1
|
Volčanšek Š, Koceva A, Jensterle M, Janež A, Muzurović E. Amylin: From Mode of Action to Future Clinical Potential in Diabetes and Obesity. Diabetes Ther 2025; 16:1207-1227. [PMID: 40332747 PMCID: PMC12085449 DOI: 10.1007/s13300-025-01733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Precision diabetology is increasingly becoming diabetes phenotype-driven, whereby the specific hormonal imbalances involved are taken into consideration. Concomitantly, body weight-favorable therapeutic approaches are being dictated by the obesity pandemic, which extends to all diabetes subpopulations. Amylin, an anorexic neuroendocrine hormone co-secreted with insulin, is deficient in individuals with diabetes and plays an important role in postprandial glucose homeostasis, with additional potential cardiovascular and neuroprotective functions. Its actions include suppressing glucagon secretion, delaying gastric emptying, increasing energy expenditure and promoting satiety. While amylin holds promise as a therapeutic agent, its translation into clinical practice is hampered by complex receptor biology, the limitations of animal models, its amyloidogenic properties and pharmacokinetic challenges. In individuals with advanced β-cell dysfunction, supplementing insulin therapy with pramlintide, the first and currently only approved injectable short-acting selective analog of amylin, has demonstrated efficacy in enhancing both postprandial and overall glycemic control in both type 2 diabetes (T2D) and type 1 diabetes (T1D) without increasing the risk of hypoglycemia or weight gain. Current research focuses on several key strategies, from enhancing amylin stability by attaching polyethylene glycol or carbohydrate molecules to amylin, to developing oral amylin formulations to improve patients' convenience, as well as developing various combination therapies to enhance weight loss and glucose regulation by targeting multiple receptors in metabolic pathways. The novel synergistically acting glucagon-like peptide-1 (GLP-1) receptor agonist combined with the amylin agonist, CagriSema, shows promising results in both glucose regulation and weight management. As such, amylin agonists (combined with other members of the incretin class) could represent the elusive drug candidate to address the multi-hormonal dysregulations of diabetes subtypes and qualify as a precision medicine approach that surpasses the long overdue division into T1DM and T2DM. Further development of amylin-based therapies or delivery systems is crucial to fully unlock the therapeutic potential of this intriguing hormone.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrijana Koceva
- Department of Endocrinology and Diabetology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Emir Muzurović
- Endocrinology Section, Department of Internal Medicine, Clinical Centre of Montenegro, Podgorica, Montenegro.
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
2
|
Walker CS, Aitken JF, Vazhoor Amarsingh G, Zhang S, Cooper GJS. Amylin: emergent therapeutic opportunities in overweight, obesity and diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01125-9. [PMID: 40360789 DOI: 10.1038/s41574-025-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
The identification of amylin as a glucoregulatory peptide hormone with roles in meal-ending satiation sparked a surge of experimental development, which culminated in the amylin mimetic drug pramlintide. Pramlintide was approved by the FDA in 2005 for the treatment of type 1 diabetes mellitus and insulin-requiring type 2 diabetes, and was also explored as a novel anti-obesity treatment. Despite this exciting potential, efforts to develop an amylin-based anti-obesity therapeutic stalled owing to challenges around dosage frequency, safety and formulation. Generally, anti-obesity therapies have displayed modest efficacy and mixed safety profiles, leaving a clear unmet clinical need that requires addressing. Advances in peptide chemistry have reinvigorated the amylin field by enabling the manufacture of effective new amylin-based molecules, resulting in therapeutics that are now on the cusp of approval. At present, there are growing concerns around GLP1 receptor agonist-based therapeutics, in particular their association with loss of lean body mass. Additionally, treatment of patients with overweight or obesity without associated comorbidities is increasingly common. The widespread pharmacotherapy of otherwise healthy populations with overweight or obesity with the goal of improving future health requires further regulatory and ethical consideration. This Review describes how amylin controls energy homeostasis and provides a current overview of amylin-based therapeutic development.
Collapse
Affiliation(s)
| | - Jacqueline F Aitken
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Shaoping Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
- School of Medical Sciences, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Petersen EA, Blom I, Melander SA, Al-Rubai M, Vidotto M, Dalgaard LT, Karsdal MA, Henriksen K, Larsen S, Larsen AT. DACRA induces profound weight loss, satiety control, and increased mitochondrial respiratory capacity in adipose tissue. Int J Obes (Lond) 2024; 48:1421-1429. [PMID: 38879729 DOI: 10.1038/s41366-024-01564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Dual amylin and calcitonin receptor agonists (DACRAs) are therapeutic candidates in the treatment of obesity with beneficial effects on weight loss superior to suppression of food intake. Hence, suggesting effects on energy expenditure by possibly targeting mitochondria in metabolically active tissue. METHODS Male rats with HFD-induced obesity received a DACRA, KBP-336, every third day for 8 weeks. Upon study end, mitochondrial respiratory capacity (MRC), - enzyme activity, - transcriptional factors, and -content were measured in perirenal (pAT) and inguinal adipose tissue. A pair-fed group was included to examine food intake-independent effects of KBP-336. RESULTS A vehicle-corrected weight loss (23.4 ± 2.8%) was achieved with KBP-336, which was not observed to the same extent with the food-restricted weight loss (12.4 ± 2.8%) (P < 0.001). Maximal coupled respiration supported by carbohydrate and lipid-linked substrates was increased after KBP-336 treatment independent of food intake in pAT (P < 0.01). Moreover, oligomycin-induced leak respiration and the activity of citrate synthase and β-hydroxyacetyl-CoA-dehydrogenase were increased with KBP-336 treatment (P < 0.05). These effects occurred without changes in mitochondrial content in pAT. CONCLUSIONS These findings demonstrate favorable effects of KBP-336 on MRC in adipose tissue, indicating an increased energy expenditure and capacity to utilize fatty acids. Thus, providing more mechanistic insight into the DACRA-induced weight loss.
Collapse
Affiliation(s)
- Emilie A Petersen
- Nordic Bioscience, Herlev, Denmark.
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ida Blom
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mays Al-Rubai
- Nordic Bioscience, Herlev, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- KeyBioscience AG, Stans, Switzerland
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Rubinić I, Kurtov M, Likić R. Novel Pharmaceuticals in Appetite Regulation: Exploring emerging gut peptides and their pharmacological prospects. Pharmacol Res Perspect 2024; 12:e1243. [PMID: 39016695 PMCID: PMC11253306 DOI: 10.1002/prp2.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024] Open
Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Collapse
Affiliation(s)
- Igor Rubinić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of RijekaRijekaCroatia
- Clinical Pharmacology unitClinical Hospital Center RijekaRijekaCroatia
| | - Marija Kurtov
- Division of Clinical Pharmacology and Toxicology, Department of Internal MedicineUniversity Hospital “Sveti Duh”ZagrebCroatia
| | - Robert Likić
- Department of Internal MedicineSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
5
|
Yanagida B, Yamamoto T, Suzuki H. Amylin-like immunoreactivity in the extra-islet peptide YY-producing and glucagon-immunoreactive cells in Japanese quail pancreas. Anat Histol Embryol 2024; 53:e13074. [PMID: 38864153 DOI: 10.1111/ahe.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
In this study, we investigated amylin-like substance distribution in the pancreas of Japanese quail (Coturnix japonica) using a specific anti-rat amylin serum. We detected amylin-immunoreactive cells dispersed in the pancreatic extra-islet region but not in the islet region. The synthetic rat amylin-containing serum pre-absorption abolished the staining profile. Almost all amylin-immunoreactive cells were immuno-positive for peptide YY (PYY). In addition, certain amylin-immunoreactive cells stained immuno-positive for glucagon. Amylin and PYY co-secreted from the extra-islet cells might participate in the insulin and glucagon release regulation in the pancreas and food intake modulation through the central nervous system.
Collapse
Affiliation(s)
- Bonten Yanagida
- Department of Biology, University of Teacher Education Fukuoka, Munakata, Fukuoka, Japan
| | - Toshiharu Yamamoto
- Department of Physical Therapy, Faculty of Medical Science, Nagoya Women's University, Nagoya, Aichi, Japan
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Hirohumi Suzuki
- Department of Biology, University of Teacher Education Fukuoka, Munakata, Fukuoka, Japan
| |
Collapse
|
6
|
Tarhan M, Hartl T, Shchyglo O, Colitti-Klausnitzer J, Kuhla A, Breuer TM, Manahan-Vaughan D. Changes in hippocampal volume, synaptic plasticity and amylin sensitivity in an animal model of type 2 diabetes are associated with increased vulnerability to amyloid-beta in advancing age. Front Aging Neurosci 2024; 16:1373477. [PMID: 38974903 PMCID: PMC11224464 DOI: 10.3389/fnagi.2024.1373477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Type-2 diabetes (T2D) is a metabolic disorder that is considered a risk factor for Alzheimer's disease (AD). Cognitive impairment can arise due to hypoglycemia associated with T2D, and hyperamylinemia associated with insulin resistance can enhance AD pathology. We explored whether changes occur in the hippocampus in aging (6-12 months old) female V-Lep○b-/- transgenic (tg) mice, comprising an animal model of T2D. We also investigated whether an increase in vulnerability to Aβ (1-42), a known pathological hallmark of AD, is evident. Using magnetic resonance imaging we detected significant decreases in hippocampal brain volume in female tg-mice compared to wild-type (wt) littermates. Long-term potentiation (LTP) was impaired in tg compared to wt mice. Treatment of the hippocampus with Aβ (1-42) elicited a stronger debilitation of LTP in tg compared to wt mice. Treatment with an amylin antagonist (AC187) significantly enhanced LTP in wt and tg mice, and rescued LTP in Aβ (1-42)-treated tg mice. Taken together our data indicate that a T2D-like state results in an increased vulnerability of the hippocampus to the debilitating effects of Aβ (1-42) and that effects are mediated in part by changes in amylin receptor signaling.
