1
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Tóth D, Simon G, Reglődi D. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Sudden Infant Death Syndrome: A Potential Model for Investigation. Int J Mol Sci 2023; 24:15063. [PMID: 37894743 PMCID: PMC10606572 DOI: 10.3390/ijms242015063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden infant death syndrome (SIDS) represents a significant cause of post-neonatal mortality, yet its underlying mechanisms remain unclear. The triple-risk model of SIDS proposes that intrinsic vulnerability, exogenous triggers, and a critical developmental period are required for SIDS to occur. Although case-control studies have identified potential risk factors, no in vivo model fully reflects the complexities observed in human studies. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide with diverse physiological functions, including metabolic and thermal regulation, cardiovascular adaptation, breathing control, stress responses, sleep-wake regulation and immunohomeostasis, has been subject to early animal studies, which revealed that the absence of PACAP or its specific receptor (PAC1 receptor: PAC1R) correlates with increased neonatal mortality similar to the susceptible period for SIDS in humans. Recent human investigations have further implicated PACAP and PAC1R genes as plausible contributors to the pathomechanism of SIDS. This mini-review comprehensively synthesizes all PACAP-related research from the perspective of SIDS and proposes that PACAP deficiency might offer a promising avenue for studying SIDS.
Collapse
Affiliation(s)
- Dénes Tóth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Gábor Simon
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Dóra Reglődi
- Department of Anatomy, HUN-REG-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| |
Collapse
|
3
|
Vu JP, Luong L, Sanford D, Oh S, Kuc A, Pisegna R, Lewis M, Pisegna JR, Germano PM. PACAP and VIP Neuropeptides' and Receptors' Effects on Appetite, Satiety and Metabolism. BIOLOGY 2023; 12:1013. [PMID: 37508442 PMCID: PMC10376325 DOI: 10.3390/biology12071013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The overwhelming increase in the prevalence of obesity and related disorders in recent years is one of the greatest threats to the global healthcare system since it generates immense healthcare costs. As the prevalence of obesity approaches epidemic proportions, the importance of elucidating the mechanisms regulating appetite, satiety, body metabolism, energy balance and adiposity has garnered significant attention. Currently, gastrointestinal (GI) bariatric surgery remains the only approach capable of achieving successful weight loss. Appetite, satiety, feeding behavior, energy intake and expenditure are regulated by central and peripheral neurohormonal mechanisms that have not been fully elucidated yet. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Vasoactive Intestinal Polypeptide (VIP) are members of a family of regulatory peptides that are widely distributed in parallel with their specific receptors, VPAC1R, VPAC2R and PAC1R, in the central nervous system (CNS) and in the periphery, such as in the gastrointestinal tract and its associated organs and immune cells. PACAP and VIP have been reported to play an important role in the regulation of body phenotype, metabolism and homeostatic functions. The purpose of this review is to present recent data on the effects of PACAP, VIP, VPAC1R, VPAC2R and PAC1R on the modulation of appetite, satiety, metabolism, calorie intake and fat accumulation, to evaluate their potential use as therapeutic targets for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- John P. Vu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Leon Luong
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Daniel Sanford
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Suwan Oh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Alma Kuc
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
| | - Rita Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
| | - Michael Lewis
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90078, USA;
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | - Joseph R. Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA 90073, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Patrizia M. Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.P.V.); (A.K.)
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
4
|
Effect of PACAP on Heat Exposure. Int J Mol Sci 2023; 24:ijms24043992. [PMID: 36835411 PMCID: PMC9963701 DOI: 10.3390/ijms24043992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Heat stroke is a life-threatening illness caused by exposure to high ambient temperatures and relative humidity. The incidence of heat stroke is expected to increase due to climate change. Although pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in thermoregulation, the role of PACAP on heat stress remains unclear. PACAP knockout (KO) and wild-type ICR mice were subjected to heat exposure at an ambient temperature of 36 °C and relative humidity of 99% for 30-150 min. After heat exposure, the PACAP KO mice had a greater survival rate and maintained a lower body temperature than the wild-type mice. Moreover, the gene expression and immunoreaction of c-Fos in the ventromedially preoptic area of the hypothalamus, which is known to harbor temperature-sensitive neurons, were significantly lower in PACAP KO mice than those in wild-type mice. In addition, differences were observed in the brown adipose tissue, the primary site of heat production, between PACAP KO and wild-type mice. These results suggest that PACAP KO mice are resistant to heat exposure. The heat production mechanism differs between PACAP KO and wild-type mice.
