1
|
Montévil M, Schaeberle C, Boberg J, Christiansen S, Soto AM. Quantitative analysis of endocrine disruption by ketoconazole and diethylstilbestrol in rat mammary gland development. Reprod Toxicol 2025; 135:108929. [PMID: 40294661 DOI: 10.1016/j.reprotox.2025.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Endocrine disruptors alter mammary gland development, impair the ability to nourish offspring, and increase the cancer risk in animal models. Epidemiological studies reveal trends towards early mammary development, nursing problems, and breast cancer in younger women. Morphological changes in mouse postnatal mammary gland development are considered sensitive markers of endocrine disruption. While the mouse mammary gland is easily amenable to morphometric measurements from the fetal stage to full maturity, the rat mammary gland grows more conspicuously into the third dimension, hindering conventional morphometric analysis. However, since rats are more commonly used in international toxicological reproductive studies, it would be beneficial to include mammary gland whole-mount analysis in these studies. Using our quantitative software to perform computer-driven analysis of the rat mammary epithelium we examined the effects of gestational and postnatal exposure to ketoconazole, an antifungal medication that affects steroidogenesis, and to the estrogen diethylstilbestrol in the mammary glands of 6- and 22-day-old females. Both treatments produced effects at both ages; the epithelium was smaller and less complex in exposed animals compared to controls. Global analysis with the permutation test showed that morphological evaluation of the PND22 mammary gland is sensitive to endocrine disruption and possibly non-monotonic. In addition to revealing that ketoconazole altered the mammary gland structure, these results suggest that for future toxicology studies, day 22 (at weaning) is more suitable than day 6 because it showed significant measurements and trends. If the collection of mammary glands is added to existing international test methods, PND22 could be a relevant time point.
Collapse
Affiliation(s)
- Maël Montévil
- Centre Cavaillès, République des Savoirs UAR 3608, École Normale Supérieure and CNRS, France
| | | | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK-2800, Denmark
| | - Ana M Soto
- Centre Cavaillès, République des Savoirs UAR 3608, École Normale Supérieure and CNRS, France; Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
2
|
Bonaldo B, Casile A, Bettarelli M, Marraudino M, Gotti S. Perinatal exposure to bisphenol A or S alters differently sexual behavior and kisspeptin system in mice. ENVIRONMENTAL RESEARCH 2025; 269:120888. [PMID: 39828186 DOI: 10.1016/j.envres.2025.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The effects of bisphenol A (BPA), a highly diffused endocrine-disrupting chemical found mainly in plastics, on neural circuits and behaviors are well-known. However, the effects of its substitutes have not been fully investigated. Thus, in the present study, we compare the effects of perinatal exposure to bisphenol A or S (BPS) on reproductive behaviors and related hypothalamic kisspeptin system in mice. C57BL/6J dams were orally treated with 4 μg/kg body weight/day of BPA, BPS, or vehicle from mating until the weaning of the offspring. In the adult offspring, we performed the two-bedding T-Maze test, and we observed the spontaneous sexual behavior. Exposure to BPA caused a delay in puberty onset in females, while BPS caused anticipation in males, and both altered the estrous cycle in females. The sexual and sexual-related behaviors were partially altered in males, especially in the BPA-exposed ones. Regarding the kisspeptin immunoreactivity in the analyzed hypothalamic nuclei, in BPA- or BPS-treated females, we observed an increase within the rostral periventricular area, while BPA led to an increase in the paraventricular nucleus, and BPS induced a reduction compared to control females. Among males, we observed a significant increase in the arcuate nucleus of BPA-treated males and a significant decrease in the paraventricular nucleus of BPS-treated ones. These results support the idea that perinatal exposure to low doses of either BPA or BPS is altering, in a sexually differentiated way, some reproductive-relevant parameters, sexual behaviors, and kisspeptin hypothalamic nuclei.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
3
|
Olivas-Martínez A, Ventura-Wischner PS, Fernandez MF, Freire C. Influence of exposure to endocrine disruptors and other environmental chemicals on breast development in girls: A systematic review of human studies. Int J Hyg Environ Health 2025; 263:114487. [PMID: 39566420 DOI: 10.1016/j.ijheh.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Age at thelarche has decreased over recent decades. This change in female puberty timing may be influenced by exposure to endocrine disrupting chemicals (EDCs) during critical periods of development. OBJECTIVE To review the scientific literature for evidence on the association of exposure to EDCs and other environmental chemicals with the timing of thelarche in girls. METHODS A systematic search for original peer-reviewed articles published up to July 2023 was conducted in three databases (Medline/PubMed, Scopus, and Web of Science), following the PECO strategy and PRISMA guidelines. The quality of evidence and reporting and the risk of bias were evaluated using GRADE, STROBE, and ROBINS-E tools. RESULTS Out of 3094 articles retrieved in the search, 67 met the review inclusion criteria. Data from 10 out of the 14 studies offering high-quality suggest that in utero and/or childhood exposure to certain synthetic and natural chemicals is associated with earlier breast development in girls; 8 of these 10 studies described a relationship with exposure to organohalogenated compounds in utero and to phthalates in childhood. CONCLUSIONS This systematic review provides the first overview of available human data on the association of EDCs/environmental chemicals with the timing of thelarche. Further high-quality research is urgently needed to fully elucidate the influence of this exposure on breast development timing in girls.
Collapse
Affiliation(s)
- Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Paula Sol Ventura-Wischner
- Institut D'Investigació en Ciències de La Salut Germans Trias I Pujol, 08916, Badalona, Barcelona, Spain; Servicio de Pediatria, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Mariana F Fernandez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012, Granada, Spain; Centre for Biomedical Research (CIBM), University of Granada, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
4
|
Clark ZW, Mogus JP, Marando J, Effenson RS, Vandenberg LN. Vulnerable periods for the mouse mammary gland: Comparison of the effects of ethinyl estradiol exposures during two early stages of development. Reprod Toxicol 2024; 130:108722. [PMID: 39349146 DOI: 10.1016/j.reprotox.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024]
Abstract
The mammary gland is responsive to endogenous hormones and environmental chemicals that are estrogen receptor (ER) agonists. The mouse mammary gland offers the opportunity to dissect the most sensitive windows of exposure. 17α-ethinyl estradiol (EE2) is a pharmaceutical ER agonist that often serves as a positive control for estrogen-active chemicals. Here, adult female mice were exposed to EE2 starting either at pregnancy day 7, or on lactational day 1, and exposures continued until the litters were weaned. The pups were therefore exposed during gestation + the juvenile period, or during the juvenile period alone. The morphology of the mammary gland was evaluated in both male and female offspring at two life stages: weaning (postnatal day [PND]21) and at puberty (PND32). Other hormone-sensitive outcomes evaluated included body weight, anogenital index, frequency of open vagina, and weight of the uterus. We found age- and sex-dependent effects of EE2 on these estrogen-responsive endpoints including the morphology of the mammary gland. Importantly, EE2 altered mammary gland morphology even when exposures were limited to the juvenile period. However, the number of endpoints that were affected in animals from the EE2-Juvenile-Only period were fewer, and typically of a lower magnitude, compared to those observed in the EE2-Gest-Juvenile group. Understanding the effects of environmental estrogen exposures during the juvenile period is critical because humans are exposed to estrogenic pollutants throughout life, including in early childhood.
Collapse
Affiliation(s)
- Zachary W Clark
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, USA
| | - Jenna Marando
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, USA
| | - Reed S Effenson
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, USA.
| |
Collapse
|
5
|
Ganzerla MD, Indolfo NDC, Oliveira LCM, Doratioto TR, Avelino TM, de Azevedo RJ, Tofani LB, Terra MF, Elias GB, de Sousa IL, Alborguetti MR, Rocco SA, Arroteia KF, Figueira ACM. Unveiling the intricacies of BPA and BPS: comprehensive insights into its toxic effects using a cutting-edge microphysiological system. Toxicol In Vitro 2024; 98:105849. [PMID: 38772494 DOI: 10.1016/j.tiv.2024.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.