Collapse
Affiliation(s)
- Melih Tarhan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Tim Hartl
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | | | - Angela Kuhla
- Rudolf Zenker Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | | | - Denise Manahan-Vaughan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| |
Collapse
|
7
|
Kochumon S, Malik MZ, Sindhu S, Arefanian H, Jacob T, Bahman F, Nizam R, Hasan A, Thomas R, Al-Rashed F, Shenouda S, Wilson A, Albeloushi S, Almansour N, Alhamar G, Al Madhoun A, Alzaid F, Thanaraj TA, Koistinen HA, Tuomilehto J, Al-Mulla F, Ahmad R. Gut Dysbiosis Shaped by Cocoa Butter-Based Sucrose-Free HFD Leads to Steatohepatitis, and Insulin Resistance in Mice. Nutrients 2024; 16:1929. [PMID: 38931284 PMCID: PMC11207001 DOI: 10.3390/nu16121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). RESULTS C57BL/6 mice (5-6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (β-(hydroxy β-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. CONCLUSION These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Shihab Kochumon
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Md. Zubbair Malik
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Sardar Sindhu
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Hossein Arefanian
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Texy Jacob
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fatemah Bahman
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Rasheeba Nizam
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Amal Hasan
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Reeby Thomas
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fatema Al-Rashed
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Steve Shenouda
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ajit Wilson
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Shaima Albeloushi
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Nourah Almansour
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ghadeer Alhamar
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ashraf Al Madhoun
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Thangavel Alphonse Thanaraj
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Heikki A. Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland;
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland;
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
| | - Fahd Al-Mulla
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Rasheed Ahmad
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| |
Collapse
|
8
|
Melander SA, Larsen AT, Karsdal MA, Henriksen K. Are insulin sensitizers the new strategy to treat Type 1 diabetes? A long-acting dual amylin and calcitonin receptor agonist improves insulin-mediated glycaemic control and controls body weight. Br J Pharmacol 2024; 181:1829-1842. [PMID: 38378168 DOI: 10.1111/bph.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin therapies for Type 1 diabetes (T1D) have limitations, such as glucose fluctuations, hypoglycaemia, and weight gain. Only pramlintide is approved with insulin. However, its short half-life limits efficacy, requiring multiple daily injections and increasing hypoglycaemia risk. New strategies are needed to improve glycaemic control. Dual amylin and calcitonin receptor agonists are potent insulin sensitizers developed for Type 2 diabetes (T2D) as they improve glucose control, reduce body weight, and attenuate hyperglucagonemia. However, it is uncertain if they could be used to treat T1D. EXPERIMENTAL APPROACH Sprague Dawley rats received a single intravenous injection of streptozotocin (STZ) (50 mg·kg-1) to induce T1D. Humulin (1 U/200 g·day-1 or 2 U/200 g·day-1) was continuously infused, while half of the rats received additional KBP-336 (4.5 nmol·kg-1 Q3D) treatment. Bodyweight, food intake, and blood glucose were monitored throughout the study. An oral glucose tolerance test was performed during the study. KEY RESULTS Treatment with Humulin or Humulin + KBP-336 improved the health of STZ rats. Humulin increased body weight in STZ rats, but KBP-336 attenuated these increases and maintained a significant weight loss. The combination exhibited greater blood glucose reductions than Humulin-treated rats alone, reflected by improved HbA1c levels and glucose control. The combination prevented hyperglucagonemia, reduced amylin levels, and increased pancreatic insulin content, indicating improved insulin sensitivity and beta-cell preservation. CONCLUSION AND IMPLICATIONS The insulin sensitizer KBP-336 lowered glucagon secretion while attenuating insulin-induced weight gain. Additionally, KBP-336 may prevent hypoglycaemia and improve insulin resistance, which could be a significant advantage for individuals with T1D seeking therapeutic benefits.
Collapse
Affiliation(s)
| | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
9
|
Keov P, Christopoulos G, Hick CA, Glendorf T, Ballarín-González B, Wootten D, Sexton PM. Development of a Novel Assay for Direct Assessment of Selective Amylin Receptor Activation Reveals Novel Differences in Behavior of Selective and Nonselective Peptide Agonists. Mol Pharmacol 2024; 105:359-373. [PMID: 38458773 DOI: 10.1124/molpharm.123.000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Peter Keov
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - George Christopoulos
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Caroline A Hick
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Tine Glendorf
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Borja Ballarín-González
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Denise Wootten
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Patrick M Sexton
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| |
Collapse
|
10
|
Rules for body fat interventions based on an operating point mechanism. iScience 2023; 26:106047. [PMID: 36818281 PMCID: PMC9929596 DOI: 10.1016/j.isci.2023.106047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Interventions to reduce fat are important for human health. However, they can have opposing effects such as exercise that decreases fat but increases food intake, or coherent effects such as leptin resistance which raises both. Furthermore, some interventions show an overshoot in food intake, such as recovery from a diet, whereas others do not. To explain these properties we present a graphical framework called the operating point model, based on leptin control of feeding behavior. Steady-state fat and food intake is given by the intersection of two experimental curves - steady-state fat at a given food intake and ad libitum food intake at a given fat level. Depending on which curve an intervention shifts, it has opposing or coherent effects with or without overshoot, in excellent agreement with rodent data. The model also explains the quadratic relation between leptin and fat in humans. These concepts may guide the understanding of fat regulation disorders.
Collapse
|
11
|
Martins FF, Santos-Reis T, Marinho TS, Aguila MB, Mandarim-de-Lacerda CA. Hypothalamic anorexigenic signaling pathways (leptin, amylin, and proopiomelanocortin) are semaglutide (GLP-1 analog) targets in obesity control in mice. Life Sci 2023; 313:121268. [PMID: 36493878 DOI: 10.1016/j.lfs.2022.121268] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Santos-Reis
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Does receptor balance matter? – Comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomed Pharmacother 2022; 156:113842. [DOI: 10.1016/j.biopha.2022.113842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
13
|
The Impact of Exposure Profile on the Efficacy of Dual Amylin and Calcitonin Receptor Agonist Therapy. Biomedicines 2022; 10:biomedicines10102365. [DOI: 10.3390/biomedicines10102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Dual Amylin and Calcitonin Receptor Agonists (DACRAs) are treatment candidates for obesity and type 2 diabetes. Recently, a once-weekly DACRA (KBP-A) showed promise, potentially due to its different exposure profile compared to daily DACRA (KBP). Parathyroid hormone, a G-protein-coupled receptor (GPCR) class B agonist, is an example of the exposure profile being critical to the effect. Since KBP and KBP-A also activate GPCR class B, we compared the effects of injection to continuous infusion of short-acting KBP and long-acting KBP-A in obese and diabetic rats to shed light on the role of exposure profiles. Methods: To explore the metabolic benefits of dose optimization, the following dosing profiles were compared in High Fat Diet (HFD)-fed Sprague–Dawley rats and diabetic Zucker Diabetic Fatty (ZDF) rats: (1) KBP dosed once-daily by injection or by continuous infusion in HFD and ZDF rats; (2) KBP injected once-daily and KBP-A injected once every 3rd day (Q3D) in HFD rats; (3) KBP-A injected Q3D or by infusion in ZDF rats. Results: KBP and KBP-A, delivered by either injection or infusion, resulted in similar weight and food intake reductions in HFD rats. In ZDF rats, injection of KBP improved glucose control significantly compared to infusion, while delivery of KBP-A by injection and continuous infusion was comparable in terms of glucose control. Conclusion: different dosing profiles of KBP and KBP-A had no impact on metabolic benefits in HFD rats. In diabetic ZDF rats, KBP by injection instead of infusion was superior, while for KBP-A the effects were similar.