Collapse
|
5
|
Wang Z, Liu J, Huang Y, Liu Q, Chen M, Ji C, Feng J, Ma Y. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) -derived Peptide MPAPO Stimulates Adipogenic Differentiation by Regulating the Early Stage of Adipogenesis and ERK Signaling Pathway. Stem Cell Rev Rep 2023; 19:516-530. [PMID: 36112309 DOI: 10.1007/s12015-022-10415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Regenerative medicine and tissue engineering have delivered new healing possibilities to the treatment of soft tissue defects, but the selection of seed cells is critical for treatment. Adipose-derived stem cells have perpetually been a preferred candidate for seed cells due to their wealthy sources, simple access, high plasticity, and powerful value-added capabilities. How to improve the efficiency of adipogenic differentiation is the key to the treatment. Pituitary adenylate cyclase-activating peptide, as a biologically active peptide secreted by the pituitary, is widely involved in regulating the body's sugar metabolism and lipid metabolism. However, the effects of MPAPO in ADSCs adipogenic differentiation remain unknown. Our results reveal that MPAPO treatment improves the adipogenic differentiation efficiency of ADSCs, including promoting the accumulation of lipid droplets and triglycerides, and the expression of adipocyte protein biomarkers PPARγ and C/EBPa. Additionally, the mechanism studies showed that the effective window of MPAPO-induced adipogenesis was the first 3 days during ADSCs differentiation. MPAPO selectively binds to the PAC1 receptor and promotes adipogenic differentiation of ADSCs by activating the ERK signaling pathway and elevating cell proliferation during postconfluent mitosis stage. Altogether, we demonstrate that MPAPO plays a crucial role in ADSCs adipogenesis, providing experimental basis and data for exploring therapeutic options in tissue defect repair.
Collapse
Affiliation(s)
- Zixian Wang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jianmin Liu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yongmei Huang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Qian Liu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Meng Chen
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Chunyan Ji
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jia Feng
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China.
| |
Collapse
|
6
|
Duesman SJ, Shetty S, Patel S, Ogale N, Mohamed F, Sparman N, Rajbhandari P, Rajbhandari AK. Sexually dimorphic role of the locus coeruleus PAC1 receptors in regulating acute stress-associated energy metabolism. Front Behav Neurosci 2022; 16:995573. [PMID: 36275856 PMCID: PMC9580361 DOI: 10.3389/fnbeh.2022.995573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/24/2022] [Indexed: 01/05/2023] Open
Abstract
Severe stress leads to alterations in energy metabolism with sexually dimorphic onset or severity. The locus coeruleus (LC) in the brainstem that mediates fight-or-flight-or-freeze response to stress is sexually dimorphic in morphology, plays a key role in interactions between diet and severe stressors, and has neuronal input to the brown adipose tissue (BAT)-a thermogenic organ important for energy balance. Yet, little is known on how LC coordinates stress-related metabolic adaptations. LC expresses receptors for the neuropeptide PACAP (pituitary adenylate cyclase activating peptide) and PACAP signaling through PAC1 (PACAP receptor) are critical regulators of various types of stressors and energy metabolism. We hypothesized that LC-PAC1 axis is a sex-specific central "gatekeeper" of severe acute stress-driven behavior and energy metabolism. Selective ablation of PAC1 receptors from the LC did not alter stress response in mice of either sex, but enhanced food intake in females and was associated with increased energy expenditure and BAT thermogenesis in male mice. These results show a sexually dimorphic role of the LC-PAC1 in regulating acute stress-related energy metabolism. Thus, by disrupting LC-PAC1 signaling, our studies show a unique and previously unexplored role of LC in adaptive energy metabolism in a sex-dependent manner.
