1
|
Liu X, Duan C, Yin X, Li X, Chen M, Chen J, Zhao W, Zhang L, Liu Y, Zhang Y. Effects of Prolactin Inhibition on Lipid Metabolism in Goats. Animals (Basel) 2024; 14:3364. [PMID: 39682330 DOI: 10.3390/ani14233364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Prolactin (PRL) has recently been found to play a role in lipid metabolism in addition to its traditional roles in lactation and reproduction. However, the effects of PRL on lipid metabolism in liver and adipose tissues are unclear. Therefore, we aimed to study the role of PRL on lipid metabolism in goats. Twenty healthy eleven-month-old Yanshan cashmere goats with similar body weights (BWs) were selected and randomly divided into a control (CON) group and a bromocriptine (BCR, a PRL inhibitor, 0.06 mg/kg, BW) group. The experiment lasted for 30 days. Blood was collected on the day before BCR treatment (day 0) and on the 15th and 30th days after BCR treatment (days 15 and 30). On day 30 of treatment, all goats were slaughtered to collect their liver, subcutaneous adipose, and perirenal adipose tissues. A portion of all collected tissues was stored in 4% paraformaldehyde for histological observation, and another portion was immediately stored in liquid nitrogen for RNA extraction. The PRL inhibition had inconclusive effects found on BW and average daily feed intake (ADFI) in goats (p > 0.05). PRL inhibition decreased the hormone-sensitive lipase (HSL) levels on day 30 (p < 0.05), but the effects were inconclusive on days 0 and 15. PRL inhibition had inconclusive effects found on total cholesterol (TCH), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and acetyl-CoA carboxylase (ACC) on days 0, 15, and 30 (p > 0.05). Furthermore, hematoxylin-eosin (HE) staining of the liver, subcutaneous adipose, and perirenal adipose sections showed that PRL inhibition had inconclusive effects on the pathological changes in their histomorphology (p > 0.05), but measuring adipocytes showed that the area of perirenal adipocytes decreased in the BCR group (p < 0.05). The qPCR results showed that PRL inhibition increased the expression of PRL, long-form PRL receptor (LPRLR), and short-form PRL receptor (SPRLR) genes, as well as the expression of genes related to lipid metabolism, including sterol regulatory element binding transcription factor 1 (SREBF1); sterol regulatory element binding transcription factor 2 (SREBF2); acetyl-CoA carboxylase alpha (ACACA); fatty acid synthase (FASN); 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); 7-dehydrocholesterol reductase (DHCR7); peroxisome proliferator-activated receptor gamma (PPARG); and lipase E, hormone-sensitive type (LIPE) in the liver (p < 0.05). In the subcutaneous adipose tissue, PRL inhibition increased SPRLR gene expression (p < 0.05) and decreased the expression of genes related to lipid metabolism, including SREBF1, SREBF2, ACACA, PPARG, and LIPE (p < 0.05). In the perirenal adipose tissue, the inhibition of PRL decreased the expression of the PRL, SREBF2, and HMGCR genes (p < 0.05). In conclusion, the inhibition of PRL decreases the serum HSL levels in cashmere goats; the effects of PRL on lipid metabolism are different in different tissues; and PRL affects lipid metabolic activity by regulating different PRLRs in liver and subcutaneous adipose tissues, as well as by decreasing the expression of the PRL, SREBF2, and HMGCR genes in perirenal adipose tissue.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jiaxin Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wen Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Mastnak L, Herman R, Ferjan S, Janež A, Jensterle M. Prolactin in Polycystic Ovary Syndrome: Metabolic Effects and Therapeutic Prospects. Life (Basel) 2023; 13:2124. [PMID: 38004264 PMCID: PMC10672473 DOI: 10.3390/life13112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine and metabolic disorder in premenopausal women, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. Patients frequently present comorbidities, including obesity, insulin resistance, and impaired glucose and lipid metabolism. The diverse clinical presentation may mimic various endocrine disorders, making the diagnosis challenging in some clinical circumstances. Prolactin (PRL) is a recommended biomarker in the initial diagnostic workup to rule out hyperprolactinemia (HPRL). The traditional role of PRL is linked to lactation and the reproductive system. Recent research highlights PRL's emerging role in metabolic homeostasis. PRL influences metabolism directly by interacting with the pancreas, liver, hypothalamus, and adipose tissue. Its influence on an individual's metabolism is intricately tied to its serum concentration. While deficient and very high levels of PRL can negatively affect metabolism, intermediate-normal to moderately high levels may promote metabolic health. In women with PCOS, PRL levels may be altered. Research results on different aspects of the relationship between PCOS and the impact of various levels of PRL on metabolic homeostasis are limited and inconsistent. In this narrative literature review, we comprehensively examined data on serum PRL levels in PCOS patients. We investigated the correlation between a favorable metabolic profile and serum PRL levels in this population. Furthermore, we explored the concept of beneficial PRL effects on metabolism and discussed the potential therapeutic application of dopamine agonists in PCOS treatment. Lastly, we emphasized several promising avenues for future research in this field.
Collapse
Affiliation(s)
- Lara Mastnak
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simona Ferjan
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Peng G, Mosleh E, Yuhas A, Katada K, Cherry C, Golson ML. FOXM1 acts sexually dimorphically to regulate functional β-cell mass. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523673. [PMID: 36711451 PMCID: PMC9882186 DOI: 10.1101/2023.01.12.523673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The transcription factor FOXM1 regulates β-cell proliferation and insulin secretion. Our previous work demonstrates that expressing an activated form of FOXM1 (FOXM1*) in β cells increases β-cell proliferation and mass in aged male mice. Additionally, FOXM1* enhances β-cell function even in young mice, in which no β-cell mass elevation occurs. Here, we demonstrate that FOXM1 acts in a sexually dimorphic manner in the β cell. Expression of FOXM1* in female mouse β cells does not affect β-cell proliferation or glucose tolerance. Transduction of male but not female human islets with FOXM1* enhances insulin secretion in response to elevated glucose. Estrogen contributes to diabetes susceptibility differences between males and females, and the estrogen receptor (ER)α is the primary mediator of β-cell estrogen signaling. We show that FOXM1* can rescue impaired glucose tolerance in female mice with a pancreas-wide ERα deletion. Further, FOXM1 and ERα binding sites overlap with each other and with other β-cell-enriched transcription factors, including ISL1, PAX6, MAF, and GATA. These data indicate that FOMX1 and ERα cooperate to regulate β-cell function and suggest a general mechanism contributing to the lower incidence of diabetes observed in women.
Collapse
|
5
|
Maciuba S, Bowden GD, Stratton HJ, Wisniewski K, Schteingart CD, Almagro JC, Valadon P, Lowitz J, Glaser SM, Lee G, Dolatyari M, Navratilova E, Porreca F, Rivière PJ. Discovery and characterization of prolactin neutralizing monoclonal antibodies for the treatment of female-prevalent pain disorders. MAbs 2023; 15:2254676. [PMID: 37698877 PMCID: PMC10498814 DOI: 10.1080/19420862.2023.2254676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Prolactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039. PL 200,031 was engineered as human IgG1 whereas PL 200,039 was reformatted as human IgG4. Both mAbs have sub-nanomolar affinity for human PRL (hPRL) and produce concentration-dependent and complete inhibition of hPRL signaling at the hPRL receptor (hPRLR). These two PRL mAbs are selective for hPRL as they do not inhibit other hPRLR agonists such as human growth hormone or placental lactogen. They also cross-react with non-human primate PRL but not with rodent PRL. Further, both mAbs show long clearance half-lives after intravenous administration in FcRn-humanized mice. Consistent with their isotypes, these mAbs only differ in binding affinities to Fcγ receptors, as expected by design. Finally, PL 200,019, the murine parental mAb of PL 200,031 and PL 200,039, fully blocked stress-induced and PRL-dependent pain behaviors in female PRL-humanized mice, thereby providing in vivo preclinical proof-of-efficacy for PRL mAbs in mechanisms relevant to pain in females.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Grace Lee
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Mahdi Dolatyari
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
6
|
Niknam A, Mahboobifard F, Rahmati M, Firouzi F, Rojhani E, Azizi F, Ramezani Tehrani F. The effects of different physiologic concentrations of prolactin in association with reproductive hormones on the incidence of type 2 diabetes mellitus in men: Tehran Lipid and Glucose Study. BMC Endocr Disord 2022; 22:302. [PMID: 36471299 PMCID: PMC9721030 DOI: 10.1186/s12902-022-01225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Data is inconsistent and, for the most part, not sufficient to demonstrate the association between serum Prolactin (PRL) concentration within the physiologic range and the incidence rate of type 2 Diabetes Mellitus (DM) among men. Moreover, since both PRL and type 2 DM are associated with reproductive hormones, investigating these hormones might improve our understanding of how PRL might impose its effect on the incidence rate of type 2 DM. METHODS For the present study, 652 eligible men aged 29-70 with a normal baseline PRL concentration were selected from the Tehran Lipid and Glucose Study (TLGS). Participants were sub-classified into three groups (tertiles) according to the serum concentration of PRL and were followed for 15.8 years. The incidence of type 2 DM and PRL, LH, FSH, testosterone, and AMH concentrations were measured. The effect of hormonal variables on the incidence of type 2 DM was estimated using the log-binomial model, adjusted for major confounding factors. The correlations between PRL and the indicators of glucose and lipid metabolism and other hormonal variables were also explored. RESULTS In the unadjusted model, PRL was not significantly associated with the incidence rate of type 2 DM (RR = 0.98, 95% CI: 0.94 - 1.03). After adjusting for potential confounders, the inverse effect of AMH on the incidence rate of type 2 DM was the only significant association. The analyses also indicated a significant positive association between PRL and LH/FSH ratio (r = 0.1, P = 0.01). CONCLUSION No significant association was found between serum PRL concentrations within the physiologic range and the incidence rate of type 2 diabetes mellitus among middle-aged men. Men with higher concentrations of PRL within the physiologic range tended to show higher levels of LH and LH/FSH. AMH was the only variable significantly linked to the incidence rate of type 2 DM in men.