Collapse
|
6
|
Niu L, Jia J, Yang H, Liu S, Wang H, Yan Y, Li Q, Dong Q, Zhang H, Zhao G, Dai J, Yuan G, Pan Y. Bisphenol A: Unveiling Its Role in Glioma Progression and Tumor Growth. Int J Mol Sci 2024; 25:2504. [PMID: 38473752 DOI: 10.3390/ijms25052504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas represent the most common and lethal category of primary brain tumors. Bisphenol A (BPA), a widely recognized endocrine disruptor, has been implicated in the progression of cancer. Despite its established links to various cancers, the association between BPA and glioma progression remains to be clearly defined. This study aimed to shed light on the impact of BPA on glioma cell proliferation and overall tumor progression. Our results demonstrate that BPA significantly accelerates glioma cell proliferation in a time- and dose-dependent manner. Furthermore, BPA has been found to enhance the invasive and migratory capabilities of glioma cells, potentially promoting epithelial-mesenchymal transition (EMT) characteristics within these tumors. Employing bioinformatics approaches, we devised a risk assessment model to gauge the potential glioma hazards associated with BPA exposure. Our comprehensive analysis revealed that BPA not only facilitates glioma invasion and migration but also inhibits apoptotic processes. In summary, our study offers valuable insights into the mechanisms by which BPA may promote tumorigenesis in gliomas, contributing to the understanding of its broader implications in oncology.
Collapse
Affiliation(s)
- Liang Niu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Juan Jia
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Anesthesiology, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Hu Yang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Shangyu Liu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Hongyu Wang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yunji Yan
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Qiao Li
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - He Zhang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Guoming Zhao
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Junqiang Dai
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
7
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
8
|
Lacouture A, Breton Y, Weidmann C, Goulet SM, Germain L, Pelletier M, Audet-Walsh É. Estrogens and endocrine-disrupting chemicals differentially impact the bioenergetic fluxes of mammary epithelial cells in two- and three-dimensional models. ENVIRONMENT INTERNATIONAL 2023; 179:108132. [PMID: 37657410 DOI: 10.1016/j.envint.2023.108132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Due to its sensitivity to hormonal signaling, the mammary gland is often referred to as a sentinel organ for the study of endocrine-disrupting chemicals (EDCs), environmental pollutants that can interfere with the estrogen signaling pathway and induce mammary developmental defects. If and how EDCs impact mammary epithelial cell metabolism has not yet been documented. Herein, to study how estrogens and EDCs modulate mammary gland metabolism, we performed bioenergetic flux analyses using mouse mammary epithelial organoids compared to cells grown in monolayer culture. Several EDCs were tested, including bisphenol A (BPA), its close derivative BPS, a new BPA replacement copolyester called TritanTM, and the herbicide glyphosate. We report that estrogens reprogrammed mammary epithelial cell metabolism differently when grown in two- and three-dimensional models. Specific EDCs were also demonstrated to alter bioenergetic fluxes, thus identifying a new potential adverse effect of these molecules. Notably, organoids were more sensitive to low EDC concentrations, highlighting them as a key model for screening the impact of various environmental pollutants. Mechanistically, transcriptomic analyses revealed that EDCs interfered with the regulation of estrogen target genes and the expression of metabolic genes in organoids. Furthermore, co-treatment with the anti-estrogen fulvestrant blocked these metabolic impacts of EDCs, suggesting that, at least partially, they act through modulation of the estrogen receptor activity. Finally, we demonstrate that mammary organoids can be used for long-term studies on EDC exposure to study alterations in organogenesis/morphogenesis and that past pregnancies can modulate the sensitivity of mammary epithelial organoids to specific EDCs. Overall, this study demonstrates that estrogens and EDCs modulate mammary epithelial cell metabolism in monolayer and organoid cultures. A better understanding of the metabolic impacts of EDCs will allow a better appreciation of their adverse effects on mammary gland development and function.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada
| | - Yann Breton
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Martin Pelletier
- Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada; Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Québec City, Canada.
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada.
| |
Collapse
|
9
|
Lucarini F, Gasco R, Staedler D. Simultaneous Quantification of 16 Bisphenol Analogues in Food Matrices. TOXICS 2023; 11:665. [PMID: 37624170 PMCID: PMC10458576 DOI: 10.3390/toxics11080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Exposure to bisphenol analogues can occur in several ways throughout the food production chain, with their presence at higher concentrations representing a risk to human health. This study aimed to develop effective analytical methods to simultaneously quantify BPA and fifteen bisphenol analogues (i.e., bisphenol AF, bisphenol AP, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, bisphenol TMC, and tetramethyl bisphenol F) present in canned foods and beverages. Samples of foods and beverages available in the Swiss and EU markets (n = 22), including canned pineapples, ravioli, and beer, were prepared and analyzed using QuEChERS GC-MS. The quantification method was compared to a QuEChERS LC-MS/MS analysis. This allowed for the selective and efficient simultaneous quantitative analysis of bisphenol analogues. Quantities of these analogues were present in 20 of the 22 samples tested, with the most frequent analytes at higher concentrations: BPA and BPS were discovered in 78% and 48% of cases, respectively. The study demonstrates the robustness of QuEChERS GC-MS for determining low quantities of bisphenol analogues in canned foods. However, further studies are necessary to achieve full knowledge of the extent of bisphenol contamination in the food production chain and its associated toxicity.
Collapse
Affiliation(s)
- Fiorella Lucarini
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
- School of Engineering and Architecture, Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland, 1700 Fribourg, Switzerland
| | - Rocco Gasco
- Department for Environmental and Aquatic Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Davide Staedler
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
10
|
Bermejo-Haro MY, Camacho-Pacheco RT, Brito-Pérez Y, Mancilla-Herrera I. The hormonal physiology of immune components in breast milk and their impact on the infant immune response. Mol Cell Endocrinol 2023:111956. [PMID: 37236499 DOI: 10.1016/j.mce.2023.111956] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
During pregnancy, the maternal body undergoes a considerable transformation regarding the anatomy, metabolism, and immune profile that, after delivery, allows for protection and nourishment of the offspring via lactation. Pregnancy hormones are responsible for the development and functionality of the mammary gland for breast milk production, but little is known about how hormones control its immune properties. Breast milk composition is highly dynamic, adapting to the nutritional and immunological needs that the infant requires in the first months of life and is responsible for the main immune modeling of breastfed newborns. Therefore, alterations in the mechanisms that control the endocrinology of mammary gland adaptation for lactation could disturb the properties of breast milk that prepare the neonatal immune system to respond to the first immunologic challenges. In modern life, humans are chronically exposed to endocrine disruptors (EDs), which alter the endocrine physiology of mammals, affecting the composition of breast milk and hence the neonatal immune response. In this review, we provide a landscape of the possible role of hormones in the control of passive immunity transferred by breast milk and the possible effect of maternal exposure to EDs on lactation, as well as their impacts on the development of neonatal immunity.