Collapse
Affiliation(s)
- Samuel J. Duesman
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanutha Shetty
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neha Ogale
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Farzanna Mohamed
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Njeri Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abha Karki Rajbhandari
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Abha Karki Rajbhandari,
| |
Collapse
|
7
|
Maunze B, Bruckner KW, Desai NN, Chen C, Chen F, Baker D, Choi S. Pituitary adenylate cyclase-activating polypeptide receptor activation in the hypothalamus recruits unique signaling pathways involved in energy homeostasis. Am J Physiol Endocrinol Metab 2022; 322:E199-E210. [PMID: 35001657 PMCID: PMC8897015 DOI: 10.1152/ajpendo.00320.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) exerts pleiotropic effects on ventromedial nuclei (VMN) of the hypothalamus and its control of feeding and energy expenditure through the type I PAC1 receptor (PAC1R). However, the endogenous role of PAC1Rs in the VMN and the downstream signaling responsible for PACAP's effects on energy balance are unknown. Numerous studies have revealed that PAC1Rs are coupled to both Gαs/adenylyl cyclase/protein kinase A (Gαs/AC/PKA) and Gαq/phospholipase C/protein kinase C (Gαq/PLC/PKC), while also undergoing trafficking following stimulation. To determine the endogenous role of PAC1Rs and downstream signaling that may explain PACAP's pleiotropic effects, we used RNA interference to knockdown VMN PAC1Rs and pharmacologically inhibited PKA, PKC, and PAC1R trafficking. Knocking down PAC1Rs increased meal sizes, reduced total number of meals, and induced body weight gain. Inhibition of either PKA or PKC alone in awake male Sprague-Dawley rats, attenuated PACAP's hypophagic and anorectic effects during the dark phase. However, PKA or PKC inhibition potentiated PACAP's thermogenic effects during the light phase. Analysis of locomotor activity revealed that PKA inhibition augmented PACAP's locomotor effects, whereas PKC inhibition had no effect. Finally, PACAP administration in the VMN induces surface PAC1R trafficking into the cytosol which was blocked by endocytosis inhibitors. Subsequently, inhibition of PAC1R trafficking into the cytosol attenuated PACAP-induced hypophagia. These results revealed that endogenous PAC1Rs uniquely engage PKA, PKC, and receptor trafficking to mediate PACAP's pleiotropic effects in VMN control of feeding and metabolism.NEW & NOTEWORTHY Endogenous PAC1 receptors, integral to VMN management of feeding behavior and body weight regulation, uniquely engage PKA, PKC, and receptor trafficking to mediate the hypothalamic ventromedial nuclei control of feeding and metabolism. PACAP appears to use different signaling mechanisms to regulate feeding behavior from its effects on metabolism.
Collapse
Affiliation(s)
- Brian Maunze
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Nikhil Nilesh Desai
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Christopher Chen
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Fanghong Chen
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - David Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Sureshkumar K, Saenz A, Ahmad SM, Lutfy K. The PACAP/PAC1 Receptor System and Feeding. Brain Sci 2021; 12:brainsci12010013. [PMID: 35053757 PMCID: PMC8773599 DOI: 10.3390/brainsci12010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylyl cyclase activating polypeptide (PACAP) belongs to the vasoactive intestinal polypeptide (VIP)/secretin/glucagon superfamily. PACAP is present in two forms (PACAP-38 and PACAP-27) and binds to three guanine-regulatory (G) protein-coupled receptors (PAC1, VPAC1, and VPAC2). PACAP is expressed in the central and peripheral nervous systems, with high PACAP levels found in the hypothalamus, a brain region involved in feeding and energy homeostasis. PAC1 receptors are high-affinity and PACAP-selective receptors, while VPAC1 and VPAC2 receptors show a comparable affinity to PACAP and VIP. PACAP and its receptors are expressed in the central and peripheral nervous systems with moderate to high expression in the hypothalamus, amygdala, and other limbic structures. Consistent with their expression, PACAP is involved in several physiological responses and pathological states. A growing body of literature suggests that PACAP regulates food intake in laboratory animals. However, there is no comprehensive review of the literature on this topic. Thus, the purpose of this article is to review the literature regarding the role of PACAP and its receptors in food intake regulation and to synthesize how PACAP exerts its anorexic effects in different brain regions. To achieve this goal, we searched PubMed and reviewed 68 articles regarding the regulatory action of PACAP on food intake. Here, we present the literature regarding the effect of exogenous PACAP on feeding and the role of endogenous PACAP in this process. We also provide evidence regarding the effect of PACAP on the homeostatic and hedonic aspects of food intake, the neuroanatomical sites where PACAP exerts its regulatory action, which PACAP receptors may be involved, and the role of various signaling pathways and neurotransmitters in hypophagic effects of PACAP.