Collapse
Affiliation(s)
- Atrin Niknam
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Fatemeh Mahboobifard
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Faezeh Firouzi
- Pathology Department of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Rojhani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran.
| |
Collapse
|
7
|
Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, Jensen EA, Bell SRC, Kulkarni P, Duran-Ortiz S, Mora-Criollo P, Mathes SC, Brittain AL, Buchman M, Davis E, Funk KR, Bogart J, Ibarra D, Mendez-Gibson I, Slyby J, Terry J, Kopchick JJ. Mice with gene alterations in the GH and IGF family. Pituitary 2022; 25:1-51. [PMID: 34797529 PMCID: PMC8603657 DOI: 10.1007/s11102-021-01191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.
Collapse
Affiliation(s)
- Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Elizabeth A Jensen
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Stephen R C Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | | | - Patricia Mora-Criollo
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Samuel C Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Mat Buchman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Kevin R Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Jolie Bogart
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Diego Ibarra
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Isaac Mendez-Gibson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
8
|
Macotela Y, Ruiz-Herrera X, Vázquez-Carrillo DI, Ramírez-Hernandez G, Martínez de la Escalera G, Clapp C. The beneficial metabolic actions of prolactin. Front Endocrinol (Lausanne) 2022; 13:1001703. [PMID: 36213259 PMCID: PMC9539817 DOI: 10.3389/fendo.2022.1001703] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The role of prolactin (PRL) favoring metabolic homeostasis is supported by multiple preclinical and clinical studies. PRL levels are key to explaining the direction of its actions. In contrast with the negative outcomes associated with very high (>100 μg/L) and very low (<7 μg/L) PRL levels, moderately high PRL levels, both within but also above the classically considered physiological range are beneficial for metabolism and have been defined as HomeoFIT-PRL. In animal models, HomeoFIT-PRL levels counteract insulin resistance, glucose intolerance, adipose tissue hypertrophy and fatty liver; and in humans associate with reduced prevalence of insulin resistance, fatty liver, glucose intolerance, metabolic syndrome, reduced adipocyte hypertrophy, and protection from type 2 diabetes development. The beneficial actions of PRL can be explained by its positive effects on main metabolic organs including the pancreas, liver, adipose tissue, and hypothalamus. Here, we briefly review work supporting PRL as a promoter of metabolic homeostasis in rodents and humans, the PRL levels associated with metabolic protection, and the proposed mechanisms involved. Finally, we discuss the possibility of using drugs elevating PRL for the treatment of metabolic diseases.
Collapse
|
9
|
Duc Nguyen H, Oh H, Yu BP, Hoang NMH, Jo WH, Young Chung H, Kim MS. Associations between Prolactin, Diabetes, and Cognitive Impairment: A Literature Review. Neuroendocrinology 2022; 112:856-873. [PMID: 34963126 DOI: 10.1159/000521653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Converging evidence indicates prolactin (PRL) and diabetes play an important role in the pathophysiology of cognitive impairment. However, little is known about the mechanisms responsible for the effects of PRL and diabetes on cognitive impairment. SUMMARY We summarize and review the available literature and current knowledge of the association between PRL and diabetes on aspects of cognitive impairment. KEY MESSAGES The phosphatidylinositol 3-kinase/protein kinase B pathway is central to the molecular mechanisms underlying how PRL and diabetes interact in cognitive impairment. Further work is needed to identify the interaction between PRL and diabetes, especially in the molecular aspects of cognitive impairment, which can suggest novel strategies for cognitive dysfunction treatment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea,
| | - Hojin Oh
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
10
|
Lopez-Vicchi F, De Winne C, Ornstein AM, Sorianello E, Toneatto J, Becu-Villalobos D. Severe Hyperprolactinemia Promotes Brown Adipose Tissue Whitening and Aggravates High Fat Diet Induced Metabolic Imbalance. Front Endocrinol (Lausanne) 2022; 13:883092. [PMID: 35757410 PMCID: PMC9226672 DOI: 10.3389/fendo.2022.883092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association of high serum prolactin and increased body weight is positive but controversial, therefore we hypothesized that additional factors such as diets and the impact of prolactin on brown adipose tissue may condition its metabolic effects. METHODS We used LacDrd2KO females with lifelong severe hyperprolactinemia due dopamine-D2 receptor deletion from lactotropes, and slow onset of metabolic disturbances, and compared them to their respective controls (Drd2 loxP/loxP ). Food intake, and binge eating was evaluated. We then challenged mice with a High Fat (HFD) or a Control Diet (CD) for 8 weeks, beginning at 3 months of age, when no differences in body weight are found between genotypes. At the end of the protocol brown and white adipose tissues were weighed, and thermogenic and lipogenic markers studied, using real time PCR (Ucp1, Cidea, Pgc1a, Lpl, adiponectin, Prlr) or immunohistochemistry (UCP1). Histochemical analysis of brown adipose tissue, and glucose tolerance tests were performed. RESULTS Hyperprolactinemic mice had increased food intake and binge eating behavior. Metabolic effects induced by a HFD were exacerbated in lacDrd2KO mice. Hyperprolactinemia aggravated HFD-induced body weight gain and glucose intolerance. In brown adipose tissue pronounced cellular whitening as well as decreased expression of the thermogenic markers Ucp1 and Pgc1a were observed in response to high prolactin levels, regardless of the diet, and furthermore, hyperprolactinemia potentiated the decrease in Cidea mRNA expression induced by HFD. In subcutaneous white adipose tissue hyperprolactinemia synergistically increased tissue weight, while decreasing Prlr, Adiponectin and Lpl mRNA levels regardless of the diet. CONCLUSIONS Pathological hyperprolactinemia has a strong impact in brown adipose tissue, lowering thermogenic markers and evoking tissue whitening. Furthermore, it modifies lipogenic markers in subcutaneous white adipose, and aggravates HFD-induced glucose intolerance and Cidea decrease. Therefore, severe high prolactin levels may target BAT function, and furthermore represent an adjuvant player in the development of obesity induced by high fat diets.
Collapse
|
11
|
Saccon TD, Schneider A, Marinho CG, Nunes ADC, Noureddine S, Dhahbi J, Nunez Lopez YO, LeMunyan G, Salvatori R, Oliveira CRP, Oliveira‐Santos AA, Musi N, Bartke A, Aguiar‐Oliveira MH, Masternak MM. Circulating microRNA profile in humans and mice with congenital GH deficiency. Aging Cell 2021; 20:e13420. [PMID: 34118183 PMCID: PMC8282278 DOI: 10.1111/acel.13420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH-deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa-miR-31, hsa-miR-146b, hsa-miR-30e, hsa-miR-100, hsa-miR-181b-2, hsa-miR-195, and hsa-miR-181b-1, which target the FoxO and mTOR pathways. Intriguingly, miR-181b-5p, miR-361-3p, miR-144-3p, and miR-155-5p were commonly regulated in the serum of humans and GH-deficient mice. In vitro assays confirmed target genes for the main up-regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age-related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.
