a-MSH) appear to be implicated in the pathogenesis of obesity and also contribute to the development of hypertension in obesity. METHODS Analysis of the pertinent bibliography published in PubMed database. RESULTS Leptin is produced in the adipose tissue directly correlated with fat tissue mass. Leptin acts on two distinct neural populations in the hypothalamus: the first expresses the orexigenic peptides NPY and agouti-related protein (AgRP), the second pro-opiomelanocortin (POMC). The activation of POMC neurons increases the production of the anorexigenic hormone a-MSH and inhibits the release of NPY and AgRP. In addition, the hypothalamus integrates the neuroendocrine systems with the autonomic nervous system and controls the activity of the latter. Stimulation of hypothalamic nuclei elicits sympathetic responses including blood pressure elevation. Both NPY and a-MSH appears to be implicated in the hypothalamic regulation of sympathetic nervous system (SNS) activity. CONCLUSION Alterations in leptin, NPY and a-MSH are frequently observed in obesity and might stimulate SNS activity, contributing to the development of hypertension in obese patients. These neuropeptides might provide a pathophysiologic link between excess weight and hypertension. However, more research is needed before the pharmacologic manipulation of these complex neuroendocrine systems can be applied in the treatment of obesity and hypertension.
Collapse
Affiliation(s)
- M Baltatzi
- 1st Propedeutic Medical Department, AXEPA Hospital, Aristotles University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
40
|
Abstract
It is just over 30 years since the definitive identification of the adrenocorticotrophin (ACTH) precursor, pro-opiomelanocotin (POMC). Although first characterised in the anterior and intermediate lobes of the pituitary, POMC is also expressed in a number of both central and peripheral tissues including the skin, central nervous tissue and placenta. Following synthesis, POMC undergoes extensive post-translational processing producing not only ACTH, but also a number of other biologically active peptides. The extent and pattern of this processing is tissue-specific, the end result being the tissue dependent production of different combinations of peptides from the same precursor. These peptides have a diverse range of biological roles ranging from pigmentation to adrenal function to the regulation of feeding. This level of complexity has resulted in POMC becoming the archetypal model for prohormone processing, illustrating how a single protein combined with post-translational modification can have a diverse number of roles.
Collapse
Affiliation(s)
- A B Bicknell
- School of Biological Sciences, The University of Reading, Reading, Berkshire, UK.
| |
Collapse
|
41
|
Gyte A, Pritchard LE, Jones HB, Brennand JC, White A. Reduced expression of the KATP channel subunit, Kir6.2, is associated with decreased expression of neuropeptide Y and agouti-related protein in the hypothalami of Zucker diabetic fatty rats. J Neuroendocrinol 2007; 19:941-51. [PMID: 18001323 DOI: 10.1111/j.1365-2826.2007.01607.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The link between obesity and diabetes is not fully understood but there is evidence to suggest that hypothalamic signalling pathways may be involved. The hypothalamic neuropeptides, pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and agouti-related protein (AGRP) are central to the regulation of food intake and have been implicated in glucose homeostasis. Therefore, the expression of these genes was quantified in hypothalami from diabetic Zucker fatty (ZDF) rats and nondiabetic Zucker fatty (ZF) rats at 6, 8, 10 and 14 weeks of age. Although both strains are obese, only ZDF rats develop pancreatic degeneration and diabetes over this time period. In both ZF and ZDF rats, POMC gene expression was decreased in obese versus lean rats at all ages. By contrast, although there was the expected increase in both NPY and AGRP expression in obese 14-week-old ZF rats, the expression of NPY and AGRP was decreased in 6-week-old obese ZDF rats with hyperinsulinaemia and in 14-week-old rats with the additional hyperglycaemia. Therefore, candidate genes involved in glucose, and insulin signalling pathways were examined in obese ZDF rats over this age range. We found that expression of the ATP-sensitive potassium (K(ATP)) channel component, Kir6.2, was decreased in obese ZDF rats and was lower compared to ZF rats in each age group tested. Furthermore, immunofluorescence analysis showed that Kir6.2 protein expression was reduced in the dorsomedial and ventromedial hypothalamic nuclei of 6-week-old prediabetic ZDF rats compared to ZF rats. The Kir6.2 immunofluorescence colocalised with NPY throughout the hypothalamus. The differences in Kir6.2 expression in ZF and ZDF rats mimic those of NPY and AGRP, which could infer that the changes occur in the same neurones. Overall, these data suggest that chronic changes in hypothalamic Kir6.2 expression may be associated with the development of hyperinsulinaemia and hyperglycaemia in ZDF rats.