Collapse
Affiliation(s)
- Keerthana Sureshkumar
- UCLA College of Letters and Sciences, University of California, 612 Charles E Young Dr. South, Los Angeles, CA 90095, USA;
| | - Andrea Saenz
- College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (A.S.); (S.M.A.)
| | - Syed M. Ahmad
- College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (A.S.); (S.M.A.)
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (A.S.); (S.M.A.)
- Correspondence: ; Tel.: +1-(909)-469-5481
| |
Collapse
|
9
|
Filatov E, Short LI, Forster MAM, Harris SS, Schien EN, Hughes MC, Cline DL, Appleby CJ, Gray SL. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. Am J Physiol Endocrinol Metab 2021; 320:E475-E487. [PMID: 33356993 DOI: 10.1152/ajpendo.00205.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide critical to the regulation of the stress response, including having a role in energy homeostasis. Mice lacking PACAP are cold-sensitive and have impaired adrenergic-induced thermogenesis. Interestingly, Pacap null mice can survive cold housing if acclimated slowly, similar to observations in uncoupling protein 1 (UCP1)-deficient mice. We hypothesized that Pacap null mice use alternate thermogenic pathways to compensate for impaired adaptive thermogenesis when acclimated to cold. Observations of behavior and assessment of fiber type in skeletal muscles did not show evidence of prolonged burst shivering or changes in oxidative metabolism in male or female Pacap-/- mice during cold acclimation compared with Pacap+/+ mice. Despite previous work that has established impaired capacity for adaptive thermogenesis in Pacap null mice, adaptive thermogenesis can be induced in mice lacking PACAP to support survival with cold housing. Interestingly, sex-specific morphological and molecular differences in adipose tissue remodeling were observed in Pacap null mice compared with controls. Thus, sexual dimorphisms are highlighted in adipose tissue remodeling and thermogenesis with cold acclimation in the absence of PACAP.NEW & NOTEWORTHY This manuscript adds to the literature of endocrine regulation of adaptive thermogenesis and energy balance. It specifically describes the role of pituitary adenylate cyclase-activating polypeptide on the regulation of brown adipose tissue via the sympathetic nervous system with a focus on compensatory mechanisms of thermogenesis. We highlight sex-specific differences in energy metabolism.
Collapse
Affiliation(s)
- Ekaterina Filatov
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Simon S Harris
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Erik N Schien
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Malcolm C Hughes
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Colin J Appleby
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
10
|
McMillan TR, Forster MAM, Short LI, Rudecki AP, Cline DL, Gray SL. Melanotan II, a melanocortin agonist, partially rescues the impaired thermogenic capacity of pituitary adenylate cyclase-activating polypeptide deficient mice. Exp Physiol 2020; 106:427-437. [PMID: 33332767 DOI: 10.1113/ep088838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can chronic treatment of pituitary adenylate cyclase-activating polypeptide (PACAP) deficient mice with the melanocortin agonist melanotan II during cold acclimation rescue the impaired thermogenic capacity previously observed in PACAP deficient mice? What is the main finding and its importance? Using a genetic model of PACAP deficiency, this study provides evidence that PACAP acts upstream of the melanocortin system in regulating sympathetic nerve activity to brown adipose tissue in mice. ABSTRACT Impaired adipose tissue function in obesity, including reduced thermogenic potential, has detrimental consequences for metabolic health. Hormonal regulation of adaptive thermogenesis is being explored as a potential therapeutic target for human obesity. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide expressed in nuclei of the hypothalamus known to regulate energy expenditure, and functional studies reveal a role for PACAP in the central regulation of thermogenesis, although mechanisms are not well understood. We hypothesized that PACAP acts upstream of the melanocortin system to regulate sympathetic nerve activity to stimulate thermogenesis. To assess this, female PACAP-/- and PACAP+/+ mice were given daily peripheral injections of a melanocortin receptor agonist, melanotan II (MTII), for 3 weeks during cold acclimation, and the effect of MTII on thermogenic capacity and adipose tissue remodelling was examined by physiological and histological analyses. MTII partially rescued the impaired thermogenic capacity in PACAP-/- mice as compared to PACAP+/+ mice as determined by measuring noradrenaline-induced metabolic rate. In addition, MTII treatment during cold acclimation corrected the previously identified deficit in lipid utilization in response to adrenergic stimulation in PACAP-/- null mice, suggesting impaired lipid mobilization may contribute to the impaired thermogenic capacity of PACAP-/- mice. Results presented here provide physiological evidence to suggest that PACAP acts upstream of melanocortin receptors to facilitate sympathetically induced mechanisms of adaptive thermogenesis in response to cold acclimation.
