1
|
Daryadel A, Küng CJ, Haykir B, Sabrautzki S, de Angelis MH, Hernando N, Rubio-Aliaga I, Wagner CA. The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake. Am J Physiol Renal Physiol 2024; 326:F792-F801. [PMID: 38545651 DOI: 10.1152/ajprenal.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Catharina J Küng
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Betül Haykir
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Sibylle Sabrautzki
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising, Germany
- Member of German Center for Diabetes Research, Neuherberg, Germany
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Hamid AK, Pastor Arroyo EM, Calvet C, Hewitson TD, Muscalu ML, Schnitzbauer U, Smith ER, Wagner CA, Egli-Spichtig D. Phosphate Restriction Prevents Metabolic Acidosis and Curbs Rise in FGF23 and Mortality in Murine Folic Acid-Induced AKI. J Am Soc Nephrol 2024; 35:261-280. [PMID: 38189228 PMCID: PMC10914210 DOI: 10.1681/asn.0000000000000291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
SIGNIFICANCE STATEMENT Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.
Collapse
Affiliation(s)
- Ahmad Kamal Hamid
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Charlotte Calvet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Timothy D. Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Maria Lavinia Muscalu
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Edward R. Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne Australia
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
3
|
Peña KA, Savransky S, Lewis B. Endosomal signaling via cAMP in parathyroid hormone (PTH) type 1 receptor biology. Mol Cell Endocrinol 2024; 581:112107. [PMID: 37981188 DOI: 10.1016/j.mce.2023.112107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Compartmentalization of GPCR signaling is an emerging topic that highlights the physiological relevance of spatial bias in signaling. The parathyroid hormone (PTH) type 1 receptor (PTH1R) was the first GPCR described to signal via heterotrimeric G-protein and cAMP from endosomes after β-arrestin mediated internalization, challenging the canonical GPCR signaling model which established that signaling is terminated by receptor internalization. More than a decade later, many other GPCRs have been shown to signal from endosomes via cAMP, and recent studies have proposed that location of cAMP generation impacts physiological outcomes of GPCR signaling. Here, we review the extensive literature regarding PTH1R endosomal signaling via cAMP, the mechanisms that regulate endosomal generation of cAMP, and the implications of spatial bias in PTH1R physiological functions.
Collapse
Affiliation(s)
- Karina A Peña
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Sofya Savransky
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Breanna Lewis
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Vilardaga JP, Clark LJ, White AD, Sutkeviciute I, Lee JY, Bahar I. Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocr Rev 2023; 44:474-491. [PMID: 36503956 PMCID: PMC10461325 DOI: 10.1210/endrev/bnac032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling. These include transient signaling at the plasma membrane and sustained signaling from internalized PTH1R within early endosomes mediated by PTH. Here we discuss recent structural, cell signaling, and in vivo studies that unveil potential pharmacological outputs of the spatial versus temporal dimension of PTH1R signaling via cAMP. Notably, the combination of molecular dynamics simulations and elastic network model-based methods revealed how precise modulation of PTH signaling responses is achieved through structure-encoded allosteric coupling within the receptor and between the peptide hormone binding site and the G protein coupling interface. The implications of recent findings are now being explored for addressing key questions on how location bias in receptor signaling contributes to pharmacological functions, and how to drug a difficult target such as the PTH1R toward discovering nonpeptidic small molecule candidates for the treatment of metabolic bone and mineral diseases.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lisa J Clark
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alex D White
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Butylina M, Föger-Samwald U, Gelles K, Pietschmann P, Sipos W. Challenges in establishing animal models for studying osteoimmunology of hypoparathyroidism. Front Vet Sci 2023; 10:1163903. [PMID: 37180074 PMCID: PMC10169642 DOI: 10.3389/fvets.2023.1163903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023] Open
Abstract
Hypoparathyroidism is a relatively rare human and veterinary disease characterized by deficient or absent production of parathyroid hormone (PTH). PTH is known as a classical regulator of calcium and phosphorus homeostasis. Nevertheless, the hormone also appears to modulate immune functions. For example, increased CD4:CD8 T-cell ratios and elevated interleukin (IL)-6 and IL-17A levels were observed in patients with hyperparathyroidism, whereas gene expression of tumor necrosis factor-α (TNF-α) and granulocyte macrophage-colony stimulating factor (GM-CSF) was decreased in patients with chronic postsurgical hypoparathyroidism. Various immune cell populations are affected differently. So, there is a need for validated animal models for the further characterization of this disease for identifying targeted immune-modulatory therapies. In addition to genetically modified mouse models of hypoparathyroidism, there are surgical rodent models. Parathyroidectomy (PTX) can be well performed in rats-for pharmacological and associated osteoimmunological research and bone mechanical studies, a large animal model could be preferable, however. A major drawback for successfully performing total PTX in large animal species (pigs and sheep) is the presence of accessory glands, thus demanding to develop new approaches for real-time detection of all parathyroid tissues.
Collapse
Affiliation(s)
- Maria Butylina
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Föger-Samwald
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
6
|
Daryadel A, Haykir B, Küng CJ, Bugarski M, Bettoni C, Schnitzbauer U, Hernando N, Hall AM, Wagner CA. Acute adaptation of renal phosphate transporters in the murine kidney to oral phosphate intake requires multiple signals. Acta Physiol (Oxf) 2022; 235:e13815. [PMID: 35334154 DOI: 10.1111/apha.13815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
AIMS Dietary inorganic phosphate (Pi) modulates renal Pi reabsorption by regulating the expression of the NaPi-IIa and NaPi-IIc Pi transporters. Here, we aimed to clarify the role of several Pi-regulatory mechanisms including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) and inositol hexakisphosphate kinases (IP6-kinases) in the acute regulation of NaPi-IIa and NaPi-IIc. METHODS Wildtype (WT) and PTH-deficient mice (PTH-KO) with/without inhibition of FGF23 signalling were gavaged with Pi/saline and examined at 1, 4 and 12 h. RESULTS Pi-gavage elevated plasma Pi and decreased plasma Ca2+ in both genotypes after 1 h Within 1 h, Pi-gavage decreased NaPi-IIa abundance in WT and PTH-KO mice. NaPi-IIc was downregulated 1 h post-administration in WT and after 4 h in PTH-KO. PTH increased after 1 h in WT animals. After 4 h Pi-gavage, FGF23 increased in both genotypes being higher in the KO group. PTHrp and dopamine were not altered by Pi-gavage. Blocking FGF23 signalling blunted PTH upregulation in WT mice and reduced NaPi-IIa downregulation in PTH-KO mice 4 h after Pi-gavage. Inhibition of IP6-kinases had no effect. CONCLUSIONS (1) Acute downregulation of renal Pi transporters in response to Pi intake occurs also in the absence of PTH and FGF23 signalling, (2) when FGF23 signalling is blocked, a partial contribution of PTH is revealed, (3) IP6 kinases, intracellular Pi-sensors in yeast and bacteria, are not involved, and (4) Acute Pi does not alter PTHrp and dopamine. Thus, signals other than PTH, PTHrp, FGF23 and dopamine contribute to renal adaption.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology University of Zürich Zürich Switzerland
- National Center of Competence in Research Kidney.CH Zürich Switzerland
| | - Betül Haykir
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | - Milica Bugarski
- National Center of Competence in Research Kidney.CH Zürich Switzerland
- Institute of Anatomy University of Zürich Zürich Switzerland
| | - Carla Bettoni
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | - Nati Hernando
- Institute of Physiology University of Zürich Zürich Switzerland
| | - Andrew M. Hall
- National Center of Competence in Research Kidney.CH Zürich Switzerland
- Institute of Anatomy University of Zürich Zürich Switzerland
| | - Carsten A. Wagner
- Institute of Physiology University of Zürich Zürich Switzerland
- National Center of Competence in Research Kidney.CH Zürich Switzerland
| |
Collapse
|
7
|
Fiani B, Newhouse A, Sarhadi KJ, Arshad M, Soula M, Cathel A. Special Considerations to Improve Clinical Outcomes in Patients with Osteoporosis Undergoing Spine Surgery. Int J Spine Surg 2021; 15:386-401. [PMID: 33900998 PMCID: PMC8059385 DOI: 10.14444/8050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Osteoporosis is a condition that is commonly encountered, with increasing diagnosis by the medical community with the aging population. Osteoporosis leaves patients susceptible to fragility fractures in the vertebrae and is also associated with degenerative changes, both of which may require intervention from a spine surgeon. The goal of this review is to concisely outline special nonoperative adjuncts, as well as preoperative, intraoperative, and postoperative considerations of osteoporotic patients undergoing spine intervention. METHODS A literature analysis was completed for this narrative review. A database search of PubMed and Google Scholar was conducted using "osteoporosis" combined with "spine," "spine surgery," and "spinal fusion" without exclusion based on publication date. Articles were screened to exclude duplicate articles and screened for their full text and English language availability. RESULTS The database search yielded recent publications from which the narrative review was completed. CONCLUSIONS Preoperatively, screening is traditionally completed with dual-energy x-ray absorptiometry (DEXA). Pharmacological therapy modalities currently include teriparatide, raloxifene, denosumab, bisphosphonates, and calcitonin. In order to prevent operative complications associated with osteoporosis, surgeons have found success in increasing the diameter and the length of pedicle screws, limiting pedicle tapping, achieving bicortical or even tricortical purchase, augmenting with polymethyl methacrylate, using iliosacral stabilization, preventing positive sagittal balance, and using adequate fusion products when necessary. Postoperatively, it is important to implant a care plan that includes adequate pain control and necessary care, and to understand risks associated with falls may increase risk of postoperative fragility fractures as well as instrumentation displacement. At this time there are no recommendations in regard to bracing in the postoperative setting. CLINICAL RELEVANCE This review article outlines the most current evidence-based medicine with regard to considerations in spine surgery of the osteoporotic patient, and aims to bring about new questions to be investigated in that paradigm.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California
| | - Alexander Newhouse