Collapse
Affiliation(s)
- Mextli Y Bermejo-Haro
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Rodrigo T Camacho-Pacheco
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Yesenia Brito-Pérez
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Ismael Mancilla-Herrera
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico.
| |
Collapse
|
11
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
12
|
Park YJ, Rahman MS, Pang WK, Ryu DY, Jung MJ, Amjad S, Kim JM, Pang MG. Systematic multi-omics reveals the overactivation of T cell receptor signaling in immune system following bisphenol A exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119590. [PMID: 35752395 DOI: 10.1016/j.envpol.2022.119590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is pervasive in the environment, and exposure to BPA may increase the incidence of noncommunicable diseases like autoimmune diseases and cancer. Although BPA causes immunological problems at the cellular level, no system-level research has been conducted on this. Hence, in this study, we aimed to gain a better understanding of the biological response to BPA exposure and its association with immunological disorders. For that, we explored the transcriptome and the proteomic modifications at the systems and cellular levels following BPA exposure. Our integrated multi-omics data showed the alteration of the T cell receptor (TCR) signaling pathway at both levels. The proportion of enlarged T cells increased with upregulation of CD69, a surface marker of early T cell activation, even though the number of T cells reduced after BPA exposure. Additionally, on BPA exposure, the levels of pLCK and pSRC increased in T cells, while that of pLAT decreased. Following BPA exposure, we investigated cytokine profiles and discovered that chitinase 3 Like 1 and matrix metalloproteinase 9 were enriched in T cells. These results indicated that T cells were hyperactivated by CD69 stimulation, and phosphorylation of SRC accelerated on BPA exposure. Hence, alteration in the TCR signaling pathway during development and differentiation due to BPA exposure could lead to insufficient and hasty activation of TCR signaling in T cells, which could modify cytokine profiles, leading to increased environmental susceptibility to chronic inflammation or diseases, increasing the chance of autoimmune diseases and cancer. This study enhances our understanding of the effects of environmental perturbations on immunosuppression at molecular, cellular, and systematic levels following pubertal BPA exposure, and may help develop better predictive, preventative, and therapeutic techniques.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea
| | - Min-Ji Jung
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea
| | - Shehreen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea
| | - Jun-Mo Kim
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, South Korea.
| |
Collapse
|
13
|
Matouskova K, Szabo GK, Daum J, Fenton SE, Christiansen S, Soto AM, Kay JE, Cardona B, Vandenberg LN. Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reprod Toxicol 2022; 112:51-67. [PMID: 35764275 PMCID: PMC9491517 DOI: 10.1016/j.reprotox.2022.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Work from numerous fields of study suggests that exposures to hormonally active chemicals during sensitive windows of development can alter mammary gland development, function, and disease risk. Stronger links between many environmental pollutants and disruptions to breast health continue to be documented in human populations, and there remain concerns that the methods utilized to identify, characterize, and prioritize these chemicals for risk assessment and risk management purposes are insufficient. There are also concerns that effects on the mammary gland have been largely ignored by regulatory agencies. Here, we provide technical guidance that is intended to enhance collection and evaluation of the mammary gland in mice and rats. We review several features of studies that should be controlled to properly evaluate the mammary gland, and then describe methods to appropriately collect the mammary gland from rodents. Furthermore, we discuss methods for preparing whole mounted mammary glands and numerous approaches that are available for the analysis of these samples. Finally, we conclude with several examples where analysis of the mammary gland revealed effects of environmental toxicants at low doses. Our work argues that the rodent mammary gland should be considered in chemical safety, hazard and risk assessments. It also suggests that improved measures of mammary gland outcomes, such as those we present in this review, should be included in the standardized methods evaluated by regulatory agencies such as the test guidelines used for identifying reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jessica Daum
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK 2800, Denmark
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
14
|
Mehlsen A, Høllund L, Boye H, Frederiksen H, Andersson AM, Bruun S, Husby S, Jensen TK, Timmermann CAG. Pregnancy exposure to bisphenol A and duration of breastfeeding. ENVIRONMENTAL RESEARCH 2022; 206:112471. [PMID: 34861228 DOI: 10.1016/j.envres.2021.112471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Bisphenol A (BPA) is frequently used in the production of plastics. It is an endocrine disruptor, and BPA exposure in mice has been associated with reduced offspring growth due to insufficient milk production. However, human studies of associations between BPA exposure and duration of breastfeeding are sparse. METHODS Pregnant women from the Odense Child Cohort (n = 725) donated a third trimester morning urine sample, which was analyzed for BPA by LC-MS/MS. Information about duration of exclusive and any breastfeeding was obtained through questionnaires three and 18 months postpartum, and a subgroup of women responded to weekly text messages about breastfeeding. Associations between pregnancy BPA exposure and duration of breastfeeding were analyzed using Cox regression adjusting for potential confounders. RESULTS The median urine BPA concentration was 1.29 ng/mL. Compared to women within the lowest tertile of BPA exposure, women in the second and third tertile were slightly more likely to terminate breastfeeding at any given time; HRs (95% CI) were 1.05 (0.87; 1.26) and 1.06 (0.89; 1.27), respectively, and to terminate exclusive breastfeeding at any time up to 20 weeks after birth, HRs (95% CI) were 1.07 (0.88; 1.28) and 1.06 (0.88; 1.27), respectively. However, confidence intervals were also compatible with no effect or even a protective effect. DISCUSSION This study indicated that high BPA exposure in pregnancy was associated with shorter duration of breastfeeding. Although our findings were not statistically significant, all estimates were above one suggesting increased risk of early breastfeeding termination with high exposure. Using a single spot morning urine sample to measure BPA has likely caused imprecision as it might not adequately reflect long term exposure. Future studies should consider measuring BPA more than once, including other timepoints during pregnancy and after birth.
Collapse
Affiliation(s)
- Agnethe Mehlsen
- Research Unit of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Denmark
| | - Lærke Høllund
- Research Unit of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Denmark
| | - Henriette Boye
- Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Signe Bruun
- Hans Christian Andersen Children's Hospital, Odense University Hospital and University of Southern, Denmark; Strategic Business Unit Pediatric, Arla Foods Ingredients Group P/S, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children's Hospital, Odense University Hospital and University of Southern, Denmark
| | - Tina Kold Jensen
- Research Unit of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Denmark; Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Denmark; Open Patient Data Exploratory Network (OPEN), Odense University Hospital, Denmark
| | - Clara Amalie Gade Timmermann
- Research Unit of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Denmark.
| |
Collapse
|
15
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
16
|
Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. Proc Natl Acad Sci U S A 2022; 119:e2115308119. [PMID: 35263230 PMCID: PMC8931256 DOI: 10.1073/pnas.2115308119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.
Collapse
|
17
|
Beausoleil C, Le Magueresse-Battistoni B, Viguié C, Babajko S, Canivenc-Lavier MC, Chevalier N, Emond C, Habert R, Picard-Hagen N, Mhaouty-Kodja S. Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. ENVIRONMENTAL RESEARCH 2022; 204:112233. [PMID: 34688643 DOI: 10.1016/j.envres.2021.112233] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS. In the absence of such values, the scientific literature on human health effects was evaluated by focusing on human epidemiological and animal experimental studies. The results were analyzed by target organ/system: male and female reproduction, mammary gland, neurobehavior, and metabolism/obesity. Academic experimental studies were analyzed and compared to regulatory data including subchronic studies and an extended one-generation and reproduction study. In contrast to the regulatory studies, which were performed at dose levels in the mg/kg bw/day range, the academic dataset on specific target organs or systems showed adverse effects for BPS at much lower doses (0.5-10 μg/kg bw/day). A large disparity between the lowest-observed-adverse-effect levels (LOAELs) derived from regulatory and academic studies was observed for BPS, as for BPA. Toxicokinetic data on BPS from animal and human studies were also analyzed and showed a 100-fold higher oral bioavailability compared to BPA in a pig model. The similarities and differences between the two bisphenols, in particular the higher bioavailability of BPS in its active (non-conjugated) form and its potential impact on human health, are discussed. Based on the available experimental data, and for a better human protection, we propose to derive human reference values for exposure to BPS from the N(L)OAELs determined in academic studies.