Collapse
Affiliation(s)
- Thecla Rae McMillan
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Alexander P Rudecki
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
11
|
Winters SJ, Moore JP. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 2020; 518:110912. [PMID: 32561449 PMCID: PMC7606562 DOI: 10.1016/j.mce.2020.110912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors are widely distributed, and there is growing evidence that PACAP functions as a paracrine/autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review will summarize current knowledge concerning the expression and function of PACAP in the hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the fetus and newborn.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Joseph P Moore
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
12
|
Velázquez J, Pérez G, Semple SL, Rodríguez-Ramos T, Díaz-Rosales P, Ordás MDC, Lugo JM, Dixon B, Tafalla C, Estrada MP, Carpio Y. First in vivo evidence of pituitary adenylate cyclase-activating polypeptide antiviral activity in teleost. FISH & SHELLFISH IMMUNOLOGY 2020; 103:58-65. [PMID: 32334130 DOI: 10.1016/j.fsi.2020.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide belonging to the glucagon/secretin superfamily. In teleost fish, PACAP has been demonstrated to have an immunomodulatory role. Although previous studies have shown that viral/bacterial infections can influence the transcription of PACAP splicing variants and associated receptors in salmonids, the antiviral activity of PACAP has never been studied in teleost. Thus, in the present work, we investigated in vitro the influence of synthetic Clarias gariepinus PACAP-38 on the transcription of genes related to viral immunity using the rainbow trout monocyte/macrophage-like cell line RTS11 as a model. Positive transcriptional modulation of interferon gamma (IFNγ), interferon alpha (FNα1,2), interleukin 8 (IL-8), Mx and Toll-like receptor 3 (TLR3) genes was found in a dose and time dependent manner. We also explored how a pre-treatment with PACAP could enhance antiviral immune response using poly (I:C) as viral mimic. Interferons and IL-8 transcription levels were enhanced when PACAP was added 24 h previous to poly (I:C) exposure. With these evidences, we tested in vivo how PACAP administration by immersion bath affected the survival of rainbow trout fry to a challenge with viral hemorrhagic septicemia virus (VHSV). After challenge, PACAP-treated fish had increased survival compared to non-treated/challenge fish. Furthermore, PACAP was able to decrease the viral load in spleen/kidney and stimulate the transcription of IFNs and Mx when compared to untreated infected fish. Altogether, the results of this work provide valuable insights regarding the role of teleost PACAP in antiviral immunity and point to a potential application of this peptide to reduce the impact of viral infections in aquaculture.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Geysi Pérez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - María Del Camino Ordás
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain
| | - Juana María Lugo
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Center (CISA-INIA), Valdeolmos, 28130, Madrid, Spain.
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
13
|
Pituitary Adenylate Cyclase-Activating Polypeptide in the Ventromedial Hypothalamus Is Responsible for Food Intake Behavior by Modulating the Expression of Agouti-Related Peptide in Mice. Mol Neurobiol 2020; 57:2101-2114. [DOI: 10.1007/s12035-019-01864-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
|
14
|
Pleiotropic pituitary adenylate cyclase-activating polypeptide (PACAP): Novel insights into the role of PACAP in eating and drug intake. Brain Res 2019; 1729:146626. [PMID: 31883848 PMCID: PMC6953419 DOI: 10.1016/j.brainres.2019.146626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/30/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was discovered thirty years ago, but its role in eating and drug use disorders has only recently begun to be investigated. The present review develops the hypothesis that, although PACAP normally functions to tightly regulate intake, inhibiting it through negative feedback, this relationship can become dysregulated with the development of dependence, such that PACAP instead acts through positive feedback to promote excessive intake. We propose that repeated exposure to palatable food and drugs of abuse can alter the downstream responses of specific populations of neurons to stimulation by PACAP, leading to the perpetuation of the addiction cycle. Thus, this review will first describe published literature on homeostatic food intake, which shows that PACAP suppresses food intake, while its levels are themselves increased by overfeeding. Next, it will present literature on palatable food, cocaine, alcohol, and nicotine, which overall demonstrates that PACAP in specific limbic brain regions can promote their seeking and intake and itself is stimulated by their intake. Then, it will present literature on affective behavior, which shows that chronic stress increases levels of PACAP, which then promotes anxiety and depression, factors that can trigger substance seeking. Finally, the review will address mechanisms through which chronic substance exposure may dysregulate the PACAP system, proposing that it alters expression of PACAP receptor splice variants. While many questions remain to be addressed, the current evidence suggests that PACAP could be a viable medication target for the treatment of binge eating and drug and alcohol use disorders.