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | | | - Mohammad Arshad
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California
| | - Marisol Soula
- New York University School of Medicine, New York University, New York, New York
| | - Alessandra Cathel
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California
| |
Collapse
|
8
|
Okumura K, Saito M, Wakabayashi Y. A wild-derived inbred mouse strain, MSM/Ms, provides insights into novel skin tumor susceptibility genes. Exp Anim 2021; 70:272-283. [PMID: 33776021 PMCID: PMC8390311 DOI: 10.1538/expanim.21-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex
interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genetic basis
of cancer susceptibility. They have led to the identification of multiple loci that confer, either alone or in specific combinations, an increased
susceptibility to cancer, some of which have direct translatability to human cancer. Additionally, wild-derived inbred mouse strains are an advantageous
reservoir of novel genetic polymorphisms of cancer susceptibility genes, because of the evolutionary divergence between wild and classical inbred strains. Here,
we review mapped Stmm (skintumor modifier of MSM) loci using a Japanese wild-derived inbred mouse strain, MSM/Ms, and describe recent advances
in our knowledge of the genes responsible for Stmm loci in the 7,12-dimethylbenz(a)anthracene
(DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) two-stage skin carcinogenesis model.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Megumi Saito
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| | - Yuichi Wakabayashi
- Department of Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba 260-8717, Japan
| |
Collapse
|
9
|
Huang C, Wang Q, Zhang Q, Zhou B, Lin J, Meng H. Effects of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy on Bone Mineral Density in Zucker Diabetic Fatty Rats: A Short-Term Comparative Study. Obes Facts 2021; 14:178-189. [PMID: 33662956 PMCID: PMC8138275 DOI: 10.1159/000514426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND While bariatric surgery could result in weight loss as well as glycaemia improvement, the short-term impact on bone health in a high glycemic environment following Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) remains intriguing. OBJECTIVE The aim of this study was to compare the short-term effects of RYGB and SG procedures on bone health in Zucker diabetic fatty (ZDFfa/fa) rats. METHODS Thirty age-matched male ZDFfa/fa rats were randomized into RYGB, SG, and sham groups after establishment of the diabetic model. Body weight, blood glucose, bone mineral density (BMD), the level of bone turnover markers (BTM), vitamin D, and serum calcium and phosphorus were measured 4 weeks after the operation. RESULTS The RYGB procedure brought about lower blood glucose, BMD, serum calcium and phosphorus levels, as well as a relatively higher bone turnover rate and 1,25(OH)2VD level, compared to the SG and sham groups, while the influences of the SG procedure were not significant. 25(OH)VD demonstrated no significant difference among the 3 groups. CONCLUSIONS Despite its excellent ability to provide short-term glycemic control, the RYGB procedure could led to more severe impairment of bone health compared to the SG procedure. Bone health should be procured after bariatric surgery, especially with the RYGB procedure. Early detection of BMD and BTM may help to avoid deterioration of bone.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Department of Nephrology, Beijing Hospital, Beijing, China
| | - Qin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Biao Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jun Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Meng
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Mori T, Horibe K, Koide M, Uehara S, Yamamoto Y, Kato S, Yasuda H, Takahashi N, Udagawa N, Nakamichi Y. The Vitamin D Receptor in Osteoblast-Lineage Cells Is Essential for the Proresorptive Activity of 1α,25(OH)2D3 In Vivo. Endocrinology 2020; 161:5912607. [PMID: 32987399 PMCID: PMC7575053 DOI: 10.1210/endocr/bqaa178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
We previously reported that daily administration of a pharmacological dose of eldecalcitol, an analog of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], increased bone mass by suppressing bone resorption. These antiresorptive effects were found to be mediated by the vitamin D receptor (VDR) in osteoblast-lineage cells. Using osteoblast-lineage-specific VDR conditional knockout (Ob-VDR-cKO) mice, we examined whether proresorptive activity induced by the high-dose 1α,25(OH)2D3 was also mediated by VDR in osteoblast-lineage cells. Administration of 1α,25(OH)2D3 (5 μg/kg body weight/day) to wild-type mice for 4 days increased the number of osteoclasts in bone and serum concentrations of C-terminal crosslinked telopeptide of type I collagen (CTX-I, a bone resorption marker). The stimulation of bone resorption was concomitant with the increase in serum calcium (Ca) and fibroblast growth factor 23 (FGF23) levels, and decrease in body weight. This suggests that a toxic dose of 1α,25(OH)2D3 can induce bone resorption and hypercalcemia. In contrast, pretreatment of wild-type mice with neutralizing anti-receptor activator of NF-κB ligand (RANKL) antibody inhibited the 1α,25(OH)2D3-induced increase of osteoclast numbers in bone, and increase of CTX-I, Ca, and FGF23 levels in serum. The pretreatment with anti-RANKL antibody also inhibited the 1α,25(OH)2D3-induced decrease in body weight. Consistent with observations in mice conditioned with anti-RANKL antibody, the high-dose administration of 1α,25(OH)2D3 to Ob-VDR-cKO mice failed to significantly increase bone osteoclast numbers, serum CTX-I, Ca, or FGF23 levels, and failed to reduce the body weight. Taken together, this study demonstrated that the proresorptive, hypercalcemic, and toxic actions of high-dose 1α,25(OH)2D3 are mediated by VDR in osteoblast-lineage cells.
Collapse
Affiliation(s)
- Tomoki Mori
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kanji Horibe
- Department of Oral Histology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Shiga, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Correspondence: Yuko Nakamichi, PhD, Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399–0781, Japan. E-mail:
| |
Collapse
|
11
|
Arlt H, Mullarkey T, Hu D, Baron R, Ominsky MS, Mitlak B, Lanske B, Besschetnova T. Effects of abaloparatide and teriparatide on bone resorption and bone formation in female mice. Bone Rep 2020; 13:100291. [PMID: 32637467 PMCID: PMC7330158 DOI: 10.1016/j.bonr.2020.100291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Intermittent administration of PTH type 1 receptor (PTH1R) agonists increases bone remodeling, with greater stimulation of bone formation relative to bone resorption causing net gains in bone mass. This pharmacodynamic feature underlies the bone-building effects of teriparatide and abaloparatide, the only PTH1R agonists approved to reduce osteoporotic fracture risk in postmenopausal women. This study in 8-week-old female mice compared bone resorption and formation responses to these agents delivered at the same 10 μg/kg dose, and a 40 μg/kg abaloparatide dose was also included to reflect its 4-fold higher approved clinical dose. Peptides or vehicle were administered by daily supra-calvarial subcutaneous injection for 12 days, and local (calvarial) and systemic (L5 vertebral and tibial) responses were evaluated by histomorphometry. Terminal bone histomorphometry data indicated that calvarial resorption cavities were similar in both abaloparatide groups versus vehicle controls, whereas the teriparatide group had more calvarial resorption cavities compared with the vehicle or abaloparatide 40 μg/kg groups. The bone resorption marker serum CTX was significantly lower in the abaloparatide 40 μg/kg group and similar in the other two active treatment groups compared with vehicle controls. Both peptides increased trabecular bone formation rate (BFR) in L5 and proximal tibia versus vehicle, and L5 BFR was higher with abaloparatide 40 μg/kg versus teriparatide. At the tibial diaphysis, periosteal BFR was higher with abaloparatide 40 μg/kg versus vehicle or teriparatide, and endocortical BFR was higher with teriparatide but not with abaloparatide 10 or 40 μg/kg versus vehicle. Few differences in structural or microarchitectural bone parameters were observed with this brief duration of treatment. In summary, calvarial bone resorption cavity counts were higher in the teriparatide group versus the vehicle and abaloparatide 40 μg/kg groups, and the abaloparatide 40 μg/kg group had lower serum CTX versus vehicle. L5 and tibial trabecular bone formation indices were higher in all three active treatment groups versus vehicle. The abaloparatide 40 μg/kg group had higher L5 trabecular BFR and tibial periosteal BFR versus teriparatide, whereas tibial endocortical BFR was higher with teriparatide but not abaloparatide. Together, these findings in female mice indicate that an improved balance of bone formation versus bone resorption is established shortly after initiating treatment with abaloparatide. PTH receptor (PTH-R) agonists increase bone density by stimulating bone formation. PTH-R agonists differ in their propensity to increase bone resorption. Female mice were treated for 12 d with PTH-R agonists abaloparatide or teriparatide. The systemic resorption marker serum CTX was lower with abaloparatide vs vehicle. Calvarial resorption cavities were higher with teriparatide but not abaloparatide.
Collapse
Affiliation(s)
| | | | - Dorothy Hu
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Harvard School of Dental Medicine, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | |
Collapse
|
12
|
Kikuyama T, Susa T, Tamamori-Adachi M, Iizuka M, Akimoto M, Okinaga H, Fujigaki Y, Uchida S, Shibata S, Okazaki T. 25(OH)D 3 stimulates the expression of vitamin D target genes in renal tubular cells when Cyp27b1 is abrogated. J Steroid Biochem Mol Biol 2020; 199:105593. [PMID: 31945466 DOI: 10.1016/j.jsbmb.2020.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Recently, it was reported that 25(OH)D3 (25D3) has physiological bioactivity in certain tissues derived from Cyp27b1 knockout mice. To investigate the function of 25D3 in the kidney as an informational crossroad of various calciotropic substances, we employed the CRISPR-Cas9 system to knock out Cyp27b1 in the mouse renal distal tubular mDCT cell line. Unlike the previously reported mice in which Cyp27b1 was targeted systemically, Cyp27b1 knockout mDCT cells did not produce any measurable 1α,25(OH)2D3 (1,25D3) after 25D3 administration. As was seen with treatment of Cyp27b1 knockout mDCT cells with ≥10-8 M of 1,25D3, the administration of 10-7 M of 25D3 translocated the vitamin D3 receptor (VDR) into the nucleus and promoted the expression of the representative 1,25D3-responsive gene Cyp24a1. The exhaustive target gene profiles of 25D3 were similar to those of 1,25D3. Subsequently, we confirmed that 25D3 induced the expression of the calcium reabsorption-related gene calbindin-D9K, in a way similar to 1,25D3. We also found that 1,25D3 and 25D3 induced the expression of the megalin gene. A chromatin immunoprecipitation assay identified two vitamin D response elements in the upstream region of the megalin gene that seemed to contribute to its expression. Together, we surmise that the ability of 25D3 to stimulate VDR target genes may provide a novel perspective for its role in certain tissues.