Collapse
Affiliation(s)
- Tatiana D. Saccon
- Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas Pelotas Brazil
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
| | - Augusto Schneider
- Faculdade de Nutrição Universidade Federal de Pelotas Pelotas Brazil
| | - Cindi G. Marinho
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Allancer D. C. Nunes
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
| | - Sarah Noureddine
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
| | - Joseph Dhahbi
- Department of Medical Education School of Medicine California University of Science & Medicine San Bernardino CA USA
| | - Yury O. Nunez Lopez
- Advent Health Translational Research Institute for Metabolism and Diabetes Orlando FL USA
| | - Gage LeMunyan
- Department of Medical Education School of Medicine California University of Science & Medicine San Bernardino CA USA
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Carla R. P. Oliveira
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Alécia A. Oliveira‐Santos
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies Center for Healthy Aging University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System San Antonio TX USA
- San Antonio Geriatric Research Education and Clinical Center South Texas Veterans Health Care System San Antonio TX USA
| | - Andrzej Bartke
- Department of Internal Medicine Southern Illinois University School of Medicine Springfield IL USA
| | - Manuel H. Aguiar‐Oliveira
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
- Department of Head and Neck Surgery Poznan University of Medical Sciences Poznan Poland
| |
Collapse
|
12
|
Ali M, Mirza L. Morbid Obesity Due to Prolactinoma and Significant Weight Loss After Dopamine Agonist Treatment. AACE Clin Case Rep 2021; 7:204-206. [PMID: 34095489 PMCID: PMC8165126 DOI: 10.1016/j.aace.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Morbid obesity may be related to a prolactinoma, although uncommon, and can lead to adverse effects like insulin resistance and metabolic syndrome. Recent research suggests that hyperprolactinemia causes an abnormal lipid profile, weight gain, and cardiovascular diseases. Moreover, high prolactin levels lead to decreased testosterone production by disrupting 17-b-estradiol synthesis. Our objective was to present a case of prolactinoma with morbid obesity, hypogonadism, and then significant weight loss after dopamine agonist treatment. Methods The clinical course, in addition to serial laboratory and imaging results, are presented. These include prolactin levels, testosterone levels, thyroid function tests, blood sugar levels, and serial lipid profiles. Results In this report, we discuss a case of 30-year-old male with prolactin-secreting macroadenoma with clinical features of hypogonadism, hypothyroidism, and morbid obesity. He showed marked improvement in obesity and hypogonadism with dopamine agonist therapy supplemented with clomiphene citrate. Conclusion Prolactinomas with morbid obesity can be successfully treated contingent upon proper medication and compliance with medications. Insulin resistance, hypogonadism, prolactin levels, body mass index, and tumor size all improved by regular follow-up and treatment adherence.
Collapse
Affiliation(s)
- Muzaffar Ali
- Department of Internal Medicine, Rehman Medical Institute, Peshawar, Pakistan
| | - Lubna Mirza
- Department of Endocrinology, Norman Regional Hospital, Oklahoma
| |
Collapse
|
13
|
Liu J, Wang Q, Zhang L, Fu J, An Y, Meng H, Wang G. Increased Prolactin is an Adaptive Response to Protect Against Metabolic Disorders in Obesity. Endocr Pract 2021; 27:728-735. [PMID: 33637446 DOI: 10.1016/j.eprac.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Prolactin (PRL) is a polypeptide hormone named for its crucial role in lactation. Recently, PRL has been recognized as a metabolic hormone that regulates energy metabolism. The current study aimed to investigate the relationship between circulating PRL and metabolic alterations in overweight/obese patients and the effect of weight loss through bariatric surgery on circulating PRL. METHODS A total of 448 overweight/obese patients aged between 18 and 40 years and 120 age- and sex-matched healthy controls with normal weight were enrolled. Among all participants, 156 obese patients underwent bariatric surgery. RESULTS Circulating PRL levels were significantly increased in the overweight (15.27 ± 9.58 μg/L) and obese (17.75 ± 9.15 μg/L) groups compared with the normal weight (13.57 ± 9.03 μg/L) group. Multiple regression analyses demonstrated that the adipose tissue insulin resistance (adipo-IR) level was an independent predictor for PRL (β = -0.451, P < .01). Despite comparable anthropometric parameters, the overweight/obese patients with a higher PRL tertile had decreased levels of triglycerides, nonesterified fatty acids, homeostasis model assessment of insulin resistance, and adipo-IR compared with the patients in the moderate and lower PRL tertiles. Serum PRL levels were significantly decreased following the alleviation of metabolic parameters after bariatric surgery (from 17.12 ± 8.27 to 13.00 ± 5.78 μg/L, P < .05), and the decrease in PRL levels was significantly greater in the lower adipo-IR group than in the higher adipo-IR group (P < .01). CONCLUSION An increased serum PRL level might be an adaptive response for protecting against metabolic disorders in obesity.
Collapse
Affiliation(s)
- Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qiu Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Lin Zhang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jing Fu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Hua Meng
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Schernthaner-Reiter MH, Wolf P, Vila G, Luger A. The Interaction of Insulin and Pituitary Hormone Syndromes. Front Endocrinol (Lausanne) 2021; 12:626427. [PMID: 33995272 PMCID: PMC8113952 DOI: 10.3389/fendo.2021.626427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Pituitary hormone axes modulate glucose metabolism and exert direct or indirect effects on insulin secretion and function. Cortisol and growth hormone are potent insulin-antagonistic hormones. Therefore impaired glucose tolerance, elevated fasting glucose concentrations and diabetes mellitus are frequent in Cushing's disease and acromegaly. Also prolactinomas, growth hormone (GH) deficiency, hypogonadism and hypothyroidism might be associated with impaired glucose homeostasis but usually to a lesser extent. Therefore glucose metabolism needs to be closely monitored and treated in patients with pituitary adenomas. Correction of the pituitary dysfunction is frequently followed by improvement of glucose homeostasis.
Collapse
|
15
|
Lopez-Vicchi F, De Winne C, Brie B, Sorianello E, Ladyman SR, Becu-Villalobos D. Metabolic functions of prolactin: Physiological and pathological aspects. J Neuroendocrinol 2020; 32:e12888. [PMID: 33463813 DOI: 10.1111/jne.12888] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Prolactin is named after its vital role of promoting milk production during lactation, although it has been implicated in multiple functions within the body, including metabolism and energy homeostasis. Prolactin has been hypothesised to play a key role in driving many of the adaptations of the maternal body to allow the mother to meet the physiological demands of both pregnancy and lactation, including the high energetic demands of the growing foetus followed by milk production to support the offspring after birth. Prolactin receptors are found in many tissues involved in metabolism and food intake, such as the pancreas, liver, hypothalamus, small intestine and adipose tissue. We review the literature examining the effects of prolactin in these various tissues and how they relate to changes in function in physiological states of high prolactin, such as pregnancy and lactation, and in pathological states of hyperprolactinaemia in the adult. In many cases, whether prolactin promotes healthy metabolism or leads to dysregulation of metabolic functions is highly dependent on the situation. Overall, although prolactin may not play a major role in regulating metabolism and body weight outside of pregnancy and lactation, it definitely has the ability to contribute to metabolic function.
Collapse
Affiliation(s)
- Felicitas Lopez-Vicchi
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Catalina De Winne
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Belen Brie
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Damasia Becu-Villalobos
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| |
Collapse
|
16
|
Macotela Y, Triebel J, Clapp C. Time for a New Perspective on Prolactin in Metabolism. Trends Endocrinol Metab 2020; 31:276-286. [PMID: 32044206 DOI: 10.1016/j.tem.2020.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The pituitary hormone prolactin (PRL) regulates a variety of functions beyond reproduction. The association between physiological (pregnancy) and pathological (prolactinoma) hyperprolactinemia and metabolic alterations led to the concept of this hormone being diabetogenic. However, large cohort clinical studies have recently shown that low circulating PRL levels are associated with metabolic disease and represent a risk factor for type 2 diabetes (T2D), whereas high PRL levels are beneficial. Moreover, PRL acts on the pancreas, liver, adipose tissue, and hypothalamus to maintain and promote metabolic homeostasis. By integrating basic and clinical evidence, we hypothesize that upregulation of PRL levels is a mechanism to maintain metabolic homeostasis and, thus, propose that the range of PRL levels considered physiological should be expanded to higher values.
Collapse
Affiliation(s)
- Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, México.