Collapse
|
14
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
15
|
Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. THERAPY OF ENDOCRINE DISEASE: Amylin and calcitonin - physiology and pharmacology. Eur J Endocrinol 2022; 186:R93-R111. [PMID: 35353712 DOI: 10.1530/eje-21-1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes is a common manifestation of metabolic dysfunction due to obesity and constitutes a major burden for modern health care systems, in concert with the alarming rise in obesity worldwide. In recent years, several successful pharmacotherapies improving glucose metabolism have emerged and some of these also promote weight loss, thus, ameliorating insulin resistance. However, the progressive nature of type 2 diabetes is not halted by these new anti-diabetic pharmacotherapies. Therefore, novel therapies promoting weight loss further and delaying diabetes progression are needed. Amylin, a beta cell hormone, has satiating properties and also delays gastric emptying and inhibits postprandial glucagon secretion with the net result of reducing postprandial glucose excursions. Amylin acts through the six amylin receptors, which share the core component with the calcitonin receptor. Calcitonin, derived from thyroid C cells, is best known for its role in humane calcium metabolism, where it inhibits osteoclasts and reduces circulating calcium. However, calcitonin, particularly of salmon origin, has also been shown to affect insulin sensitivity, reduce the gastric emptying rate and promote satiation. Preclinical trials with agents targeting the calcitonin receptor and the amylin receptors, show improvements in several parameters of glucose metabolism including insulin sensitivity and some of these agents are currently undergoing clinical trials. Here, we review the physiological and pharmacological effects of amylin and calcitonin and discuss the future potential of amylin and calcitonin-based treatments for patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
16
|
Mediators of Amylin Action in Metabolic Control. J Clin Med 2022; 11:jcm11082207. [PMID: 35456307 PMCID: PMC9025724 DOI: 10.3390/jcm11082207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Amylin (also called islet amyloid polypeptide (IAPP)) is a pancreatic beta-cell hormone that is co-secreted with insulin in response to nutrient stimuli. The last 35 years of intensive research have shown that amylin exerts important physiological effects on metabolic control. Most importantly, amylin is a physiological control of meal-ending satiation, and it limits the rate of gastric emptying and reduces the secretion of pancreatic glucagon, in particular in postprandial states. The physiological effects of amylin and its analogs are mediated by direct brain activation, with the caudal hindbrain playing the most prominent role. The clarification of the structure of amylin receptors, consisting of the calcitonin core receptor plus receptor-activity modifying proteins, aided in the development of amylin analogs with a broad pharmacological profile. The general interest in amylin physiology and pharmacology was boosted by the finding that amylin is a sensitizer to the catabolic actions of leptin. Today, amylin derived analogs are considered to be among the most promising approaches for the pharmacotherapy against obesity. At least in conjunction with insulin, amylin analogs are also considered important treatment options in diabetic patients, so that new drugs may soon be added to the only currently approved compound pramlintide (Symlin®). This review provides a brief summary of the physiology of amylin’s mode of actions and its role in the control of the metabolism, in particular energy intake and glucose metabolism.
Collapse
|
17
|
Tyagi P, Koskinen M, Mikkola J, Sarkhel S, Leino L, Seth A, Madalli S, Will S, Howard VG, Brant H, Corkill D. Injectable Biodegradable Silica Depot: Two Months of Sustained Release of the Blood Glucose Lowering Peptide, Pramlintide. Pharmaceutics 2022; 14:pharmaceutics14030553. [PMID: 35335929 PMCID: PMC8952239 DOI: 10.3390/pharmaceutics14030553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a major healthcare challenge. Pramlintide, a peptide analogue of the hormone amylin, is currently used as an adjunct with insulin for patients who fail to achieve glycemic control with only insulin therapy. However, hypoglycemia is the dominant risk factor associated with such approaches and careful dosing of both drugs is needed. To mitigate this risk factor and compliance issues related to multiple dosing of different drugs, sustained delivery of Pramlintide from silica depot administered subcutaneously (SC) was investigated in a rat model. The pramlintide-silica microparticle hydrogel depot was formulated by spray drying of silica sol-gels. In vitro dissolution tests revealed an initial burst of pramlintide followed by controlled release due to the dissolution of the silica matrix. At higher dosing, pramlintide released from subcutaneously administered silica depot in rats showed a steady concentration of 500 pM in serum for 60 days. Released pramlintide retained its pharmacological activity in vivo, as evidenced by loss of weight. The biodegradable silica matrix offers a sustained release of pramlintide for at least two months in the rat model and shows potential for clinical applications.
Collapse
Affiliation(s)
- Puneet Tyagi
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20874, USA
- Correspondence: ; Tel.: +1-301-398-5532
| | - Mika Koskinen
- DelSiTech Ltd., PharmaCity, Itäinen Pitkäkatu 4 B, 20520 Turku, Finland; (M.K.); (J.M.); (S.S.); (L.L.)
| | - Jari Mikkola
- DelSiTech Ltd., PharmaCity, Itäinen Pitkäkatu 4 B, 20520 Turku, Finland; (M.K.); (J.M.); (S.S.); (L.L.)
| | - Sanjay Sarkhel
- DelSiTech Ltd., PharmaCity, Itäinen Pitkäkatu 4 B, 20520 Turku, Finland; (M.K.); (J.M.); (S.S.); (L.L.)
| | - Lasse Leino
- DelSiTech Ltd., PharmaCity, Itäinen Pitkäkatu 4 B, 20520 Turku, Finland; (M.K.); (J.M.); (S.S.); (L.L.)
| | - Asha Seth
- Renal BioScience, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GP, UK; (A.S.); (S.M.)
| | - Shimona Madalli
- Renal BioScience, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GP, UK; (A.S.); (S.M.)
| | - Sarah Will
- Metabolism BioScience, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (S.W.); (V.G.H.)
| | - Victor G. Howard
- Metabolism BioScience, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (S.W.); (V.G.H.)
| | - Helen Brant
- Animal Science & Technologies UK, Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge CB21 6GP, UK;
| | - Dominic Corkill
- Early R&I BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GP, UK;
| |
Collapse
|
18
|
Laugero KD, Tryon M, Mack C, Caldarone BJ, Hanania T, McGonigle P, Roland BL, Parkes DG. Peripherally administered amylin inhibits stress-like behaviors and enhances cognitive performance. Physiol Behav 2022; 244:113668. [PMID: 34863999 DOI: 10.1016/j.physbeh.2021.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Amylin, a 37 amino acid peptide pancreatic hormone co-secreted with insulin, normalizes the altered eating patterns induced by chronic stress in the rat. Because these stress-induced changes are driven, in part, by brain corticotropin-releasing factor and corticosterone, and because alterations in the activity of these molecules and the stress system are commonly associated with neuropsychiatric diseases like anxiety, depression, and schizophrenia, we hypothesized that amylin might mitigate behavioral states associated with stress. Therefore, we tested the effects of rat amylin in rodent-based behavioral assays sensitive to neuropsychiatric drugs, including anxiolytic, antidepressant, antipsychotic, and cognitive enhancing drugs: stress-induced hyperthermia (SIH); marble burying; elevated plus maze (EPM)), forced swim test (FST), pre-pulse inhibition, and phencyclidine-induced locomotion. To assess the neural underpinnings of amylin's anxiolytic-like effects, we examined the effect of amylin on SIH after lesioning the area postrema (AP), which mediates amylin's metabolic effects. Amylin injection (IP, 0.1, 1.0, & 10 mg/kg) significantly (P < 0.05) decreased SIH (97% below vehicle) and AP lesions inhibited this effect. Amylin also reduced marble burying (72% below vehicle), but had no effect in the EPM. Together, these effects suggest anxiolytic-like activity or potential. Amylin injection also enhanced cognitive performance in the novel object recognition test. When administered continuously by implanted osmotic pumps, amylin (300 mg/kg/d) blocked SIH when tested at 1 and 4 weeks. Compared to vehicle, amylin infusion (1 and 3 mg/kg/d) reduced the time immobile in the FST (P < 0.05; 30% below vehicle), suggesting antidepressant-like potential. Although further testing is needed, our findings support a potential for peripherally administered amylin to access and benefit pathways that regulate memory, emotion, and mood.
Collapse
Affiliation(s)
- K D Laugero
- USDA Western Human Nutrition Research Center, Davis CA 95616 United States; Department of Nutrition, University of California Davis, Davis CA 95616 United States.
| | - M Tryon
- MindCraft, Davis CA 95618 United States
| | - C Mack
- Establishment Labs (Motiva USA), New York, NY 10019 United States
| | - B J Caldarone
- Harvard Medical School, Boston, MA, 02115 United States
| | - T Hanania
- PsychoGenics, Inc., Paramus, NJ 07652 United States
| | - P McGonigle
- Drexel University, College of Medicine, Philadelphia, PA 19129 United States
| | - B L Roland
- DGP Scientific Inc., Del Mar, CA 92014 United States
| | - D G Parkes
- DGP Scientific Inc., Del Mar, CA 92014 United States
| |
Collapse
|
19
|
Mouse Microglial Calcitonin Receptor Knockout Impairs Hypothalamic Amylin Neuronal pSTAT3 Signaling but Lacks Major Metabolic Consequences. Metabolites 2022; 12:metabo12010051. [PMID: 35050175 PMCID: PMC8780059 DOI: 10.3390/metabo12010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Amylin and leptin synergistically interact in the arcuate nucleus of the hypothalamus (ARC) to control energy homeostasis. Our previous rodent studies suggested that amylin-induced interleukin-6 release from hypothalamic microglia may modulate leptin signaling in agouti-related peptide expressing neurons. To confirm the physiological relevance of this finding, the calcitonin receptor (CTR) subunit of the amylin receptor was selectively depleted in microglia by crossing tamoxifen (Tx) inducible Cx3cr1-CreERT2 mice with CTR-floxed mice. Unexpectedly, male mice with CTR-depleted microglia (KO) gained the least amount of weight of all groups regardless of diet. However, after correcting for the tamoxifen effect, there was no significant difference for body weight, fat mass or lean mass between genotypes. No alteration in glucose tolerance or insulin release was detected. However, male KO mice had a reduced respiratory quotient suggesting a preference for fat as a fuel when fed a high fat diet. Importantly, amylin-induced pSTAT3 was decreased in the ARC of KO mice but this was not reflected in a reduced anorectic response. On the other hand, KO mice seemed to be less responsive to leptin’s anorectic effect while displaying similar ARC pSTAT3 as Tx-control mice. Together, these data suggest that microglial amylin signaling is not a major player in the control of energy homeostasis in mice.