Collapse
Affiliation(s)
- Takahiro Kikuyama
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan.
| | | | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci U S A 2018; 115:E3759-E3768. [PMID: 29618611 DOI: 10.1073/pnas.1719089115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osteoporosis and sarcopenia are common comorbid diseases, yet their shared mechanisms are largely unknown. We found that genetic variation near FAM210A was associated, through large genome-wide association studies, with fracture, bone mineral density (BMD), and appendicular and whole body lean mass, in humans. In mice, Fam210a was expressed in muscle mitochondria and cytoplasm, as well as in heart and brain, but not in bone. Grip strength and limb lean mass were reduced in tamoxifen-inducible Fam210a homozygous global knockout mice (TFam210a-/- ), and in tamoxifen-inducible Fam210 skeletal muscle cell-specific knockout mice (TFam210aMus-/- ). Decreased BMD, bone biomechanical strength, and bone formation, and elevated osteoclast activity with microarchitectural deterioration of trabecular and cortical bones, were observed in TFam210a-/- mice. BMD of male TFam210aMus-/- mice was also reduced, and osteoclast numbers and surface in TFam210aMus-/- mice increased. Microarray analysis of muscle cells from TFam210aMus-/- mice identified candidate musculoskeletal modulators. FAM210A, a novel gene, therefore has a crucial role in regulating bone structure and function, and may impact osteoporosis through a biological pathway involving muscle as well as through other mechanisms.
Collapse
|
14
|
Ding Q, Sun P, Zhou H, Wan B, Yin J, Huang Y, Li Q, Yin G, Fan J. Lack of endogenous parathyroid hormone delays fracture healing by inhibiting vascular endothelial growth factor‑mediated angiogenesis. Int J Mol Med 2018; 42:171-181. [PMID: 29620150 PMCID: PMC5979887 DOI: 10.3892/ijmm.2018.3614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 12/19/2017] [Indexed: 11/28/2022] Open
Abstract
Intermittent low-dose injections of parathyroid hormone (PTH) have been reported to exert bone anabolic effects and to promote fracture healing. As an important proangiogenic cytokine, vascular endothelial growth factor (VEGF) is secreted by bone marrow mesenchymal stem cells (BMSCs) and osteoblasts, and serves a crucial regulatory role in the process of vascular development and regeneration. To investigate whether lack of endogenous PTH causes reduced angiogenic capacity and thereby delays the process of fracture healing by downregulating the VEGF signaling pathway, a PTH knockout (PTHKO) mouse fracture model was generated. Fracture healing was observed using X-ray and micro-computerized tomography. Bone anabolic and angiogenic markers were analyzed by immunohistochemistry and western blot analysis. The expression levels of VEGF and associated signaling pathways in murine BMSC-derived osteoblasts were measured by quantitative polymerase chain reaction and western blot analysis. The expression levels of protein kinase A (PKA), phosphorylated-serine/threonine protein kinase (pAKT), hypoxia-inducible factor-1α (HIF1α) and VEGF were significantly decreased in BMSC-derived osteoblasts from PTHKO mice. In addition, positive platelet endothelial cell adhesion molecule staining was reduced in PTHKO mice, as determined by immunohistochemistry. The expression levels of HIF1α, VEGF, runt-related transcription factor 2, osteocalcin and alkaline phosphatase were also decreased in PTHKO mice, and fracture healing was delayed. In conclusion, lack of endogenous PTH may reduce VEGF expression in BMSC-derived osteoblasts by downregulating the activity of the PKA/pAKT/HIF1α/VEGF pathway, thus affecting endochondral bone formation by causing a reduction in angiogenesis and osteogenesis, ultimately leading to delayed fracture healing.
Collapse
Affiliation(s)
- Qingfeng Ding
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Peng Sun
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hao Zhou
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bowen Wan
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Yin
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yao Huang
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qingqing Li
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin Fan
- Orthopaedic Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To conduct a thorough appraisal of recent and inventive advances in the field of bone tissue engineering using biomaterials, cell-based research, along with the incorporation of biomimetic properties using surface modification of scaffolds. RECENT FINDINGS This paper will provide an overview on different biomaterials and emerging techniques involved in the fabrication of scaffolds, brief description of signaling pathways involved in osteogenesis, and the effect of surface modification on the fate of progenitor cells. The current strategies used for regenerative medicine like cell therapy, gene transfer, and tissue engineering have opened numerous therapeutic avenues for the treatment of various disabling orthopedic disorders. Precise strategy utilized for the reconstruction, restoration, or repair of the bone-related tissues exploits cells, biomaterials, morphogenetic signals, and appropriate mechanical environment to provide the basic constituents required for creating new tissue. Combining all the above strategies in clinical trials would pave the way for successful "bench to bedside" transformation in bone healing.
Collapse
Affiliation(s)
- Sunita Nayak
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT, Vellore, TN, 632014, India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT, Vellore, TN, 632014, India.
| | - Dwaipayan Sen
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT, Vellore, TN, 632014, India.
| |
Collapse
|
16
|
Ansari N, Ho PW, Crimeen-Irwin B, Poulton IJ, Brunt AR, Forwood MR, Divieti Pajevic P, Gooi JH, Martin TJ, Sims NA. Autocrine and Paracrine Regulation of the Murine Skeleton by Osteocyte-Derived Parathyroid Hormone-Related Protein. J Bone Miner Res 2018; 33:137-153. [PMID: 28914969 DOI: 10.1002/jbmr.3291] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) and parathyroid hormone (PTH) have N-terminal domains that bind a common receptor, PTHR1. N-terminal PTH (teriparatide) and now a modified N-terminal PTHrP (abaloparatide) are US Food and Drug Administration (FDA)-approved therapies for osteoporosis. In physiology, PTHrP does not normally circulate at significant levels, but acts locally, and osteocytes, cells residing within the bone matrix, express both PTHrP and the PTHR1. Because PTHR1 in osteocytes is required for normal bone resorption, we determined how osteocyte-derived PTHrP influences the skeleton. We observed that adult mice with low PTHrP in osteocytes (targeted with the Dmp1(10kb)-Cre) have low trabecular bone volume and osteoblast numbers, but osteoclast numbers were unaffected. In addition, bone size was normal, but cortical bone strength was impaired. Osteocyte-derived PTHrP therefore stimulates bone formation and bone matrix strength, but is not required for normal osteoclastogenesis. PTHrP knockdown and overexpression studies in cultured osteocytes indicate that osteocyte-secreted PTHrP regulates their expression of genes involved in matrix mineralization. We determined that osteocytes secrete full-length PTHrP with no evidence for secretion of lower molecular weight forms containing the N-terminus. We conclude that osteocyte-derived full-length PTHrP acts through both PTHR1 receptor-mediated and receptor-independent actions in a paracrine/autocrine manner to stimulate bone formation and to modify adult cortical bone strength. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Niloufar Ansari
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Patricia Wm Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Athena R Brunt
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mark R Forwood
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Paola Divieti Pajevic
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Jonathan H Gooi
- The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
17
|
The parathyroid hormone regulates skin tumour susceptibility in mice. Sci Rep 2017; 7:11208. [PMID: 28894263 PMCID: PMC5593851 DOI: 10.1038/s41598-017-11561-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Using a forward genetics approach to map loci in a mouse skin cancer model, we previously identified a genetic locus, Skin tumour modifier of MSM 1 (Stmm1) on chromosome 7, conferring strong tumour resistance. Sub-congenic mapping localized Parathyroid hormone (Pth) in Stmm1b. Here, we report that serum intact-PTH (iPTH) and a genetic polymorphism in Pth are important for skin tumour resistance. We identified higher iPTH levels in sera from cancer-resistant MSM/Ms mice compared with susceptible FVB/NJ mice. Therefore, we performed skin carcinogenesis experiments with MSM-BAC transgenic mice (PthMSM-Tg) and Pth knockout heterozygous mice (Pth+/−). As a result, the higher amounts of iPTH in sera conferred stronger resistance to skin tumours. Furthermore, we found that the coding SNP (rs51104087, Val28Met) localizes in the mouse Pro-PTH encoding region, which is linked to processing efficacy and increased PTH secretion. Finally, we report that PTH increases intracellular calcium in keratinocytes and promotes their terminal differentiation. Taken together, our data suggest that Pth is one of the genes responsible for Stmm1, and serum iPTH could serve as a prevention marker of skin cancer and a target for new therapies.
Collapse
|
18
|
Bi R, Fan Y, Luo E, Yuan Q, Mannstadt M. Two Techniques to Create Hypoparathyroid Mice: Parathyroidectomy Using GFP Glands and Diphtheria-Toxin-Mediated Parathyroid Ablation. J Vis Exp 2017. [PMID: 28362393 PMCID: PMC5408591 DOI: 10.3791/55010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoparathyroidism (HP) is a disorder characterized by low levels of PTH which lead to hypocalcemia, hyperphosphatemia, and low bone turnover. The most common cause of the disease is accidental removal of the parathyroid glands during thyroid surgery. Novel therapies for HP are needed, but testing them requires reliable animal models of acquired HP. Here, we demonstrate the generation of two mouse models of acquired HP. In the GFP-PTX model, mice with green fluorescent protein (GFP) expressed specifically in the parathyroids (PTHcre-mTmG) were created by crossing PTHcre+ mice with Rosa-mTmGfl/fl mice. Green fluorescing parathyroid glands are easily identified under a fluorescence dissecting microscope and parathyroidectomy is performed in less than 20 min. After fluorescence-guided surgery, mice are profoundly hypocalcemic. Contrary to the traditional thyro-parathyroidectomy, this precise surgical approach leaves thyroid glands and thyroid function intact. The second model, which does not require surgery, is based on a diphtheria-toxin approach. PTHcre-iDTR mice, which express the diphtheria toxin (DT) receptor specifically in the parathyroids, were generated by crossing the inducible DTR mouse with the PTHcre mouse. Parathyroid cells are thus rendered sensitive to diphtheria toxin (DT) and can be selectively destroyed by systemically injecting mice with DT. The resulting hypocalcemic phenotype is stable.