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine, and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, México
| |
Collapse
|
17
|
Framnes-DeBoer SN, Bakke E, Yalamanchili S, Peterson H, Sandoval DA, Seeley RJ, Arble DM. Bromocriptine improves glucose tolerance independent of circadian timing, prolactin, or the melanocortin-4 receptor. Am J Physiol Endocrinol Metab 2020; 318:E62-E71. [PMID: 31794265 PMCID: PMC6985791 DOI: 10.1152/ajpendo.00325.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromocriptine, a dopamine D2 receptor agonist originally used for the treatment of hyperprolactinemia, is largely successful in reducing hyperglycemia and improving glucose tolerance in type 2 diabetics. However, the mechanism behind bromocriptine's effect on glucose intolerance is unclear. Here, we tested three hypotheses, that bromocriptine may exert its effects on glucose metabolism by 1) decreasing prolactin secretion, 2) indirectly increasing activity of key melanocortin receptors in the central nervous system, or 3) improving/restoring circadian rhythms. Using a diet-induced obese (DIO) mouse model, we established that a 2-wk treatment of bromocriptine is robustly effective at improving glucose tolerance. We then demonstrated that bromocriptine is effective at improving the glucose tolerance of both DIO prolactin-deficient and melanocortin-4 receptor (MC4R)-deficient mice, pointing to bromocriptine's ability to affect glucose tolerance independently of prolactin or MC4R signaling. Finally, we tested bromocriptine's dependence on the circadian system by testing its effectiveness in environmental (e.g., repeated shifts to the light-dark cycle) and genetic (e.g., the Clock mutant mouse) models of circadian disruption. In both models of circadian disruption, bromocriptine was effective at improving glucose tolerance, indicating that a functional or well-aligned endogenous clock is not necessary for bromocriptine's effects on glucose metabolism. Taken together, these results do not support the role of prolactin, MC4R, or the circadian clock as integral to bromocriptine's underlying mechanism. Instead, we find that bromocriptine is a robust diabetic treatment and resilient to genetically induced obesity, diabetes, and circadian disruption.
Collapse
Affiliation(s)
| | - Ellen Bakke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Hannah Peterson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Deanna M Arble
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Al-Nami MS, Al-Kuraishy HM, Al-Gareeb AI, Al-Mamoori F. Metabolic profile and prolactin serum levels in men with type 2 diabetes mellitus: Old-new rubric. Int J Crit Illn Inj Sci 2019; 9:120-126. [PMID: 31620350 PMCID: PMC6792395 DOI: 10.4103/ijciis.ijciis_40_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Prolactin (PRL) is involved in the regulation of glucose metabolism since high PRL serum levels are associated with low incidence of type 2 diabetes mellitus (T2DM). Therefore, the aim of the present study was to assess the metabolic effects of PRL on glucose homeostasis in men with T2DM. Methods: Eighty male patients with T2DM compared with 25 male healthy controls matched with patients for age and weight were divided into four groups: Group (A): patients with T2DM on metformin (n = 29), Group (B): patients with T2DM on glyburide (n = 30), Group (C): patients with T2DM on glyburide plus metformin (n = 21), and Group (D): healthy male subjects as control (n = 25). Body mass index (BMI) and blood pressure measurements were determined. Fasting blood glucose (FBG), glycated hemoglobin, total cholesterol, triglyceride (TG), high-density lipoprotein, low-density lipoprotein, atherogenic index, fasting serum insulin, insulin resistance (IR), and β-cell function of the pancreas were determined by homeostatic model assessment-2 (HOMA-IR). Furthermore, C-reactive protein and PRL serum level were determined in patients with T2DM and healthy control men. Results: BMI of T2DM patients was higher as compared with control (P = 0.003). Combination therapy (glyburide plus metformin) in patients with T2DM showed better effect on most of glycemic indices and lipid profile than glyburide or metformin monotherapy (P < 0.05). PRL serum level was higher in patients with T2DM as compared with control (P = 0.001). PRL serum level was high in glyburide-treated patients as compared with metformin-treated patients (P = 0.002). Conclusion: This study concludes that elevated PRL serum level in patients with T2DM is associated with diabetic complications. Diabetic pharmacotherapy mainly metformin reduced PRL serum level in patients with T2DM through amelioration of IR.
Collapse
Affiliation(s)
- Marwa S Al-Nami
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Farah Al-Mamoori
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
19
|
Manshaei N, Shakibaei F, Fazilati M, Salavati H, Negahdary M, Palizban A. An investigation of the association between the level of prolactin in serum and type II diabetes. Diabetes Metab Syndr 2019; 13:3035-3041. [PMID: 30030156 DOI: 10.1016/j.dsx.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 11/21/2022]
Abstract
As a hormone secreted from the pituitary gland, prolactin (PRL) plays an important role in increasing beta cell proliferation, stimulating the secretion of insulin, preventing the activities of caspases on pathways that cause apoptosis in the Langerhans' islands, and moderating the immune system in regulating the whole body's sensitivity to insulin. Therefore, PRL level changes in type II diabetes and it can be concluded that PRL can play an important role in metabolic disorders of glucose. The present study is carried out in order to investigate the association between serum levels of PRL and type II DM. Blood samples were taken from 64 females affected by type II diabetes and 70 healthy ones, whose PRL level was measured using electrochemiluminescence (ECL) technique. It was a case-control study, and based on the definition dedicated to each group, subjects were assigned to two groups. The patient group included the subjects with type II diabetes while the control group included healthy samples. Data were analyzed using SPSS software (Mann-Whitney test, t-test, and spearman's rho correlation test). According to the results, PRL concentration in the serum of people affected by type II diabetes (5.32 ± 0.36) was significantly (P˂0.05) lower than that of control group (18.38 ± 2.3). The results also showed that in type II diabetes, the level of PRL changes so that the concentration of PRL in the serum of the patients was lower than that of healthy ones. Therefore, PRL concentration in the blood can be related to diabetes.
Collapse
Affiliation(s)
- Najmeh Manshaei
- Department of Biochemistry, Payame Noor University, Isfahan, Iran
| | | | | | - Hossein Salavati
- Department of Biochemistry, Payame Noor University, Isfahan, Iran
| | - Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbasali Palizban
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
20
|
Du Q, Hoover AR, Dozmorov I, Raj P, Khan S, Molina E, Chang TC, de la Morena MT, Cleaver OB, Mendell JT, van Oers NSC. MIR205HG Is a Long Noncoding RNA that Regulates Growth Hormone and Prolactin Production in the Anterior Pituitary. Dev Cell 2019; 49:618-631.e5. [PMID: 30982661 DOI: 10.1016/j.devcel.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/21/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are processed from primary miRNA transcripts (pri-miRNAs), many of which are annotated as long noncoding RNAs (lncRNAs). We assessed whether MIR205HG, the host gene for miR-205, has independent functions as an lncRNA. Comparing mice with targeted deletions of MIR205HG and miR-205 revealed a functional role for the lncRNA in the anterior pituitary. Mice lacking MIR205HG had a temporal reduction in Pit1, growth hormone, and prolactin. This was mediated, in part, through the ability of this lncRNA to bind and regulate the transcriptional activity of Pit1 in conjunction with Zbtb20. Knockdown of MIR205HG in lactotropes decreased the expression of Pit1, Zbtb20, prolactin, and growth hormone, while its overexpression enhanced the levels of these transcripts. The effects of MIR205HG on the pituitary were independent of miR-205. The data support a role for MIR205HG as an lncRNA that regulates growth hormone and prolactin production in the anterior pituitary.
Collapse
Affiliation(s)
- Qiumei Du
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley R Hoover
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Igor Dozmorov
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shaheen Khan
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Erika Molina
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Maria Teresa de la Morena
- Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Ondine B Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nicolai S C van Oers
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Aboelnaga MM, Eladawy EH, Elshafei MM, Abdullah N, Shaer ME. Different Cabergoline Effect on Metabolic and Anthropometric Parameters in Female Prolactinoma Patients Versus Idiopathic Hyperprolactinemia Patients. Endocr Metab Immune Disord Drug Targets 2019; 19:511-518. [PMID: 30806330 DOI: 10.2174/1871530319666190219103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/12/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hyperprolactinemia can lead to weight gain, insulin resistance, abnormal glucose homeostasis and dyslipidemia. Reversibility of these changes after normalization of prolactin with dopamine agonists is still controversial and needs more clarification. OBJECTIVE We aimed to: 1) evaluate and compare metabolic and anthropometric profile in female with newly diagnosed prolactin-secreting adenoma versus female idiopathic hyperprolactinemic patients; 2) compare the effects of one year cabergoline therapy on the metabolic profile and anthropometric parameters (by using visceral adiposity index as index for evaluation of adipose tissue dysfunction) in females with prolactinoma to female idiopathic hyperprolactinemic patients. PATIENTS AND METHODS We enrolled 40 female patients with newly diagnosed prolactinoma and 40 female patients with idiopathic hyperprolactinemia, who were matched according to: age; weight; BMI; waist; and prolactin levels. We enrolled the participants in this study at the time of diagnosis before therapy and they were followed up for 12 months. RESULTS Cabergoline therapy had significant favorable effects on metabolic and anthropometric parameters, visceral adiposity index and in all patients (apart from HDLc in prolactinoma patients). Cabergoline therapy was significantly more effective in patient with idiopathic hyperprolactinemia than prolactinoma patients with regard to BMI, waist circumference, HDLc and visceral adiposity index despite normalization of prolactin levels in both groups. CONCLUSION 12 months of Cabergoline treatment improved most of the anthropometric and metabolic parameters, and visceral adiposity index as a marker for adipose tissue dysfunction in both idiopathic hyperprolactinemia and prolactinoma patients. However, Cabergoline treatment was more effective in idiopathic hyperprolactinemic than prolactinoma patients.
