1
|
Dąbrowska AM, Dudka J. Fexaramine as the intestine-specific farnesoid X receptor agonist: A promising agent to treat obesity and metabolic disorders. Drug Discov Today 2025; 30:104386. [PMID: 40409402 DOI: 10.1016/j.drudis.2025.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 05/08/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Fexaramine, a gut-restricted farnesoid X receptor (FXR) agonist, promotes glucose and lipid homeostasis, improves insulin sensitivity, promotes white adipose tissue browning, and stimulates nonshivering thermogenesis. Enhancement in energy expenditure due to an increase in amount of energy burned by brown and 'beige' adipocytes results in subsequent weight loss. Fexaramine is poorly absorbed into circulation when delivered orally, which limits systemic FXR activation and toxicity. An increase in β3-adrenoceptor signaling, activation of Takeda G protein-coupled receptor 5/glucagon-like peptide-1 (TGR5/GLP-1) signaling, and induction of fibroblast growth factor (FGF)-19/FGF-15 play crucial roles in fexaramine metabolic actions. Intestinal FXR activation is a promising, potentially safe approach for treating obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Anna Maria Dąbrowska
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland; Endocrinology Outpatient Clinic, Lublin, Poland.
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Meessen ECE, Majait S, Ay Ü, Olde Damink SW, Romijn JA, Holst JJ, Hartmann B, Kuipers F, Nieuwdorp M, Schaap FG, Groen AK, Kemper EM, Soeters MR. Glycodeoxycholic Acid Inhibits Primary Bile Acid Synthesis With Minor Effects on Glucose and Lipid Homeostasis in Humans. J Clin Endocrinol Metab 2025; 110:1468-1477. [PMID: 38864544 PMCID: PMC12012696 DOI: 10.1210/clinem/dgae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Bile acids play vital roles in control of lipid, glucose, and energy metabolism by activating Takeda G protein-coupled receptor 5 and Farnesoid X receptor, the latter promoting production of the endocrine-acting fibroblast growth factor 19 (FGF19). Short-term administration of single bile acids has been reported to enhance plasma levels of GLP-1 and to enhance energy expenditure. However, prolonged bile acid supplementation (eg, of chenodeoxycholic acid for gallstone dissolution) has been reported to have adverse effects. STUDY DESIGN In this proof-of-concept study, we assessed the safety and metabolic effects of oral glycine-conjugated deoxycholic acid (GDCA) administration at 10 mg/kg/day using regular and slow-release capsules (mimicking physiological bile acid release) over 30 days in 2 groups of each 10 healthy lean men, respectively. MAIN FINDINGS GDCA increased postprandial total bile acid and FGF19 concentrations while suppressing those of the primary bile acids chenodeoxycholic acid and cholic acid. Plasma levels of 7α-hydroxy-4-cholesten-3-one were reduced, indicating repressed hepatic bile acid synthesis. There were minimal effects on indices of lipid, glucose, and energy metabolism. No serious adverse events were reported during GDCA administration in either capsule types, although 50% of participants showed mild increases in plasma levels of liver transaminases and 80% (regular capsules) and 50% (slow-release capsules) of participants experienced gastrointestinal adverse events. CONCLUSION GDCA administration leads to elevated FGF19 levels and effectively inhibits primary bile acid synthesis, supporting therapy compliance and its effectiveness. However, effects on lipid, glucose, and energy metabolism were minimal, indicating that expanding the pool of this relatively hydrophobic bile acid does not impact energy metabolism in healthy subjects.
Collapse
Affiliation(s)
- Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Soumia Majait
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location AMC, 1105 AZ, Amsterdam, The Netherlands
| | - Ümran Ay
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Folkert Kuipers
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 CZ, Groningen, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Albert K Groen
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - E Marleen Kemper
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location AMC, 1105 AZ, Amsterdam, The Netherlands
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zangerolamo L, Carvalho M, Solon C, Sidarta-Oliveira D, Soares GM, Marmentini C, Boschero AC, Tseng YH, Velloso LA, Barbosa HCL. Central FGF19 signaling enhances energy homeostasis and adipose tissue thermogenesis through sympathetic activation in obese mice. Am J Physiol Endocrinol Metab 2025; 328:E524-E542. [PMID: 40059865 DOI: 10.1152/ajpendo.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Fibroblast growth factor 19 (FGF19) signaling in the brain is associated with body weight loss, reduced food intake, and improved glycemic control in obese mice through unclear mechanisms. Here, we investigated the effects of central FGF19 administration on peripheral tissues, focusing on adipose tissue and its contributions to body weight loss. Using single-cell RNA sequencing of the adult murine hypothalamus, we found that FGF19 has the potential to target multiple cell populations, including astrocytes-tanycytes, microglia, neurons, and oligodendrocytes. Central delivery of FGF19 decreased body weight gain and ameliorated glucose-insulin homeostasis in diet-induced obese (DIO) mice. These results were accompanied by increased energy expenditure and reduced peripheric inflammation. Notably, these effects were attributable to the increased activity of thermogenic adipocytes, as upregulated thermogenic markers in brown and inguinal adipose tissue and improved cold tolerance were induced by central FGF19. However, under blunted sympathetic activity, the described effects were abolished. Moreover, cold exposure induced upregulation of FGF19 receptors and coreceptors specifically in the hypothalamus, suggesting a critical metabolic adaptation for thermoregulation and energy homeostasis. Our findings indicate that central FGF19 signaling improves energy homeostasis in DIO mice, at least in part, by stimulating sympathetic activity and adipose tissue thermogenesis. These findings highlight FGF19's potential as a therapeutic target for obesity and metabolic disorders.NEW & NOTEWORTHY Although most studies associate central fibroblast growth factor 19 (FGF19) with reduced food intake, our findings highlight its role in enhancing thermogenesis in white and brown adipose tissues through sympathetic activation. Central FGF19 not only regulates feeding but also drives peripheral adaptations critical for energy homeostasis and body weight control under obesogenic conditions. These insights underscore the significance of top-down mechanisms in FGF19 action and its therapeutic potential for combating obesity.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| |
Collapse
|
4
|
Golounina O, Minniakhmetov I, Salakhov R, Khusainova R, Zakharova E, Bychkov I, Mokrysheva N. Pathogenetic therapeutic approaches for endocrine diseases based on antisense oligonucleotides and RNA-interference. Front Endocrinol (Lausanne) 2025; 16:1525373. [PMID: 39944202 PMCID: PMC11813780 DOI: 10.3389/fendo.2025.1525373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Molecular therapy uses nucleic acid-based therapeutics agents and becomes a promising alternative for disease conditions unresponsive to traditional pharmaceutical approaches. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are two well-known strategies used to modulate gene expression. RNA-targeted therapy can precisely modulate the function of target RNA with minimal off-target effects and can be rationally designed based on sequence data. ASOs and siRNA-based drugs have unique capabilities for using in target groups of patients or can be tailored as patient-customized N-of-1 therapeutic approach. Antisense therapy can be utilized not only for the treatment of monogenic diseases but also holds significant promise for addressing polygenic and complex diseases by targeting key genes and molecular pathways involved in disease pathogenesis. In the context of endocrine disorders, molecular therapy is particularly effective in modulating pathogenic mechanisms such as defective insulin signaling, beta-cell dysfunction and hormonal imbalances. Furthermore, siRNA and ASOs have the ability to downregulate overactive signaling pathways that contribute to complex, non-monogenic endocrine disorders, thereby addressing these conditions at their molecular origin. ASOs are also being studied worldwide as unique candidates for developing therapies for N-of-1 therapies. The sequence-specific ASOs binding provides exceptional accuracy in N-of-1 approaches, when the oligonucleotide can be targeted to a patient's exact mutant sequence. In this review we focus on diseases of the endocrine system and discuss potential RNA-targeted therapeutic opportunities in diabetes mellitus, including monogenic beta cell diabetes, and obesity, including syndrome obesity and monogenic obesity, as well as in non-monogenic or complex endocrine disorders. We also provide an overview of currently developed and available antisense molecules, and describe potentials of antisense-based therapeutics for the treatment of rare and «ultrarare» endocrine diseases.
Collapse
Affiliation(s)
- Olga Golounina
- Department of Clinical Endocrinology, Endocrinology Research Centre, Moscow, Russia
| | - Ildar Minniakhmetov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Ramil Salakhov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Rita Khusainova
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Ekaterina Zakharova
- Selective Screening Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Igor Bychkov
- Laboratory of Experimental Gene Therapy for Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Mokrysheva
- Department of Clinical Endocrinology, Endocrinology Research Centre, Moscow, Russia
| |
Collapse
|
5
|
Tahiri A, Youssef A, Inoue R, Moon S, Alsarkhi L, Berroug L, Nguyen XTA, Wang L, Kwon H, Pang ZP, Zhao JY, Shirakawa J, Ulloa L, El Ouaamari A. Vagal sensory neuron-derived FGF3 controls insulin secretion. Dev Cell 2025; 60:51-61.e4. [PMID: 39413782 PMCID: PMC11706709 DOI: 10.1016/j.devcel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.