Collapse
|
15
|
Semple SL, Rodríguez-Ramos T, Carpio Y, Lumsden JS, Estrada MP, Dixon B. PACAP Is Lethal to Flavobacterium psychrophilum Through Either Direct Membrane Permeabilization or Indirectly, by Priming the Immune Response in Rainbow Trout Macrophages. Front Immunol 2019; 10:926. [PMID: 31105711 PMCID: PMC6498415 DOI: 10.3389/fimmu.2019.00926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/10/2019] [Indexed: 01/26/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed in mammals and is capable of performing roles as a neurotransmitter, neuromodulator, and vasodilator. This polypeptide belongs to the glucagon/secretin superfamily, of which some members have been shown to act as antimicrobial peptides in both mammalian and aquatic organisms. In teleosts, PACAP has been demonstrated to have direct antimicrobial activity against several aquatic pathogens, yet this phenomenon has never been studied throughout a live bacterial challenge. The present study focuses on the influence of synthetic Clarias gariepinus 38 amino acid PACAP on the rainbow trout monocyte/macrophage-like cell line, RTS11, when exposed to the coldwater bacterial pathogen Flavobacterium psychrophilum. PACAP was shown to have direct antimicrobial activity on F. psychrophilum when grown in both cytophaga broth and cell culture media (L-15). Further, the ability of teleostean PACAP to permeabilize the membrane of an aquatic pathogen, F. psychrophilum, was demonstrated for the first time. The viability of RTS11 when exposed to PACAP was also observed using a trypan blue exclusion assay to determine optimal experimental doses of the antimicrobial peptide. This displayed that only concentrations higher than 0.1 μM negatively impacted RTS11 survival. Interestingly, when RTS11 was pre-treated with PACAP for 24 h before experiencing infection with live F. psychrophilum, growth of the pathogen was severely inhibited in a dose-dependent manner when compared to cells receiving no pre-treatment with the polypeptide. Relative expression of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) and PACAP receptors (VPAC1 and PAC1) was also analyzed in RTS11 following PACAP exposure alone and in conjunction with live F. psychrophilum challenge. These qRT-PCR findings revealed that PACAP may have a synergistic effect on RTS11 immune function. The results of this study provide evidence that PACAP has immunostimulatory activity on rainbow trout immune cells as well as antimicrobial activity against aquatic bacterial pathogens such as F. psychrophilum. As there are numerous pathogens that plague the aquaculture industry, PACAP may stimulate the teleost immune system while also providing an efficacious alternative to antibiotic use.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Mario P Estrada
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
16
|
Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J 2018; 475:1037-1057. [PMID: 29559580 DOI: 10.1042/bcj20170920] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Chronic metabolic stress leads to cellular dysfunction, characterized by excessive reactive oxygen species, endoplasmic reticulum (ER) stress and inflammation, which has been implicated in the pathogenesis of obesity, type 2 diabetes and cardiovascular disease. The ER is gaining recognition as a key organelle in integrating cellular stress responses. ER homeostasis is tightly regulated by a complex antioxidant system, which includes the seven ER-resident selenoproteins - 15 kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins S, N, K, M and T. Here, the findings from biochemical, cell-based and mouse studies investigating the function of ER-resident selenoproteins are reviewed. Human experimental and genetic studies are drawn upon to highlight the relevance of these selenoproteins to the pathogenesis of metabolic disease. ER-resident selenoproteins have discrete roles in the regulation of oxidative, ER and inflammatory stress responses, as well as intracellular calcium homeostasis. To date, only two of these ER-resident selenoproteins, selenoproteins S and N have been implicated in human disease. Nonetheless, the potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation.