Collapse
|
20
|
Corrigan RR, Piontkivska H, Casadesus G. Amylin Pharmacology in Alzheimer's Disease Pathogenesis and Treatment. Curr Neuropharmacol 2022; 20:1894-1907. [PMID: 34852745 PMCID: PMC9886804 DOI: 10.2174/1570159x19666211201093147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
The metabolic peptide hormone amylin, in concert with other metabolic peptides like insulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to Alzheimer's disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabetes mellitus (T2DM) and Alzheimer's disease. The traditional "gain of toxic function" properties assigned to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeutically beneficial for AD development, as they already are for T2DMM. However, the nature of amylin receptor signaling is highly complex and not well studied in the context of CNS function. Therefore, to begin to address this pharmacological paradox in amylin research, the goal of this review is to summarize the current research on amylin signaling and CNS functions and critically address the paradoxical nature of this hormone's signaling in the context of AD pathogenesis.
Collapse
Affiliation(s)
| | | | - Gemma Casadesus
- Address correspondence to this author at the Department of Pharmacology and Therapeutics, University of Florida, PO Box 100495. Gainesville, FL32610 USA; Tel: 352-294-5346; E-mail:
| |
Collapse
|
21
|
Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: From genesis to counteracting mechanisms. J Cell Physiol 2021; 237:1119-1142. [PMID: 34636428 DOI: 10.1002/jcp.30600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in β-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards β-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in β-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved β-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato C S Branco
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| |
Collapse
|
22
|
Henriksen K, Broekhuizen K, de Boon WMI, Karsdal MA, Bihlet AR, Christiansen C, Dillingh MR, de Kam M, Kumar R, Burggraaf J, Kamerling IMC. Safety, tolerability and pharmacokinetic characterisation of DACRA KBP-042 in healthy male subjects. Br J Clin Pharmacol 2021; 87:4786-4796. [PMID: 34019711 DOI: 10.1111/bcp.14921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022] Open
Abstract
There is a need for antidiabetic agents successfully targeting insulin sensitivity and treating obesity control at the same time. The aim of this first-in-human study was (a) to evaluate safety and tolerability, (b) to evaluate pharmacokinetics and (c) to assess indications of receptor engagement of single ascending doses of KBP-042, a dual amylin and calcitonin receptor agonist (DACRA) that has shown promising preclinical data, with superior activity in terms of typical amylin-induced responses including reduction of food intake, weight loss and gluco-regulatory capacities. A randomised double-blind placebo-controlled single ascending dose study was performed with six dose levels of KBP-042 (5, 7.5, 10, 20, 20 (evening), 40 ug) in healthy male adults. KBP-042 or placebo was administered as a single dose after an overnight fast, followed by a standardized lunch after 4 hours. KBP-042 was associated with dose-dependent complaints of nausea and vomiting, with a lack of tolerability at doses of 20 μg and above. Doses of 5-40 μg KBP-042 behaved according to a linear pharmacokinetic profile. Indications of target receptor engagement were observed at the level of glucose control and lowering of bone resorption, compared to placebo. The results of this study showed that doses up to 40 μg were safe, although tolerability was not present at the highest doses. The study confirmed target receptor engagement at the studied doses.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience, Herlev, Denmark.,KeyBioscience AG, Stans, Switzerland
| | | | | | - Morten A Karsdal
- Nordic Bioscience, Herlev, Denmark.,KeyBioscience AG, Stans, Switzerland
| | | | | | | | | | - Raj Kumar
- KeyBioscience AG, Stans, Switzerland
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherland.,Leiden Academic Center for Drug Research, Leiden, the Netherlands.,Leiden University Medical Center, Leiden, the Netherlands
| | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, the Netherland.,Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Sonne N, Karsdal MA, Henriksen K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol Metab 2021; 46:101109. [PMID: 33166741 PMCID: PMC8085567 DOI: 10.1016/j.molmet.2020.101109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Therapies for metabolic diseases are numerous, yet improving insulin sensitivity beyond that induced by weight loss remains challenging. Therefore, search continues for novel treatment candidates that can stimulate insulin sensitivity and increase weight loss efficacy in combination with current treatment options. Calcitonin gene-related peptide (CGRP) and amylin belong to the same peptide family and have been explored as treatments for metabolic diseases. However, their full potential remains controversial. SCOPE OF REVIEW In this article, we introduce this rather complex peptide family and its corresponding receptors. We discuss the physiology of the peptides with a focus on metabolism and insulin sensitivity. We also thoroughly review the pharmacological potential of amylin, calcitonin, CGRP, and peptide derivatives as treatments for metabolic diseases, emphasizing their ability to increase insulin sensitivity based on preclinical and clinical studies. MAJOR CONCLUSIONS Amylin receptor agonists and dual amylin and calcitonin receptor agonists are relevant treatment candidates, especially because they increase insulin sensitivity while also assisting weight loss, and their unique mode of action complements incretin-based therapies. However, CGRP and its derivatives seem to have only modest if any metabolic effects and are no longer of interest as therapies for metabolic diseases.
Collapse
Affiliation(s)
- Nina Sonne
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland.
| |
Collapse
|
24
|
Mathiesen DS, Lund A, Vilsbøll T, Knop FK, Bagger JI. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front Endocrinol (Lausanne) 2021; 11:617400. [PMID: 33488526 PMCID: PMC7819850 DOI: 10.3389/fendo.2020.617400] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hormones amylin and calcitonin interact with receptors within the same family to exert their effects on the human organism. Calcitonin, derived from thyroid C cells, is known for its inhibitory effect on osteoclasts. Calcitonin of mammalian origin promotes insulin sensitivity, while the more potent calcitonin extracted from salmon additionally inhibits gastric emptying, promotes gallbladder relaxation, increases energy expenditure and induces satiety as well as weight loss. Amylin, derived from pancreatic beta cells, regulates plasma glucose by delaying gastric emptying after meal ingestion, and modulates glucagon secretion and central satiety signals in the brain. Thus, both hormones seem to have metabolic effects of relevance in the context of non-alcoholic fatty liver disease (NAFLD) and other metabolic diseases. In rats, studies with dual amylin and calcitonin receptor agonists have demonstrated robust body weight loss, improved glucose tolerance and a decreased deposition of fat in liver tissue beyond what is observed after a body weight loss. The translational aspects of these preclinical data currently remain unknown. Here, we describe the physiology, pathophysiology, and pharmacological effects of amylin and calcitonin and review preclinical and clinical findings alluding to the future potential of amylin and calcitonin-based drugs for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- David S. Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan I. Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Boccia L, Gamakharia S, Coester B, Whiting L, Lutz TA, Le Foll C. Amylin brain circuitry. Peptides 2020; 132:170366. [PMID: 32634450 DOI: 10.1016/j.peptides.2020.170366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Amylin is a peptide hormone that is mainly known to be produced by pancreatic β-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Lynda Whiting
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
26
|
Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020; 10:811-837. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene-related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G-protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811-837, 2020.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Larsen AT, Sonne N, Andreassen KV, Karsdal MA, Henriksen K. The Calcitonin Receptor Plays a Major Role in Glucose Regulation as a Function of Dual Amylin and Calcitonin Receptor Agonist Therapy. J Pharmacol Exp Ther 2020; 374:74-83. [PMID: 32317372 DOI: 10.1124/jpet.119.263392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/20/2020] [Indexed: 03/08/2025] Open
Abstract
Amylin treatment improves body weight and glucose control, although it is limited by a short action and need for high doses. Dual amylin and calcitonin receptor agonists (DACRAs) are dual amylin and calcitonin receptor agonists with beneficial effects beyond those of amylin. However, to what extent the additional benefits reside in their higher potency or their targeting of the calcitonin receptor remains unclear. Here we deconstruct the receptors involved in the effects of a DACRA, KBP-088, by comparing it to rat amylin (rAMY), rat calcitonin (rCT), and their combination in obese high-fat diet (HFD) and diabetic Zucker diabetic fatty (ZDF) rats. HFD-fed Sprague-Dawley rats and ZDF rats were treated for 4 weeks with KBP-088 (5 µg/kg per day), rAMY (300 µg/kg per day), rCT (300 µg/kg per day), and the combination of rAMY and rCT (300+300 µg/kg per day) using infusion pumps. Body weight, food intake, fasting glycemia, glycated hemoglobin type A1c levels, and glucose tolerance were assessed. In obese HFD-fed rats, KBP-088, rAMY, and the combination of rAMY and rCT significantly reduced body weight and improved glucose tolerance, whereas rCT alone had no effect. In diabetic ZDF rats, rCT was efficient in lowering fasting glycemia similar to rAMY, whereas dual activation by KBP-088 and the combination of rAMY and rCT were superior to activating either receptor alone. In conclusion, calcitonin therapy regulates fasting blood glucose in a diabetic rat model, thereby underscoring the importance of calcitonin receptor activation as well as the known role of amylin receptor agonism in the potent metabolic benefits of this group of peptides. SIGNIFICANCE STATEMENT: We deconstruct the receptors activated by dual amylin and calcitonin receptor agonist (DACRA) therapy to elucidate through which receptor the beneficial metabolic effects of the DACRAs are mediated. We show that calcitonin receptor activation is important for blood glucose regulation in diabetes. This is in addition to the known metabolic beneficial role of amylin receptor activation. These data help in understanding the potent metabolic benefits of the DACRAs and underline the potential of DACRAs as treatment for diabetes and obesity.