Collapse
Affiliation(s)
- Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Laila Berroug
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Xuan Thi Anh Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Hyokjoon Kwon
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
6
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
7
|
Li Y, Dai C, Yang H, Zeng H, Ruan Y, Dai M, Hao J, Wang L, Yan X, Ji F. Cross-sectional and Mendelian randomization study of fibroblast growth factor 19 reveals causal associations with metabolic diseases. J Gastroenterol Hepatol 2024; 39:2872-2879. [PMID: 39091021 DOI: 10.1111/jgh.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND AIM Fibroblast growth factor 19 (FGF19) is an intestinal-derived factor that plays a role in metabolic diseases. We performed a differential study of circulating FGF19 levels and investigated the causal effects of FGF19 on metabolic diseases using Mendelian randomization (MR). METHODS Firstly, 958 subjects were included in the physical examination center of affiliated hospital from January 2019 to January 2021. Dividing the subjects into different subgroups to compare FGF19 levels. We conducted a two-sample MR analysis of genetically predicted circulating FGF19 in relation to alcohol, cardiovascular and metabolic biomarkers and diseases, and liver function biomarkers using publicly available genome-wide association study summary statistics data. RESULTS The circulating FGF19 levels in nonalcoholic fatty liver disease (NAFLD) patients were lower than those without NAFLD (P < 0.001). The FGF19 levels in participants with obese were lower than those without obese (P < 0.001). In two-sample MR analyses, genetically predicted higher circulating FGF19 levels was significantly associated with lower aspartate aminotransferase, γ-glutamyltransferase, triglycerides, total cholesterol, low-density lipoprotein, and C-reactive protein concentrations (P < 0.05) and a negative correlation with cardiovascular disease and cirrhosis whereas a positive association with type 2 diabetes mellitus (P < 0.05). CONCLUSIONS Our study found that circulating FGF19 levels were lower in NAFLD and obese populations. Additionally, our MR research results support the causal effects of FGF19 on improved liver function, lipids, and reduced the occurrence of inflammation, cardiovascular disease, and cirrhosis. We found a positive correlation with diabetes, which may indicate a compensatory increase in regulating above FGF19 resistance states in humans.
Collapse
Affiliation(s)
- Yan Li
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changyong Dai
- Department of Infectious Diseases, Huaian Hospital of Huaian City, Huaian, Jiangsu, China
| | - Haiqing Yang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huang Zeng
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuhua Ruan
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjia Dai
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jungui Hao
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liping Wang
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuebing Yan
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Ji
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Aging Biomarker Consortium, Huang N, Ge M, Liu X, Tian X, Yin P, Bao Z, Cao F, Shyh-Chang N, Dong B, Dai L, Gan Z, Hu P, Qu J, Wang S, Wang H, Xiao Q, Yue R, Yue J, Zhang L, Zhang Y, Zhang H, Zhang W, Liu GH, Pei G, Liu Y, Zhu D, Dong B. A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2024; 3:lnaf001. [PMID: 40008206 PMCID: PMC11851484 DOI: 10.1093/lifemedi/lnaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The skeletal muscle is an important organ for movement and metabolism in human body, and its physiological aging underlies the occurrence of muscle atrophy and sarcopenia. China has the largest aging population in the world and is facing a grand challenge with how to prevent and treat skeletal muscle aging-related diseases. To address this difficult problem, the Aging Biomarker Consortium (ABC) of China has reached an expert consensus on biomarkers of skeletal muscle aging by synthesizing literatures and insights from scientists and clinicians. This consensus attempts to provide a comprehensive assessment of biomarkers associated with skeletal muscle aging, and proposes a systematic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the experts recommend clinically relevant biomarkers for skeletal muscle aging. This consensus aims to lay the foundation for future research on skeletal muscle aging, facilitating precise prediction, diagnosis, and treatment of skeletal muscle aging and sarcopenia. It is anticipated to make significant contributions to healthy aging of skeletal muscle in the elderly population in China and around the world as well.
Collapse
Affiliation(s)
| | - Ning Huang
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meiling Ge
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolei Liu
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Tian
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhijun Bao
- Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Real and Best Biotech Co., Ltd., Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing 210061, China
| | - Ping Hu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200072, China
- Guangzhou Laboratory, Guangzhou 510005, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510005, China
- The Tenth People’s Hospital Affiliated to Tongji University, Shanghai 200072, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regenerative Medicine, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Orthopedics and Traumatology, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Yue
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200092, China
| | - Jirong Yue
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Licheng Zhang
- Department of Orthopaedic Trauma, the Fourth Medical Center, National Clinical Research Center for Orthopaedics & Sports Rehabilitation in China, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hongbo Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- The SYSU-YSG Joint Laboratory for Skin Health Research, Sun Yat-sen University, Guangzhou 510080, China
- Advanced Medical Technology Center, The First Afiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200070, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Birong Dong
- The Center of Gerontology and Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Sezer S, Demirci S, Kara Ö, Kara M. Strong association between sarcopenia and visceral fat in the long term after cholecystectomy: A cross-sectional study using the ISarcoPRM algorithm. Medicine (Baltimore) 2024; 103:e40355. [PMID: 39496063 PMCID: PMC11537645 DOI: 10.1097/md.0000000000040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Cholecystectomy generally has no adverse effects on health. Studies demonstrating the association between metabolic diseases and long-term effects of cholecystectomy are increasing. preperitoneal fat thickness (PFT) is an important indicator of metabolic syndrome. Metabolic syndrome is a risk factor for sarcopenia. The aim of our study was to investigate the relationship between cholecystectomy and sarcopenia-visceral fat using the ISarcoPRM algorithm, which is an easy, reliable, and inexpensive method based on ultrasound measurement, to evaluate sarcopenia in patients with long-term previous cholecystectomy. This cross-sectional study included participants who had undergone cholecystectomy at least 5 years ago and a control group with similar characteristics. Sarcopenia was assessed using the ISarcoPRM algorithm, incorporating the sonographic thigh adjustment ratio (STAR), grip strength, and chair stand test (CST). Together with low STAR values (<1.0 for females and <1.4 for males), ow grip strength (<19 kg for females or <32 kg for males), and/or prolonged CST duration (≥12 seconds) were used to diagnose sarcopenia. Ultrasound was used to measure the visceral fat thickness. The investigation of sarcopenia and PFT values between individuals with and without cholecystectomy was planned. A total of 158 participants were included, including 89 post-cholecystectomy patients and 69 controls. Binary regression analysis revealed that cholecystectomy was positively associated with sarcopenia (OR = 2.788, 95% CI: 1.054-7.375, P = .039). However, when PFT was included, it was independently associated with sarcopenia (OR = 1.157, 95% CI: 1.067-1.254, P < .001), and the relationship with cholecystectomy disappeared (P > .05). PFT values of 10.0 mm or higher were associated with 5.875 times (95% CI: 2.035-16.961, P = .001) increased odds of sarcopenia. Sarcopenia was 2.8 times more frequent in patients who had undergone cholecystectomy than in those who had not, but this relationship was mediated by increased PFT. The risk of sarcopenia increased up to 5.875 times when the PFT exceeded 10 mm.
Collapse
Affiliation(s)
- Semih Sezer
- Department of Gastroenterology, Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| | - Selim Demirci
- Department of Gastroenterology, Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| | - Özgür Kara
- Department of Geriatric Medicine, Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| | - Murat Kara
- Department of Physical and Rehabilitation Medicine, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
10
|
Bouju A, Nusse R, Wu PV. A primer on the pleiotropic endocrine fibroblast growth factor FGF19/FGF15. Differentiation 2024; 140:100816. [PMID: 39500656 DOI: 10.1016/j.diff.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
Fibroblast Growth Factor 19 (FGF19) is a member of the Fibroblast Growth Factor (FGF) family, known for its role in various cellular processes including embryonic development and metabolic regulation. FGF19 functions as an endocrine factor, influencing energy balance, bile acid synthesis, glucose and lipid metabolism, as well as cell proliferation. FGF19 has a conserved structure typical of FGFs but exhibits unique features. Unlike most FGFs, which act locally, FGF19 travels through the bloodstream to distant targets including the liver. Its interaction with the β-Klotho (KLB) co-receptor and FGF Receptor 4 (FGFR4) in hepatocytes or FGFR1c in extrahepatic tissues initiates signaling cascades crucial for its biological functions. Although the mouse ortholog, FGF15, diverges significantly from human FGF19 in protein sequence and receptor binding, studies of FGF15-deficient mice have led to a better understanding of the proteins' role in bile acid regulation, metabolism, and embryonic development. Overexpression studies in transgenic mice have further revealed roles in not only ameliorating metabolic diseases but also in promoting hepatocyte proliferation and tumorigenesis. This review summarizes the gene and protein structure of FGF19/15, its expression patterns, phenotypes in mutant models, and implication in human diseases, providing insights into potential therapeutic strategies targeting the FGF19 signaling pathway.