Collapse
Affiliation(s)
- Ruiye Bi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School; West China School of Stomatology, Sichuan University
| | - Yi Fan
- West China School of Stomatology, Sichuan University; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine
| | - En Luo
- West China School of Stomatology, Sichuan University; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Quan Yuan
- West China School of Stomatology, Sichuan University; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School;
| |
Collapse
|
19
|
Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J Orthop Res 2017; 35:213-223. [PMID: 27743449 PMCID: PMC6120140 DOI: 10.1002/jor.23460] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023]
Abstract
Delayed healing and nonunion of fractures represent enormous burdens to patients and healthcare systems. There are currently no approved pharmacological agents for the treatment of established nonunions, or for the acceleration of fracture healing, and no pharmacological agents are approved for promoting the healing of closed fractures. Yet several pharmacologic agents have the potential to enhance some aspects of fracture healing. In preclinical studies, various agents working across a broad spectrum of molecular pathways can produce larger, denser and stronger fracture calluses. However, untreated control animals in most of these studies also demonstrate robust structural and biomechanical healing, leaving unclear how these interventions might alter the healing of recalcitrant fractures in humans. This review describes the physiology of fracture healing, with a focus on aspects of natural repair that may be pharmacologically augmented to prevent or treat delayed or nonunion fractures (collectively referred to as DNFs). The agents covered in this review include recombinant BMPs, PTH/PTHrP receptor agonists, activators of Wnt/β-catenin signaling, and recombinant FGF-2. Agents from these therapeutic classes have undergone extensive preclinical testing and progressed to clinical fracture healing trials. Each can promote bone formation, which is important for the stability of bridged calluses, and some but not all can also promote cartilage formation, which may be critical for the initial bridging and subsequent stabilization of fractures. Appropriately timed stimulation of chondrogenesis and osteogenesis in the fracture callus may be a more effective approach for preventing or treating DNFs compared with stimulation of osteogenesis alone. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:213-223, 2017.
Collapse
Affiliation(s)
- Paul Kostenuik
- School of DentistryUniversity of MichiganPhylon Pharma ServicesNewbury ParkCalifornia
| | | |
Collapse
|
20
|
Bi R, Fan Y, Lauter K, Hu J, Watanabe T, Cradock J, Yuan Q, Gardella T, Mannstadt M. Diphtheria Toxin- and GFP-Based Mouse Models of Acquired Hypoparathyroidism and Treatment With a Long-Acting Parathyroid Hormone Analog. J Bone Miner Res 2016; 31:975-84. [PMID: 26678919 PMCID: PMC4862881 DOI: 10.1002/jbmr.2769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 02/05/2023]
Abstract
Hypoparathyroidism (HP) arises most commonly from parathyroid (PT) gland damage associated with neck surgery, and is typically treated with oral calcium and active vitamin D. Such treatment effectively increases levels of serum calcium (sCa), but also brings risk of hypercalciuria and renal damage. There is thus considerable interest in using PTH or PTH analogs to treat HP. To facilitate study of this disease and the assessment of new treatment options, we developed two mouse models of acquired HP, and used them to assess efficacy of PTH(1-34) as well as a long-acting PTH analog (LA-PTH) in regulating blood calcium levels. In one model, we used PTHcre-iDTR mice in which the diphtheria toxin (DT) receptor (DTR) is selectively expressed in PT glands, such that systemic DT administration selectively ablates parathyroid cells. For the second model, we generated GFP-PT mice in which green fluorescent protein (GFP) is selectively expressed in PT cells, such that parathyroidectomy (PTX) is facilitated by green fluorescence of the PT glands. In the PTHcre-iDTR mice, DT injection (2 × 5 μg/kg, i.p.) resulted in moderate yet consistent reductions in serum PTH and sCa levels. The more severe hypoparathyroid phenotype was observed in GFP-PT mice following GFP-guided PTX surgery. In each model, a single subcutaneous injection of LA-PTH increased sCa levels more effectively and for a longer duration (>24 hours) than did a 10-fold higher dose of PTH(1-34), without causing excessive urinary calcium excretion. These new mouse models thus faithfully replicate two degrees of acquired HP, moderate and severe, and may be useful for assessing potential new modes of therapy. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ruiye Bi
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston MA 02114
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Fan
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115
| | - Kelly Lauter
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston MA 02114
| | - Jing Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tomoyuki Watanabe
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston MA 02114
| | - Jim Cradock
- National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Thomas Gardella
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston MA 02114
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston MA 02114
| |
Collapse
|
21
|
Lei R, Zhang K, Wei Y, Chen M, Weinstein LS, Hong Y, Zhu M, Li H, Li H. G-Protein α-Subunit Gsα Is Required for Craniofacial Morphogenesis. PLoS One 2016; 11:e0147535. [PMID: 26859889 PMCID: PMC4747491 DOI: 10.1371/journal.pone.0147535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/05/2016] [Indexed: 02/05/2023] Open
Abstract
The heterotrimeric G protein subunit Gsα couples receptors to activate adenylyl cyclase and is required for the intracellular cAMP response and protein kinase A (PKA) activation. Gsα is ubiquitously expressed in many cell types; however, the role of Gsα in neural crest cells (NCCs) remains unclear. Here we report that NCCs-specific Gsα knockout mice die within hours after birth and exhibit dramatic craniofacial malformations, including hypoplastic maxilla and mandible, cleft palate and craniofacial skeleton defects. Histological and anatomical analysis reveal that the cleft palate in Gsα knockout mice is a secondary defect resulting from craniofacial skeleton deficiencies. In Gsα knockout mice, the morphologies of NCCs-derived cranial nerves are normal, but the development of dorsal root and sympathetic ganglia are impaired. Furthermore, loss of Gsα in NCCs does not affect cranial NCCs migration or cell proliferation, but significantly accelerate osteochondrogenic differentiation. Taken together, our study suggests that Gsα is required for neural crest cells-derived craniofacial development.
Collapse
Affiliation(s)
- Run Lei
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Ke Zhang
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Yanxia Wei
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yang Hong
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Minyan Zhu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- * E-mail: Hongchang Li (HCL); Huashun Li (HSL)
| | - Huashun Li
- West China Developmental & Stem Cell Institute, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Chinese Academy of Sciences, Shanghai, China
- * E-mail: Hongchang Li (HCL); Huashun Li (HSL)
| |
Collapse
|
22
|
Shi C, Wu J, Yan Q, Wang R, Miao D. Bone marrow ablation demonstrates that estrogen plays an important role in osteogenesis and bone turnover via an antioxidative mechanism. Bone 2015; 79:94-104. [PMID: 26036172 DOI: 10.1016/j.bone.2015.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/14/2015] [Accepted: 05/26/2015] [Indexed: 01/11/2023]
Abstract
To assess the effect of estrogen deficiency on osteogenesis and bone turnover in vivo, 8-week-old mice were sham-operated or bilaterally ovariectomized (OVX), and after 8 weeks, mechanical bone marrow ablation (BMX) was performed and newly formed bone tissue was analyzed from 6 days to 2 weeks after BMX. Our results demonstrated that OVX mice following BMX displayed 2 reversed phase changes, one phase observed at 6 and 8 days after BMX delayed osteogenesis accompanied by a delay in osteoclastogenesis, and the other phase observed at 12 and 14 days after BMX increased osteoblastic activity and osteoclastic activity. Furthermore, we asked whether impaired osteogenesis caused by estrogen deficiency was associated with increased oxidative stress, and oxidative stress parameters were examined in bone tissue from sham-operated and OVX mice and OVX mice were administrated with antioxidant N-acetyl-l-cysteine (NAC) or vehicle after BMX. Results demonstrated that estrogen deficiency induced oxidative stress in mouse bone tissue with reduced antioxidase levels and activity, whereas NAC administration almost rescued the abnormalities in osteogenesis and bone turnover caused by OVX. Results from this study indicate that estrogen deficiency resulted in primarily impaired osteogenesis and subsequently accelerated bone turnover by increasing oxidative stress and oxidative stress promises to be an effective target in the process of treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Chunmin Shi
- The State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jun Wu
- The State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Quanquan Yan
- The State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- The State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Kwong RWM, Perry SF. An Essential Role for Parathyroid Hormone in Gill Formation and Differentiation of Ion-Transporting Cells in Developing Zebrafish. Endocrinology 2015; 156:2384-94. [PMID: 25872007 DOI: 10.1210/en.2014-1968] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, parathyroid hormone (PTH) is important for skeletogenesis and Ca(2+) homeostasis. However, little is known about the molecular mechanisms by which PTH regulates skeleton formation and Ca(2+) balance during early development. Using larval zebrafish as an in vivo model system, we determined that PTH1 regulates the differentiation of epithelial cells and the development of craniofacial cartilage. We demonstrated that translational gene knockdown of PTH1 decreased Ca(2+) uptake at 4 days after fertilization. We also observed that PTH1-deficient fish exhibited reduced numbers of epithelial Ca(2+) channel (ecac)-expressing cells, Na(+)/K(+)-ATPase-rich cells, and H(+)-ATPase-rich cells. Additionally, the density of epidermal stem cells was decreased substantially in the fish experiencing PTH1 knockdown. Knockdown of PTH1 caused a shortening of the jaw and impeded the development of branchial arches. Results from in situ hybridization suggested that the expression of collagen 2a1a (marker for proliferating chondrocytes) was substantially reduced in the cartilage that forms the jaw and branchial aches. Disorganization of chondrocytes in craniofacial cartilage also was observed in PTH1-deficient fish. The results of real-time PCR demonstrated that PTH1 morphants failed to express the transcription factor glial cell missing 2 (gcm2). Coinjection of PTH1 morpholino with gcm2 capped RNA rescued the phenotypes observed in the PTH1 morphants, suggesting that the defects in PTH1-deficient fish were caused, at least in part, by the suppression of gcm2. Taken together, the results of the present study reveal critical roles for PTH1 in promoting the differentiation of epidermal stem cells into mature ionocytes and cartilage formation during development.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
24
|
Abstract
The extracellular calcium-sensing receptor, CaSR, is a member of the G protein-coupled receptor superfamily and has a critical role in modulating Ca(2+) homeostasis via its role in the parathyroid glands and kidneys. New evidence suggests that CaSR expression in cartilage and bone also directly regulates skeletal homeostasis. This Review discusses the role of CaSR in chondrocytes, through which CaSR contributes to the development of the cartilaginous growth plate, as well as in osteoblasts and osteoclasts, through which CaSR has effects on skeletal development and bone turnover in young and mature animals. The interaction of skeletal CaSR activation with parathyroid hormone (PTH), which is secreted by the parathyroid gland, can lead to net bone formation in trabecular bone or net bone resorption in cortical bone. Allosteric modulators of CaSR are beneficial in some clinical conditions, with effects that are mediated by the ability of these agents to alter levels of PTH and improve Ca(2+) homeostasis. However, further insights into the action of CaSR in bone cells might lead to CaSR-based drugs that maximize not only the effects of the receptor on the parathyroid glands and kidneys but also on bone.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | - Geoffrey N Hendy
- Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
25
|
Shu L, Beier E, Sheu T, Zhang H, Zuscik M, Puzas JE, Boyce FB, Mooney AR, Xing L. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif Tissue Int 2015; 96:313-23. [PMID: 25673503 PMCID: PMC4383048 DOI: 10.1007/s00223-015-9954-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/08/2015] [Indexed: 01/16/2023]
Abstract
Obesity is a severe health problem in children, afflicting several organ systems including bone. However, the role of obesity on bone homeostasis and bone cell function in children has not been studied in detail. Here we used young mice fed a high-fat diet (HFD) to model childhood obesity and investigate the effect of HFD on the phenotype of cells within the bone marrow environment. Five-week-old male mice were fed a HFD for 3, 6, and 12 weeks. Decreased bone volume was detected after 3 weeks of HFD treatment. After 6 and 12 weeks, HFD-exposed mice had less bone mass and increased osteoclast numbers. Bone marrow cells, but not spleen cells, from HFD-fed mice had increased osteoclast precursor frequency, elevated osteoclast formation, and bone resorption activity, as well as increased expression of osteoclastogenic regulators including RANKL, TNF, and PPAR-gamma. Bone formation rate and osteoblast and adipocyte numbers were also increased in HFD-fed mice. Isolated bone marrow cells also had a corresponding elevation in the expression of positive regulators of osteoblast and adipocyte differentiation. Our findings indicate that in juvenile mice, HFD-induced bone loss is mainly due to increased osteoclast bone resorption by affecting the bone marrow microenvironment. Thus, targeting osteoclast formation may present a new therapeutic approach for bone complications in obese children.