Collapse
Affiliation(s)
- Mohamed M Aboelnaga
- Department of Endocrinology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman H Eladawy
- Department of Endocrinology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha M Elshafei
- Department of Endocrinology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nahed Abdullah
- Department of Physiology at Specialized Medical Hospital, Mansoura University, Mansoura, Egypt
| | - Moustafa El Shaer
- Department of Microbiology at Specialized Medical Hospital, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Kokay IC, Wyatt A, Phillipps HR, Aoki M, Ectors F, Boehm U, Grattan DR. Analysis of prolactin receptor expression in the murine brain using a novel prolactin receptor reporter mouse. J Neuroendocrinol 2018; 30:e12634. [PMID: 30040149 DOI: 10.1111/jne.12634] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
Prolactin influences a wide range of physiological functions via actions within the central nervous system, as well as in peripheral tissues. A significant limitation in studies investigating these functions is the difficulty in identifying prolactin receptor (Prlr) expression, particularly in the brain. We have developed a novel mouse line using homologous recombination within mouse embryonic stem cells to produce a mouse in which an internal ribosome entry site (IRES) followed by Cre recombinase cDNA is inserted immediately after exon 10 in the Prlr gene, thereby targeting the long isoform of the Prlr. By crossing this Prlr-IRES-Cre mouse with a ROSA26-CAGS-tauGFP (τGFP) reporter mouse line, and using immunohistochemistry to detect τGFP, we were able to generate a detailed map of the distribution of individual Prlr-expressing neurones and fibres throughout the brain of adult mice without the need for amplification of the GFP signal. Because the τGFP is targeted to neurotubules, the labelling detected not only cell bodies, but also processes of prolactin-sensitive neurones. In both males and females, Cre-dependent τGFP expression was localised, with varying degrees of abundance, in a number of brain regions, including the lateral septal nucleus, bed nucleus of the stria terminalis, preoptic and hypothalamic nuclei, medial habenula, posterodorsal medial amygdala, and brainstem regions such as the periaqueductal grey and parabrachial nucleus. The labelling was highly specific, occurring only in cells where we could also detect PrlrmRNA by in situ hybridisation. Apart from two brain areas, the anteroventral periventricular nucleus and the medial preoptic nucleus, the number and distribution of τGFP-immunopositive cells was similar in males and females, suggesting that prolactin may have many equivalent functions in both sexes. These mice provide a valuable tool for investigating the neural circuits underlying the actions of prolactin.
Collapse
Affiliation(s)
- Ilona C Kokay
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Fabien Ectors
- Giga Transgenics Platform, Liège University, Liège, Belgium
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
23
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Luque GM, Lopez-Vicchi F, Ornstein AM, Brie B, De Winne C, Fiore E, Perez-Millan MI, Mazzolini G, Rubinstein M, Becu-Villalobos D. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. Am J Physiol Endocrinol Metab 2016; 311:E974-E988. [PMID: 27802964 DOI: 10.1152/ajpendo.00200.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 12/21/2022]
Abstract
We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.
Collapse
Affiliation(s)
- Guillermina María Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Felicitas Lopez-Vicchi
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ana María Ornstein
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Belén Brie
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Catalina De Winne
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Esteban Fiore
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT-CONICET), Universidad Austral, Buenos Aires, Argentina; and
| | - Maria Inés Perez-Millan
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT-CONICET), Universidad Austral, Buenos Aires, Argentina; and
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, and Departamento de Fisiología, y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina;
| |
Collapse
|
25
|
Kalyani M, Hasselfeld K, Janik JM, Callahan P, Shi H. Effects of High-Fat Diet on Stress Response in Male and Female Wildtype and Prolactin Knockout Mice. PLoS One 2016; 11:e0166416. [PMID: 27893788 PMCID: PMC5125580 DOI: 10.1371/journal.pone.0166416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/29/2016] [Indexed: 01/04/2023] Open
Abstract
Prolactin (PRL) is well characterized for its roles in initiation and maintenance of lactation, and it also suppresses stress-induced responses. Feeding a high-fat diet (HFD) disrupts activity of the hypothalamic-pituitary-adrenal (HPA) axis. Whether PRL regulates HPA axis activation under HFD feeding is not clear. Male and female wildtype (WT) and PRL knockout (KO) mice were fed either a standard low-fat diet (LFD) or HFD for 12 weeks. Circulating corticosterone (CORT) levels were measured before, during, and after mice were subjected to an acute restraint stress or remained in their home cages as no stress controls. HFD feeding increased leptin levels, but the increase was lower in KO than in WT mice. All stressed female groups and only LFD-fed stressed males had elevated CORT levels compared to their no stress same-sex counterparts regardless of genotype. These results indicated that HFD consumption blunted the HPA axis response to acute stress in males but not females. Additionally, basal hypothalamic CRH content was lower in HFD than LFD males, but was similar among female groups. Furthermore, although basal CORT levels were similar among KO and WT groups, CORT levels were higher in KO mice than their WT counterparts during stress, suggesting that loss of PRL led to greater HPA axis activation. Basal PRL receptor mRNA levels in the choroid plexus were higher in HFD than LFD same-sex counterparts, suggesting activation of central PRL’s action by HFD feeding in both males and females. Current results confirmed PRL’s roles in suppression of the stress-induced HPA axis activation. Although HFD feeding activated central PRL’s action in both sexes, only the male HPA axis was dampened by HFD feeding.
Collapse
Affiliation(s)
- Manu Kalyani
- Department of Biology, Physiology and Neuroscience, Miami University, Oxford, Ohio, United States of America
- * E-mail: (MK); (HS)
| | - Kathryn Hasselfeld
- Department of Biology, Physiology and Neuroscience, Miami University, Oxford, Ohio, United States of America
| | - James M. Janik
- Department of Biology, Physiology and Neuroscience, Miami University, Oxford, Ohio, United States of America
- Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio, United States of America
| | - Phyllis Callahan
- Department of Biology, Physiology and Neuroscience, Miami University, Oxford, Ohio, United States of America
- Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio, United States of America
| | - Haifei Shi
- Department of Biology, Physiology and Neuroscience, Miami University, Oxford, Ohio, United States of America
- Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio, United States of America
- * E-mail: (MK); (HS)
| |
Collapse
|
26
|
Odle AK, Allensworth-James M, Haney A, Akhter N, Syed M, Childs GV. Adipocyte Versus Somatotrope Leptin: Regulation of Metabolic Functions in the Mouse. Endocrinology 2016; 157:1443-56. [PMID: 26859333 PMCID: PMC4816722 DOI: 10.1210/en.2015-1811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin regulates food intake and energy expenditure (EE) and is produced in adipocytes, the pituitary, and several other tissues. Animals that are leptin or leptin receptor deficient have major metabolic complications, including obesity. This study tests the hypothesis that the pituitary somatotrope may contribute a source of leptin that maintains some of these metabolic functions. We created 2 different tissue-specific leptin knockout animals: a Somatotrope-Lep-null model and an Adipocyte-Lep-null model. Metabolic analysis of both models, along with a global deletion model, was performed. The Somatotrope-Lep-null animals had fewer somatotropes, and females had a 76% decrease in serum prolactin. During the dark (feeding) phase, females had a 35% increase in ambulation coupled with a 4% increase in EE. Mutants showed no change in food intake or weight gain and EE was unchanged in males. During the light (sleep) phase, Somatotrope-Lep-null mutant males had lower EE and females continued to have higher EE. The respiratory quotients (RQs) of mutants and littermate controls were decreased in males and increased in females; all were within the range that indicates predominant carbohydrate burning. The massively obese Adipocyte-Lep-null animals, however, had significant increases in food intake, sleep, and increased EE, with decreased activity. Changes in RQ were sexually dimorphic, with female mutants having higher RQ and males having decreased RQ. We conclude that both adipocyte and somatotrope leptin contribute to the metabolic homeostasis of the mouse, and that extraadipocyte sources of leptin cannot overcome the major metabolic challenges seen in these animals.