Collapse
Affiliation(s)
- Agathe Bouju
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Sorbonne University, Paris, France
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peng V Wu
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA; Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
12
|
Lopez-Pascual A, Russo-Cabrera JS, Ardaiz N, Palmer T, Graham AR, Uriarte I, Gomar C, Ruiz-Guillamon D, Latasa MU, Arechederra M, Fontanellas A, Monte MJ, Marin JJG, Berasain C, Del Rio CL, Fernandez-Barrena MG, Martini PGV, Schultz JR, Berraondo P, Avila MA. Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Sci (Lond) 2024; 138:1265-1284. [PMID: 39301694 DOI: 10.1042/cs20241137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a global health threat. MASH pathophysiology involves hepatic lipid accumulation and progression to severe conditions like cirrhosis and, eventually, hepatocellular carcinoma. Fibroblast growth factor (FGF)-19 has emerged as a key regulator of metabolism, offering potential therapeutic avenues for MASH and associated disorders. We evaluated the therapeutic potential of non-mitogenic (NM)-FGF19 mRNA formulated in liver-targeted lipid nanoparticles (NM-FGF19-mRNAs-LNPs) in C57BL/6NTac male mice with diet-induced obesity and MASH (DIO-MASH: 40% kcal fat, 20% kcal fructose, 2% cholesterol). After feeding this diet for 21 weeks, NM-FGF19-mRNAs-LNPs or control (C-mRNA-LNPs) were administered (0.5 mg/kg, i.v.) weekly for another six weeks, in which diet feeding continued. NM-FGF19-mRNAs-LNPs treatment in DIO-MASH mice resulted in reduced body weight, adipose tissue depots, and serum transaminases, along with improved insulin sensitivity. Histological analyses confirmed the reversal of MASH features, including steatosis reduction without worsening fibrosis. NM-FGF19-mRNAs-LNPs reduced total hepatic bile acids (BAs) and changed liver BA composition, markedly influencing cholesterol homeostasis and metabolic pathways as observed in transcriptomic analyses. Extrahepatic effects included the down-regulation of metabolic dysfunction-associated genes in adipose tissue. This study highlights the potential of NM-FGF19-mRNA-LNPs therapy for MASH, addressing both hepatic and systemic metabolic dysregulation. NM-FGF19-mRNA demonstrates efficacy in reducing liver steatosis, improving metabolic parameters, and modulating BA levels and composition. Given the central role played by BA in dietary fat absorption, this effect of NM-FGF19-mRNA may be mechanistically relevant. Our study underscores the high translational potential of mRNA-based therapies in addressing the multifaceted landscape of MASH and associated metabolic perturbations.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Joan S Russo-Cabrera
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Nuria Ardaiz
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | | | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Celia Gomar
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - David Ruiz-Guillamon
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Maria U Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria J Monte
- CIBERehd, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Jose J G Marin
- CIBERehd, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | - Maite G Fernandez-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | | | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERonc, Madrid, Spain
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| |
Collapse
|
13
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
14
|
Sullivan AI, Jensen-Cody SO, Claflin KE, Vorhies KE, Flippo KH, Potthoff MJ. Characterization of FGF21 Sites of Production and Signaling in Mice. Endocrinology 2024; 165:bqae120. [PMID: 39253796 DOI: 10.1210/endocr/bqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor β-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.
Collapse
Affiliation(s)
- Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kai E Vorhies
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Wean J, Baranwal S, Miller N, Shin JH, O'Rourke RW, Burant CF, Seeley RJ, Rothberg AE, Bozadjieva-Kramer N. Gut-muscle communication links FGF19 levels to the loss of lean muscle mass following rapid weight loss. DIABETES & METABOLISM 2024; 50:101570. [PMID: 39134173 DOI: 10.1016/j.diabet.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
OBJECTIVE Optimal weight loss involves decreasing adipose tissue while preserving lean muscle mass. Identifying molecular mediators that preserve lean muscle mass is therefore a clinically important goal. We have shown that circulating, postprandial FGF19 levels are lower in patients with obesity and decrease further with comorbidities such as type 2 diabetes and MASLD. Preclinical studies have shown that FGF15 (mouse ortholog of human FGF19) is necessary to protect against lean muscle mass loss following metabolic surgery-induced weight loss in a mouse model of diet-induced obesity. We evaluated if non-surgical weight loss interventions also lead to increased systemic levels of FGF19 and whether FGF19 levels are predictive of lean muscle mass following rapid weight loss in human subjects with obesity. RESEARCH DESIGN AND METHODS Weight loss was induced in 176 subjects with obesity via a very low-energy diet, VLED (800 kcal/d) in the form of total liquid meal replacement for 3-4 months. We measured plasma FGF19 levels at baseline and following VLED-induced weight loss. Multiple linear regression was performed to assess if FGF19 levels were predictive of lean mass at baseline (obesity) and following VLED. RESULTS Postprandial levels of FGF19 increased significantly following VLED-weight loss. Multiple linear regression analysis showed that baseline (obesity) FGF19 levels, but not post VLED FGF19 levels, significantly predicted the percent of lean muscle mass after VLED-induced weight loss, while controlling for age, sex, and the baseline percent lean mass. CONCLUSION These data identify gut-muscle communication and FGF19 as a potentially important mediator of the preservation of lean muscle mass during rapid weight loss.
Collapse
Affiliation(s)
- Jordan Wean
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Salisha Baranwal
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Nicole Miller
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, United States
| | - Charles F Burant
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Amy E Rothberg
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Carvalho MBD, Jorge GMCP, Zanardo LW, Hamada LM, Izabel LDS, Santoro S, Magdalon J. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials. Am J Physiol Endocrinol Metab 2024; 327:E279-E289. [PMID: 39017679 DOI: 10.1152/ajpendo.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Marcela Botelho de Carvalho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Luiza Wolf Zanardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leticia Miho Hamada
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Larissa Dos Santos Izabel
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
17
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
18
|
Zhang J, Li Y, Yang L, Ma N, Qian S, Chen Y, Duan Y, Xiang X, He Y. New advances in drug development for metabolic dysfunction-associated diseases and alcohol-associated liver disease. Cell Biosci 2024; 14:90. [PMID: 38971765 PMCID: PMC11227172 DOI: 10.1186/s13578-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic disorders are currently threatening public health worldwide. Discovering new targets and developing promising drugs will reduce the global metabolic-related disease burden. Metabolic disorders primarily consist of lipid and glucose metabolic disorders. Specifically, metabolic dysfunction-associated steatosis liver disease (MASLD) and alcohol-associated liver disease (ALD) are two representative lipid metabolism disorders, while diabetes mellitus is a typical glucose metabolism disorder. In this review, we aimed to summarize the new drug candidates with promising efficacy identified in clinical trials for these diseases. These drug candidates may provide alternatives for patients with metabolic disorders and advance the progress of drug discovery for the large disease burden.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yixin Li
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
20
|
Bozadjieva-Kramer N, Shin JH, Li Z, Rupp AC, Miller N, Kernodle S, Lanthier N, Henry P, Seshadri N, Myronovych A, MacDougald OA, O’Rourke RW, Kohli R, Burant CF, Rothberg AE, Seeley RJ. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 2024; 9:e174164. [PMID: 38587078 PMCID: PMC11128213 DOI: 10.1172/jci.insight.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | | | - Ziru Li
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Alan C. Rupp
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Miller
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicolas Lanthier
- Hepato-Gastroenterology Department, Saint-Luc University Clinics, and
- Laboratory of Hepatology and Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Paulina Henry
- Pathological Anatomy Department, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | | | - Ormond A. MacDougald
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W. O’Rourke
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Charles F. Burant
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E. Rothberg
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
21
|
Zeng T, Tang X, Bai X, Xiong H. FGF19 Promotes the Proliferation and Insulin Secretion from Human Pancreatic β Cells Via the IRS1/GLUT4 Pathway. Exp Clin Endocrinol Diabetes 2024; 132:152-161. [PMID: 38513652 DOI: 10.1055/a-2250-7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic β cells in obesity-associated T2DM remains poorly understood. METHODS Human pancreatic β cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic β cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS HG+PA treatment reduced the human pancreatic β cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic β cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic β cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xi Tang