Collapse
Affiliation(s)
- Lei Shu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Geriatric Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China. 210002
| | - Eric Beier
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tzong Sheu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - J. Edward Puzas
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - F. Brendan Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - A. Robert Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Co-corresponding author: Xing, Lianping, 601 Elmwood Ave, Box 626, Rochester, NY 14642, USA. Phone 585-273-4090, Fax (585) 756-4468 Or Mooney, A. Robert, 601 Elmwood Ave, Box 626, Rochester, NY 14642, USA. Phone 585-275-7811, Fax (585) 756-4468
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Co-corresponding author: Xing, Lianping, 601 Elmwood Ave, Box 626, Rochester, NY 14642, USA. Phone 585-273-4090, Fax (585) 756-4468 Or Mooney, A. Robert, 601 Elmwood Ave, Box 626, Rochester, NY 14642, USA. Phone 585-275-7811, Fax (585) 756-4468
| |
Collapse
|
26
|
Synergistic effects of high dietary calcium and exogenous parathyroid hormone in promoting osteoblastic bone formation in mice. Br J Nutr 2015; 113:909-22. [PMID: 25744000 PMCID: PMC4392706 DOI: 10.1017/s0007114514004309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, we investigated whether high dietary Ca and exogenous parathyroid hormone 1–34 fragments (PTH 1–34) have synergistic effects on bone formation in adult mice, and explored the related mechanisms. Adult male mice were fed a normal diet, a high-Ca diet, a PTH-treated diet, or a high-Ca diet combined with subcutaneously injected PTH 1–34 (80 μg/kg per d) for 4 weeks. Bone mineral density, trabecular bone volume, osteoblast number, alkaline phosphatase (ALP)- and type I collagen-positive areas, and the expression levels of osteoblastic bone formation-related genes and proteins were increased significantly in mice fed the high-Ca diet, the PTH-treated diet, and, even more dramatically, the high-Ca diet combined with PTH. Osteoclast number and surface and the ratio of receptor activator for nuclear factor-κB ligand (RANKL):osteoprotegerin (OPG) were decreased in the high-Ca diet treatment group, increased in the PTH treatment group, but not in the combined treatment group. Furthermore, third-passage osteoblasts were treated with high Ca (5 mm), PTH 1–34 (10− 8m) or high Ca combined with PTH 1–34. Osteoblast viability and ALP activity were increased in either the high Ca-treated or PTH-treated cultures and, even more dramatically, in the cultures treated with high Ca plus PTH, with consistent up-regulation of the expression levels of osteoblast proliferation and differentiation-related genes and proteins. These results indicate that dietary Ca and PTH play synergistic roles in promoting osteoblastic bone formation by stimulating osteoblast proliferation and differentiation.
Collapse
|
27
|
Gardella TJ, Vilardaga JP. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors. Pharmacol Rev 2015; 67:310-37. [PMID: 25713287 PMCID: PMC4394688 DOI: 10.1124/pr.114.009464] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.
Collapse
Affiliation(s)
- Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| | - Jean-Pierre Vilardaga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts (T.J.G.); and Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (J.-P.V.)
| |
Collapse
|
28
|
Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94:1143-218. [PMID: 25287862 DOI: 10.1152/physrev.00014.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
29
|
Lu R, Wang Q, Han Y, Li J, Yang XJ, Miao D. Parathyroid hormone administration improves bone marrow microenvironment and partially rescues haematopoietic defects in Bmi1-null mice. PLoS One 2014; 9:e93864. [PMID: 24705625 PMCID: PMC3976339 DOI: 10.1371/journal.pone.0093864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/08/2014] [Indexed: 11/18/2022] Open
Abstract
The epigenetic regulator Bmi1 is key in haematopoietic stem cells, and its inactivation leads to defects in haematopoiesis. Parathyroid hormone (PTH), an important modulator of bone homeostasis, also regulates haematopoiesis, so we asked whether PTH administration improves bone marrow microenvironment and rescues the haematopoietic defects in Bmi1-null mice. The mice were treated with PTH1-34 (containing the first 34 residues of mature PTH), an anabolic drug currently used for treating osteoporosis, and compared with the vehicle-treated Bmi1-/- and wild-type littermates in terms of skeletal and haematopoietic phenotypes. We found that the administration significantly increased all parameters related to osteoblastic bone formation and significantly reduced the adipocyte number and PPARγ expression. The bone marrow cellularity, numbers of haematopoietic progenitors and stem cells in the femur, and numbers of lymphocytes and other white blood cells in the peripheral blood all increased significantly when compared to vehicle-treated Bmi1-/- mice. Moreover, the number of Jagged1-positive cells and percentage of Notch intracellular domain-positive bone marrow cells and protein expression levels of Jagged1 and NICD in bone tissue were also increased in Bmi1-/- mice upon PTH1-34 administration,whereas the up-regulation of PTH on both Notch1 and Jagged1 gene expression was blocked by the Notch inhibitor DAPT administration. These results thus indicate that PTH administration activates the notch pathway and partially rescues haematopoietic defects in Bmi1-null mice, further suggesting that haematopoietic defects in the animals are not only a result of reduced self-renewal of haematopoietic stem cells but also due to impaired bone marrow microenvironment.
Collapse
Affiliation(s)
- Ruinan Lu
- The State Key Laboratory of Reproductive Medicine,The Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- The State Key Laboratory of Reproductive Medicine,The Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yongli Han
- The State Key Laboratory of Reproductive Medicine,The Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine,The Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
30
|
Abegg K, Gehring N, Wagner CA, Liesegang A, Schiesser M, Bueter M, Lutz TA. Roux-en-Y gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R999-R1009. [PMID: 24026074 DOI: 10.1152/ajpregu.00038.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery leads to bone loss in humans, which may be caused by vitamin D and calcium malabsorption and subsequent secondary hyperparathyroidism. However, because these conditions occur frequently in obese people, it is unclear whether they are the primary causes of bone loss after RYGB. To determine the contribution of calcium and vitamin D malabsorption to bone loss in a rat RYGB model, adult male Wistar rats were randomized for RYGB surgery, sham-operation-ad libitum fed, or sham-operation-body weight-matched. Bone mineral density, calcium and phosphorus balance, acid-base status, and markers of bone turnover were assessed at different time points for 14 wk after surgery. Bone mineral density decreased for several weeks after RYGB. Intestinal calcium absorption was reduced early after surgery, but plasma calcium and parathyroid hormone levels were normal. 25-hydroxyvitamin D levels decreased, while levels of active 1,25-dihydroxyvitamin D increased after surgery. RYGB rats displayed metabolic acidosis due to increased plasma lactate levels and increased urinary calcium loss throughout the study. These results suggest that initial calcium malabsorption may play a key role in bone loss early after RYGB in rats, but other factors, including chronic metabolic acidosis, contribute to insufficient bone restoration after normalization of intestinal calcium absorption. Secondary hyperparathyroidism is not involved in postoperative bone loss. Upregulated vitamin D activation may compensate for any vitamin D malabsorption.
Collapse
Affiliation(s)
- Kathrin Abegg
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhu Q, Zhou X, Zhu M, Wang Q, Goltzman D, Karaplis A, Miao D. Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation. J Bone Miner Res 2013; 28:1898-911. [PMID: 23716486 DOI: 10.1002/jbmr.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 01/17/2023]
Abstract
To assess the effect of hypoparathyroidism on osteogenesis and bone turnover in vivo, bone marrow ablation (BMXs) were performed in tibias of 8-week-old wild-type and parathyroid hormone-null (PTH(-/-)) mice and newly formed bone tissue was analyzed from 5 days to 3 weeks after BMX. At 1 week after BMX, trabecular bone volume, osteoblast numbers, alkaline phosphatase-positive areas, type I collagen-positive areas, PTH receptor-positive areas, calcium sensing receptor-positive areas, and expression of bone formation-related genes were all decreased significantly in the diaphyseal regions of bones of PTH(-/-) mice compared to wild-type mice. In contrast, by 2 weeks after BMX, all parameters related to osteoblastic bone accrual were increased significantly in PTH(-/-) mice. At 5 days after BMX, active tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts had appeared in wild-type mice but were undetectable in PTH(-/-) mice, Both the ratio of mRNA levels of receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) and TRAP-positive osteoclast surface were still reduced in PTH(-/-) mice at 1 week but were increased by 2 weeks after BMX. The expression levels of parathyroid hormone-related protein (PTHrP) at both mRNA and protein levels were upregulated significantly at 1 week and more dramatically at 2 weeks after BMX in PTH(-/-) mice. To determine whether the increased newly formed bones in PTH(-/-) mice at 2 weeks after BMX resulted from the compensatory action of PTHrP, PTH(-/-) PTHrP(+/-) mice were generated and newly formed bone tissue was compared in these mice with PTH(-/-) and wild-type mice at 2 weeks after BMX. All parameters related to osteoblastic bone formation and osteoclastic bone resorption were reduced significantly in PTH(-/-) PTHrP(+/-) mice compared to PTH(-/-) mice. These results demonstrate that PTH deficiency itself impairs osteogenesis, osteoclastogenesis, and osteoclastic bone resorption, whereas subsequent upregulation of PTHrP in osteogenic cells compensates by increasing bone accrual.