Collapse
Affiliation(s)
- Angela Katherine Odle
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mohsin Syed
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, College of Medicine, Center for Translational Neurosciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
27
|
El Mahdy Korah T, Abd Elfatah Badr E, Mohamed Emara M, Ahmed Samy Kohla M, Gamal Saad Michael G. Relation between sex hormones and hepatocellular carcinoma. Andrologia 2016; 48:948-955. [PMID: 26791111 DOI: 10.1111/and.12536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Males have higher incidence of hepatocellular carcinoma (HCC) than females. Sex hormones may be a risk factor. The aim was to determine the levels of sex hormones in male and female patients with HCC and cirrhosis versus controls and its possible relationship with HCC. This study was conducted on 90 subjects divided into 40 patients with HCC, 30 patients with liver cirrhosis and 20 apparently healthy subjects complete blood picture, liver function tests. Determination of AFP levels and hormonal assay of oestrogen, progesterone, total testosterone, prolactin, FSH and LH were performed on all subjects. Total testosterone levels were significantly decreased in the two patients groups compared with controls. While oestrogen levels were significantly decreased in the HCC group in comparison with other two groups, prolactin levels were significantly decreased in the HCC group compared with the liver cirrhosis group and increased in the liver cirrhosis group when compared to controls. FSH and LH levels were significantly increased in the HCC group when compared to controls. There is no significant correlation between sex hormones assay and both the size of HCC and degree of cirrhosis in both patient groups. It is concluded that there is no strong relation between sex hormones and HCC when the study was carried out on the levels of sex hormones in patients with HCC.
Collapse
Affiliation(s)
- T El Mahdy Korah
- Internal Medicine Department, Faculty of Medicine, Menoufia University, Shebin ElKom, Egypt
| | - E Abd Elfatah Badr
- Medical Biochemistry Department, Faculty of Medicine, Menoufia University, Shebin ElKom, Egypt.
| | - M Mohamed Emara
- Internal Medicine Department, Faculty of Medicine, Menoufia University, Shebin ElKom, Egypt
| | | | - G Gamal Saad Michael
- Internal Medicine Department, Faculty of Medicine, Menoufia University, Shebin ElKom, Egypt
| |
Collapse
|
28
|
Sanz Fernandez MV, Stoakes SK, Abuajamieh M, Seibert JT, Johnson JS, Horst EA, Rhoads RP, Baumgard LH. Heat stress increases insulin sensitivity in pigs. Physiol Rep 2015; 3:3/8/e12478. [PMID: 26243213 PMCID: PMC4562564 DOI: 10.14814/phy2.12478] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proper insulin homeostasis appears critical for adapting to and surviving a heat load. Further, heat stress (HS) induces phenotypic changes in livestock that suggest an increase in insulin action. The current study objective was to evaluate the effects of HS on whole-body insulin sensitivity. Female pigs (57 ± 4 kg body weight) were subjected to two experimental periods. During period 1, all pigs remained in thermoneutral conditions (TN; 21°C) and were fed ad libitum. During period 2, pigs were exposed to: (i) constant HS conditions (32°C) and fed ad libitum (n = 6), or (ii) TN conditions and pair-fed (PFTN; n = 6) to eliminate the confounding effects of dissimilar feed intake. A hyperinsulinemic euglycemic clamp (HEC) was conducted on d3 of both periods; and skeletal muscle and adipose tissue biopsies were collected prior to and after an insulin tolerance test (ITT) on d5 of period 2. During the HEC, insulin infusion increased circulating insulin and decreased plasma C-peptide and nonesterified fatty acids, similarly between treatments. From period 1 to 2, the rate of glucose infusion in response to the HEC remained similar in HS pigs while it decreased (36%) in PFTN controls. Prior to the ITT, HS increased (41%) skeletal muscle insulin receptor substrate-1 protein abundance, but did not affect protein kinase B or their phosphorylated forms. In adipose tissue, HS did not alter any of the basal or stimulated measured insulin signaling markers. In summary, HS increases whole-body insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
| | - Sara K Stoakes
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Jay S Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
29
|
Prolactin (PRL) in Adipose Tissue: Regulation and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:1-35. [DOI: 10.1007/978-3-319-12114-7_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Pala NA, Laway BA, Misgar RA, Dar RA. Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline. Diabetol Metab Syndr 2015; 7:99. [PMID: 26583049 PMCID: PMC4650139 DOI: 10.1186/s13098-015-0094-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Hyperprolactinemia has been associated with changes in body composition and metabolic abnormalities. Normalization of prolactin (PRL) with dopamine agonists has been found to reverse these abnormalities. This study was designed to assess the anthropometric and metabolic alterations associated with prolactinoma and response of these abnormalities to cabergoline treatment. METHODS In a non-randomised matched prospective design, 19 consecutive patients with prolactinoma (median PRL 118.6 (105.3) μg/L) and 20 controls were studied. The controls were age, gender and body mass index (BMI) matched. Anthropometric data and metabolic variables were studied at baseline, 3 and 6 months after cabergoline treatment. RESULTS Patients with prolactinoma had increased level of fasting plasma glucose (P < .001), LDL-cholesterol (P = .001) and triglycerides (TG) (P = .009) as compared to age, gender and BMI matched healthy controls. There was a significant decrease of body weight at 3 months (P = .029), with a further decline at 6 months (P < .001) of cabergoline therapy. In addition, there was a significant decrement of BMI (P < .001), waist circumference (P = .003), waist-hip ratio (P = .03) and total body fat (P = .003) at 6 months of cabergoline treatment. A significant decline in plasma glucose (P < .001), total cholesterol (P = .009), LDL-cholesterol (P < .001) and TG (P < .001) was seen after 6 months of cabergoline treatment. CONCLUSIONS Patients with prolactinoma have adverse metabolic profile compared with matched controls. Normalization of PRL with cabergoline corrects all the metabolic abnormalities.
Collapse
Affiliation(s)
- Nazir A. Pala
- />Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir India
| | - Bashir A. Laway
- />Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir India
| | - Raiz A. Misgar
- />Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir India
| | - Rayees A. Dar
- />Department of Biostatics, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir India
| |
Collapse
|
31
|
Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc Natl Acad Sci U S A 2014; 111:11455-60. [PMID: 25049387 DOI: 10.1073/pnas.1404267111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Women are more resistant to hepatocellular carcinoma (HCC) than men despite equal exposure to major risk factors, such as hepatitis B or C virus infection. Female resistance is hormone-dependent, as evidenced by the sharp increase in HCC incidence in postmenopausal women who do not take hormone replacement therapy. In rodent models sex-dimorphic HCC phenotypes are pituitary-dependent, suggesting that sex hormones act via the gonadal-hypophyseal axis. We found that the estrogen-responsive pituitary hormone prolactin (PRL), signaling through hepatocyte-predominant short-form prolactin receptors (PRLR-S), constrained TNF receptor-associated factor (TRAF)-dependent innate immune responses invoked by IL-1β, TNF-α, and LPS/Toll-like receptor 4 (TLR4), but not TRIF-dependent poly(I:C)/TLR3. PRL ubiquitinated and accelerated poststimulatory decay of a "trafasome" comprised of IRAK1, TRAF6, and MAP3K proteins, abrogating downstream activation of c-Myc-interacting pathways, including PI3K/AKT, mTORC1, p38 MAPK, and NF-κB. Consistent with this finding, we documented exaggerated male liver responses to immune stimuli in mice and humans. Tumor promotion through, but regulation above, the level of c-Myc was demonstrated by sex-independent HCC eruption in Alb-Myc transgenic mice. PRL deficiency accelerated liver carcinogenesis in Prl(-/-) mice of both sexes. Conversely, pharmacologic PRL mobilization using the dopamine D2 receptor antagonist domperidone prevented HCC in tumor-prone C3H/HeN males. Viewed together, our results demonstrate that PRL constrains tumor-promoting liver inflammation by inhibiting MAP3K-dependent activation of c-Myc at the level of the trafasome. PRL-targeted therapy may hold promise for reducing the burden of liver cancer in high-risk men and women.