- Department of Cardiology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xiaosu Bai
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Haiyan Xiong
- Department of Nursing, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
22
|
Li X, Lu W, Kharitonenkov A, Luo Y. Targeting the FGF19-FGFR4 pathway for cholestatic, metabolic, and cancerous diseases. J Intern Med 2024; 295:292-312. [PMID: 38212977 DOI: 10.1111/joim.13767] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Yongde Luo
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
23
|
Baranova A, Luo J, Fu L, Yao G, Zhang F. Evaluating the effects of circulating inflammatory proteins as drivers and therapeutic targets for severe COVID-19. Front Immunol 2024; 15:1352583. [PMID: 38455043 PMCID: PMC10917991 DOI: 10.3389/fimmu.2024.1352583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Objective The relationships between circulating inflammatory proteins and COVID-19 have been observed in previous cohorts. However, it is not unclear which circulating inflammatory proteins may boost the risk of or protect against COVID-19. Methods We performed Mendelian randomization (MR) analysis using GWAS summary result of 91 circulating inflammation-related proteins (N = 14,824) to assess their causal impact on severe COVID-19. The COVID-19 phenotypes encompassed both hospitalized (N = 2,095,324) and critical COVID-19 (N = 1,086,211). Moreover, sensitivity analyses were conducted to evaluate the robustness and reliability. Results We found that seven circulating inflammatory proteins confer positive causal effects on severe COVID-19. Among them, serum levels of IL-10RB, FGF-19, and CCL-2 positively contributed to both hospitalized and critical COVID-19 conditions (OR: 1.10~1.16), while the other 4 proteins conferred risk on critical COVID-19 only (OR: 1.07~1.16), including EIF4EBP1, IL-7, NTF3, and LIF. Meanwhile, five proteins exert protective effects against hospitalization and progression to critical COVID-19 (OR: 0.85~0.95), including CXCL11, CDCP1, CCL4/MIP, IFNG, and LIFR. Sensitivity analyses did not support the presence of heterogeneity in the majority of MR analyses. Conclusions Our study revealed risk and protective inflammatory proteins for severe COVID-19, which may have vital implications for the treatment of the disease.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | - Jing Luo
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Li Fu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanqun Yao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Soares GM, Balbo SL, Bronczek GA, Vettorazzi JF, Marmentini C, Zangerolamo L, Velloso LA, Carneiro EM. Vertical sleeve gastrectomy improves glucose-insulin homeostasis by enhancing β-cell function and survival via FGF15/19. Am J Physiol Endocrinol Metab 2024; 326:E134-E147. [PMID: 38117265 DOI: 10.1152/ajpendo.00218.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Vertical sleeve gastrectomy (VSG) restores glucose homeostasis in obese mice and humans. In addition, the increased fibroblast growth factor (FGF)15/19 circulating level postsurgery has been implicated in this effect. However, the impact of FGF15/19 on pancreatic islets remains unclear. Using a diet-induced obese mice model, we demonstrate that VSG attenuates insulin hypersecretion in isolated pancreatic islets, likely due to morphological alterations in the endocrine pancreas such as reduction in islet, β-cell, and α-cell mass. In addition, VSG relieves gene expression of endoplasmic reticulum (ER) stress and inflammation markers in islets from obese mice. Incubation of INS-1E β-cells with serum from obese mice induced dysfunction and cell death, whereas these conditions were not induced with serum from obese mice submitted to VSG, implicating the involvement of a humoral factor. Indeed, VSG increased FGF15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E cells treated with the serum from these mice. Moreover, exposing INS-1E cells to an FGFR inhibitor abolished the effects of VSG serum on insulin secretion and cell death. Also, recombinant FGF19 prevents INS-1E cells from dysfunction and death induced by serum from obese mice. These findings indicate that the amelioration of glucose-insulin homeostasis promoted by VSG is mediated, at least in part, by FGF15/19. Therefore, approaches promoting FGF15/19 release or action may restore pancreatic islet function in obesity.NEW & NOTEWORTHY Vertical sleeve gastrectomy (VSG) decreases insulin secretion, endoplasmic reticulum (ER) stress, and inflammation in pancreatic islets from obese mice. In addition, VSG increased fibroblast growth factor (FGF)15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E β-cells treated with the serum from these mice. Serum from operated mice protects INS-1E cells from dysfunction and apoptosis, which was mediated by FGF15/19.
Collapse
Affiliation(s)
- Gabriela M Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L Balbo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | - Gabriela A Bronczek
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Latin-American Institute of Life and Nature Sciences, Federal University of Latin-American Integration (UNILA), Foz do Iguacu, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Zangerolamo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
25
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
26
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
27
|
Iannone V, Babu AF, Lok J, Gómez-Gallego C, D'Auria G, Vazquez-Uribe R, Vaaben TH, Bongers M, Mikkonen S, Vaittinen M, Tikkanen I, Kettunen M, Klåvus A, Sehgal R, Kaminska D, Pihlajamaki J, Hanhineva K, El-Nezami H, Sommer MOA, Kolehmainen M. Changes in liver metabolic pathways demonstrate efficacy of the combined dietary and microbial therapeutic intervention in MASLD mouse model. Mol Metab 2023; 78:101823. [PMID: 37839774 PMCID: PMC10618820 DOI: 10.1016/j.molmet.2023.101823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.
Collapse
Affiliation(s)
- Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland.
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO, 46020 Valencia, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ruben Vazquez-Uribe
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Troels Holger Vaaben
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Mareike Bongers
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Santtu Mikkonen
- University Department of Technical Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Vaittinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Ida Tikkanen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Mikko Kettunen
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Anton Klåvus
- Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Ratika Sehgal
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| | - Dorota Kaminska
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, USA
| | - Jussi Pihlajamaki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, 20014 Turku, Finland
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; University of Hong Kong, Hong Kong SAR, Molecular and Cell Biology Research Area, School of Biological Sciences, Hong Kong, Hong Kong, China
| | - Morten Otto Alexander Sommer
- Technical University of Denmark, The Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark.
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland
| |
Collapse
|
28
|
Yang X, He Z, Chen Q, Chen Y, Chen G, Liu C. Global research trends of diabetes remission: a bibliometric study. Front Endocrinol (Lausanne) 2023; 14:1272651. [PMID: 38089622 PMCID: PMC10715259 DOI: 10.3389/fendo.2023.1272651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Background Research on diabetes remission has garnered prominence in recent years. However, to date, no pertinent bibliometric study has been published. This study sought to elucidate the current landscape and pinpoint potential new research directions through a bibliometric analysis of diabetes remission. Methods We perused relevant articles on diabetes remission from January 1, 2000, to April 16, 2023, in the Web of Science. We utilized CiteSpace software and VOSviewer software to construct knowledge maps and undertake analysis of countries, institutional affiliations, author contributions, journals, and keywords. This analysis facilitated the identification of current research foci and forecasting future trends. Results A total of 970 English articles were procured, and the annual publication volume manifested a steady growth trend. Most of the articles originated from America (n=342, 35.26%), succeeded by China and England. Pertaining to institutions, the University of Newcastle in England proliferated the most articles (n=36, 3.71%). Taylor R authored the most articles (n=35, 3.61%), and his articles were also the most co-cited (n=1756 times). Obesity Surgery dominated in terms of published articles (n=81, 8.35%). "Bariatric surgery" was the most prevalently used keyword. The keyword-clustering map revealed that the research predominantly centered on diabetes remission, type 1 diabetes, bariatric surgery, and lifestyle interventions. The keyword emergence and keyword time-zone maps depicted hotspots and shifts in the domain of diabetes remission. Initially, the hotspots were primarily fundamental experiments probing the feasibilities and mechanisms of diabetes remission, such as transplantation. Over the course, the research trajectory transitioned from basic to clinical concerning diabetes remission through bariatric surgery, lifestyle interventions, and alternative strategies. Conclusion Over the preceding 20 years, the domain of diabetes remission has flourished globally. Bariatric surgery and lifestyle interventions bestow unique advantages for diabetes remission. Via the maps, the developmental milieu, research foci, and avant-garde trends in this domain are cogently portrayed, offering guidance for scholars.