Collapse
Affiliation(s)
- A Gyte
- Faculties of Life Sciences and Medical and Human Sciences, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
42
|
Millington GW. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metab (Lond) 2007; 4:18. [PMID: 17764572 PMCID: PMC2018708 DOI: 10.1186/1743-7075-4-18] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 09/01/2007] [Indexed: 12/15/2022] Open
Abstract
The precursor protein, proopiomelanocortin (POMC), produces many biologically active peptides via a series of enzymatic steps in a tissue-specific manner, yielding the melanocyte-stimulating hormones (MSHs), corticotrophin (ACTH) and β-endorphin. The MSHs and ACTH bind to the extracellular G-protein coupled melanocortin receptors (MCRs) of which there are five subtypes. The MC3R and MC4R show widespread expression in the central nervous system (CNS), whilst there is low level expression of MC1R and MC5R. In the CNS, cell bodies for POMC are mainly located in the arcuate nucleus of the hypothalamus and the nucleus tractus solitarius of the brainstem. Both of these areas have well defined functions relating to appetite and food intake. Mouse knockouts (ko) for pomc, mc4r and mc3r all show an obese phenotype, as do humans expressing mutations of POMC and MC4R. Recently, human subjects with specific mutations in β-MSH have been found to be obese too, as have mice with engineered β-endorphin deficiency. The CNS POMC system has other functions, including regulation of sexual behaviour, lactation, the reproductive cycle and possibly central cardiovascular control. However, this review will focus on feeding behaviour and link it in with the neuroanatomy of the POMC neurones in the hypothalamus and brainstem.
Collapse
Affiliation(s)
- George Wm Millington
- Division of Medicine, Norfolk and Norwich University Hospital, Colney Lane, Norwich, NR4 7UZ, UK.
| |
Collapse
|
43
|
Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 2007; 5:181-94. [PMID: 17339026 DOI: 10.1016/j.cmet.2007.02.004] [Citation(s) in RCA: 417] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 02/01/2007] [Accepted: 02/13/2007] [Indexed: 11/21/2022]
Abstract
Despite high leptin levels, most obese humans and rodents lack responsiveness to its appetite-suppressing effects. We demonstrate that leptin modulates NPY/AgRP and alpha-MSH secretion from the ARH of lean mice. High-fat diet-induced obese (DIO) mice have normal ObRb levels and increased SOCS-3 levels, but leptin fails to modulate peptide secretion and any element of the leptin signaling cascade. Despite this leptin resistance, the melanocortin system downstream of the ARH in DIO mice is over-responsive to melanocortin agonists, probably due to upregulation of MC4R. Lastly, we show that by decreasing the fat content of the mouse's diet, leptin responsiveness of NPY/AgRP and POMC neurons recovered simultaneously, with mice regaining normal leptin sensitivity and glycemic control. These results highlight the physiological importance of leptin sensing in the melanocortin circuits and show that their loss of leptin sensing likely contributes to the pathology of leptin resistance.