Collapse
Affiliation(s)
- Qi Zhu
- The State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Onal M, Piemontese M, Xiong J, Wang Y, Han L, Ye S, Komatsu M, Selig M, Weinstein RS, Zhao H, Jilka RL, Almeida M, Manolagas SC, O'Brien CA. Suppression of autophagy in osteocytes mimics skeletal aging. J Biol Chem 2013; 288:17432-40. [PMID: 23645674 DOI: 10.1074/jbc.m112.444190] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bone mass declines with age but the mechanisms responsible remain unclear. Here we demonstrate that deletion of a conditional allele for Atg7, a gene essential for autophagy, from osteocytes caused low bone mass in 6-month-old male and female mice. Cancellous bone volume and cortical thickness were decreased, and cortical porosity increased, in conditional knock-out mice compared with control littermates. These changes were associated with low osteoclast number, osteoblast number, bone formation rate, and wall width in the cancellous bone of conditional knock-out mice. In addition, oxidative stress was higher in the bones of conditional knock-out mice as measured by reactive oxygen species levels in the bone marrow and by p66(shc) phosphorylation in L6 vertebra. Each of these changes has been previously demonstrated in the bones of old versus young adult mice. Thus, these results demonstrate that suppression of autophagy in osteocytes mimics, in many aspects, the impact of aging on the skeleton and suggest that a decline in autophagy with age may contribute to the low bone mass associated with aging.
Collapse
Affiliation(s)
- Melda Onal
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Romero JR, Youte R, Brown EM, Pollak MR, Goltzman D, Karaplis A, Pong LC, Chien L, Chattopadhyay N, Rivera A. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion. Eur J Haematol 2013; 91:37-45. [PMID: 23528155 DOI: 10.1111/ejh.12110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 11/29/2022]
Abstract
The mechanisms by which parathyroid hormone (PTH) produces anemia are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+ -sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null, and Ca2+ -sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood, and volume regulatory systems were determined by plasma membrane K+ fluxes, and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population, and increased K+ permeability, which were in part mediated by activation of the K+ /Cl- cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+ -sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+ -sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis.
Collapse
Affiliation(s)
- Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Panda DK, Goltzman D, Karaplis AC. Defective postnatal endochondral bone development by chondrocyte-specific targeted expression of parathyroid hormone type 2 receptor. Am J Physiol Endocrinol Metab 2012; 303:E1489-501. [PMID: 23092913 PMCID: PMC3532463 DOI: 10.1152/ajpendo.00254.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human parathyroid hormone type 2 receptor (PTH2R) is activated by PTH and by tuberoinfundibular peptide of 39 residues (TIP39), the latter likely acting as its natural ligand. Although the receptor is expressed at highest levels in the nervous system, we have observed that both PTH2R and TIP39 are expressed in the newborn mouse growth plate, with the receptor localizing in the resting zone and the ligand TIP39 localizing exclusively in prehypertrophic and hypertrophic chondrocytes. To address the role of PTH2R in postnatal skeletal growth and development, Col2a1-hPTH2R (PTH2R-Tg) transgenic mice were generated. The mice were viable and of nearly normal size at birth. Expression of the transgene in the growth plate was limited to chondrocytes. We found that chondrocyte proliferation was decreased, as determined by in vivo BrdU labeling of proliferating chondrocytes and CDK4 and p21 expression in the growth plate of Col2a1-hPTH2R transgenic mice. Similarly, the differentiation and maturation of chondrocytes was delayed, as characterized by decreased Sox9 expression and weaker immunostaining for the chondrocyte differentiation markers collagen type II and type X and proteoglycans. As well, there was altered expression of Gdf5, Wdr5, and β-catenin, factors implicated in chondrocyte maturation, proliferation, and differentiation.These effects impacted on the process of endochondral ossification, resulting in delayed formation of the secondary ossification center, and diminished trabecular bone volume. The findings substantiate a role for PTH2R signaling in postnatal growth plate development and subsequent bone mass acquisition.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers/metabolism
- Bone Diseases, Developmental/metabolism
- Bone Diseases, Developmental/pathology
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cell Differentiation
- Cell Proliferation
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Cyclin-Dependent Kinase 4/metabolism
- Growth Plate/metabolism
- Growth Plate/pathology
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oncogene Protein p21(ras)/metabolism
- Otosclerosis/metabolism
- Otosclerosis/pathology
- Receptor, Parathyroid Hormone, Type 2/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/genetics
- Receptor, Parathyroid Hormone, Type 2/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- SOX9 Transcription Factor/metabolism
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Dibyendu Kumar Panda
- Division of Endocrinology, Department of Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
35
|
Yan J, Sun W, Zhang J, Goltzman D, Miao D. Bone marrow ablation demonstrates that excess endogenous parathyroid hormone plays distinct roles in trabecular and cortical bone. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:234-44. [PMID: 22640808 DOI: 10.1016/j.ajpath.2012.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/24/2012] [Accepted: 03/29/2012] [Indexed: 12/16/2022]
Abstract
Mice null for Cyp27b1, which encodes the 25-hydroxyvitamin D-1α-hydroxylase [1α(OH)ase(-/-) mice], lack 1,25-dihydroxyvitamin D [1,25(OH)(2)D] and have hypocalcemia and high parathyroid hormone (PTH) secretion. Intermittent, exogenous PTH is anabolic for bone. To determine the effect of the chronic excess endogenous PTH on osteogenesis and bone turnover, bone marrow ablations (BMX) were performed in tibiae and femurs of 6-week-old 1α(OH)ase(-/-) mice and in wild-type (WT) controls. Newly formed bone tissue was analyzed at 1, 2, and 3 weeks after BMX. BMX did not alter the higher levels of PTH in 1α(OH)ase(-/-) mice. In the marrow cavity, trabecular volume, osteoblast number, alkaline phosphatase-positive areas, type I collagen-positive areas, bone formation-related genes, and protein expression levels all increased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. Osteoclast numbers and surface and ratio of RANKL/OPG-relative mRNA levels decreased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. In the cortex, alkaline phosphatase-positive osteoblasts and osteoclast numbers increased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. These results demonstrate that chronic excess endogenous PTH exerts an anabolic role in trabecular bone by stimulating osteogenic cells and reducing bone resorption, but plays a catabolic role in cortical bone by enhancing bone turnover with an increase in resorption.
Collapse
Affiliation(s)
- Jun Yan
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|
36
|
Yuan Q, Sato T, Densmore M, Saito H, Schüler C, Erben RG, Lanske B. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice. PLoS Genet 2012; 8:e1002726. [PMID: 22615584 PMCID: PMC3355080 DOI: 10.1371/journal.pgen.1002726] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/05/2012] [Indexed: 01/16/2023] Open
Abstract
Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23−/− and Klotho−/− (Kl−/−) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23−/− mice ameliorated the phenotype in Fgf23−/−/PTH−/− mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23−/− mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl−/− (Kl−/−/PTH−/− or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl−/−/PTH−/− mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23−/−/PTH−/− mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl−/−/PTH−/− mice. Moreover, continuous PTH infusion of Kl−/− mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl−/−, but not of Fgf23−/− mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho. Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. PTH, Klotho, and FGF23 are the key regulators of blood mineral ion homeostasis. Klotho is a type-I membrane protein and has been identified as cofactor required for FGF23 to bind and activate its receptor. Loss of either Klotho or Fgf23 activity results in a similar abnormal phenotype, including severe defects in skeletal mineralization and alterations in mineral ion balance. Here we describe a new mouse model in which we eliminated PTH from Kl−/− mice, and we can show that the skeletal mineralization defect was completely rescued in Kl−/−/PTH−/− mice and that this phenomenon was accompanied by a reduction in the high levels of osteopontin in bone and serum. We also present additional data showing that continuous infusion of Kl−/− mice with PTH results in an elevation in Opn levels and subsequently increased osteoid volume. Interestingly, this result differs from our previous report in which we describe that the osteomalacia and the high Opn levels in Fgf23−/−/PTH−/− mice persisted. Our finding suggests that PTH, possibly by regulating osteopontin, is responsible for the skeletal mineralization defect in Kl−/− mice, but not in Fgf23−/− mice.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Tadatoshi Sato
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Michael Densmore
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Hiroaki Saito
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Christiane Schüler
- Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G. Erben
- Institute of Physiology, Pathophysiology, and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Beate Lanske
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
The idea that osteoblasts, or their progenitors, support osteoclast formation by expressing the cytokine receptor activator of NFkB ligand (RANKL) is a widely held tenet of skeletal biology. Two recent studies provide evidence that osteocytes, and not osteoblasts or their progenitors, are the major source of RANKL driving osteoclast formation in cancellous bone. The goal of this review is to highlight the results of these new studies and discuss their implications for our understanding of bone remodeling.
Collapse
Affiliation(s)
- Jinhu Xiong
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
38
|
Onal M, Galli C, Fu Q, Xiong J, Weinstein RS, Manolagas SC, O'Brien CA. The RANKL distal control region is required for the increase in RANKL expression, but not the bone loss, associated with hyperparathyroidism or lactation in adult mice. Mol Endocrinol 2011; 26:341-8. [PMID: 22207718 DOI: 10.1210/me.2011-1149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteoclast-mediated bone resorption plays an essential role in calcium homeostasis and lactation. The cytokine receptor activator of nuclear factor κB ligand (RANKL) is one of a number of factors that controls the production, survival, and activity of osteoclasts. Calciotropic hormones, such as PTH, control RANKL transcription in part via an enhancer known as the distal control region (DCR), and mice lacking this enhancer have fewer osteoclasts under normal physiological conditions. Here, we have addressed the role of the DCR in situations in which activation of the PTH receptor is thought to stimulate bone resorption via elevation of RANKL expression. Dietary calcium deficiency stimulated RANKL expression in the bone of young (1 month old) wild-type, but not DCR knockout (KO), mice. Consistent with this, the cancellous bone loss and the increase in osteoclasts caused by dietary calcium deficiency were blunted in young KO mice. DCR deletion also prevented the increase in RANKL expression caused by dietary calcium deficiency in 6-month-old mice. However, the diet-induced bone loss was similar in wild-type and KO mice at this age. The increase in RANKL expression caused by lactation was also blunted in DCR KO mice, but lactation-induced bone loss was similar in both genotypes. These results demonstrate that, even though the DCR is required for the increase in RANKL expression associated with hyperparathyroidism or lactation, this increase is not required for the bone loss caused by these conditions in adult mice, suggesting that changes in other factors, such as osteoprotegerin or estrogen levels, play a dominant role.