Collapse
Affiliation(s)
- Xue Yang
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
- KweiChow Moutai Hospital, Renhuai, China
| | - Zhiwei He
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Qilin Chen
- KweiChow Moutai Hospital, Renhuai, China
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yu Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, Rupérez C, Zamora M, Crispi F, Uriarte I, Fernández-Barrena MG, Avila M, Ferrer-Curriu G, Lupón J, Bayés-Genis A, Villarroya F, Gavaldà-Navarro A, Planavila A. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy. J Pathol 2023; 261:335-348. [PMID: 37650293 DOI: 10.1002/path.6193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Samantha Morón-Ros
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Gemma Ferrer-Curriu
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Antoni Bayés-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
30
|
Suárez M, Martínez R, Torres AM, Ramón A, Blasco P, Mateo J. A Machine Learning-Based Method for Detecting Liver Fibrosis. Diagnostics (Basel) 2023; 13:2952. [PMID: 37761319 PMCID: PMC10529519 DOI: 10.3390/diagnostics13182952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cholecystectomy and Metabolic-associated steatotic liver disease (MASLD) are prevalent conditions in gastroenterology, frequently co-occurring in clinical practice. Cholecystectomy has been shown to have metabolic consequences, sharing similar pathological mechanisms with MASLD. A database of MASLD patients who underwent cholecystectomy was analysed. This study aimed to develop a tool to identify the risk of liver fibrosis after cholecystectomy. For this purpose, the extreme gradient boosting (XGB) algorithm was used to construct an effective predictive model. The factors associated with a better predictive method were platelet level, followed by dyslipidaemia and type-2 diabetes (T2DM). Compared to other ML methods, our proposed method, XGB, achieved higher accuracy values. The XGB method had the highest balanced accuracy (93.16%). XGB outperformed KNN in accuracy (93.16% vs. 84.45%) and AUC (0.92 vs. 0.84). These results demonstrate that the proposed XGB method can be used as an automatic diagnostic aid for MASLD patients based on machine-learning techniques.
Collapse
Affiliation(s)
- Miguel Suárez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Raquel Martínez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Antonio Ramón
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
31
|
Huh JH, Lee KJ, Cho YK, Moon S, Kim YJ, Roh E, Han KD, Koh DH, Kang JG, Lee SJ, Ihm SH. Cholecystectomy Increases the Risk of Type 2 Diabetes in the Korean Population: Data From the National Health Insurance Cooperation Health Checkup 2010-2017. Ann Surg 2023; 278:e264-e271. [PMID: 36066197 DOI: 10.1097/sla.0000000000005683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study assessed whether cholecystectomy is a risk factor for newly developed type 2 diabetes mellitus (T2DM) in the Korean population. BACKGROUND There is a lack of evidence that cholecystectomy is independently associated with insulin resistance and T2DM. METHODS This study included all patients aged more than 20 years who had undergone cholecystectomy from 2010 to 2015 (n=55,166) and age-matched and sex-matched control subjects without cholecystectomy (n=110,332) using the National Health Insurance Service database. They were followed up until the date of newly developed T2DM or study end and the incidence of T2DM was traced over a maximum observation period of 7 years. RESULTS Overall, 55,166 patients who underwent cholecystectomy and 110,332 age-matched and sex-matched controls were followed up for ∼4.7 years, during which, incident T2DM occurred in 5982 (3.61%) patients. Cholecystectomy was associated with 20% higher risk of T2DM after adjustment for all covariates. The cumulative incidence of T2DM also significantly increased in the cholecystectomy group for ∼7 years ( P <0.001). The adjusted hazard ratio (HR) for T2DM was the highest in the group with both cholecystectomy and obesity using the control without both cholecystectomy and obesity as a reference [HR=1.41, 95% confidence interval (CI): 1.29-1.56]. The group with cholecystectomy without obesity showed the comparable risk of incident T2DM compared with the group without cholecystectomy with obesity (HR=1.29, 95% CI: 1.20-1.40 for cholecystectomy without obesity and HR=1.24, 95% CI: 1.14-1.36 for control with obesity). CONCLUSIONS These results provide evidence that cholecystectomy is associated with an increased risk of newly developed T2DM in the Korean population. Further research is required to elucidate the mechanism of the association between cholecystectomy and incident diabetes.
Collapse
Affiliation(s)
- Ji Hye Huh
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Kyong Joo Lee
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Shinje Moon
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yoon Jung Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Eun Roh
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Kyung-do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Dong Hee Koh
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jun Goo Kang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Seong Jin Lee
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sung-Hee Ihm
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
32
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
33
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
34
|
Wang S, Zha L, Cui X, Yeh Y, Liu R, Jing J, Shi H, Chen W, Hanover J, Yin J, Yu L, Xue B, Shi H. Epigenetic Regulation of Hepatic Lipid Metabolism by DNA Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206068. [PMID: 37282749 PMCID: PMC10369300 DOI: 10.1002/advs.202206068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Indexed: 06/08/2023]
Abstract
While extensive investigations have been devoted to the study of genetic pathways related to fatty liver diseases, much less is known about epigenetic mechanisms underlying these disorders. DNA methylation is an epigenetic link between environmental factors (e.g., diets) and complex diseases (e.g., non-alcoholic fatty liver disease). Here, it is aimed to study the role of DNA methylation in the regulation of hepatic lipid metabolism. A dynamic change in the DNA methylome in the liver of high-fat diet (HFD)-fed mice is discovered, including a marked increase in DNA methylation at the promoter of Beta-klotho (Klb), a co-receptor for the biological functions of fibroblast growth factor (FGF)15/19 and FGF21. DNA methyltransferases (DNMT) 1 and 3A mediate HFD-induced methylation at the Klb promoter. Notably, HFD enhances DNMT1 protein stability via a ubiquitination-mediated mechanism. Liver-specific deletion of Dnmt1 or 3a increases Klb expression and ameliorates HFD-induced hepatic steatosis. Single-nucleus RNA sequencing analysis reveals pathways involved in fatty acid oxidation in Dnmt1-deficient hepatocytes. Targeted demethylation at the Klb promoter increases Klb expression and fatty acid oxidation, resulting in decreased hepatic lipid accumulation. Up-regulation of methyltransferases by HFD may induce hypermethylation of the Klb promoter and subsequent down-regulation of Klb expression, resulting in the development of hepatic steatosis.
Collapse
Affiliation(s)
- Shirong Wang
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Lin Zha
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
- The Northern Medical DistrictChinese PLA General HospitalBeijing100094China
| | - Xin Cui
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Yu‐Te Yeh
- Department of Internal MedicineUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Ruochuan Liu
- Department of Chemistry and the Center for Diagnosis and TherapeuticsGeorgia State UniversityAtlantaGA30303
| | - Jia Jing
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Huidong Shi
- GRU Cancer Center and Department of Biochemistry and Molecular BiologyMedical College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Weiping Chen
- Genomic Core Lab of National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20855USA
| | - John Hanover
- Genomic Core Lab of National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20855USA
| | - Jun Yin
- Department of Chemistry and the Center for Diagnosis and TherapeuticsGeorgia State UniversityAtlantaGA30303
| | - Liqing Yu
- Department of Internal MedicineUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Bingzhong Xue
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Hang Shi
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| |
Collapse
|
35
|
Wei M, Cao WB, Zhao RD, Sun DP, Liang YZ, Huang YD, Cheng ZW, Ouyang J, Yang WS, Yu WB. Fibroblast growth factor 15, induced by elevated bile acids, mediates the improvement of hepatic glucose metabolism after sleeve gastrectomy. World J Gastroenterol 2023; 29:3280-3291. [PMID: 37377582 PMCID: PMC10292143 DOI: 10.3748/wjg.v29.i21.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Fibroblast growth factor (FGF) 15/19, which is expressed in and secreted from the distal ileum, can regulate hepatic glucose metabolism in an endocrine manner. The levels of both bile acids (BAs) and FGF15/19 are elevated after bariatric surgery. However, it is unclear whether the increase in FGF15/19 is induced by BAs. Moreover, it remains to be understood whether FGF15/19 elevations contribute to improvements in hepatic glucose metabolism after bariatric surgery.
AIM To investigate the mechanism of improvement of hepatic glucose metabolism by elevated BAs after sleeve gastrectomy (SG).
METHODS By calculating and comparing the changes of body weight after SG with SHAM group, we examined the weight-loss effect of SG. The oral glucose tolerance test (OGTT) test and area under the curve of OGTT curves were used to assess the anti-diabetic effects of SG. By detecting the glycogen content, expression and activity of glycogen synthase as well as the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pepck), we evaluated the hepatic glycogen content and gluconeogenesis activity. We examined the levels of total BA (TBA) together with the farnesoid X receptor (FXR)-agonistic BA subspecies in systemic serum and portal vein at week 12 post-surgery. Then the histological expression of ileal FXR and FGF15 and hepatic FGF receptor 4 (FGFR4) with its corresponding signal pathways involved in glucose metabolism were detected.