Collapse
Affiliation(s)
- Pablo J Enriori
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rousseau K, Kauser S, Pritchard LE, Warhurst A, Oliver RL, Slominski A, Wei ET, Thody AJ, Tobin DJ, White A. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J 2007; 21:1844-56. [PMID: 17317724 PMCID: PMC2253185 DOI: 10.1096/fj.06-7398com] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proopiomelanocortin (POMC) can be processed to ACTH and melanocortin peptides. However, processing is incomplete in some tissues, leading to POMC precursor release from cells. This study examined POMC processing in human skin and the effect of POMC on the melanocortin-1 receptor (MC-1R) and melanocyte regulation. POMC was secreted by both human epidermal keratinocytes (from 5 healthy donors) and matched epidermal melanocytes in culture. Much lower levels of alpha-MSH were secreted and only by the keratinocytes. Neither cell type released ACTH. Cell extracts contained significantly more ACTH than POMC, and alpha-MSH was detected only in keratinocytes. Nevertheless, the POMC processing components, prohormone convertases 1, 2 and regulatory protein 7B2, were detected in melanocytes and keratinocytes. In contrast, hair follicle melanocytes secreted both POMC and alpha-MSH, and this was enhanced in response to corticotrophin-releasing hormone (CRH) acting primarily through the CRH receptor 1. In cells stably transfected with the MC-1R, POMC stimulated cAMP, albeit with a lower potency than ACTH, alpha-MSH, and beta-MSH. POMC also increased melanogenesis and dendricity in human pigment cells. This release of POMC from skin cells and its functional activity at the MC-1R highlight the importance of POMC processing as a key regulatory event in the skin.
Collapse
Affiliation(s)
- Karine Rousseau
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Sobia Kauser
- Medical Biosciences Research, University of Bradford, West Yorkshire, UK
| | - Lynn E. Pritchard
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Anne Warhurst
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Robert L. Oliver
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
| | - Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Edward T. Wei
- School of Public Health, University of California, Berkeley, California, USA
| | | | - Desmond J. Tobin
- Medical Biosciences Research, University of Bradford, West Yorkshire, UK
| | - Anne White
- Faculties of Life Sciences and Medical and Human Sciences, Stopford Building, University of Manchester, Manchester, UK
- Correspondence: Endocrine Sciences, Faculties of Life Sciences and Medicine and Human Sciences, Stopford Bldg., University of Manchester, Manchester M13 9PT, UK. E-mail:
| |
Collapse
|
45
|
Abstract
alpha-Melanocyte-stimulating hormone (alpha-MSH) and oxytocin share remarkable similarities of effects on behaviour in rats; in particular, they both inhibit feeding behaviour and stimulate sexual behaviour. Recently, we showed that alpha-MSH interacts with the magnocellular oxytocin system in the supraoptic nucleus; alpha-MSH induces the release of oxytocin from the dendrites of magnocellular neurones but it inhibits the secretion of oxytocin from their nerve terminals in the posterior pituitary. This effect of alpha-MSH on supraoptic nucleus oxytocin neurones is remarkable for two reasons. First, it illustrates the capacity of magnocellular neurones to differentially regulate peptide release from dendrites and axons and, second, it emphasises the putative role of magnocellular neurones as a major source of central oxytocin release, and as a likely substrate of some oxytocin-mediated behaviours. The ability of peptides to differentially control secretion from different compartments of their targets indicates one way by which peptide signals might have a particularly significant effect on neuronal circuitry. This suggests a possible explanation for the striking way in which some peptides can influence specific, complex behaviours.