Collapse
Affiliation(s)
- Melda Onal
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In vivo models represent important resources for investigating the physiological mechanisms underlying endocrine and metabolic disorders, and for pre-clinical translational studies that may include the assessments of new treatments. In the study of endocrine diseases, which affect multiple organs, in vivo models provide specific advantages over in vitro models, which are limited to investigation of isolated systems. In recent years, the mouse has become the popular choice for developing such in vivo mammalian models, as it has a genome that shares ∼85% identity to that of man, and has many physiological systems that are similar to those in man. Moreover, methods have been developed to alter the expression of genes in the mouse, thereby generating models for human diseases, which may be due to loss- or gain-of-function mutations. The methods used to generate mutations in the mouse genome include: chemical mutagenesis; conventional, conditional and inducible knockout models; knockin models and transgenic models, and these strategies are often complementary. This review describes some of the different strategies that are utilised for generating mouse models. In addition, some mouse models that have been successfully generated by these methods for some human hereditary endocrine and metabolic disorders are reviewed. In particular, the mouse models generated for parathyroid disorders, which include: the multiple endocrine neoplasias; hyperparathyroidism-jaw tumour syndrome; disorders of the calcium-sensing receptor and forms of inherited hypoparathyroidism are discussed. The advances that have been made in our understanding of the mechanisms of these human diseases by investigations of these mouse models are described.
Collapse
Affiliation(s)
- Siân E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | | |
Collapse
|
40
|
Liu J, Lv F, Sun W, Tao C, Ding G, Karaplis A, Brown E, Goltzman D, Miao D. The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet 2011; 7:e1002294. [PMID: 21966280 PMCID: PMC3178615 DOI: 10.1371/journal.pgen.1002294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/30/2011] [Indexed: 11/18/2022] Open
Abstract
Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)(2)D(3) or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR-deficient (CaR(-/-)) mice to those of double homozygous CaR- and 1α(OH)ase-deficient [CaR(-/-)1α(OH)ase(-/-)] mice or those of double homozygous CaR- and PTH-deficient [CaR(-/-)PTH(-/-)] mice at 2 weeks of age. Compared to wild-type littermates, CaR(-/-) mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR(-/-) mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR(-/-) mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR(-/-) mice and that defects in endochondral bone formation in CaR(-/-) mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH.
Collapse
Affiliation(s)
- Jingning Liu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Institute of Dental Research, Stomatological College, Nanjing Medical University, Nanjing, China
| | - Chunxiang Tao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Edward Brown
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Goltzman
- Department of Medicine, McGill University, Montreal, Canada
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
41
|
Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1-34). PLoS One 2011; 6:e23060. [PMID: 21829585 PMCID: PMC3146536 DOI: 10.1371/journal.pone.0023060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
Background Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH. Methodology/Principal Findings Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth−/−) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1–4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth−/− mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth−/− mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth−/− mice compared to vehicle-treated wild-type and Pth−/− mice. Conclusions/Significance Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.
Collapse
|
42
|
Shu L, Ji J, Zhu Q, Cao G, Karaplis A, Pollak MR, Brown E, Goltzman D, Miao D. The calcium-sensing receptor mediates bone turnover induced by dietary calcium and parathyroid hormone in neonates. J Bone Miner Res 2011; 26:1057-71. [PMID: 21542007 PMCID: PMC3179300 DOI: 10.1002/jbmr.300] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have investigated, in neonates, whether the calcium-sensing receptor (CaR) mediates the effects of dietary calcium on bone turnover and/or modulates parathyroid hormone (PTH)-induced bone turnover. Wild-type (WT) pups and pups with targeted deletion of the Pth (Pth(-/-)) gene or of both Pth and CaR (Pth(-/-)CaR(-/-)) genes were nursed by dams on a normal or high-calcium diet. Pups nursed by dams on a normal diet received daily injections of vehicle or of PTH(1-34) (80 µg/kg) for 2 weeks starting from 1 week of age. In pups receiving vehicle and fed by dams on a normal diet, trabecular bone volume, osteoblast number, type 1 collagen-positive area, and mineral apposition rate, as well as the expression of bone-formation-related genes, all were reduced significantly in Pth(-/-) pups compared with WT pups and were decreased even more dramatically in Pth(-/-)CaR(-/-) pups. These parameters were increased in WT and Pth(-/-) pups but not in Pth(-/-)CaR(-/-) pups fed by dams on a high-calcium diet compared with pups fed by dams on a normal diet. These parameters also were increased in WT, Pth(-/-), and Pth(-/-)CaR(-/-) pups following exogenous PTH treatment; however, the percentage increase was less in Pth(-/-)CaR(-/-) pups than in WT and Pth(-/-) pups. In vehicle-treated pups fed by dams on either the normal or high-calcium diet and in PTH-treated pups fed by dams on a normal diet, the number and surfaces of osteoclasts and the ratio of RANKL/OPG were reduced significantly in Pth(-/-) pups and less significantly in Pth(-/-)CaR(-/-) pups compared with WT pups. These parameters were further reduced significantly in WT and Pth(-/-) pups from dams fed a high-calcium diet but did not decrease significantly in similarly treated Pth(-/-)CaR(-/-) pups, and they increased significantly in PTH-treated pups compared with vehicle-treated, genotype-matched pups fed by dams on the normal diet. These results indicate that in neonates, the CaR mediates alterations in bone turnover in response to changes in dietary calcium and modulates PTH-stimulated bone turnover.
Collapse
Affiliation(s)
- Lei Shu
- Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Qin W, Bauman WA, Cardozo C. Bone and muscle loss after spinal cord injury: organ interactions. Ann N Y Acad Sci 2010; 1211:66-84. [PMID: 21062296 DOI: 10.1111/j.1749-6632.2010.05806.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) results in paralysis and marked loss of skeletal muscle and bone below the level of injury. Modest muscle activity prevents atrophy, whereas much larger--and as yet poorly defined--bone loading seems necessary to prevent bone loss. Once established, bone loss may be irreversible. SCI is associated with reductions in growth hormone, IGF-1, and testosterone, deficiencies likely to exacerbate further loss of muscle and bone. Reduced muscle mass and inactivity are assumed to be contributors to the high prevalence of insulin resistance and diabetes in this population. Alterations in muscle gene expression after SCI share common features with other muscle loss states, but even so, show distinct profiles, possibly reflecting influences of neuromuscular activity due to spasticity. Changes in bone cells and markers after SCI have similarities with other conditions of unloading, although after SCI these changes are much more dramatic, perhaps reflecting the much greater magnitude of unloading. Adiposity and marrow fat are increased after SCI with intriguing, though poorly understood, implications for the function of skeletal muscle and bone cells.
Collapse
Affiliation(s)
- Weiping Qin
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
44
|
Abstract
CONTEXT The biochemical hallmark of pseudohypoparathyroidism type 1a (PHP1a) is resistance to PTH, but based on tissue-specific imprinting of GNAS, PTH resistance may be limited to the renal cortex. Some studies have shown that bone is responsive to PTH, suggesting that PHP1a patients with chronically elevated PTH levels may have low bone mineral density (BMD). SETTING This observational study was conducted at the Institute of Clinical and Translational Research, Johns Hopkins Medical Institutions. SUBJECTS Twenty-two children and adults with PHP1a were studied. MAIN OUTCOME MEASURE The main outcome measure was BMD Z-score at the lumbar spine (LS), total hip, femoral neck, and total body using dual-energy x-ray absorptiometry, relative to height, weight, and pubertal status. RESULTS The mean (+/-SD) Z-score for height was 0.77 +/- 1.66 and 1.85 +/- 1.15 for BMI. The BMD Z-score at each of the four sites studied was as follows: LS, 0.29 +/- 1.08; total hip, 0.27 +/- 1.24; femoral neck, 0.02 +/- 1.26; and total body, 0.98 +/- 1.50. Only two subjects (9%) had BMD Z-scores less than -2, and each had additional risk factors for low BMD. BMD in total body and LS spine corrected for height-for-age Z-score was significantly greater than normal. There was no correlation between PTH level and BMD Z-score or between body mass index and BMD Z-score. CONCLUSIONS Despite secondary hyperparathyroidism, region-specific BMD is not reduced in patients with PHP1a, and total body BMD is significantly greater than normal.
Collapse
Affiliation(s)
- Dominique N Long
- Division of Pediatric Endocrinology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
45
|
Goltzman D. Emerging roles for calcium-regulating hormones beyond osteolysis. Trends Endocrinol Metab 2010; 21:512-8. [PMID: 20605729 DOI: 10.1016/j.tem.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 01/08/2023]
Abstract
Parathyroid hormone (PTH), the active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D], and PTH-related peptide (PTHrP), the mediator of hypercalcemia of malignancy, are all osteolytic hormones. Recent studies have demonstrated that endogenous PTH and PTHrP also exert bone anabolic activity and that PTHrP is a crucial modulator of growth plate development. At least part of these PTHrP functions can be mediated by intracrine effects, involving a unique interplay of cell surface membrane and intracellular signaling. 1,25(OH)2D also exerts bone anabolic effects and, as with PTHrP, acts on multiple extraskeletal tissues. The skeletal functions of these hormones now extend beyond modulating bone resorption, and important extraskeletal activities have been discovered which involve unique local modes of action.