Collapse
Affiliation(s)
| | | | - Catherine Viguié
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Nicolas Chevalier
- Université Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, INSERM U1065, C3M, Nice, France
| | - Claude Emond
- University of Montreal, School of Public Health, DSEST, Montreal, Quebec, Canada
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, University Paris Diderot, Institut National de la Santé et de la Recherche Médicale (Inserm) U 967 - CEA, Fontenay-aux-Roses, France
| | - Nicole Picard-Hagen
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| |
Collapse
|
18
|
The Endocrine Disruptor Compound Bisphenol-A (BPA) Regulates the Intra-Tumoral Immune Microenvironment and Increases Lung Metastasis in an Experimental Model of Breast Cancer. Int J Mol Sci 2022; 23:ijms23052523. [PMID: 35269666 PMCID: PMC8909997 DOI: 10.3390/ijms23052523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The widely spread microplastic component and endocrine disruptor BPA is a hazardous material recognized for a long time. Here, for the first time, we demonstrated that BPA, administered into mice in a very specific developmental step of the animal (3 days post-natal), induces an increase in metastasis to the lung in the adult life, compared to the control or vehicle mice. In addition, of novelty, it is the analysis of the cytokine tumor microenvironment, which is the reason for the increased metastasis by BPA (BPA induce the increase in pro-metastatic cytokines). Abstract Breast cancer (BC) metastasis represents the main physiopathology leading to poor prognosis and death. Bisphenol A (BPA) is a pollutant, classified as an endocrine-disrupting chemical compound with estrogenic properties, their exposure in the early stages of neonatal life leads to an increase in the size and weight of breast tumors and induces cellular changes in the tumoral immune microenvironment where cytokines play a key role. Thus, we used female BALB/c mice exposed neonatally to a single dose of BPA. Once mice reached sexual maturity, a mammary tumor was induced, injecting 4T1 cells in situ. After 25 days of injection, we evaluated endocrine alterations, cytokine expression, tissue alterations denoted by macro or micro-metastasis in the lung, and cell infiltration induced by metastasis. We found that BPA neonatal treatment did not show significant endocrine alterations. Noteworthy, BPA led to an augmented rate of metastasis to the lung associated with higher intratumoral expression of IL-1β, IL-6, IFN-γ, TNF-α, and VEGF. Our data suggest that cytokines are key players in the induction of BC metastasis and that BPA (an environmental pollutant) should be considered as a risk factor in the clinical history of patients as a possible inductor of BC metastasis.
Collapse
|
19
|
Jun JH, Oh JE, Shim JK, Kwak YL, Cho JS. Effects of bisphenol A on the proliferation, migration, and tumor growth of colon cancer cells: In vitro and in vivo evaluation with mechanistic insights related to ERK and 5-HT3. Food Chem Toxicol 2021; 158:112662. [PMID: 34743013 DOI: 10.1016/j.fct.2021.112662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical related to the carcinogenesis of estrogen-responsive organs. Although human exposure to BPA mainly occurs via the oral route, its association with colon cancer has not been fully elucidated. We investigated the effects of BPA on the proliferation, migration, and tumor growth of colon cancer cells. BPA significantly promoted the proliferation of HT-29 human colon adenocarcinoma cells in a time- and dose-dependent manner. BPA also increased HT-29 cells migration. BPA increased the phosphorylation of extracellular signal-regulated kinase (ERK), and inhibition of the ERK pathway attenuated BPA-induced proliferation and migration. In addition, BPA reduced E-cadherin expression, a key factor impeding epithelial-to-mesenchymal transition, and increased 5-HT3 receptors expression, a major mitogenic factor. In xenograft models, tumor volume of the BPA-treated nude mice was 4.6 times that of the saline-treated group. Our findings provide primary evidence regarding the link between BPA and human colon cancer by demonstrating that BPA promotes the proliferation, migration, and tumor growth of colon cancer cells in both in vitro and in vivo models. In addition, we provided the mechanism of action of BPA, involved in the activation of the ERK pathway, the decrease in E-cadherin, and the increase in 5-HT3 receptors.
Collapse
Affiliation(s)
- Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Cho
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Boudalia S, Bousbia A, Boumaaza B, Oudir M, Canivenc Lavier MC. Relationship between endocrine disruptors and obesity with a focus on bisphenol A: a narrative review. BIOIMPACTS 2021; 11:289-300. [PMID: 34631491 PMCID: PMC8494257 DOI: 10.34172/bi.2021.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/25/2020] [Accepted: 05/10/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Scientific data suggest that early exposure to endocrine-disrupting chemicals (EDCs) affect -repro, -neuro, -metabolic systems, to which are added other notions such as mixtures, window and duration of exposure, trans-generational effects, and epigenetic mechanisms. Methods: In the present narrative review, we studied the relationship between exposure to EDCs with the appearance and development of obesity. Results: Exposure to EDCs like Bisphenol A during the early stages of development has been shown to lead to weight gain and obesity. EDCs can interfere with endocrine signaling, affect adipocytes differentiation and endocrine function and disrupt metabolic processes, especially if exposure occurs at very low doses, in the mixture, during early development stages for several generations. Conclusion: Exposure to EDCs is positively associated with obesity development. Moreover, the use of integrative approaches which mimicking environmental conditions are necessary and recommended to evaluate EDCs' effects in future studies.
Collapse
Affiliation(s)
- Sofiane Boudalia
- Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie
| | - Aissam Bousbia
- Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie
| | - Boualem Boumaaza
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma BP 4010 Guelma 24000, Algérie.,Département des Sciences Agronomiques, Faculté des Sciences de la Nature et de la Vie, Université Ibn Khaldoun, Tiaret 14000, Algérie
| | - Malha Oudir
- Laboratoire de Génie Chimique, Département de Génie des Procédés, Faculté de Technologie, Université Saâd Dahlab, USDB. BP 270, Route de Soumâa, 09000 Blida, Algérie
| | - Marie Chantal Canivenc Lavier
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Université de Bourgogne - Franche-Comté, Dijon, 21000, France
| |
Collapse
|
21
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|
22
|
Abstract
Onset of puberty, as defined by breast stage 2, appears to be starting at younger ages since the 1940s. There is an ongoing controversy regarding what is normative, as well as what is normal, and the evaluation that is deemed necessary for girls maturing before 8 years of age. There are potential implications of earlier pubertal timing, including psychosocial consequences during adolescence, as well as longer term risks, such as breast cancer and cardiometabolic risks. There are additional consequences derived from slower pubertal tempo, for age of menarche has not decreased as much as age of breast development; these include longer interval between sexual initiation and intentional childbearing, as well as a broadened window of susceptibility to endocrine-related cancers.
Collapse
Affiliation(s)
- Colby E Smith
- Division of Adolescent and Transition Medicine, Cincinnati Children's Hospital Medical Center
| | - Frank M Biro
- Division of Adolescent and Transition Medicine, Cincinnati Children's Hospital Medical Center.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
23
|
Vandenberg LN. Endocrine disrupting chemicals and the mammary gland. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:237-277. [PMID: 34452688 DOI: 10.1016/bs.apha.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of the mammary gland requires coordination of hormone signaling pathways including those mediated by estrogen, progesterone, androgen and prolactin receptors. These hormones play important roles at several distinct stages of life including embryonic/fetal development, puberty, pregnancy, lactation, and old age. This also makes the gland sensitive to perturbations from environmental agents including endocrine disrupting chemicals (EDCs). Although there is evidence from human populations of associations between EDCs and disruptions to breast development and lactation, these studies are often complicated by the timing of exposure assessments and the latency to develop breast diseases (e.g., years to decades). Rodents have been instrumental in providing insights-not only to the basic biology and endocrinology of the mammary gland, but to the effects of EDCs on this tissue at different stages of development. Studies, mostly but not exclusively, of estrogenic EDCs have shown that the mammary gland is a sensitive tissue, that exposures during perinatal development can produce abnormal mammary structures (e.g., alveolar buds, typically seen in pregnant females) in adulthood; that exposures during pregnancy can alter milk production; and that EDC exposures can enhance the response of the mammary tissue to hormones and chemical carcinogens. Other studies of persistent organic pollutants have shown that EDC exposures during critical windows of development can delay development of the gland, with lifelong consequences for the individual. Collectively, this work continues to support the conclusion that EDCs can harm the mammary gland, with effects that depend on the period of exposure and the period of evaluation.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
24
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Kam RL, Bernhardt SM, Ingman WV, Amir LH. Modern, exogenous exposures associated with altered mammary gland development: A systematic review. Early Hum Dev 2021; 156:105342. [PMID: 33711581 DOI: 10.1016/j.earlhumdev.2021.105342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many women report low milk supply as the reason for premature breastfeeding cessation. Altered mammary gland development may impact a woman's lactation ability. OBJECTIVE This review identifies modern exogenous exposures which alter mammary gland development during embryonic life, puberty and pregnancy. METHODS A systematic review was undertaken whereby Medline, CINAHL and Embase articles published from January 1, 2005 to November 20, 2020 were searched using the keywords puberty or embry* or fetal or foetal or foetus or fetus or pregnan* or gestation* AND "mammary gland development" or "breast development" or "mammary development" or "mammary gland function" or "mammary function" or "insufficient glandular tissue" or "mammary hypoplasia" or "breast hypoplasia" or "mammary gland hypoplasia" or "tubular breast*" or "tuberous breast*" or "glandular tissue" or "breast composition" or "mammary composition" or "mammary gland composition". After initial screening of 1207 records, 60 full texts were assessed for eligibility; 6 were excluded due to lack of information about exposure or outcome, leaving 54 studies. RESULTS The review included results from 52 animal (rats and mice, monkeys, rabbits, sheep, goats pigs and cows) and 2 human studies. Various endocrine disrupting chemicals and an obesogenic diet were found to be associated with altered mammary gland morphology during key development stages. CONCLUSIONS To improve lactation outcomes, future studies need to focus on lactation as the endpoint and be conducted in a standardised manner to allow for a more significant contribution to the literature that allows for better comparison across studies.