Collapse
Affiliation(s)
- N Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
46
|
Kim JG, Nam-Goong IS, Yun CH, Jeong JK, Kim ES, Park JJ, Lee YC, Kim YI, Lee BJ. TTF-1, a homeodomain-containing transcription factor, regulates feeding behavior in the rat hypothalamus. Biochem Biophys Res Commun 2006; 349:969-75. [PMID: 16970909 DOI: 10.1016/j.bbrc.2006.08.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 08/21/2006] [Indexed: 11/21/2022]
Abstract
TTF-1 is a member of the NKx family of homeodomain genes, and is required for morphogenesis and fetal diencephalon development. Our previous studies have shown that TTF-1 expression is maintained in some regions of the postnatal rat brain and transactivates the gene expression of several neuropeptides. In this study, a potential role for TTF-1 in the regulation of feeding behavior was identified. Immunohistochemical analysis showed that TTF-1 is present in several hypothalamic nuclei of the adult rat brain involved in the control of feeding behavior. Food deprivation for two days markedly increased the hypothalamic levels of TTF-1 mRNA and protein. Intracerebroventricular administration of an antisense TTF-1 oligodeoxynucleotide significantly decreased TTF-1 protein abundance in the hypothalamus. This TTF-1 decrease was followed by a significant decrease in neuropeptide Y mRNA content and an increase in proopiomelanocortin mRNA content, and in turn resulted in a decrease of the animal's food intake and body weight. These results suggest a novel role for TTF-1 in the regulation of feeding behavior in the rat hypothalamus.
Collapse
Affiliation(s)
- Jae Geun Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Creemers JWM, Pritchard LE, Gyte A, Le Rouzic P, Meulemans S, Wardlaw SL, Zhu X, Steiner DF, Davies N, Armstrong D, Lawrence CB, Luckman SM, Schmitz CA, Davies RA, Brennand JC, White A. Agouti-related protein is posttranslationally cleaved by proprotein convertase 1 to generate agouti-related protein (AGRP)83-132: interaction between AGRP83-132 and melanocortin receptors cannot be influenced by syndecan-3. Endocrinology 2006; 147:1621-31. [PMID: 16384863 DOI: 10.1210/en.2005-1373] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agouti-related protein (AGRP) plays a key role in energy homeostasis. The carboxyl-terminal domain of AGRP acts as an endogenous antagonist of the melanocortin-4 receptor (MC4-R). It has been suggested that the amino-terminal domain of AGRP binds to syndecan-3, thereby modulating the effects of carboxyl-terminal AGRP at the MC4-R. This model assumes that AGRP is secreted as a full-length peptide. In this study we found that AGRP is processed intracellularly after Arg(79)-Glu(80)-Pro(81)-Arg(82). The processing site suggests cleavage by proprotein convertases (PCs). RNA interference and overexpression experiments showed that PC1/3 is primarily responsible for cleavage in vitro, although both PC2 and PC5/6A can also process AGRP. Dual in situ hybridization demonstrated that PC1/3 is expressed in AGRP neurons in the rat hypothalamus. Moreover, hypothalamic extracts from PC1-null mice contained 3.3-fold more unprocessed full-length AGRP, compared with wild-type mice, based on combined HPLC and RIA analysis, demonstrating that PC1/3 plays a role in AGRP cleavage in vivo. We also found that AGRP(83-132) is more potent an antagonist than full-length AGRP, based on cAMP reporter assays, suggesting that posttranslational cleavage is required to potentiate the effect of AGRP at the MC4-R. Because AGRP is cleaved into distinct amino-terminal and carboxyl-terminal peptides, we tested whether amino-terminal peptides modulate food intake. However, intracerebroventricular injection of rat AGRP(25-47) and AGRP(50-80) had no effect on body weight, food intake, or core body temperature. Because AGRP is cleaved before secretion, syndecan-3 must influence food intake independently of the MC4-R.
Collapse
Affiliation(s)
- John W M Creemers
- Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wilkinson CW. Roles of acetylation and other post-translational modifications in melanocortin function and interactions with endorphins. Peptides 2006; 27:453-71. [PMID: 16280185 DOI: 10.1016/j.peptides.2005.05.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Phylogenetic, developmental, anatomic, and stimulus-specific variations in post-translational processing of POMC are well established. For melanocortins, the role of alpha-N-acetylation and the selective activities of alpha, beta, and gamma forms are of special interest. Acetylation may shift the predominant activity of POMC products between endorphinergic and melanocortinergic actions-which are often in opposition. This review addresses: (1) variations in POMC processing; (2) the influence of acetylation on the functional activity of alpha-MSH; (3) state- and stimulus-dependent effects on the proportional distribution of forms of melanocortins and endorphins; (4) divergent effects of alpha-MSH and beta-endorphin administration; (5) potential roles of beta- and gamma-MSH.