Collapse
Affiliation(s)
- Anna Thorsø Larsen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Nina Sonne
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Vietz Andreassen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| |
Collapse
|
28
|
Coester B, Koester-Hegmann C, Lutz TA, Le Foll C. Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice. Diabetes 2020; 69:1110-1125. [PMID: 32152204 DOI: 10.2337/db19-0849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022]
Abstract
Amylin, a pancreatic hormone and neuropeptide, acts principally in the hindbrain to decrease food intake and has recently been shown to act as a neurotrophic factor to control the development of area postrema → nucleus of the solitary tract and arcuate hypothalamic nucleus → paraventricular nucleus axonal fiber outgrowth. Amylin is also able to activate ERK signaling specifically in POMC neurons independently of leptin. For investigation of the physiological role of amylin signaling in POMC neurons, the core component of the amylin receptor, calcitonin receptor (CTR), was depleted from POMC neurons using an inducible mouse model. The loss of CTR in POMC neurons leads to increased body weight gain, increased adiposity, and glucose intolerance in male knockout mice, characterized by decreased energy expenditure (EE) and decreased expression of uncoupling protein 1 (UCP1) in brown adipose tissue. Furthermore, a decreased spontaneous locomotor activity and absent thermogenic reaction to the application of the amylin receptor agonist were observed in male and female mice. Together, these results show a significant physiological impact of amylin/calcitonin signaling in CTR-POMC neurons on energy metabolism and demonstrate the need for sex-specific approaches in obesity research and potentially treatment.
Collapse
Affiliation(s)
- Bernd Coester
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Zakariassen HL, John LM, Lutz TA. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin Pharmacol Toxicol 2020; 127:163-177. [PMID: 32363722 DOI: 10.1111/bcpt.13427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Obesity Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
30
|
Sonne N, Larsen AT, Andreassen KV, Karsdal MA, Henriksen K. The Dual Amylin and Calcitonin Receptor Agonist, KBP-066, Induces an Equally Potent Weight Loss Across a Broad Dose Range While Higher Doses May Further Improve Insulin Action. J Pharmacol Exp Ther 2020; 373:92-102. [PMID: 31992608 DOI: 10.1124/jpet.119.263723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022] Open
Abstract
Pharmacological treatment with dual amylin and calcitonin receptor agonists (DACRAs) cause significant weight loss and improvement of glucose homeostasis. In this study, the maximally efficacious dose of the novel DACRA, KeyBiosciencePeptide (KBP)-066, was investigated. Two different rat models were used: high-fat diet (HFD)-fed male Sprague-Dawley rats and male Zucker diabetic fatty (ZDF, fa/fa) rats to determine the maximum weight loss and glucose homeostatic effect, respectively. One acute study and one chronic study was performed in HFD rats. Two chronic studies were performed in ZDF rats: a preventive and an interventive. All studies covered a dose range of 5, 50, and 500 µg/kg KBP-066 delivered by subcutaneous injection. Treatment with KBP-066 resulted in a significant weight reduction of 13%-16% and improved glucose tolerance in HFD rats, which was independent of dose concentration. Dosing with 50 and 500 µg/kg led to a transient but significant increase in blood glucose, both in the acute and the chronic study in HFD rats. All doses of KBP-066 significantly improved glucose homeostasis in ZDF rats, both in the preventive and interventive study. Moreover, dosing with 50 and 500 µg/kg preserved insulin secretion to a greater extent than 5 µg/kg when compared with ZDF vehicle rats. Taken together, these results show that maximum weight loss is achieved with 5 µg/kg, which is within the range of previously reported DACRA dosing, whereas increasing dosing concentration to 50 and 500 µg/kg may further improve preservation of insulin secretion compared with 5 µg/kg in diabetic ZDF rats. SIGNIFICANCE STATEMENT: Here we show that KeyBiosciencePeptide (KBP)-066 induces an equally potent body weight loss across a broad dose range in obese rats. However, higher dosing of KBP-066 may improve insulin action in diabetic rats both as preventive and interventive treatment.
Collapse
Affiliation(s)
- Nina Sonne
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Anna Thorsø Larsen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Vietz Andreassen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| |
Collapse
|
31
|
Zakariassen HL, John LM, Lykkesfeldt J, Raun K, Glendorf T, Schaffer L, Lundh S, Secher A, Lutz TA, Le Foll C. Salmon calcitonin distributes into the arcuate nucleus to a subset of NPY neurons in mice. Neuropharmacology 2020; 167:107987. [PMID: 32035146 DOI: 10.1016/j.neuropharm.2020.107987] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/07/2023]
Abstract
The amylin receptor (AMY) and calcitonin receptor (CTR) agonists induce acute suppression of food intake in rodents by binding to receptors in the area postrema (AP) and potentially by targeting arcuate (ARC) neurons directly. Salmon calcitonin (sCT) induces more potent, longer lasting anorectic effects compared to amylin. We thus aimed to investigate whether AMY/CTR agonists target key neuronal populations in the ARC, and whether differing brain distribution patterns could mediate the observed differences in efficacy with sCT and amylin treatment. Brains were examined by whole brain 3D imaging and confocal microscopy following subcutaneous administration of fluorescently labelled peptides to mice. We found that sCT, but not amylin, internalizes into a subset of ARC NPY neurons, along with an unknown subset of ARC, AP and dorsal vagal motor nucleus cells. ARC POMC neurons were not targeted. Furthermore, amylin and sCT displayed similar distribution patterns binding to receptors in the AP, the organum vasculosum of the lamina terminalis (OVLT) and the ARC. Amylin distributed within the median eminence with only specs of sCT being present in this region, however amylin was only detectable 10 minutes after injection while sCT displayed a residence time of up to 2 hours post injection. We conclude that AMY/CTR agonists bind to receptors in a subset of ARC NPY neurons and in circumventricular organs. Furthermore, the more sustained and greater anorectic efficacy of sCT compared to rat amylin is not attributable to differences in brain distribution patterns but may more likely be explained by greater potency at both the CTR and AMY.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark; Obesity Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Linu Mary John
- Obesity Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Kirsten Raun
- Obesity Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Tine Glendorf
- Diabetes Pharmacology 2, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Lauge Schaffer
- Research Chemistry, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Sofia Lundh
- Pathology and Imaging, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Anna Secher
- Diabetes Pharmacology 2, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
32
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
33
|
Boyle CN, Le Foll C. Amylin and Leptin interaction: Role During Pregnancy, Lactation and Neonatal Development. Neuroscience 2019; 447:136-147. [PMID: 31846753 DOI: 10.1016/j.neuroscience.2019.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023]
Abstract
Amylin is co-secreted with insulin by pancreatic β-cells in response to a meal and produced by neurons in discrete hypothalamic brain areas. Leptin is proportionally secreted by the adipose tissue. Both hormones control food intake and energy homeostasis post-weaning in rodents. While amylin's main site of action is located in the area postrema (AP) and leptin's is located in the mediobasal hypothalamus, both hormones can also influence the other's signaling pathway; amylin has been shown enhance hypothalamic leptin signaling, and amylin signaling in the AP may rely on functional leptin receptors to modulate its effects. These two hormones also play major roles during other life periods. During pregnancy, leptin levels rise as a result of an increase in fat depot resulting in gestational leptin-resistance to prepare the maternal body for the metabolic needs during fetal development. The role of amylin is far less studied during pregnancy and lactation, though amylin levels seem to be elevated during pregnancy relative to insulin. Whether amylin and leptin interact during pregnancy and lactation remains to be assessed. Lastly, during brain development, amylin and leptin are major regulators of cell birth during embryogenesis and act as neurotrophic factors in the neonatal period. This review will highlight the role of amylin and leptin, and their possible interaction, during these dynamic time periods of pregnancy, lactation, and early development.
Collapse
Affiliation(s)
- Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| |
Collapse
|
34
|
Nie T, Zhang S, Vazhoor Amarsingh G, Liu H, McCann MJ, Cooper GJS. Altered metabolic gene expression in the brain of a triprolyl-human amylin transgenic mouse model of type 2 diabetes. Sci Rep 2019; 9:14588. [PMID: 31601900 PMCID: PMC6787337 DOI: 10.1038/s41598-019-51088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a major health concern worldwide; however, the molecular mechanism underlying its development is poorly understood. The hormone amylin is postulated to be involved, as human amylin forms amyloid in the pancreases of diabetic patients, and oligomers have been shown to be cytotoxic to β-cells. As rodent amylin is non-amyloidogenic, mice expressing human amylin have been developed to investigate this hypothesis. However, it is not possible to differentiate the effects of amylin overexpression from β-cell loss in these models. We have developed transgenic mice that overexpress [25, 28, 29 triprolyl]human amylin, a non-amyloidogenic variant of amylin, designated the Line 44 model. This model allows us to investigate the effects of chronic overexpression of non-cytotoxic amylin. We characterised this model and found it developed obesity, hyperglycaemia and hyperinsulinaemia. This phenotype was associated with alterations in the expression of genes involved in the amylin, insulin and leptin signalling pathways within the brain. This included genes such as c-Fos (a marker of amylin activation); Socs3 (a leptin inhibitor); and Cart, Pomc and Npy (neuropeptides that control appetite). We also examined Socs3 protein expression and phosphorylated Stat3 to determine if changes at the mRNA level would be reflected at the protein level.