Collapse
Affiliation(s)
- Renee L Kam
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia.
| | - Sarah M Bernhardt
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Lisa H Amir
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia; Breastfeeding Service, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Bleak TC, Calaf GM. Breast and prostate glands affected by environmental substances (Review). Oncol Rep 2021; 45:20. [PMID: 33649835 PMCID: PMC7879422 DOI: 10.3892/or.2021.7971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Environmental endocrine disruptor chemicals are substances that can alter the homeostasis of the endocrine system in living organisms. They can be released from several products used in daily activities. Once in the organism, they can disrupt the endocrine function by mimicking or blocking naturally occurring hormones due to their similar chemical structure. This endocrine disruption is the most important cause of the well‑known hormone‑associate types of cancer. Additionally, it is decisive to determine the susceptibility of each organ to these compounds. Therefore, the present review aimed to summarize the effect of different environmental substances such as bisphenol A, dichlorodiphenyltrichloroethane and polychlorinated biphenyls in both the mammary and the prostate tissues. These organs were chosen due to their association with the hormonal system and their common features in carcinogenic mechanisms. Outcomes derived from the present review may provide evidence that should be considered in future debates regarding the effects of endocrine disruptors on carcinogenesis.
Collapse
Affiliation(s)
- Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
27
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
28
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
29
|
Criswell R, Crawford KA, Bucinca H, Romano ME. Endocrine-disrupting chemicals and breastfeeding duration: a review. Curr Opin Endocrinol Diabetes Obes 2020; 27:388-395. [PMID: 33027070 PMCID: PMC7968861 DOI: 10.1097/med.0000000000000577] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe epidemiologic and toxicological literature investigating how endocrine-disrupting chemicals (EDCs) affect mammary gland development and function, thereby impacting lactation duration. RECENT FINDINGS Perfluoroalkyl and polyfluoroalkyl substances appear to reduce breastfeeding duration through impaired mammary gland development, lactogenesis, and suppressed endocrine signaling. Halogenated aromatic hydrocarbons have differing associations with lactation duration, likely because of the variety of signaling pathways that they affect, pointing to the importance of complex mixtures in epidemiologic studies. Although epidemiologic literature suggests that pesticides and fungicides decrease or have no effect on lactation duration, toxicology literature suggests enhanced mammary gland development through estrogenic and/or antiandrogenic pathways. Toxicological studies suggest that phthalates may affect mammary gland development via estrogenic pathways but no association with lactation duration has been observed. Bisphenol A was associated with decreased duration of breastfeeding, likely through direct and indirect action on estrogenic pathways. SUMMARY EDCs play a role in mammary gland development, function, and lactogenesis, which can affect breastfeeding duration. Further research should explore direct mechanisms of EDCs on lactation, the significance of toxicant mixtures, and transgenerational effects of EDCs on lactation.
Collapse
Affiliation(s)
| | - Kathryn A. Crawford
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
- Environmental Studies Program, Middlebury College, Middlebury, VT
| | - Hana Bucinca
- Research and Quality Improvement Program, Action for Mothers and Children, Prishtina, Kosovo
- Department of Pharmacy, Rezonanca College of Medical Sciences, Prishtina, Kosovo
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
| |
Collapse
|
30
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
31
|
Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020; 21:E9139. [PMID: 33266302 PMCID: PMC7731339 DOI: 10.3390/ijms21239139] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies. The complex effects of endocrine disrupting chemicals (EDCs) on hormonal pathways, involving carcinogenic effects and an increase in mammary gland susceptibility to carcinogenesis-together with the specific characteristics of the mammary gland evolving over the course of life and the multifactorial etiology of BC-make the evaluation of these compounds a complex issue. Among the many EDCs suspected of increasing the risk of BC, strong evidence has only been provided for few EDCs including diethylstilbestrol, dichlorodiphenyltrichloroethane, dioxins and bisphenol A. However, given the ubiquitous nature and massive use of EDCs, it is essential to continue to assess their long-term health effects, particularly on carcinogenesis, to eradicate the worst of them and to sensitize the population to minimize their use.
Collapse
Affiliation(s)
- Louisane Eve
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Béatrice Fervers
- Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France;
- Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Nelly Etienne-Selloum
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France
- CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
32
|
Darbre PD. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res 2020; 112:1300-1307. [PMID: 32720473 DOI: 10.1002/bdr2.1778] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023]
Abstract
Bisphenol A and phthalate esters are used as additives in the manufacture of plastic materials, but their ability to leach out with age and heat has resulted in their becoming ubiquitous contaminants of the ecosystem including within human body tissues. Over recent years, these compounds have been shown to possess endocrine disrupting properties with an ability to interfere in the actions of many hormones and to contribute to human health problems. Much of the reported disruptive activity has been in relation to the action of estrogens, androgens, and thyroid hormones, and concerns have been raised for adverse consequences on female and male reproductive health, thyroid function, metabolic alterations, brain development/function, immune responses, and development of cancers in hormone-sensitive tissues. A recurring theme throughout seems to be that there are windows of susceptibility to exposure in utero and in early postnatal life, which may then result in disease in later life without any need for further exposure. This commentary highlights key issues in a historical context and raises questions regarding the many data gaps.