Collapse
Affiliation(s)
- Charles W Wilkinson
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
49
|
Abstract
This paper sets out to review the implication of the melanocortin system in regulating feeding behavior and energy balance during short- and long-term food deprivation. It is discussed in relation to: (1) body fat exhaustion and the known enhanced drive for refeeding in late fasting and (2) peripheral hormonal status with emphasis on the effect of leptin administration on melanocortin gene expression according to fat store mobilization.
Collapse
Affiliation(s)
- Fabrice Bertile
- Centre d'Ecologie et Physiologie Energétiques, UPR 9010 CNRS, Associé à l'Université Louis Pasteur, 23 Rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | | |
Collapse
|
50
|
Hsiung HM, Smiley DL, Zhang XY, Zhang L, Yan LZ, Craft L, Heiman ML, Smith DP. Potent peptide agonists for human melanocortin 3 and 4 receptors derived from enzymatic cleavages of human beta-MSH(5-22) by dipeptidyl peptidase I and dipeptidyl peptidase IV. Peptides 2005; 26:1988-96. [PMID: 15985311 DOI: 10.1016/j.peptides.2004.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
Human beta-MSH(1-22) was first isolated from human pituitary as a 22-amino acid (aa) peptide derived from a precursor protein, pro-opiomelanocortin (POMC). However, Bertagna et al. demonstrated that a shorter human beta-MSH(5-22), (DEGPYRMEHFRWGSPPKD), is a true endogenous peptide produced in human hypothalamus. In this report, we demonstrated that in vitro enzymatic cleavage of native human beta-MSH(5-22) with two ubiquitous dipeptidyl peptidases (DPP), DPP-I and DPP-IV, generated two potent MC3/4R peptide analogues, beta-MSH(7-22) (GPYRMEHFRWGSPPKD) and beta-MSH(9-22) (YRMEHFRWGSPPKD). In fact, the MC4R binding affinity and functional potency of beta-MSH(7-22) (Ki=4.6 nM, EC50=0.6 nM) and beta-MSH(9-22) (Ki=5.7 nM, EC50=0.6 nM) are almost an order of magnitude greater than those of their parent peptide, beta-MSH(5-22) (MC4R, Ki=23 nM, EC50= 3nM). Furthermore, the DPP-I/DPP-IV cleaved peptide, beta-MSH(9-22), when administered intracerebroventricularly (ICV) at a dose of 3 nmol/rat, potently induced an acute negative energy balance in a diet-induced obese rat model, while its parent molecule, beta-MSH(5-22), administered at the same dose did not have any effect. These data suggest that DPP-I and DPP-IV may play a role in converting the endogenous beta-MSH(5-22) to more potent peptides that regulate energy homeostasis in the hypothalamus.
Collapse
MESH Headings
- Animals
- Cathepsin C/chemistry
- Cathepsin C/physiology
- Cell Line
- Dipeptidyl Peptidase 4/chemistry
- Dipeptidyl Peptidase 4/physiology
- Energy Metabolism/physiology
- Homeostasis/physiology
- Humans
- Hypothalamus/metabolism
- Hypothalamus/physiology
- Male
- Peptides/agonists
- Peptides/metabolism
- Rats
- Rats, Long-Evans
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/chemistry
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/metabolism
- beta-MSH/metabolism
Collapse
Affiliation(s)
- Hansen M Hsiung
- Division of Endocrine Research, DC0424 Lilly Corporate Center, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | |
Collapse
|