Collapse
|
32
|
Deficiency of the transcriptional repressor B cell lymphoma 6 (Bcl6) is accompanied by dysregulated lipid metabolism. PLoS One 2014; 9:e97090. [PMID: 24892698 PMCID: PMC4043531 DOI: 10.1371/journal.pone.0097090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/15/2014] [Indexed: 12/28/2022] Open
Abstract
The transcriptional repressor B-cell Lymphoma 6 (Bcl6) was recently identified in a profile of genes regulated in adipocytes, suggesting a relationship between Bcl6 and metabolic regulation. As a representative target gene repressed by Bcl6, Suppressor of Cytokine Signaling (Socs) 2 expression was elevated in Bcl6 deficient (KO) mice, including metabolic tissues liver, adipose tissue and muscle, as well as in spleen and thymus. Bcl6 occupied the Socs2 promoter in wild-type, but not Bcl6 KO mice, suggesting direct regulation of Socs2 by Bcl6 in vivo. Mice deficient in Bcl6 were found to exhibit multiple features of dysregulated lipid metabolism. Adipose tissue mass was dramatically reduced or absent in Bcl6 KO mice. Further, hepatic and serum triglycerides were low. Bcl6 deficiency was accompanied by decreased hepatic expression of Stearoyl-CoA desaturase 1 (Scd1) and Fatty acid synthase (Fasn) genes which encode lipogenic enzymes. Expression of the gene for the transcription factor Carbohydrate-Responsive Element Binding Protein (Chrebp), which regulates expression of lipogenic genes, was also reduced in liver of Bcl6 KO mice. Bcl6 deficiency disrupted fasting-induced increases in hepatic triglyceride deposition, but not decreases in lipogenic gene expression. Taken together, these findings suggest that in addition to its well-recognized roles in immune regulation, Bcl6 plays a role in regulatory events of lipid metabolism, and that in the absence of Bcl6, lipid metabolism in liver and adipose tissue is dysregulated.
Collapse
|
33
|
Abstract
The pituitary lactogenic hormone prolactin (PRL) exerts various physiological actions in humans and rodents via its binding to a membrane receptor. Beside its role in lactation and reproduction, accumulating evidence suggests that PRL has a crucial impact on energy balance by acting on two key players, the pancreas and the adipose tissue. Adipose tissue is now recognized as an endocrine organ and its metabolic activity appears to play an important role in pathophysiology such as obesity and diabetes. White adipocytes store excess of energy in the form of triglycerides for future need while brown adipocytes metabolize lipids and glucose to produce heat, highlighting their different metabolic functionality. The plasticity of white adipose tissue, by the emergence of beige adipocytes, appears to be essential in energy homeostasis. PRL receptor deficient mice provided direct evidence that PRL signaling is involved in the regulation of adipogenesis affecting energy balance and metabolic adaptation most notably during development. Moreover, it was demonstrated that PRL signaling participates to brown adipose tissue differentiation and function, opening novel understanding of hormonal regulation of energy balance. This review summarizes our current knowledge about PRL signaling and its role on adipose tissue.
Collapse
Affiliation(s)
- Nadège Carré
- Institut National de la Santé et de la Recherche Médicale (INSERM) U693, Le Kremlin-Bicêtre, France; Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche (UMR)-S693, Le Kremlin-Bicêtre, France.
| | - Nadine Binart
- Institut National de la Santé et de la Recherche Médicale (INSERM) U693, Le Kremlin-Bicêtre, France; Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche (UMR)-S693, Le Kremlin-Bicêtre, France
| |
Collapse
|
34
|
Wang T, Lu J, Xu Y, Li M, Sun J, Zhang J, Xu B, Xu M, Chen Y, Bi Y, Wang W, Ning G. Circulating prolactin associates with diabetes and impaired glucose regulation: a population-based study. Diabetes Care 2013; 36:1974-80. [PMID: 23340889 PMCID: PMC3687322 DOI: 10.2337/dc12-1893] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Prolactin is a major stimulus for the β-cell adaptation during gestation and guards postpartum women against gestational diabetes. Most studies of the role of prolactin on glucose metabolism have been conducted in humans and animals during pregnancy. However, little is known concerning the association between circulating prolactin and glucose metabolism outside pregnancy in epidemiological studies. We aimed to determine whether the variation of circulating prolactin concentration associates with diabetes and impaired glucose regulation (IGR) in a cross-sectional study. RESEARCH DESIGN AND METHODS We recruited 2,377 participants (1,034 men and 1,343 postmenopausal women) without hyperprolactinemia, aged 40 years and older, in Shanghai, China. Diabetes and IGR were determined by an oral glucose tolerance test. Multinomial logit analyses were performed to evaluate the relationship of prolactin with diabetes and IGR. RESULTS Prolactin levels decreased from normal glucose regulation to IGR to diabetes. Multinomial logit analyses, adjusted for potential confounding factors, showed that high circulating prolactin was associated with lower prevalence of diabetes and IGR. The adjusted odds ratios (95% CI) for IGR and diabetes for the highest compared with the lowest quartile of prolactin were 0.54 (95% CI 0.33-0.89) and 0.38 (0.24-0.59) in men and 0.54 (0.36-0.81) and 0.47 (0.32-0.70) in women. CONCLUSIONS High circulating prolactin associates with lower prevalence of diabetes and IGR in the current study. Further studies are warranted to confirm this association.
Collapse
Affiliation(s)
- Tiange Wang
- Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, E-Institute of Shanghai Universities, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Fyn is a tyrosine kinase with multiple roles in a variety of cellular processes. Here we report that Fyn is a new kinase involved in adipocyte differentiation. Elevated Fyn protein is detected specifically in the adipocytes of obese mice. Moreover, Fyn expression increases progressively in 3T3-L1 cells during in vitro adipogenesis, which correlates with its kinase activity. Inhibition of Fyn by either genetic or pharmacological manipulation restrains the 3T3-L1 preadipocytes from fully differentiating into mature adipocytes. Mechanistically, Fyn regulates the activity of the adipogenic transcription factor signal transducer and activator of transcription 5a (STAT5a) through enhancing its interaction with the GTPase phosphoinositide 3-kinase enhancer A (PIKE-A). The STAT5a activity is therefore reduced in Fyn- or PIKE-ablated adipose tissues, leading to diminished expression of adipogenic markers and adipocyte differentiation. Our data thus demonstrate a novel functional interaction between Fyn, PIKE-A, and STAT5a in mediating adipogenesis.
Collapse
|
36
|
Le JA, Wilson HM, Shehu A, Devi YS, Aguilar T, Gibori G. Prolactin activation of the long form of its cognate receptor causes increased visceral fat and obesity in males as shown in transgenic mice expressing only this receptor subtype. Horm Metab Res 2011; 43:931-7. [PMID: 21989556 PMCID: PMC3799815 DOI: 10.1055/s-0031-1291182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To date the best defined function of prolactin (PRL) is its action on the ovary and mammary gland, although it has also been shown to have an effect on lipid metabolism. Using mice engineered to express only the long form of the prolactin receptor (PRL-RL), we demonstrate that PRL acting through PRL-RL alone causes severe adipose accumulation in visceral fat of males at 6 months of age. The increase in visceral fat accumulation is attributed to loss of adipose-derived leptin, which results in diminished lipolysis. The reduction in leptin also corresponds to decreased activation of AMP-activated protein kinase (AMPK), which further results in diminished fatty acid oxidation and increased fatty acid synthesis. Interestingly, the blunted AMPK response was only observed in adipose tissue and not in liver suggesting that this PRL mediated effect is tissue specific. A glucose tolerance study inferred that PRL-RL mice may suffer from insulin resistance or a reduction in insulin production that is not due to aberrant expression of glucose transporter 4 (Glut4). Collectively, our findings demonstrate that PRL signaling through the long form receptor causes reduced fatty acid oxidation, increased lipid storage, glucose intolerance, and obesity. These findings are of great importance towards understanding the etiology of obesity associated with hyperprolactinemia in humans as well as the role of PRL as a metabolic regulator in adipose tissue.
Collapse
Affiliation(s)
- J A Le
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Prolactin is best known for its actions on the mammary gland. However, circulating prolactin is also detected in males and its receptor (PRLR) is expressed in the prostate, suggesting that the prostate is a target of prolactin. Germline knockout of prolactin or its receptor has failed to reveal a key role for prolactin signaling in mouse prostate physiology. However, several studies involving rodent models and human prostate cell lines and specimens have supported the contribution of the canonical PRLR-Jak2-Stat5a/b pathway to prostate cancer tumorigenesis and progression. Increased expression of prolactin in the prostate itself (rather than changes in circulating prolactin levels) and crosstalk with androgen receptor (AR) signaling are potential mechanisms for increased Stat5a/b signaling in prostate cancer. In the mouse prostate, prolactin overexpression results in disorganized expansion of the basal/stem cell compartment, which has been proposed to house putative prostate tumor-initiating cells. These findings provide new insight into the molecular and cellular targets by which locally produced prolactin could contribute to prostate cancer initiation and progression. A number of pharmacological inhibitors targeting various levels of the PRLR-Jak2-Stat5a/b pathway have been developed and are entering clinical trials for advanced prostate cancer.