RESULTS After surgery, food intake and body weight gain of SG group was decreased compare with the SHAM group. The hepatic glycogen content and glycogen synthase activity was significantly stimulated after SG, while the expression of the key enzyme for hepatic gluconeogenesis: G6Pase and Pepck, were depressed. TBA levels in serum and portal vein were both elevated after SG, the FXR-agonistic BA subspecies: Chenodeoxycholic acid (CDCA), lithocholic acid (LCA) in serum and CDCA, DCA, LCA in portal vein were all higher in SG group than that in SHAM group. Consequently, the ileal expression of FXR and FGF15 were also advanced in SG group. Moreover, the hepatic expression of FGFR4 was stimulated in SG-operated rats. As a result, the activity of its corresponding pathway for glycogen synthesis: FGFR4-Ras-extracellular signal regulated kinase pathway was stimulated, while the corresponding pathway for hepatic gluconeogenesis: FGFR4- cAMP regulatory element-binding protein- peroxisome proliferator-activated receptor γ coactivator-1α pathway was suppressed.
CONCLUSION Elevated BAs after SG induced FGF15 expression in distal ileum by activating their receptor FXR. Furthermore, the promoted FGF15 partly mediated the improving effects on hepatic glucose metabolism of SG.
Collapse
Affiliation(s)
- Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wei-Bo Cao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ru-Dong Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Dan-Ping Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Ze Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ya-Di Huang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ze-Wei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Shuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Bin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
36
|
Carson MD, Warner AJ, Geiser VL, Hathaway-Schrader JD, Alekseyenko AV, Marshall J, Westwater C, Novince CM. Prolonged Antibiotic Exposure during Adolescence Dysregulates Liver Metabolism and Promotes Adiposity in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:796-812. [PMID: 36906264 PMCID: PMC10284030 DOI: 10.1016/j.ajpath.2023.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
Antibiotic administration during early life has been shown to have lasting effects on the gut microbiota, which have been linked to sustained alterations in liver metabolism and adiposity. Recent investigations have discerned that the gut microbiota continues to develop toward an adult-like profile during adolescence. However, the impact of antibiotic exposure during adolescence on metabolism and adiposity is unclear. Herein, a retrospective analysis of Medicaid claims data was performed, which indicated that tetracycline class antibiotics are commonly prescribed for the systemic treatment of adolescent acne. The purpose of this was to discern the impact of a prolonged tetracycline antibiotic exposure during adolescence on the gut microbiota, liver metabolism, and adiposity. Male C57BL/6T specific pathogen-free mice were administered a tetracycline antibiotic during the pubertal/postpubertal adolescent growth phase. Groups were euthanized at different time points to assess immediate and sustained antibiotic treatment effects. Antibiotic exposure during adolescence caused lasting genera-level shifts in the intestinal bacteriome and persistent dysregulation of metabolic pathways in the liver. Dysregulated hepatic metabolism was linked to sustained disruption of the intestinal farnesoid X receptor-fibroblast growth factor 15 axis, a gut-liver endocrine axis that supports metabolic homeostasis. Antibiotic exposure during adolescence increased subcutaneous, visceral, and marrow adiposity, which intriguingly manifested following antibiotic therapy. This preclinical work highlights that prolonged antibiotic courses for the clinical treatment of adolescent acne may have unintended deleterious effects on liver metabolism and adiposity.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Vincenza L Geiser
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina
| | - Julie Marshall
- Division of Population Oral Health, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
37
|
Würfel M, Blüher M, Stumvoll M, Ebert T, Kovacs P, Tönjes A, Breitfeld J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines 2023; 11:biomedicines11051427. [PMID: 37239098 DOI: 10.3390/biomedicines11051427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines provide an outstanding role in the comprehensive etiology of obesity and may link adipose tissue dysfunction to further metabolic and cardiovascular complications. Although several adipokines have been identified in terms of their physiological roles, many regulatory circuits remain unclear and translation from experimental studies to clinical applications has yet to occur. Nevertheless, due to their complex metabolic properties, adipokines offer immense potential for their use both as obesity-associated biomarkers and as relevant treatment strategies for overweight, obesity and metabolic comorbidities. To provide an overview of the current clinical use of adipokines, this review summarizes clinical studies investigating the potential of various adipokines with respect to diagnostic and therapeutic treatment strategies for obesity and linked metabolic disorders. Furthermore, an overview of adipokines, for which a potential for clinical use has been demonstrated in experimental studies to date, will be presented. In particular, promising data revealed that fibroblast growth factor (FGF)-19, FGF-21 and leptin offer great potential for future clinical application in the treatment of obesity and related comorbidities. Based on data from animal studies or other clinical applications in addition to obesity, adipokines including adiponectin, vaspin, resistin, chemerin, visfatin, bone morphogenetic protein 7 (BMP-7) and tumor necrosis factor alpha (TNF-α) provide potential for human clinical application.
Collapse
Affiliation(s)
- Marleen Würfel
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Thomas Ebert
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Jana Breitfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Sun H, Lin W, Tang Y, Tu H, Chen T, Zhou J, Wang D, Xu Q, Niu J, Dong W, Liu S, Ni X, Yang W, Zhao Y, Ying L, Zhang J, Li X, Mohammadi M, Shen WL, Huang Z. Sustained remission of type 2 diabetes in rodents by centrally administered fibroblast growth factor 4. Cell Metab 2023:S1550-4131(23)00172-9. [PMID: 37167965 DOI: 10.1016/j.cmet.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/30/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Type 2 diabetes (T2D) is a major health and economic burden worldwide. Despite the availability of multiple drugs for short-term management, sustained remission of T2D is currently not achievable pharmacologically. Intracerebroventricular administration of fibroblast growth factor 1 (icvFGF1) induces sustained remission in T2D rodents, propelling intense research efforts to understand its mechanism of action. Whether other FGFs possess similar therapeutic benefits is currently unknown. Here, we show that icvFGF4 also elicits a sustained antidiabetic effect in both male db/db mice and diet-induced obese mice by activating FGF receptor 1 (FGFR1) expressed in glucose-sensing neurons within the mediobasal hypothalamus. Specifically, FGF4 excites glucose-excited (GE) neurons while inhibiting glucose-inhibited (GI) neurons. Moreover, icvFGF4 restores the percentage of GI neurons in db/db mice. Importantly, intranasal delivery of FGF4 alleviates hyperglycemia in db/db mice, paving the way for non-invasive therapy. We conclude that icvFGF4 holds significant therapeutic potential for achieving sustained remission of T2D.
Collapse
Affiliation(s)
- Hongbin Sun
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Wei Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Tang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Department of Physiology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Hongqing Tu
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Ting Chen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Jie Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dezhong Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingqing Xu
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Jianlou Niu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenliya Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sidan Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinyan Ni
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Wen Yang
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China
| | - Yingzheng Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Ying
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Zhang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Department of Physiology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Moosa Mohammadi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei L Shen
- School of Life Science and Technology & Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China.
| | - Zhifeng Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
39
|
Wang YD, Wu LL, Qi XY, Wang YY, Liao ZZ, Liu JH, Xiao XH. New insight of obesity-associated NAFLD: Dysregulated "crosstalk" between multi-organ and the liver? Genes Dis 2023; 10:799-812. [PMID: 37396503 PMCID: PMC10308072 DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism for the pathogenesis of obesity-associated NAFLD remains largely obscure. Although the "multiple hit" theory provides a more accurate explanation of NAFLD pathogenesis, it still cannot fully explain precisely how obesity causes NAFLD. The liver is the key integrator of the body's energy needs, receiving input from multiple metabolically active organs. Thus, recent studies have advocated the "multiple crosstalk" hypothesis, highlighting that obesity-related hepatic steatosis may be the result of dysregulated "crosstalk" among multiple extra-hepatic organs and the liver in obesity. A wide variety of circulating endocrine hormones work together to orchestrate this "crosstalk". Of note, with deepening understanding of the endocrine system, the perception of hormones has gradually risen from the narrow sense (i.e. traditional hormones) to the broad sense of hormones as organokines and exosomes. In this review, we focus on the perspective of organic endocrine hormones (organokines) and molecular endocrine hormones (exosomes), summarizing systematically how the two types of new hormones mediate the dialogue between extra-hepatic organs and liver in the pathogenesis of obesity-related NAFLD.