Collapse
Affiliation(s)
- Tina Nie
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Shaoping Zhang
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand
| | - Greeshma Vazhoor Amarsingh
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Hong Liu
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark J McCann
- Food Nutrition & Health Team, AgResearch Ltd, Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand. .,Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, Faculty of Biology Medicine & Health, School of Medical Sciences, the University of Manchester, Manchester, M13 9NT, United Kingdom.
| |
Collapse
|
35
|
Larsen AT, Sonne N, Andreassen KV, Gehring K, Karsdal MA, Henriksen K. The Dual Amylin and Calcitonin Receptor Agonist KBP-088 Induces Weight Loss and Improves Insulin Sensitivity Superior to Chronic Amylin Therapy. J Pharmacol Exp Ther 2019; 370:35-43. [PMID: 31028106 DOI: 10.1124/jpet.119.257576] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 03/08/2025] Open
Abstract
KBP-088 (KeyBiosciencePeptide 088) is a potent dual amylin and calcitonin receptor agonist (DACRA). DACRAs are known to elicit potent activity in terms of typical amylin-induced responses, such as reducing food intake and body weight. However, to what extent amylin infusion can mimic the effects of the dual agonist KBP-088 is unknown. We studied the effect of acute dosing with KBP-088 (5 µg/kg) and rat amylin (100, 300, and 1000 µg/kg) and subsequently compared the chronic effect of KBP-088 (5 µg/kg per day) to increasing doses of rat amylin (100, 300, and 1000 µg/kg per day) delivered by continuous subcutaneous infusion, in high-fat diet (HFD) fed Long-Evans rats. Furthermore, acute amylin sensitivity was investigated. Single dose KBP-088 (5 µg/kg) potently reduced acute food intake for a prolonged period compared with amylin (100, 300, and 1000 µg/kg), confirming the difference in potency. Independent of dose, chronic amylin administration (100, 300, and 1000 µg/kg per day) was less effective than KBP-088 (5 µg/kg per day) in inducing body weight loss (15% with KBP-088, and 5%, 9%, and 8% with amylin, vehicle corrected) and reducing overall adiposity in HFD rats. Moreover, KBP-088 improved oral glucose tolerance with significantly reduced insulin levels (80% reduction) that were better than all doses of amylin (68%, 53%, and 7% reduction). Acute amylin sensitivity was independent of the chronic treatment. Dual activation of amylin and calcitonin receptors by KBP-088 is superior to amylin in reducing body weight and improving glucose tolerance, indicating a role for the calcitonin receptor.
Collapse
Affiliation(s)
- Anna Thorsø Larsen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Nina Sonne
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Vietz Andreassen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kristoffer Gehring
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| |
Collapse
|
36
|
Timirci-Kahraman O, Yilmaz U, Yilmaz N, Cevik A, Horozoglu C, Celik F, Gokce MO, Ergen A, Melekoglu A, Zeybek U. A Study of Short- and Long-term mRNA Levels of the Retn, Iapp, and Drd5 Genes in Obese Mice Induced with High-fat Diet. In Vivo 2018; 32:813-817. [PMID: 29936463 DOI: 10.21873/invivo.11312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Adipocyte gene expression is altered in obese individuals through multiple metabolic and biochemical pathways. In this study, we aimed to examine the expression of resistin (Retn), amylin (Iapp), and dopamine receptor domain 5 (Drd5) genes previously suggested to contribute to the pathogenesis of obesity, albeit controversially. We also aimed to determine the effects on short and long-term mRNA levels of these genes in obese mice, induced with high-fat diet (HFD). MATERIALS AND METHODS Two obesity models were created in our study: group T1 (20 mice) was fed with HFD (60% fat) for 3 months, and group T2 (20 mice) was fed with HFD (60% fat) for 6 months. The control group T0 (20 mice) was fed with a diet of 10% kcal fat supplement for 6 months. At the end of the experiment, their adipose tissues were dissected surgically. Tissue samples of each group were pooled for RNA isolation, cDNA synthesis was carried out and the mRNA levels were examined by quantitative real-time polymerase chain reaction. Serum resistin levels were measured using multiplex bead (luminex) technology for validation. RESULTS In T2 mice, the mRNA expression of Retn showed a moderate up-regulation (fold change=8.32; p=0.0019) in the adipose tissues. Iapp expression was also significantly up-regulated (fold change=9.78; p=0.012). Moreover, a 6.36-fold up-regulation for Drd5 was observed in the adipose tissues of T2 mice (p<0.001). At the same time, serum levels of resistin were found to be high in T1 and T2 mice compared to the control group (p<0.001 and p=0.024, respectively). CONCLUSION Our study demonstrated that the mRNA levels of the genetic markers considered to play a role in adipogenesis were different in short- and long-term obesity models formed in C57BL/6J mice using HFD.
Collapse
Affiliation(s)
- Ozlem Timirci-Kahraman
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Umit Yilmaz
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nesibe Yilmaz
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Aydin Cevik
- Department of Experimental Animal Biology and Biomedical Application Techniques, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Horozoglu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Medical Services and Techniques, Istanbul Gelisim University, Istanbul, Turkey
| | - Faruk Celik
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Muhammed Oguz Gokce
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Abdullah Melekoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Umit Zeybek
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
37
|
Brings A, Borghardt JM, Skarbaliene J, Baader-Pagler T, Deryabina MA, Rist W, Scheuerer S. Modeling energy intake and body weight effects of a long-acting amylin analogue. J Pharmacokinet Pharmacodyn 2017; 45:215-233. [PMID: 29170989 DOI: 10.1007/s10928-017-9557-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 11/18/2017] [Indexed: 01/27/2023]
Abstract
The inhibitory effect of anti-obesity drugs on energy intake (EI) is counter-acted by feedback regulation of the appetite control circuit leading to drug tolerance. This complicates the design and interpretation of EI studies in rodents that are used for anti-obesity drug development. Here, we investigated a synthetic long-acting analogue of the appetite-suppressing peptide hormone amylin (LAMY) in lean and diet-induced obese (DIO) rats. EI and body weight (BW) were measured daily and LAMY concentrations in plasma were assessed using defined time points following subcutaneous administration of the LAMY at different dosing regimens. Overall, 6 pharmacodynamic (PD) studies including a total of 173 rats were considered in this evaluation. Treatment caused a dose-dependent reduction in EI and BW, although multiple dosing indicated the development of tolerance over time. This behavior could be adequately described by a population model including homeostatic feedback of EI and a turnover model describing the relationship between EI and BW. The model was evaluated by testing its ability to predict BW loss in a toxicology study and was utilized to improve the understanding of dosing regimens for obesity therapy. As such, the model proved to be a valuable tool for the design and interpretation of rodent studies used in anti-obesity drug development.
Collapse
Affiliation(s)
- Annika Brings
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach, Germany
| | - Jens Markus Borghardt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach, Germany
| | | | - Tamara Baader-Pagler
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach, Germany
| | | | - Wolfgang Rist
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach, Germany
| | - Stefan Scheuerer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach, Germany.
| |
Collapse
|
38
|
Gydesen S, Andreassen KV, Hjuler ST, Hellgren LI, Karsdal MA, Henriksen K. Optimization of tolerability and efficacy of the novel dual amylin and calcitonin receptor agonist KBP-089 through dose escalation and combination with a GLP-1 analog. Am J Physiol Endocrinol Metab 2017; 313:E598-E607. [PMID: 28292761 DOI: 10.1152/ajpendo.00419.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023]
Abstract
Amylin and GLP-1 agonism induce a well-known anorexic effect at dose initiation, which is managed by dose escalation. In this study we investigated how to optimize tolerability while maintaining efficacy of a novel, highly potent dual amylin and calcitonin receptor agonist (DACRA), KBP-089. Furthermore, we tested the GLP-1 add-on potential of KBP-089 in high-fat diet (HFD)-fed rats. KBP-089 potently activated both the amylin and calcitonin receptors in vitro and demonstrated a prolonged receptor activation as well as a potent reduction of acute food intake. HFD rats dosed every day or every second day obtained equal weight loss at study end, albeit with an uneven reduction in both food intake and body weight in rats dosed every second day. In a 4-fold dose escalation, KBP-089 induced a transient reduction in food intake at every escalation step, with reducing magnitude over time, and the following treatment with 2.5, 10, and 40 µg/kg resulted in an ~15% vehicle-corrected weight loss, a corresponding reduction in adipose tissue (AT), and, in all treatment groups, improved oral glucose tolerance (P < 0.01). Twofold and linear escalations suppressed body weight evenly with no significant reduction in food intake at either escalation step. KBP-089 (1.25 µg/kg) and liraglutide (50 µg/kg) reduced 24-h food intake by 29% and 37% compared with vehicle, respectively; however, when they were combined, 24-h food intake was reduced by 87%. Chronically, KBP-089 (1.25 µg/kg) and liraglutide (50 µg/kg) lowered body weight 8% and 2% in HFD rats, respectively, whereas the combination resulted in a 12% body weight reduction. Moreover, the combination improved glucose tolerance (P < 0.05). In conclusion, DACRAs act complementarily with GLP-1 on food intake and body weight. Furthermore, on escalation, KBP-089 was well tolerated and induced and sustained a significant weight loss and a reduction in AT in lean and HFD rats, underscoring the potential of KBP-089 as an anti-obesity agent.