Collapse
Affiliation(s)
- Philippa D Darbre
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
33
|
Montévil M, Acevedo N, Schaeberle CM, Bharadwaj M, Fenton SE, Soto AM. A Combined Morphometric and Statistical Approach to Assess Nonmonotonicity in the Developing Mammary Gland of Rats in the CLARITY-BPA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:57001. [PMID: 32438830 PMCID: PMC7263454 DOI: 10.1289/ehp6301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol-A (CLARITY-BPA) is a rare collaboration of guideline-compliant (core) studies and academic hypothesis-based studies to assess the effects of bisphenol A (BPA). OBJECTIVES We aimed to a) determine whether BPA showed effects on the developing rat mammary gland using new quantitative and established semiquantitative methods in two laboratories, b) develop a software tool for automatic evaluation of quantifiable aspects of the mammary ductal tree, and c) compare those methods. METHODS Sprague-Dawley rats were exposed to BPA, vehicle, or positive control [ethinyl estradiol (EE2)] by oral gavage beginning on gestational day (GD)6 and continuing with direct dosing of the pups after birth. There were two studies: subchronic and chronic. The latter used two exposure regimes, one stopping at postnatal day (PND)21 (stop-dose) the other continuing until tissue harvest (continuous). Glands were harvested at multiple time points; whole mounts and histological specimens were analyzed blinded to treatment. RESULTS The subchronic study's semiquantitative analysis revealed no significant differences between control and BPA dose groups at PND21, whereas at PND90 there were significant differences between control and the lowest BPA dose and between control and the lowest EE2 dose in animals in estrus. Quantitative, automatized analysis of the chronic PND21 specimens displayed nonmonotonic BPA effects, with a breaking point between the 25 and 250μg/kg body weight (BW) per day doses. This breaking point was confirmed by a global statistical analysis of chronic study animals at PND90 and 6 months analyzed by the quantitative method. The BPA response was different from the EE2 effect for many features. CONCLUSIONS Both the semiquantitative and the quantitative methods revealed nonmonotonic effects of BPA. The quantitative unsupervised analysis used 91 measurements and produced the most striking nonmonotonic dose-response curves. At all time points, lower doses resulted in larger effects, consistent with the core study, which revealed a significant increase of mammary adenocarcinoma incidence in the stop-dose animals at the lowest BPA dose tested. https://doi.org/10.1289/EHP6301.
Collapse
Affiliation(s)
- Maël Montévil
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Nicole Acevedo
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Cheryl M. Schaeberle
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Manushree Bharadwaj
- National Toxicology Program (NTP) Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Suzanne E. Fenton
- National Toxicology Program (NTP) Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ana M. Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| |
Collapse
|
34
|
Martini M, Corces VG, Rissman EF. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm Behav 2020; 119:104677. [PMID: 31927019 PMCID: PMC9942829 DOI: 10.1016/j.yhbeh.2020.104677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
It is our hope this mini-review will stimulate discussion and new research. Here we briefly examine the literature on transgenerational actions of endocrine disrupting chemicals (EDCs) on brain and behavior and their underlying epigenetic mechanisms including: DNA methylation, histone modifications, and non-coding RNAs. We stress that epigenetic modifications need to be examined in a synergistic manner, as they act together in situ on chromatin to change transcription. Next we highlight recent work from one of our laboratories (VGC). The data provide new evidence that the sperm genome is poised for transcription. In developing sperm, gene enhancers and promoters are accessible for transcription and these activating motifs are also found in preimplantation embryos. Thus, DNA modifications associated with transcription factors during fertilization, in primordial germ cells (PGCs), and/or during germ cell maturation may be passed to offspring. We discuss the implications of this model to EDC exposures and speculate on whether natural variation in hormone levels during fertilization and PGC migration may impart transgenerational effects on brain and behavior. Lastly we discuss how this mechanism could apply to neural sexual differentiation.
Collapse
Affiliation(s)
- Mariangela Martini
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
35
|
Wei Y, Han C, Li S, Cui Y, Bao Y, Shi W. Maternal exposure to bisphenol A during pregnancy interferes ovaries development of F1 female mice. Theriogenology 2019; 142:138-148. [PMID: 31593881 DOI: 10.1016/j.theriogenology.2019.09.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
This study was conducted to investigate the effects of maternal exposure bisphenol A (BPA) on ovaries development of F1 female mice. The BPA exposure model of pregnant mice was prepared by intragastric administration of BPA at the doses of 0, 2.5, 5, 10, 20, 40 mg kg-1 d-1 at gestation day (GD) 0.5-17.5. The ovarian index of the offspring mice was calculated at postnatal day (PND) 21 and PND 56. The results showed that BPA at 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg significantly increased the abortion rate of the pregnant mice, and each dose of BPA significantly reduced the survival rate of the pups (P < 0.01 or P < 0.05). Besides, there was a non-monotonic dose-response relationship between serum hormone, ovarian receptor levels and BPA in F1 females at both PND 21 and 56. BPA increased the ovarian/uterine index in F1 females at both PND 21 and 56, increased the mRNA relative transcript levels of ovarian ERα, PgR and DNA methyltransferase (DNMT) in F1 females at PND 21, while decreased at PND 56 (P < 0.01 or P < 0.05). BPA also increased the relative expression of caspase-7, caspase-9, bax, inhibited the relative expression of bcl-2 in F1 females at both PND 21 and 56, and increased the apoptosis rate in the ovaries in F1 mice at PND 56 (P < 0.01). The number of follicles in the ovary was increased in F1 females at PND 21, and the ovaries were significantly atrophied when sexual maturity (PND 56). Our results indicated that BPA could disturb the contents of DNMT and make reproductive injury to the offspring females.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Chao Han
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Shuying Li
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Yuqing Cui
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Yongzhan Bao
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Wanyu Shi
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071001, China.
| |
Collapse
|
36
|
Jung N, Maguer-Satta V, Guyot B. Early Steps of Mammary Stem Cell Transformation by Exogenous Signals; Effects of Bisphenol Endocrine Disrupting Chemicals and Bone Morphogenetic Proteins. Cancers (Basel) 2019; 11:cancers11091351. [PMID: 31547326 PMCID: PMC6770465 DOI: 10.3390/cancers11091351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Estrogens are major regulators of the mammary gland development, notably during puberty, via estrogen receptor (ER) activation, leading to the proliferation and differentiation of mammary cells. In addition to estrogens, the bone morphogenetic proteins (BMPs) family is involved in breast stem cell/progenitor commitment. However, these two pathways that synergistically contribute to the biology of the normal mammary gland have also been described to initiate and/or promote breast cancer development. In addition to intrinsic events, lifestyle habits and exposure to environmental cues are key risk factors for cancer in general, and especially for breast cancer. In the latter case, bisphenol A (BPA), an estrogen-mimetic compound, is a critical pollutant both in terms of the quantities released in our environment and of its known and speculated effects on mammary gland biology. In this review, we summarize the current knowledge on the actions of BMPs and estrogens in both normal mammary gland development and breast cancer initiation, dissemination, and resistance to treatment, focusing on the dysregulations of these processes by BPA but also by other bisphenols, including BPS and BPF, initially considered as safer alternatives to BPA.
Collapse
Affiliation(s)
- Nora Jung
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Veronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| |
Collapse
|
37
|
Pelch KE, Li Y, Perera L, Thayer KA, Korach KS. Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In Vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles. Toxicol Sci 2019; 172:23-37. [PMID: 31388671 PMCID: PMC6813750 DOI: 10.1093/toxsci/kfz173] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/27/2019] [Accepted: 07/28/2019] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is a high production volume chemical widely used in plastics, food packaging, and many other products. It is well known that endocrine-disrupting chemicals (EDC) might be harmful to human health due to interference with normal hormone actions. Recent studies report widespread usage and exposure to many BPA-like chemicals (BPs) that are structurally or functionally similar to BPA. However, the biological actions and toxicity of those BPs are still relatively unknown. To address this data gap, we used in vitro cell models to evaluate the ability of twenty-two BPs to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)α and/or ERβ-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only three BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERβ-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERα-mediated activity. None of the BPs induced AR mediated activity. In addition, we identify that the BPs can bind to ER or AR with varying degrees by a molecular modeling analysis. Taken together, these findings help us to understand the molecular mechanism of BPs and further consideration of their usage in consumer products.