Collapse
Affiliation(s)
- Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
40
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
41
|
Chen L, Fan Z, Sun X, Qiu W, Mu W, Chai K, Cao Y, Wang G, Lv G. Associations of cholecystectomy with the risk of colorectal cancer: a Mendelian randomization study. Chin Med J (Engl) 2023; 136:840-847. [PMID: 37027252 PMCID: PMC10150870 DOI: 10.1097/cm9.0000000000002612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Cholecystectomy is a standard surgery for patients suffering from gallbladder diseases, while the causal effects of cholecystectomy on colorectal cancer (CRC) and other complications are still unknown. METHODS We obtained genetic variants associated with cholecystectomy at a genome-wide significant level ( P value <5 × 10 -8 ) as instrumental variables (IVs) and performed Mendelian randomization (MR) to identify the complications of cholecystectomy. Furthermore, the cholelithiasis was also treated as the exposure to compare its causal effects to those of cholecystectomy, and multivariable MR analysis was carried out to judge whether the effect of cholecystectomy was independent of cholelithiasis. The study was reported based on Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization guidelines. RESULTS The selected IVs explained 1.76% variance of cholecystectomy. Our MR analysis suggested that cholecystectomy cannot elevate the risk of CRC (odds ratio [OR] =1.543, 95% confidence interval [CI]: 0.607-3.924). Also, it was not significant in either colon or rectum cancer. Intriguingly, cholecystectomy might decrease the risk of Crohn's disease (OR = 0.078, 95% CI: 0.016-0.368) and coronary heart disease (OR = 0.352, 95% CI: 0.164-0.756). However, it might increase the risk of irritable bowel syndrome (IBS) (OR = 7.573, 95% CI: 1.096-52.318). Cholelithiasis could increase the risk of CRC in the largest population (OR = 1.041, 95% CI: 1.010-1.073). The multivariable MR analysis suggested that genetic liability to cholelithiasis could increase the risk of CRC in the largest population (OR = 1.061, 95% CI: 1.002-1.125) after adjustment of cholecystectomy. CONCLUSIONS The study indicated that cholecystectomy might not increase the risk of CRC, but such a conclusion needs further proving by clinical equivalence. Additionally, it might increase the risk of IBS, which should be paid attention to in clinical practice.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Benoit B, Beau A, Bres É, Chanon S, Pinteur C, Vieille-Marchiset A, Jalabert A, Zhang H, Garg P, Strigini M, Vico L, Ruzzin J, Vidal H, Koppe L. Treatment with fibroblast growth factor 19 increases skeletal muscle fiber size, ameliorates metabolic perturbations and hepatic inflammation in 5/6 nephrectomized mice. Sci Rep 2023; 13:5520. [PMID: 37015932 PMCID: PMC10073190 DOI: 10.1038/s41598-023-31874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with osteosarcopenia, and because a physical decline in patients correlates with an increased risk of morbidity, an improvement of the musculoskeletal system is expected to improve morbi-mortality. We recently uncovered that the intestinal hormone Fibroblast Growth Factor 19 (FGF19) is able to promote skeletal muscle mass and strength in rodent models, in addition to its capacity to improve glucose homeostasis. Here, we tested the effects of a treatment with recombinant human FGF19 in a CKD mouse model, which associates sarcopenia and metabolic disorders. In 5/6 nephrectomized (5/6Nx) mice, subcutaneous FGF19 injection (0.1 mg/kg) during 18 days increased skeletal muscle fiber size independently of food intake and weight gain, associated with decreased gene expression of myostatin. Furthermore, FGF19 treatment attenuated glucose intolerance and reduced hepatic expression of gluconeogenic genes in uremic mice. Importantly, the treatment also decreased gene expression of liver inflammatory markers in CKD mice. Therefore, our results suggest that FGF19 may represent a novel interesting therapeutic strategy for a global improvement of sarcopenia and metabolic complications in CKD.
Collapse
Affiliation(s)
- Berengère Benoit
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Alice Beau
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Émilie Bres
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite, France
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Claudie Pinteur
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | | | - Audrey Jalabert
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Hao Zhang
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Priyanka Garg
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Maura Strigini
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Laetitia Koppe
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France.
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite, France.
| |
Collapse
|
43
|
Sciarrillo CM, Short KR, Keirns BH, Elliott DC, Clarke SL, Palle S, Emerson SR. Postprandial triglycerides and fibroblast growth factor 19 as potential screening tools for paediatric non-alcoholic fatty liver disease. Pediatr Obes 2023; 18:e13007. [PMID: 36734693 DOI: 10.1111/ijpo.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Better screening tools for paediatric NAFLD are needed. We tested the hypothesis that the postprandial triglyceride (TG) and fibroblast growth factor 19 (FGF19) response to an abbreviated fat tolerance test (AFTT) could differentiate adolescents with NAFLD from peers with obesity and normal weight. METHODS Fifteen controls with normal weight (NW), 13 controls with obesity (OB) and 9 patients with NAFLD completed an AFTT. Following an overnight fast, participants consumed a high-fat meal. TG and FGF19 were measured at baseline and 4 h post-meal. Liver steatosis and fibrosis were measured via Fibroscan. RESULTS Fasting TG and FGF19 did not differ among groups; 4 h TG in the NAFLD and OB groups were greater (197 ± 69 mg/dL; 157 ± 72 mg/dL, respectively) than NW (105 ± 45 mg/dL; p < 0.05) and did not differ from one another. Within the entire cohort, 4 h TG were stratified by high and low steatosis. Adolescents with high steatosis had 98% greater 4 h TG than adolescents with low steatosis. 4 h FGF19, but not fasting FGF19, was higher in children with low steatosis compared with high steatosis (p < 0.05). Using area under the receiver operating curve (AUROC), the only biochemical outcome with diagnostic accuracy for NAFLD was 4 h TG (0.77 [95% CI: 0.60-0.94; p = 0.02]). CONCLUSIONS The postprandial TG response is increased in adolescents with obesity with hepatic steatosis, with or without NAFLD. Our preliminary analysis demonstrates 4 h TG differentiate patients with NAFLD from those without, supporting a role for the AFTT as a screening tool for paediatric NAFLD.
Collapse
Affiliation(s)
- Christina M Sciarrillo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin R Short
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Destinee C Elliott
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sirish Palle
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
44
|
Zhang Y, Li G, Xiao F, Wang B, Li J, Jia X, Sun Y, Chen H. Relationship between serum fibroblast growth factor 19 and vascular endothelial growth factor and soluble klotho protein in type 1 diabetic children. BMC Pediatr 2023; 23:120. [PMID: 36927328 PMCID: PMC10018886 DOI: 10.1186/s12887-023-03938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 19 (FGF19) takes part in maintaining the balance of glycolipids and may be involved in complications of type 1 diabetes(T1D) in children. This study aimed at at evaluating the relationship among the levels of serum FGF19 and vascular endothelial growth factor(VEGF)and soluble klotho protein(sklotho) in type 1 diabetic children. METHODS In a cross-section single center study samples were obtained from 96 subjects: 66 T1D and 30 healthy children.Serum FGF19 and VEGF and sklotho concentrations were measured by ELISA. And 66 type 1 diabetes participants were divided into two groups according to T1D duration or three groups according to HbA1c.Furthermore,we compared the serum levels of FGF19 and VEGF and sklotho in different groups. RESULTS The concentration of FGF19 was lower in T1D than in the controls(226.52 ± 20.86pg/mu vs.240.08 ± 23.53 pg/L, p = 0.03),while sklotho was also lower in T1D than in the controls (2448.67 ± 791.92pg/mL vs. 3083.55 ± 1113.47pg/mL, p = 0.011). In contrast, VEGF levels were higher in diabetic patients than in controls (227.95 ± 48.65pg/mL vs. 205.92 ± 28.27 pg/mL, p = 0.016). In T1D, FGF19 and VEGF and sklotho was not correlated with the duration of diabetes. FGF19 and VEGF and sklotho were correlated with HbA1c (r=-0.349, p = 0.004 and r = 0.302, p = 0.014 and r=-0.342, p = 0.005, respectively), but not with blood glucose and lipid. Among subjects in the T1D group, concentrations of FGF19,VEGF and sklotho protein were different between different groups according to the degree of HbA1c(P < 0.005).Furthermore, there was a positive correlation between the serum FGF19 concentration and sklotho levels (r = 0.247,p = 0.045), and a negative correlation between the serum FGF19 concentration and VEGF level(r=-0.335,P = 0.006). CONCLUSIONS The serum FGF19 levels have a close relation with serum VEGF levels and sklotho levels among T1D subjects. FGF19 may be involved in the development of complications in children with type 1 diabetes through interaction with VEGF and sklotho.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital, Shandong University, 9677 Jingshi Road, Lixia Area, 250021, Jinan, Shandong, China
- Department of Pediatrics, Bin Zhou Medical University Hospital, 661 Huangheer Road, 256603, Bin cheng Area, Bin Zhou, Shandong, China
| | - Guimei Li
- Department of Pediatric Endocrinology, Shandong Provincial Hospital, Shandong University, 9677 Jingshi Road, Lixia Area, 250021, Jinan, Shandong, China.