Collapse
Affiliation(s)
- Sofie Gydesen
- Nordic Bioscience, Herlev, Denmark;
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark; and
| | | | | | - Lars I Hellgren
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark; and
| | | | | |
Collapse
|
39
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
40
|
Yuan J, Gilbert ER, Cline MA. The central anorexigenic mechanism of amylin in Japanese quail ( Coturnix japonica ) involves pro-opiomelanocortin, calcitonin receptor, and the arcuate nucleus of the hypothalamus. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:28-34. [DOI: 10.1016/j.cbpa.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
41
|
Hron BM, Ebbeling CB, Feldman HA, Ludwig DS. Hepatic, adipocyte, enteric and pancreatic hormones: response to dietary macronutrient composition and relationship with metabolism. Nutr Metab (Lond) 2017; 14:44. [PMID: 28694840 PMCID: PMC5499060 DOI: 10.1186/s12986-017-0198-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/25/2017] [Indexed: 02/08/2023] Open
Abstract
Background We sought to characterize the effects of dietary macronutrient composition on various hormones implicated in the regulation of insulin sensitivity (IS) and energy expenditure (EE). Methods Following 10–15% weight loss, 21 overweight subjects consumed 3 weight-loss maintenance diets [low fat (LF), low glycemic index (LGI) and very low carbohydrate (VLC)] in random order, each for 4 weeks. At baseline and at the end of each treatment period, fasting samples for fibroblast growth factor (FGF)-21, heme-oxygenase-1 (HO-1), chemerin, irisin, secreted frizzle-related protein (SFRP-4), total bile acids, ghrelin, gastrin inhibitory peptide (GIP), peptide-Y, and amylin; hepatic and peripheral IS; and EE were obtained. Analyses were controlled for age, gender, baseline body mass index, and diet sequence. Results FGF-21 decreased (P < 0.0001), with differential effect by macronutrient composition (mean change from baseline ± SEM: LF −49.4 ± 16.6, LGI -58.6 ± 16.3, VLC -76.7 ± 18.2 pg/mL, P = 0.0002). Change in FGF-21 was inversely associated with change in hepatic IS [Beta = −0.565 units/log(ng/mL), P = 0.02], but not with peripheral IS or EE. Heme-oxygenase-1 (HO-1) increased (P = 0.003), without differential effect by macronutrient composition (LF 0.40 ± 0.26, LGI 0.98 ± 0.63, VLC 0.49 ± 0.29 ng/mL, P = 0.07). Ghrelin increased (P = 0.0003), while chemerin decreased (P = 0.001) without macronutrient effect. Total bile acid, irisin, SFRP-4, GIP, peptide-Y and amylin levels did not change. Conclusions FGF-21 levels decreased with dietary intervention in proportion to carbohydrate content, and correlated with hepatic insulin sensitivity, suggesting a pattern of improving FGF-21 resistance. HO-1 increased in response to dietary intervention, a tendency to greater increase in response to the LGI diet. Dietary intervention affected ghrelin and chemerin, independent of macronutrient composition. These findings may elucidate relationships between dietary composition, insulin sensitivity and metabolism. Trial registration NCT00315354.
Collapse
Affiliation(s)
- Bridget M Hron
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Ave., HUN Ground, Boston, MA USA.,New Balance Foundation Obesity Prevention Center and Division of Endocrinology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA USA
| | - Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center and Division of Endocrinology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA USA
| | - Henry A Feldman
- Clinical Research Center, Boston Children's Hospital, 300 Longwood Ave, Boston, MA USA
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center and Division of Endocrinology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA USA
| |
Collapse
|
42
|
Gydesen S, Hjuler ST, Freving Z, Andreassen KV, Sonne N, Hellgren LI, Karsdal MA, Henriksen K. A novel dual amylin and calcitonin receptor agonist, KBP-089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br J Pharmacol 2017; 174:591-602. [PMID: 28109166 DOI: 10.1111/bph.13723] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Obesity and associated co-morbidities, such as type 2 diabetes and non-alcoholic fatty liver disease, are major health challenges. Hence, there is an important need to develop weight loss therapies with the ability to reduce the co-morbidities. EXPERIMENTAL APPROACH The effect of the dual amylin and calcitonin receptor agonist (DACRA), KBP-089, on body weight, glucose homeostasis and fatty acid accumulation in liver and muscle tissue and on food preference was investigated. Furthermore, we elucidated weight-independent effects of KBP-089 using a weight-matched group. KEY RESULTS Rats fed a high-fat diet were treated, s.c., with KBP-089 0.625, 1.25, 2.5 μg·kg-1 or vehicle. KB-089 induced in a dose-dependent and sustained weight loss (~17% by 2.5 μg·kg-1 ). Moreover, KBP-089 reduced fat depot size and reduced lipid accumulation in muscle and liver. In Zucker Diabetic Fatty rats, KBP-089 improved glucose homeostasis through improved insulin action. To obtain a weight-matched group, significantly less food was offered (9% less than in the KBP-089 group). Weight matching led to improved glucose homeostasis by reducing plasma insulin; however, these effect were inferior compared to those of KBP-089. In the food preference test, rats fed a normal diet obtained 74% of their calories from chocolate. KBP-089 reduced total caloric intake and induced a relative increase in chow consumption while drastically reducing chocolate consumption compared with vehicle. CONCLUSIONS AND IMPLICATIONS The novel DACRA, KBP-089, induces a sustained weight loss, leading to improved metabolic parameters including food preference, and these are beyond those observed simply by diet-induced weight loss.
Collapse
Affiliation(s)
- Sofie Gydesen
- Nordic Bioscience, Herlev, Denmark.,Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | - Lars I Hellgren
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
43
|
Levin BE, Lutz TA. Amylin and Leptin: Co-Regulators of Energy Homeostasis and Neuronal Development. Trends Endocrinol Metab 2017; 28:153-164. [PMID: 27938937 DOI: 10.1016/j.tem.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
While the regulation of energy homeostasis by amylin is already well-characterized, emerging data suggest that amylin is also crucial for the development of neural pathways in the hypothalamus and caudal hindbrain (area postrema, AP; nucleus tractus solitarius, NTS). Exciting new findings demonstrate crucial amylin-leptin interactions in altering the activity of specific hypothalamic and AP neurons, and a role for amylin as a novel class of 'leptin sensitizers' which enhance leptin signaling in both leptin-sensitive and -resistant individuals, in part by stimulating IL-6 production by hypothalamic microglia. This review summarizes these findings and provides a hypothetical framework for future studies to elucidate the mechanisms by which amylin and leptin act individually and as co-conspirators to alter energy homeostasis and neuronal development.
Collapse
Affiliation(s)
- Barry E Levin
- Department of Neurology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Lutz TA. The brain needs interleukin-6 (IL-6) to maintain a "healthy" energy balance. Focus on "IL-6 ameliorates defective leptin sensitivity in DIO ventromedial hypothalamic nucleus neurons". Am J Physiol Regul Integr Comp Physiol 2016; 311:R989-R991. [PMID: 27733389 DOI: 10.1152/ajpregu.00426.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology and Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Johnson MD, Bouret SG, Dunn-Meynell AA, Boyle CN, Lutz TA, Levin BE. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet-induced obese rat. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1032-R1044. [PMID: 27629888 PMCID: PMC5256974 DOI: 10.1152/ajpregu.00326.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022]
Abstract
Selectively bred diet-induced obese (DIO) rats become obese on a high-fat diet and are leptin resistant before becoming obese. Compared with diet-resistant (DR) neonates, DIO neonates have impaired leptin-dependent arcuate (ARC) neuropeptide Y/agouti-related peptide (NPY/AgRP) and α-melanocyte-stimulating hormone (α-MSH; from proopiomelanocortin (POMC) neurons) axon outgrowth to the paraventricular nucleus (PVN). Using phosphorylation of STAT3 (pSTAT3) as a surrogate, we show that reduced DIO ARC leptin signaling develops by postnatal day 7 (P7) and is reduced within POMC but not NPY/AgRP neurons. Since amylin increases leptin signaling in adult rats, we treated DIO neonates with amylin during postnatal hypothalamic development and assessed leptin signaling, leptin-dependent ARC-PVN pathway development, and metabolic changes. DIO neonates treated with amylin from P0-6 and from P0-16 increased ARC leptin signaling and both AgRP and α-MSH ARC-PVN pathway development, but increased only POMC neuron number. Despite ARC-PVN pathway correction, P0-16 amylin-induced reductions in body weight did not persist beyond treatment cessation. Since amylin enhances adult DIO ARC signaling via an IL-6-dependent mechanism, we assessed ARC-PVN pathway competency in IL-6 knockout mice and found that the AgRP, but not the α-MSH, ARC-PVN pathway was reduced. These results suggest that both leptin and amylin are important neurotrophic factors for the postnatal development of the ARC-PVN pathway. Amylin might act as a direct neurotrophic factor in DIO rats to enhance both the number of POMC neurons and their α-MSH ARC-PVN pathway development. This suggests important and selective roles for amylin during ARC hypothalamic development.