Collapse
|
38
|
dos Santos Silva CM, Barbosa FRP, Lima GAB, Warszawski L, Fontes R, Domingues RC, Gadelha MR. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring) 2011; 19:800-5. [PMID: 20559294 DOI: 10.1038/oby.2010.150] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperprolactinemia might be related to weight gain, metabolic syndrome (MS), and insulin resistance (IR). Treatment with dopamine agonist (DA) has been shown to reduce body weight and improve metabolic parameters. The objectives of this study were to determine the prevalence of obesity, overweight, MS, and IR in patients with prolactinoma before and after therapy with DA and to evaluate the relation between prolactin (PRL), body weight, fat distribution, leptin levels, IR, and lipid profile before treatment. In addition, we investigated the correlation of the reduction in PRL levels with weight loss and metabolic profile improvement. Twenty-two patients with prolactinoma completed 6 months of treatment with DA. These patients were submitted to clinical (BMI, waist circumference, blood pressure (BP)), laboratory evaluation (leptin, glucose, low-density lipoprotein (LDL)-cholesterol, and triglyceride (TG) levels) and abdominal computed tomography (CT) before and after treatment. The statistical analyses were done by nonparametric tests. At the beginning of the study, the prevalence of obesity, overweight, MS, and IR was 45, 27, 27, and 18%, respectively. After 6 months of treatment with DA, PRL levels normalized, but no significant difference in BMI was observed. However, there was a significant decrease on homeostasis model assessment of insulin resistance (HOMA(IR)) index, glucose, LDL-cholesterol, and TG levels. This study suggests a possible involvement of prolactinoma on the prevalence of obesity. We should consider that DA may be effective on improving metabolic parameters, and we speculate that a period longer than 6 months of treatment is necessary to conclude whether this drug can interfere in the body weight of patients with prolactinoma.
Collapse
Affiliation(s)
- Cintia M dos Santos Silva
- Division of Endocrinology, Hospital Universitário Clementino Fraga Filho/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Hugo ER, Borcherding DC, Gersin KS, Loftus J, Ben-Jonathan N. Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J Clin Endocrinol Metab 2008; 93:4006-12. [PMID: 18647802 PMCID: PMC2579649 DOI: 10.1210/jc.2008-1172] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/11/2008] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prolactin (PRL) is a multifunctional hormone produced in humans by both pituitary and extrapituitary sites, including adipose tissue. OBJECTIVES Our objectives were to: 1) compare PRL secretion by sc and visceral adipose explants and mature adipocytes from obese and nonobese patients; and 2) examine the effects of insulin and selected cytokines on PRL gene expression and release from primary adipocytes and LS14 adipocytes. DESIGN AND SUBJECTS Adipose tissue was obtained from morbidly obese [body mass index (BMI) > 40 kg/m(2)] and nonobese (BMI <30 kg/m(2)) patients. Explants and isolated mature adipocytes were incubated for 10 d. Primary adipocytes or LS14 cells were used before or after differentiation and incubated with the test compounds for 24 h. PRL release was analyzed by a bioassay, and PRL expression was determined by real-time PCR. RESULTS PRL release from explants and mature adipocytes increased in a time-dependent manner indicating removal from inhibition. Visceral explants from obese patients showed higher PRL release than that from sc explants; both types of explants from nonobese patients released similar amounts of PRL. Analysis of data from 50 patients revealed an inverse relationship between PRL release from sc depots and BMI. Insulin suppressed PRL expression and release from differentiated adipocytes but moderately stimulated PRL release from nondifferentiated cells. The cAMP elevating compound forskolin increased PRL release in both cell types. CONCLUSIONS PRL should be recognized as an important adipokine whose release is regulated by insulin and is affected by obesity in a depot-specific manner.
Collapse
Affiliation(s)
- Eric R Hugo
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|
40
|
Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from rodents about prolactin in humans? Endocr Rev 2008; 29:1-41. [PMID: 18057139 PMCID: PMC2244934 DOI: 10.1210/er.2007-0017] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 10/26/2007] [Indexed: 12/11/2022]
Abstract
Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.
Collapse
Affiliation(s)
- Nira Ben-Jonathan
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45255, USA.
| | | | | |
Collapse
|
41
|
Abstract
Recent evidence suggests that the peptide hormone prolactin (PRL) modulates energy balance through a number of mechanisms, including acting in the brain to increase food intake. In the current studies, we first demonstrated that chronic infusions of PRL into the lateral ventricles increased food intake in cycling rats without disrupting estrous cyclicity. In subsequent experiments the hypothesis that at least part of PRL's ability to increase food intake resulted from PRL-induced leptin resistance was tested. Female rats given chronic infusions of PRL (5 microg/h) into the cerebral ventricles for 10 d did not show a reduction in food intake or body weight after a central injection of 4 microg murine leptin, whereas the expected reduction in both of these parameters was seen in vehicle-infused rats. Leptin injections were without effect on these parameters, whether they were administered to free feeding PRL-infused rats or after 24-h food deprivation. This lack of a behavioral response to leptin was accompanied by an attenuation in Fos induction and phosphorylation of signal transducer and activator of transcription 3 after leptin administration in PRL-infused rats in both the ventromedial hypothalamus and paraventricular hypothalamic nucleus.
Collapse
Affiliation(s)
- Lindsay Naef
- Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada
| | | |
Collapse
|
42
|
Abstract
Pituitary-derived prolactin (PRL) is a well-known regulator of the lactating mammary gland. However, the recent discovery that human adipose tissue produces PRL as well as expresses the PRL receptor (PRLR) highlights a previously unappreciated action of PRL as a cytokine involved in adipose tissue function. Biologically active PRL is secreted by all adipose tissue depots examined: breast, visceral and subcutaneous. The expression of adipose PRL is regulated by a non-pituitary, alternative superdistal promoter. PRL expression and release increases during early pre-adipocyte differentiation and is stimulated by cyclic AMP activators, including beta adrenergic receptor agonists. PRL release from subcutaneous adipose explants is attenuated during obesity, suggesting that adipose PRL production is altered by the metabolic state. Several lines of evidence indicate that PRL suppresses lipid storage as well as the release of adipokines such as adiponectin, interleukin-6 and possibly leptin. PRL has also been implicated in the regulation of adipogenesis. A newly developed PRL-secreting human adipocyte cell line, LS14, should allow comprehensive examination of the regulation and function of adipocyte-derived PRL. Collectively, these studies raise the prospect that PRL affects energy homeostasis through its action as an adipokine and is involved in the manifestation of insulin resistance.
Collapse
Affiliation(s)
- T Brandebourg
- Department of Cell Biology, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
43
|
Brandebourg TD, Bown JL, Ben-Jonathan N. Prolactin upregulates its receptors and inhibits lipolysis and leptin release in male rat adipose tissue. Biochem Biophys Res Commun 2007; 357:408-13. [PMID: 17433256 PMCID: PMC1885988 DOI: 10.1016/j.bbrc.2007.03.168] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
Prolactin (PRL) is recognized as a metabolic regulator during lactation, but little information exists on its actions in male adipose tissue. We examined whether PRL affects the expression of its receptors (PRLR), lipolysis, and adipokine secretion in male rats. Both long and short PRLR isoforms were induced 40-50-fold during differentiation of epididymal preadipocytes, with a 10-fold higher expression of the long isoform. PRL upregulated both isoforms before and after differentiation. PRL suppressed lipolysis in epididymal explants and mature adipocytes in a dose- and time-dependent manner, which was reversed by a Jak2 inhibitor. PRL also inhibited leptin, but not adiponectin, release. We conclude that PRL inhibits lipolysis and leptin release by acting directly on adipocytes via interaction with either of its receptors and activation of a Jak2-dependent signaling pathway(s). This is the first demonstration of substantial effects of PRL on male adipocytes.
Collapse
Affiliation(s)
- Terry D Brandebourg
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | | | | |
Collapse
|
44
|
Abstract
Multiple biological and environmental factors impact the life span of an organism. The endocrine system is a highly integrated physiological system in mammals that regulates metabolism, growth, reproduction, and response to stress, among other functions. As such, this pervasive entity has a major influence on aging and longevity. The growth hormone, insulin-like growth factor-1 and insulin pathways have been at the forefront of hormonal control of aging research in the last few years. Other hormones, including those from the thyroid and reproductive system have also been studied in terms of life span regulation. The relevance of these hormones to human longevity remains to be established, however the evidence from other species including yeast, nematodes, and flies suggest that evolutionarily well-conserved mechanisms are at play and the endocrine system is a key determinant.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA.
| |
Collapse
|