Collapse
Affiliation(s)
- David Goltzman
- Calcium Research Laboratory, Departments of Medicine, McGill University and McGill University Health Centre, Montreal, QC H3A1A1, Canada.
| |
Collapse
|
46
|
Grigorieva IV, Mirczuk S, Gaynor KU, Nesbit MA, Grigorieva EF, Wei Q, Ali A, Fairclough RJ, Stacey JM, Stechman MJ, Mihai R, Kurek D, Fraser WD, Hough T, Condie BG, Manley N, Grosveld F, Thakker RV. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest 2010; 120:2144-55. [PMID: 20484821 PMCID: PMC2877956 DOI: 10.1172/jci42021] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/31/2010] [Indexed: 12/23/2022] Open
Abstract
Heterozygous mutations of GATA3, which encodes a dual zinc-finger transcription factor, cause hypoparathyroidism with sensorineural deafness and renal dysplasia. Here, we have investigated the role of GATA3 in parathyroid function by challenging Gata3+/- mice with a diet low in calcium and vitamin D so as to expose any defects in parathyroid function. This led to a higher mortality among Gata3+/- mice compared with Gata3+/+ mice. Compared with their wild-type littermates, Gata3+/- mice had lower plasma concentrations of calcium and parathyroid hormone (PTH) and smaller parathyroid glands with a reduced Ki-67 proliferation rate. At E11.5, Gata3+/- embryos had smaller parathyroid-thymus primordia with fewer cells expressing the parathyroid-specific gene glial cells missing 2 (Gcm2), the homolog of human GCMB. In contrast, E11.5 Gata3-/- embryos had no Gcm2 expression and by E12.5 had gross defects in the third and fourth pharyngeal pouches, including absent parathyroid-thymus primordia. Electrophoretic mobility shift, luciferase reporter, and chromatin immunoprecipitation assays showed that GATA3 binds specifically to a functional double-GATA motif within the GCMB promoter. Thus, GATA3 is critical for the differentiation and survival of parathyroid progenitor cells and, with GCM2/B, forms part of a transcriptional cascade in parathyroid development and function.
Collapse
Affiliation(s)
- Irina V. Grigorieva
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Samantha Mirczuk
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Katherine U. Gaynor
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - M. Andrew Nesbit
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Elena F. Grigorieva
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Qiaozhi Wei
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Asif Ali
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Rebecca J. Fairclough
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Joanna M. Stacey
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Michael J. Stechman
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Radu Mihai
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Dorota Kurek
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - William D. Fraser
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Tertius Hough
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Brian G. Condie
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Nancy Manley
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Frank Grosveld
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, United Kingdom.
Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
Department of Genetics, University of Georgia, Athens, Georgia, USA.
Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Rotterdam, Netherlands.
Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Clinical Pathology Laboratory, Mary Lyon Centre, Medical Research Council, Harwell, Didcot, Oxfordshire, United Kingdom
| |
Collapse
|
47
|
Defects in mesenchymal stem cell self-renewal and cell fate determination lead to an osteopenic phenotype in Bmi-1 null mice. J Bone Miner Res 2010; 25:640-52. [PMID: 19653817 DOI: 10.1359/jbmr.090812] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In parathyroid hormone-related protein 1-84 [PTHrP(1-84)] knockin mice, expression of the polycomb protein Bmi-1 is reduced and potentially can mediate the phenotypic alterations observed. We have therefore now examined the skeletal phenotype of Bmi-1(-/-) mice in vivo and also assessed the function of bone marrow mesenchymal stem cells (BM-MSCs) from Bmi-1(-/-) mice ex vivo in culture. Neonatal Bmi-1(-/-) mice exhibited skeletal growth retardation, with reduced chondrocyte proliferation and increased apoptosis. Osteoblast numbers; gene expression of alkaline phosphatase, type I collagen, and osteocalcin; the mineral apposition rate; trabecular bone volume; and bone mineral density all were reduced significantly; however, the number of bone marrow adipocytes and Ppar-gamma expression were increased. These changes were consistent with the skeletal phenotype observed in the PTHrP(1-84) knockin mouse. The efficiency of colony-forming unit fibroblast (CFU-F) formation in bone marrow cultures was decreased, and the percentage of alkaline phosphatase-positive CFU-F and Runx2 expression were reduced. In contrast, adipocyte formation and Ppar-gamma expression in cultures were increased, and expression of the polycomb protein sirtuin (Sirt1) was reduced. Reduced proliferation and increased apoptosis of BM-MSCs were associated with upregulation of senescence-associated tumor-suppressor genes, including p16, p19, and p27. Analysis of the skeletal phenotype in Bmi-1(-/-) mice suggests that Bmi-1 functions downstream of PTHrP. Furthermore, our studies indicate that Bmi-1 maintains self-renewal of BM-MSCs by inhibiting the expression of p27, p16, and p19 and alters the cell fate of BM-MSCs by enhancing osteoblast differentiation and inhibiting adipocyte differentiation at least in part by stimulating Sirt1 expression. Bmi-1 therefore plays a critical role in promoting osteogenesis.
Collapse
|
48
|
Sun W, Sun W, Liu J, Zhou X, Xiao Y, Karaplis A, Pollak MR, Brown E, Goltzman D, Miao D. Alterations in phosphorus, calcium and PTHrP contribute to defects in dental and dental alveolar bone formation in calcium-sensing receptor-deficient mice. Development 2010; 137:985-92. [PMID: 20150282 DOI: 10.1242/dev.045898] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether the calcium-sensing receptor (CaR) participates in tooth formation and dental alveolar bone development in mandibles in vivo, we examined these processes, as well as mineralization, in 2-week-old CaR-knockout (CaR(-/-)) mice. We also attempted to rescue the phenotype of CaR(-/-) mice by genetic means, in mice doubly homozygous for CaR and 25-hydroxyvitamin D 1alpha-hydroxylase [1alpha(OH)ase] or parathyroid hormone (Pth). In CaR(-/-) mice, which exhibited hypercalcemia, hypophosphatemia and increased serum PTH, the volumes of teeth and of dental alveolar bone were decreased dramatically, whereas the ratio of the area of predentin to total dentin and the number and surface of osteoblasts in dental alveolar bone were increased significantly, as compared with wild-type littermates. The normocalcemia present in CaR(-/-);1alpha(OH)ase(-/-) mice only slightly improved the defects in dental and alveolar bone formation observed in the hypercalcemic CaR(-/-) mice. However, these defects were completely rescued by the additional elimination of hypophosphatemia and by an increase in parathyroid hormone-related protein (PTHrP) expression in the apical pulp, Hertwig's epithelial root sheath and mandibular tissue in CaR(-/-); Pth(-/-) mice. Therefore, alterations in calcium, phosphorus and PTHrP contribute to defects in the formation of teeth and alveolar bone in CaR-deficient mice. This study indicates that CaR participates in the formation of teeth and in the development of dental alveolar bone in mandibles in vivo, although it appears to do so largely indirectly.
Collapse
Affiliation(s)
- Wen Sun
- Institute of Dental Research, Stomatological College, Nanjing Medical University, Nanjing, Jiangsu 210029, P R of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lozano D, de Castro LF, Dapía S, Andrade-Zapata I, Manzarbeitia F, Alvarez-Arroyo MV, Gómez-Barrena E, Esbrit P. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology 2009; 150:2027-35. [PMID: 19196804 DOI: 10.1210/en.2008-1108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A deficit in bone formation is a major factor in diabetes-related osteopenia. We examined here whether diabetes-associated changes in osteoblast phenotype might in part result from a decrease in PTH-related protein (PTHrP). We used a bone marrow ablation model in diabetic mice by multiple streptozotocin injections. PTHrP (1-36) (100 microg/kg, every other day) or vehicle was administered to mice for 13 d starting 1 wk before marrow ablation. Diabetic mice showed bone loss in both the intact femur and the regenerating tibia on d 6 after ablation; in the latter, this was related to decreased bone-forming cells, osteoid surface, and blood vessels, and increased marrow adiposity. Moreover, a decrease in matrix mineralization occurred in ex vivo bone marrow cultures from the unablated tibia from diabetic mice. These skeletal alterations were associated with decreased gene expression (by real-time PCR) of Runx2, osterix, osteocalcin, PTHrP, the PTH type 1 receptor, vascular endothelial growth factor and its receptors, and osteoprotegerin to receptor activator of nuclear factor-kappaB ligand mRNA ratio, and increased peroxisome proliferator-activated receptor-gamma2 mRNA levels. Similar changes were induced by hyperosmotic (high glucose or mannitol) medium in osteoblastic MC3T3-E1 cells, which were mimicked by adding a neutralizing anti-PTHrP antibody or PTH type 1 receptor antagonists to these cells in normal glucose medium. PTHrP (1-36) administration reversed these changes in both intact and regenerating bones from diabetic mice in vivo, and in MC3T3-E1 cells exposed to high glucose. These findings strongly suggest that PTHrP has an important role in the altered osteoblastic function related to diabetes.
Collapse
Affiliation(s)
- Daniel Lozano
- Laboratorio de Metabolismo Mineral y Oseo, Fundación Jiménez Díaz (Capio Group), Avenida. Reyes Católicos, 2, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Galli C, Fu Q, Wang W, Olsen BR, Manolagas SC, Jilka RL, O'Brien CA. Commitment to the osteoblast lineage is not required for RANKL gene expression. J Biol Chem 2009; 284:12654-62. [PMID: 19279010 DOI: 10.1074/jbc.m806628200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation of bone-resorbing osteoclasts from hematopoietic precursors depends upon expression of the cytokine receptor activator of NFkappaB ligand (RANKL) by fibroblastic stromal cells, which some evidence suggests are of the osteoblast lineage. We have shown previously that hormonal-responsiveness of the murine RANKL gene is mediated in part by a distal enhancer that binds Runx2, a transcription factor required for commitment to the osteoblast lineage, supporting the idea that osteoclast-supporting stromal cells may be osteoblasts or their progenitors. However, in this study we demonstrate that parathyroid hormone (PTH) stimulation of RANKL in mice is not affected by a significant reduction in the number of osteoblasts. Consistent with this, neither Runx2, nor Cbfb, a binding partner essential for Runx activity, are required for basal or PTH-stimulated RANKL expression in fibroblastic stromal cell models. Nonetheless, RANKL responsiveness to PTH was elevated in cultured calvaria cells expressing high levels of osterix, another transcription factor required for osteoblast differentiation, and this was associated with elevated PTH receptor expression. The responsiveness of RANKL to 1,25-dihydroxyvitamin D(3) was not elevated in the osterix-expressing cells. Together, these results suggest that commitment to the osteoblast lineage is not a requirement for RANKL gene transcription in fibroblastic stromal cells but may enhance responsiveness of this gene to specific hormones via control of their receptors.
Collapse
Affiliation(s)
- Carlo Galli
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|