Collapse
Affiliation(s)
- Miranda D Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California.,INSERM, Jean-Pierre Aubert Research Center, Lille, France
| | | | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and
| | - Barry E Levin
- Department of Neurology, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
46
|
Trevaskis JL, Wittmer C, Athanacio J, Griffin PS, Parkes DG, Roth JD. Amylin/leptin synergy is absent in extreme obesity and not restored by calorie restriction-induced weight loss in rats. Obes Sci Pract 2016; 2:385-391. [PMID: 28090343 PMCID: PMC5192543 DOI: 10.1002/osp4.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/23/2016] [Indexed: 02/05/2023] Open
Abstract
Objective Co‐administration of amylin and leptin induces synergistic and clinically meaningful (>10%) weight loss that is attenuated as the degree of obesity increases. We explored whether calorie restriction (CR) could restore amylin/leptin synergy in very obese rats. Methods Sprague Dawley rats on high‐fat diet (696 ± 8 g, n = 72) were randomized to three cohorts (C1–C3). Rats in C1 were administered vehicle, rat amylin (50 µg kg−1 d−1), murine leptin (125 µg kg−1 d−1) or amylin and leptin for 28 days (n = 6 per group) via subcutaneous minipump. Simultaneously, C2 and C3 rats initiated CR. After moderate (12.4 ± 0.3%, 86.7 ± 2.8 g; C2) or severe (24.9 ± 0.3%, 172.7 ± 4.7 g; C3) weight loss, amylin and/or leptin was administered as described. Results In C1, leptin did not alter weight, and amylin induced 40.2 ± 6.1 g weight loss (−6.0 ± 0.9%), which was not enhanced by leptin (44.4 ± 4.9 g, −6.1 ± 0.8%). In C2, vehicle‐treated (75.1 ± 7.8 g weight change from start of treatment, 1.1 ± 0.8% difference from start of pre‐CR phase) and leptin‐treated rats (68.6 ± 9.2 g, −1.3 ± 1.0%) rebounded to pre‐restriction weight that was attenuated by amylin (29.2 ± 11.4 g, −6.2 ± 0.7%). Leptin did not enhance the effect of amylin (22.8 ± 11.7 g, −8.3 ± 1.5%). In C3, vehicle‐treated and leptin‐treated rats regained most of their weight (161.9 ± 11.8, −2.3 ± 0.8% and 144.6 ± 9.5 g, −2.3 ± 0.9%, respectively), which was attenuated by amylin (91.1 ± 16.8 g, −11.2 ± 0.7%), but not enhanced by leptin (83.0 ± 7.6 g, −10.7 ± 0.8%). Conclusions Extreme obesity associated with leptin resistance perturbs amylin/leptin weight loss synergy in rats, which cannot be restored by pre‐treatment weight loss.
Collapse
Affiliation(s)
| | - C Wittmer
- Amylin Pharmaceuticals San Diego CA USA
| | | | | | | | - J D Roth
- Present address: Intercept Pharmaceuticals San Diego CA USA
| |
Collapse
|
47
|
Hjuler ST, Gydesen S, Andreassen KV, Pedersen SLK, Hellgren LI, Karsdal MA, Henriksen K. The dual amylin- and calcitonin-receptor agonist KBP-042 increases insulin sensitivity and induces weight loss in rats with obesity. Obesity (Silver Spring) 2016; 24:1712-22. [PMID: 27296301 DOI: 10.1002/oby.21563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In this study, KBP-042, a dual amylin- and calcitonin-receptor agonist, was investigated as a treatment of obesity and insulin resistance in five different doses (0.625 µg/kg-10 µg/kg) compared with saline-treated and pair-fed controls. METHODS Rats with obesity received daily s.c. administrations for 56 days, and glucose tolerance was assessed after one acute injection, 3 weeks of treatment, and again after 7 weeks of treatment. To assess the effect on insulin sensitivity, rats received 5 µg/kg KBP-042 for 21 days before hyperinsulinemic-euglycemic clamp. RESULTS KBP-042 induced a sustained weight loss of up to 20% without any significant weight reduction in the pair-fed groups. Decreases in adipose tissues and lipid deposition in the liver were observed, while plasma adiponectin was increased and plasma leptin levels were decreased. Acute administration of KBP-042 led to impaired glucose tolerance and increased plasma lactate, while this diabetogenic effect was reversed by chronic treatment. Finally, assessment of insulin sensitivity using the hyperinsulinemic-euglycemic clamp showed that KBP-042 increased the glucose infusion rate. CONCLUSIONS The study indicates that KBP-042 combines two highly relevant features, namely weight loss and insulin sensitivity, and is thus an excellent candidate for chronic treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | - Lars I Hellgren
- Department of Systems Biology, Technical University of Denmark, Denmark
| | | | | |
Collapse
|
48
|
Wang H, Wang Y, Taussig MD, Eckel RH. Sex differences in obesity development in pair-fed neuronal lipoprotein lipase deficient mice. Mol Metab 2016; 5:1025-1032. [PMID: 27689015 PMCID: PMC5034494 DOI: 10.1016/j.molmet.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023] Open
Abstract
Objective Compared to men, postmenopausal women suffer from a disproportionate burden of many co-morbidities associated with obesity, e.g. cardiovascular disease, cancer, and dementia. The underlying mechanism for this sex difference is not well understood but is believed to relate to absence of the protective effect of estrogen through the action of estrogen receptor alpha (ERα) in the central nervous system. With the recently developed neuron-specific lipoprotein lipase deficient mice (NEXLPL−/−) (Wang et al., Cell Metabolism, 2011 [15]), we set to explore the possible role of lipid sensing in sex differences in obesity development. Methods Both male and female NEXLPL−/− mice and littermate WT controls were subjected to pair feeding (pf) where daily food amount given was adjusted according to body weight to match the food intake of ad libitum (ad) fed control WT mice. Food intake and body weight were measured daily, and pair feeding was maintained to 42 wk in male mice and to 38 wk in female mice. Various brain regions of the mice were harvested, and ERα gene expression was examined in both male and female NEXLPL−/− and WT control mice under both ad- and pf-fed conditions. Results Although both male and female NEXLPL−/− mice developed obesity similarly on standard chow, male NEXLPL−/− mice still developed obesity under with pair feeding, but on a much delayed time course, while female NEXLPL−/− mice were protected from extra body weight and fat mass gain compared to pair-fed WT control mice. Pair feeding alone induced extra fat mass gain in both male and female WT mice, and this was mostly driven by the reduction in physical activity. LPL deficiency resulted in an increase in ERα mRNA in the hypothalamus of ad-fed female mice, while pair feeding alone also resulted in an increase of ERα in both female WT control and NEXLPL−/− mice. The effect on increasing ERα by pair feeding and LPL deficiency was additive in pair-fed female NEXLPL−/− mice. ERα mRNA levels were not significantly modified in other brain regions examined, nor in the hypothalamus of male NEXLPL−/− mice compared to control mice. Conclusions These results suggest that the mechanism underlying ERα regulation of body weight interacts with the LPL-dependent lipid processing in the hypothalamus in a sex specific way. ERα could provide the link between brain lipid sensing and sex differences in obesity development. This study has the potential important clinical implication to provide better management for women who suffer from obesity and obesity-related co-morbidities. Male neuronal lipoprotein lipase deficient mice are still obese with pair feeding. Female neuronal lipoprotein lipase deficient mice are not obese with pair feeding. Neuronal LPL deficiency results in an increase in ERa expression in female mice. Pair feeding alone also results in an increase in ERa in both male and female mice. ERa provides the link between brain lipid sensing and sex differences in obesity.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Yongping Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Taussig
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
49
|
Gydesen S, Andreassen KV, Hjuler ST, Christensen JM, Karsdal MA, Henriksen K. KBP-088, a novel DACRA with prolonged receptor activation, is superior to davalintide in terms of efficacy on body weight. Am J Physiol Endocrinol Metab 2016; 310:E821-7. [PMID: 26908506 DOI: 10.1152/ajpendo.00514.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/11/2016] [Indexed: 11/22/2022]
Abstract
This study aims to elucidate the mechanism behind the potent weight loss induced by dual amylin and calcitonin receptor agonists (DACRA) through comparison of the novel DACRA KBP-088 with the amylinomimetic davalintide with regard to in vitro receptor pharmacology and in vivo efficacy on food intake and body weight. KBP-088 and davalintide were tested for their ability to activate the amylin and calcitonin receptors as function of dose and time. Two doses of KBP-088 (1.67 and 5.0 μg/kg) were compared with similar davalintide doses in high-fat diet (HFD)-fed rats receiving subcutaneous dosing once daily for 62 days. Glucose tolerance was assessed after 3 and 7 wk of treatment. KBP-088 demonstrated activation of amylin and calcitonin receptors and prolonged receptor activation compared with davalintide as well as a potent reduction of acute food intake. KBP-088 transiently reduced food intake and induced and notably sustained a significant ∼16% vehicle-corrected weight loss without significant weight loss in the calorie-restricted control groups. Additionally, KBP-088 reduced white adipose tissues and adipocyte hypertrophy. Finally, KBP-088 alleviated hyperinsulinemia and improved oral glucose tolerance even with significantly lower insulin levels after 3 and 7 wk of treatment. KBP-088 is a potent amylin and calcitonin receptor agonist with prolonged receptor activation compared with davalintide. Moreover, KBP-088 induced and sustained significant weight loss and reduced overall adiposity and adipocyte hypertrophy in HFD rats. Finally, KBP-088 improved oral glucose tolerance and alleviated hyperinsulinemia, underscoring the potential of KBP-088 as an antiobesity agent with benefits on glucose control.
Collapse
|
50
|
McEwen BS, McKittrick CR, Tamashiro KLK, Sakai RR. The brain on stress: Insight from studies using the Visible Burrow System. Physiol Behav 2016; 146:47-56. [PMID: 26066722 DOI: 10.1016/j.physbeh.2015.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
The discovery of adrenal steroid receptors outside of the hypothalamus in the hippocampus and other forebrain regions catalyzed research on the effects of stress upon cognitive function, emotions and self-regulatory behaviors as well as the molecular, cellular and neuroanatomical mechanisms underlying acute and chronic stress effects on the brain. Indeed, this work has shown that the brain is a plastic and vulnerable organ in the face of acute and chronic stress. The insight that Bob and Caroline Blanchard had in developing and interpreting findings using the Visible Burrow System model made an enormous contribution to the current view that the human brain is very sensitive to the social environment and to agonistic interactions between individuals. Their collaboration with Sakai and McEwen at The Rockefeller University extended application of the Visible Burrow System model to demonstrate that it also was a unique and highly relevant neuroethological model with which to study stress and adaptation to stressors. Those studies focused on the brain and systemic organ responses to stress and, in turn, described that the brain is also very responsive to changes in systemic physiology.
Collapse
|