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Lixia Area, 250021, Jinan, Shandong, China.
| | - Feifei Xiao
- Department of Pediatrics, Bin Zhou Medical University Hospital, 661 Huangheer Road, 256603, Bin cheng Area, Bin Zhou, Shandong, China
| | - Bang Wang
- Department of Pediatrics, Bin Zhou Medical University Hospital, 661 Huangheer Road, 256603, Bin cheng Area, Bin Zhou, Shandong, China
| | - Jianchang Li
- Department of Pediatrics, Bin Zhou Medical University Hospital, 661 Huangheer Road, 256603, Bin cheng Area, Bin Zhou, Shandong, China
| | - Xiuhong Jia
- Department of Pediatrics, Bin Zhou Medical University Hospital, 661 Huangheer Road, 256603, Bin cheng Area, Bin Zhou, Shandong, China
| | - Yan Sun
- Department of Pediatric Endocrinology, Shandong Provincial Hospital, Shandong University, 9677 Jingshi Road, Lixia Area, 250021, Jinan, Shandong, China
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Lixia Area, 250021, Jinan, Shandong, China
| | - Hongye Chen
- Department of Pediatrics, Bin Zhou Medical University Hospital, 661 Huangheer Road, 256603, Bin cheng Area, Bin Zhou, Shandong, China
| |
Collapse
|
45
|
Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol 2023; 31:254-269. [PMID: 36319506 DOI: 10.1016/j.tim.2022.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiota represents a 'metabolic organ' that can regulate human metabolism. Intact gut microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut microbiota may lead to skeletal muscle atrophy via a bile acid-FXR pathway. This Review aims to suggest a new pathway that connects different mechanisms, involving the gut-muscle axis, that are often seen as unrelated, and, starting from preclinical studies, we hypothesize new strategies aimed at optimizing skeletal muscle functionality.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy.
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy; Research Center for High Performance Sport, UCAM, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
46
|
Vonderohe C, Guthrie G, Burrin DG. Fibroblast growth factor 19 secretion and function in perinatal development. Am J Physiol Gastrointest Liver Physiol 2023; 324:G190-G195. [PMID: 36648144 PMCID: PMC9942882 DOI: 10.1152/ajpgi.00208.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Limited work has focused on fibroblast growth factor-19 (FGF19) secretion and function in the perinatal period. FGF19 is a potent growth factor that coordinates development of the brain, eye, inner ear, and skeletal system in the embryo, but after birth, FGF19 transitions to be an endocrine regulator of the classic pathway of hepatic bile acid synthesis. FGF19 has emerged as a mediator of metabolism and bile acid synthesis in aged animals and adults in the context of liver disease and metabolic dysfunction. FGF19 has also been shown to have systemic insulin-sensitizing and skeletal muscle hypertrophic effects when induced or supplemented at supraphysiological levels in adult rodent models. These effects could be beneficial to improve growth and nutritional outcomes in preterm infants, which are metabolically resistant to the anabolic effects of enteral nutrition. Existing clinical data on FGF19 secretion and function in the perinatal period in term and preterm infants has been equivocal. Studies in pigs show that FGF19 expression and secretion are upregulated with gestational age and point to molecular and endocrine factors that may be involved. Work focused on FGF19 in pediatric diseases suggests that augmentation of FGF19 secretion by activation of gut FXR signaling is associated with benefits in diseases such as short bowel syndrome, parenteral nutrition-associated liver disease, and biliary atresia. Future work should focus on characterization of FGF19 secretion and the mechanism underpinning the transition of FGF19 function as an embryological growth factor to metabolic and bile acid regulator.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Gregory Guthrie
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Douglas G Burrin
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
47
|
Pajaziti B, Yosy K, Steinberg OV, Düfer M. FGF-23 protects cell function and viability in murine pancreatic islets challenged by glucolipotoxicity. Pflugers Arch 2023; 475:309-322. [PMID: 36437429 PMCID: PMC9908675 DOI: 10.1007/s00424-022-02772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
The fibroblast growth factor FGF-23 is a member of the FGF-15/19 subfamily with hormonal functions. Besides its well-known role for bone mineralization, FGF-23 is discussed as a marker for cardiovascular disease. We investigated whether FGF-23 has any effects on the endocrine pancreas of mice by determining insulin secretion, electrical activity, intracellular Ca2+, and apoptosis. Acute application of FGF-23 (10 to 500 ng/ml, i.e., 0.4 to 20 nM) does not affect insulin release of murine islets, while prolonged exposure leads to a 21% decrease in glucose-stimulated secretion. The present study shows for the first time that FGF-23 (100 or 500 ng/ml) partially protects against impairment of insulin secretion and apoptotic cell death induced by glucolipotoxicity. The reduction of apoptosis by FGF-23 is approximately twofold higher compared to FGF-21 or FGF-15/19. In contrast to FGF-23 and FGF-21, FGF-15/19 is clearly pro-apoptotic under control conditions. The beneficial effect of FGF-23 against glucolipotoxicity involves interactions with the stimulus-secretion cascade of beta-cells. Electrical activity and the rise in the cytosolic Ca2+ concentration of islets in response to acute glucose stimulation increase after glucolipotoxic culture (48 h). Co-culture with FGF-23 further elevates the glucose-mediated effects on both parameters. Protection against apoptosis and glucolipotoxic impairment of insulin release by FGF-23 is prevented, when calcineurin is inhibited by tacrolimus or when c-Jun N-terminal kinase (JNK) is blocked by SP600125. In conclusion, our data suggest that FGF-23 can activate compensatory mechanisms to maintain beta-cell function and integrity of islets of Langerhans during excessive glucose and lipid supply.
Collapse
Affiliation(s)
- Betina Pajaziti
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany
| | - Kenneth Yosy
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany
| | - Olga V Steinberg
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, University of Münster, Corrensstraße, 48, 48149, Münster, Germany.
| |
Collapse
|
48
|
Tian H, Zhang S, Liu Y, Wu Y, Zhang D. Fibroblast Growth Factors for Nonalcoholic Fatty Liver Disease: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24054583. [PMID: 36902015 PMCID: PMC10003526 DOI: 10.3390/ijms24054583] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic condition associated with metabolic dysfunction and obesity, has reached epidemic proportions worldwide. Although early NAFLD can be treated with lifestyle changes, the treatment of advanced liver pathology, such as nonalcoholic steatohepatitis (NASH), remains a challenge. There are currently no FDA-approved drugs for NAFLD. Fibroblast growth factors (FGFs) play essential roles in lipid and carbohydrate metabolism and have recently emerged as promising therapeutic agents for metabolic diseases. Among them, endocrine members (FGF19 and FGF21) and classical members (FGF1 and FGF4) are key regulators of energy metabolism. FGF-based therapies have shown therapeutic benefits in patients with NAFLD, and substantial progress has recently been made in clinical trials. These FGF analogs are effective in alleviating steatosis, liver inflammation, and fibrosis. In this review, we describe the biology of four metabolism-related FGFs (FGF19, FGF21, FGF1, and FGF4) and their basic action mechanisms, and then summarize recent advances in the biopharmaceutical development of FGF-based therapies for patients with NAFLD.
Collapse
Affiliation(s)
- Haoyu Tian
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Shuairan Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Correspondence: or
| |
Collapse
|
49
|
Huang A, Maier MT, Vagena E, Xu AW. Modulation of foraging-like behaviors by cholesterol-FGF19 axis. Cell Biosci 2023; 13:20. [PMID: 36732847 PMCID: PMC9893607 DOI: 10.1186/s13578-023-00955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Foraging for food precedes food consumption and is an important component of the overall metabolic programming that regulates feeding. Foraging is governed by central nervous system neuronal circuits but how it is influenced by diet and hormonal signals is still not well understood. RESULTS In this study, we show that dietary cholesterol exerted suppressive effects on locomotor activity and that these effects were partially mediated by the neuropeptide Agouti-related protein (AgRP). High dietary cholesterol stimulated intestinal expression of fibroblast growth factor 15 (Fgf15), an ortholog of the human fibroblast growth factor 19 (FGF19). Intracerebroventricular infusion of FGF19 peptide reduced exploratory activity in the open field test paradigm. On the other hand, the lack of dietary cholesterol enhanced exploratory activity in the open field test, but this effect was abolished by central administration of FGF19. CONCLUSIONS Experiments in this study show that dietary cholesterol suppresses locomotor activity and foraging-like behaviors, and this regulation is in part mediated by AgRP neurons. Dietary cholesterol or the central action of FGF19 suppresses exploratory behaviors, and the anxiogenic effects of dietary cholesterol may be mediated by the effect of FGF19 in the mouse brain. This study suggests that dietary cholesterol and intestinal hormone FGF15/19 signal a satiating state to the brain, thereby suppressing foraging-like behaviors.
Collapse
Affiliation(s)
- Alyssa Huang
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
| | - Matthew T Maier
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
| | - Eirini Vagena
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
| | - Allison W Xu
- Diabetes Center, University of California, San Francisco, CA, 94143, USA. .,Department of Anatomy, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
50
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|