Collapse
Affiliation(s)
| | - Yin Li
- Reproductive and Developmental Biology Laboratory
| | - Lalith Perera
- Genome Integrity and Structure Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
38
|
Hui L, Li H, Lu G, Chen Z, Sun W, Shi Y, Fu Z, Huang B, Zhu X, Lu W, Xia D, Wu Y. Low Dose of Bisphenol A Modulates Ovarian Cancer Gene Expression Profile and Promotes Epithelial to Mesenchymal Transition Via Canonical Wnt Pathway. Toxicol Sci 2019; 164:527-538. [PMID: 29718440 DOI: 10.1093/toxsci/kfy107] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The xenoestrogen bisphenol A (BPA) is a synthetic endocrine disrupting chemical, having the potential to increase the risk of hormone-dependent ovarian cancer. Thus, a deeper understanding of the molecular and cellular mechanisms is urgently required in the novel cell models of ovarian cancer which express estrogen receptors. To understand the possible mechanisms underlying the effects of BPA, human ovarian adenocarcinoma SKOV3 cells were exposed to BPA (10 or 100 nM) or 0.1% DMSO for 24 h, and then global gene expression profile was determined by high-throughput RNA sequencing. Also, enrichment analysis was carried out to find out relevant functions and pathways within which differentially expressed genes were significantly enriched. Transcriptomic analysis revealed 94 differential expression genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these genes related to tumorigenesis and metastasis. Further studies were carried out to validate the results of functional annotation, which indicated that BPA (10 and 100 nM) increased migration and invasion as well as induced epithelial to mesenchymal transitions in SKOV3 and A2780 cells. Accordingly, environmentally relevant-dose BPA activated the canonical Wnt signaling pathway. Our study first comprehensively analyzed the possible mechanisms underlying the effects of BPA on ovarian cancer. Environmentally relevant doses of BPA modulated the gene expression profile, promoted epithelial to mesenchymal transition progress via canonical Wnt signaling pathway of ovarian cancer.
Collapse
Affiliation(s)
- Lin Hui
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongyi Li
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Zhifeng Chen
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenjie Sun
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Shi
- Key Laboratory of Diagnosis and Treatment for Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhiqin Fu
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Bo Huang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinqiang Zhu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yihua Wu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
39
|
Kolla S, McSweeney DB, Pokharel A, Vandenberg LN. Bisphenol S alters development of the male mouse mammary gland and sensitizes it to a peripubertal estrogen challenge. Toxicology 2019; 424:152234. [PMID: 31201878 DOI: 10.1016/j.tox.2019.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/22/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022]
Abstract
Humans are exposed to estrogenic chemicals in food and food packaging, personal care products, and other industrial and consumer goods. Bisphenol A (BPA), a well-studied xenoestrogen, is known to alter development of estrogen-sensitive organs including the brain, reproductive tract, and mammary gland. Bisphenol S (BPS; 4,4'-sulfonyldiphenol), which has a similar chemical structure to BPA, is also used in many consumer products, but its effects on estrogen-sensitive organs in mammals has not been thoroughly examined. Here, we quantified the effects of perinatal exposures to BPS on the male mouse mammary gland. In our first study, pregnant CD-1 mice were orally exposed to BPS (2 or 200 μg/kg/day) starting on pregnancy day 9 through lactation day 20, and male mammary glands were evaluated on embryonic day 16, prior to puberty, and in early adulthood. We observed modest changes in tissue organization in the fetal gland, and significant increases in growth of the gland induced by developmental BPS exposure in adulthood. In our second study, pregnant CD-1 mice were orally exposed to BPS (2, 200 or 2000 μg/kg/day) starting on pregnancy day 9 through lactational day 2. After weaning, the male pups were administered either oil (vehicle) or an estrogen challenge (1 μg ethinyl estradiol/kg/day) for ten days starting prior to puberty. After the 10-day estrogen challenge, we examined hormone-sensitive outcomes including anogenital index (AGI), weight of the seminal vesicles, and morphological parameters of the mammary gland. Although AGI and seminal vesicle weight were not affected by BPS, we observed dose-specific effects on the response of male mammary glands to the peripubertal estrogen challenge. Because male mammary glands are structurally less developed compared to females, they may provide a simple model tissue to evaluate the effects of putative xenoestrogens.
Collapse
Affiliation(s)
- SriDurgaDevi Kolla
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Danny B McSweeney
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Aastha Pokharel
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
40
|
Cao H, Wang L, Cao M, Ye T, Sun Y. Computational insights on agonist and antagonist mechanisms of estrogen receptor α induced by bisphenol A analogues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:536-545. [PMID: 30831350 DOI: 10.1016/j.envpol.2019.02.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Structural analogues of bisphenol A (BPA) have become widely used as alternatives in BPA-free products. Most toxicological investigations have focused on the estrogenic activities of these analogues, which have been considered as potential environmental estrogens. However, recent studies revealed that certain BPA analogues could dramatically inhibit the proliferation of breast cancer cells, and exhibited strong anti-estrogenic effects compared with the antagonist 4-hydroxytamoxifen (OHT). Thus, we adopted computational models combining molecular dynamics simulations and binding free energy calculations to explore the underlying molecular basis of BPA analogues binding to estrogen receptor α (ERα). We also evaluated ligand-induced structural rearrangements of ERα at the atomic level. Conformational analyses showed that induced-fit H-bonding recognition by Thr347 was an important factor distinguishing antagonist from agonist BPA analogues. Moreover, antagonists of BPA analogues could indirectly induce the structural reposition of key helix 12 and produce an antagonistic conformation of ERα. Compared with OHT, the binding affinity of BPA analogues is stronger for antagonists than agonists. Taken together, we therefore propose computational indicators for screening of anti-estrogenic activities of BPA analogues, which may be beneficial for predicting the estrogenic or anti-estrogenic effects of BPA alternatives.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Tong Ye
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
41
|
Gore AC, Krishnan K, Reilly MP. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior. Horm Behav 2019; 111:7-22. [PMID: 30476496 PMCID: PMC6527472 DOI: 10.1016/j.yhbeh.2018.11.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
A contribution to SBN/ICN special issue. Endocrine-disrupting chemicals (EDCs) are pervasive in the environment. They are found in plastics and plasticizers (bisphenol A (BPA) and phthalates), in industrial chemicals such as polychlorinated biphenyls (PCBs), and include some pesticides and fungicides such as vinclozolin. These chemicals act on hormone receptors and their downstream signaling pathways, and can interfere with hormone synthesis, metabolism, and actions. Because the developing brain is particularly sensitive to endogenous hormones, disruptions by EDCs can change neural circuits that form during periods of brain organization. Here, we review the evidence that EDCs affect developing hypothalamic neuroendocrine systems, and change behavioral outcomes in juvenile, adolescent, and adult life in exposed individuals, and even in their descendants. Our focus is on social, communicative and sociosexual behaviors, as how an individual behaves with a same- or opposite-sex conspecific determines that individual's ability to exist in a community, be selected as a mate, and reproduce successfully.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
42
|
Effects of Bauhinia forficata on glycaemia, lipid profile, hepatic glycogen content and oxidative stress in rats exposed to Bisphenol A. Toxicol Rep 2019; 6:244-252. [PMID: 30911467 PMCID: PMC6416659 DOI: 10.1016/j.toxrep.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is an abundant raw material applied in the production of daily necessities, such as food cans, baby bottles, electronic and medical equipment. Phytotherapeutic use of plant preparations has long been known for multiple target medicinal uses. The species Bauhinia forficata is widely used as hypoglycemic, anti-inflammatory, antioxidant, diuretic and hypocholesterolemic agent. The aim of this study was to verify the effects of B. forficata extract in association with BPA exposure on serological parameters, hepatic antioxidant status and glycogen store capacity in Wistar rats. B. forficata was able to reduce BPA-induced glucose levels; it also prevented the early glucose elevation in control and BPA-exposed animals after the glucose provocative test. This effect was related to the hepatic glycogen content; while BPA reduced the hepatic glycogen deposits B. forficata treatment contributed to minimize it. BPA and B. forficata singly caused elevation in triacylglycerol and VLDL levels and reduction in cholesterol and LDL concentrations. BPA increased hepatic malondialdehyde levels and reduced catalase activity, thus inducing liver oxidative stress. Conversely, B. forficata treatment reduced malondialdehyde concentration without interfering with catalase activity; this antioxidant capacity is attributed to the flavonoids content (e.g., kaempferol and myricetin). Based on these results, we demonstrated that B. forficata commercial extract has hypoglycemic and antioxidant properties capable of minimizing the effects of BPA. However, it should be considered that the consumption of herbal commercial extract must be judicious to avoid deleterious health effects.
Collapse
|
43
|
Affiliation(s)
- Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea.
| |
Collapse
|
44
|
Perrot-Applanat M, Kolf-Clauw M, Michel C, Beausoleil C. Alteration of mammary gland development by bisphenol a and evidence of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol 2018; 475:29-53. [PMID: 30048677 DOI: 10.1016/j.mce.2018.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
The development and function of the mammary gland are endocrine-dependent processes, depending on the stage of development. Foetal and/or postnatal exposure to low doses of BPA alters tissue organisation through epithelial proliferation and stroma-epithelial interactions. BPA also alters the expression of E2-dependent epithelial and stroma transcriptomes. Several signalling pathways are consistent with the observed phenotype: proliferation and apoptosis, a focal adhesion pathway indicating changes in biomechanical properties of the extracellular matrix, and immune function. Some of BPA's effects are reversed by oestrogen and/or GPER inhibitors. BPA also alters the expression of epigenetic marks (EZH2, HOTAIR), which would explain the delayed effect of foetal BPA exposure. In conclusion, experimental evidence shows that pre- or postnatal BPA exposure consistently causes endocrine modifications in the mammary tissue of different animal species, disrupting stromal-epithelial interactions and ultimately increasing its susceptibility to carcinogens. An interspecies comparison highlights why and how these effects apply to humans.
Collapse
Affiliation(s)
| | - Martine Kolf-Clauw
- CREFRE, Toulouse University, INSERM, Toulouse Veterinary School, 23 chemin des Capelles, BP 87614, F 310176, Toulouse Cedex 3, France
| | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France.
| | | |
Collapse
|
45
|
Lai KP, Li JW, Chan TF, Chen A, Lee CYL, Yeung WSB, Wong CKC. Transcriptomic and methylomic analysis reveal the toxicological effect of 2,3,7,8-Tetrachlorodibenzodioxin on human embryonic stem cell. CHEMOSPHERE 2018; 206:663-673. [PMID: 29778942 DOI: 10.1016/j.chemosphere.2018.05.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Cumulating epidemiological studies demonstrated that environmental exposure to endocrine disrupting chemicals (EDCs) during the early stages of fetal development is associated with the increase in disease susceptibility in later life. The fetal developmental plasticity is considered as a protective mechanism against an undesirable prenatal environment. Dioxin is one of the environmental contaminants and is considered a diabetogenic factor. Experimental animal and human epidemiological studies have revealed that dioxin exposure was associated with insulin resistance and altered beta cell function. But the effect of dioxin exposure in early stage of fetal development is still largely unknown. In this report, we used the human embryonic stem cell (hESC) line, VAL-3, as a model, together with Methyl-CpG Binding Domain (MBD) protein-enriched genome sequencing and transcriptome sequencing (RNA-seq), in order to determine the dynamic changes of the epigenetic landscape and transcriptional dysregulation in hESC upon dioxin exposure. The bioinformatics analyses including the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis and Ingenuity Pathway Analysis (IPA) highlighted the predisposed neural, hepatic, cardiac and metabolic toxicological effects of dioxin during the fetal development.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Chemistry, City University of Hong Kong, China
| | - Jing Woei Li
- Department of Chemistry, City University of Hong Kong, China; Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Ting Fung Chan
- Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Andy Chen
- Department of Obstetrics and Gynaecology, The University of Hong Kong, China
| | - Cherie Yin Lau Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, China
| | | | - Chris Kong Chu Wong
- Partner State Key Laboratory of Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, China.
| |
Collapse
|
46
|
Qu W, Zhao Z, Chen S, Zhang L, Wu D, Chen Z. Bisphenol A suppresses proliferation and induces apoptosis in colonic epithelial cells through mitochondrial and MAPK/AKT pathways. Life Sci 2018; 208:167-174. [DOI: 10.1016/j.lfs.2018.07.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023]
|
47
|
Abstract
Increasing scientific evidence suggests potential adverse effects on children's health from synthetic chemicals used as food additives, both those deliberately added to food during processing (direct) and those used in materials that may contaminate food as part of packaging or manufacturing (indirect). Concern regarding food additives has increased in the past 2 decades in part because of studies that increasingly document endocrine disruption and other adverse health effects. In some cases, exposure to these chemicals is disproportionate among minority and low-income populations. This report focuses on those food additives with the strongest scientific evidence for concern. Further research is needed to study effects of exposure over various points in the life course, and toxicity testing must be advanced to be able to better identify health concerns prior to widespread population exposure. The accompanying policy statement describes approaches policy makers and pediatricians can take to prevent the disease and disability that are increasingly being identified in relation to chemicals used as food additives, among other uses.
Collapse
Affiliation(s)
- Leonardo Trasande
- Departments of Pediatrics, Environmental Medicine, and Health Policy, School of Medicine, New York University, New York, New York
| | - Rachel M. Shaffer
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | |
Collapse
|
48
|
Vilela CLS, Bassin JP, Peixoto RS. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:546-559. [PMID: 29329096 DOI: 10.1016/j.envpol.2017.12.098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 05/12/2023]
Abstract
Hormone active agents constitute a dangerous class of pollutants. Among them, those agents that mimic the action of estrogens on target cells and are part of the group of endocrine-disruptor compounds (EDCs) are termed estrogenic EDCs, the main focus of this review. Exposure to these compounds causes a number of negative effects, including breast cancer, infertility and animal hermaphroditism. However, especially in underdeveloped countries, limited efforts have been made to warn people about this serious issue, explain the methods of minimizing exposure, and develop feasible and efficient mitigation strategies at different levels and in various environments. For instance, the use of bioremediation processes capable of transforming EDCs into environmentally friendly compounds has been little explored. A wide diversity of estrogen-degrading microorganisms could be used to develop such technologies, which include bioremediation processes for EDCs that could be implemented in biological filters for the post-treatment of wastewater effluent. This review describes problems associated with EDCs, primarily estrogenic EDCs, including exposure as well as the present status of understanding and the effects of natural and synthetic hormones and estrogenic EDCs on living organisms. We also describe potential biotechnological strategies for EDC biodegradation, and suggest novel treatment approaches for minimizing the persistence of EDCs in the environment.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Silva Peixoto
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; IMAM-AquaRio - Rio de Janeiro Marine Aquarium Research Center, Rio de Janeiro, Brazil.
| |
Collapse
|
49
|
Kolla S, Morcos M, Martin B, Vandenberg LN. Low dose bisphenol S or ethinyl estradiol exposures during the perinatal period alter female mouse mammary gland development. Reprod Toxicol 2018. [PMID: 29526645 DOI: 10.1016/j.reprotox.2018.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Throughout life, mammary tissue is strongly influenced by hormones. Scientists have hypothesized that synthetic chemicals with hormonal activities could disrupt mammary gland development and contribute to breast diseases and dysfunction. Bisphenol S (BPS) is an estrogenic compound used in many consumer products. In this study, CD-1 mice were exposed to BPS (2 or 200 μg/kg/day) during pregnancy and lactation. Mice exposed to 0.01 or 1 μg/kg/day ethinyl estradiol (EE2), a pharmaceutical estrogen, were also evaluated. Mammary glands from female offspring were collected prior to the onset of puberty, during puberty, and in early adulthood. Growth parameters, histopathology, cell proliferation and expression of hormone receptors were quantified. Our evaluations revealed age- and dose-specific effects of BPS that were different from the effects of EE2, and distinct from the effects of BPA that have been reported previously. These assessments suggest that individual xenoestrogens may have unique effects on this sensitive tissue.
Collapse
Affiliation(s)
- SriDurgaDevi Kolla
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | - Mary Morcos
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | - Brian Martin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States.
| |
Collapse
|
50
|
Murata M, Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnol Adv 2018; 36:311-327. [DOI: 10.1016/j.biotechadv.2017.12.002] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023]
|