Collapse
|
17
|
Farkas J, Sandor B, Tamas A, Kiss P, Hashimoto H, Nagy AD, Fulop BD, Juhasz T, Manavalan S, Reglodi D. Early Neurobehavioral Development of Mice Lacking Endogenous PACAP. J Mol Neurosci 2017; 61:468-478. [PMID: 28168413 DOI: 10.1007/s12031-017-0887-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide. In addition to its diverse physiological roles, PACAP has important functions in the embryonic development of various tissues, and it is also considered as a trophic factor during development and in the case of neuronal injuries. Data suggest that the development of the nervous system is severely affected by the lack of endogenous PACAP. Short-term neurofunctional outcome correlates with long-term functional deficits; however, the early neurobehavioral development of PACAP-deficient mice has not yet been evaluated. Therefore, the aim of the present study was to describe the postnatal development of physical signs and neurological reflexes in mice partially or completely lacking PACAP. We examined developmental hallmarks during the first 3 weeks of the postnatal period, during which period most neurological reflexes and motor coordination show most intensive development, and we describe the neurobehavioral development using a complex battery of tests. In the present study, we found that PACAP-deficient mice had slower weight gain throughout the observation period. Interestingly, mice partially lacking PACAP weighed significantly less than homozygous mice. There was no difference between male and female mice during the first 3 weeks. Some other signs were also more severely affected in the heterozygous mice than in the homozygous mice, such as air righting, grasp, and gait initiation reflexes. Interestingly, incisor teeth erupted earlier in mice lacking PACAP. Motor coordination, shown by the number of foot-faults on an elevated grid, was also less developed in PACAP-deficient mice. In summary, our results show that mice lacking endogenous PACAP have slower weight gain during the first weeks of development and slower neurobehavioral development regarding a few developmental hallmarks.
Collapse
Affiliation(s)
- Jozsef Farkas
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Balazs Sandor
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary.,Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Andrea Tamas
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Peter Kiss
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences and Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Andras D Nagy
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Balazs D Fulop
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary.,Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dora Reglodi
- Department of Anatomy, Medical School, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary.
| |
Collapse
|
18
|
Irshad Z, Dimitri F, Christian M, Zammit VA. Diacylglycerol acyltransferase 2 links glucose utilization to fatty acid oxidation in the brown adipocytes. J Lipid Res 2017; 58:15-30. [PMID: 27836993 PMCID: PMC5234708 DOI: 10.1194/jlr.m068197] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/18/2016] [Indexed: 01/03/2023] Open
Abstract
Brown adipose tissue uptake of glucose and fatty acids is very high during nonshivering thermogenesis. Adrenergic stimulation markedly increases glucose uptake, de novo lipogenesis, and FA oxidation simultaneously. The mechanism that enables this concerted response has hitherto been unknown. Here, we find that in primary brown adipocytes and brown adipocyte-derived cell line (IMBAT-1), acute inhibition and longer-term knockdown of DGAT2 links the increased de novo synthesis of fatty acids from glucose to a pool of TAG that is simultaneously hydrolyzed, providing FA for mitochondrial oxidation. DGAT1 does not contribute to this pathway, but uses exogenous FA and glycerol to synthesize a functionally distinct pool of TAG to which DGAT2 also contributes. The DGAT2-dependent channelling of 14C from glucose into TAG and CO2 was reproduced in β3-agonist-stimulated primary brown adipocytes. Knockdown of DGAT2 in IMBAT-1 affected the mRNA levels of UCP1 and genes important in FA activation and esterification. Therefore, in β3-agonist activated brown adipocytes, DGAT2 specifically enables channelling of de novo synthesized FA into a rapidly mobilized pool of TAG, which is simultaneously hydrolyzed to provide substrates for mitochondrial fatty acid oxidation.
Collapse
Affiliation(s)
- Zehra Irshad
- Translational and Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, CV4 7AL, United Kingdom
| | - Federica Dimitri
- Translational and Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, CV4 7AL, United Kingdom
| | - Mark Christian
- Translational and Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, CV4 7AL, United Kingdom
| | - Victor A Zammit
- Translational and Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, CV4 7AL, United Kingdom
| |
Collapse
|
19
|
Rudecki AP, Gray SL. PACAP in the Defense of Energy Homeostasis. Trends Endocrinol Metab 2016; 27:620-632. [PMID: 27166671 DOI: 10.1016/j.tem.2016.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/23/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) mediates diverse physiology from neuroprotection to thermoregulation. PACAP is well established as a master regulator of the stress response, regulating psychological and physiological equilibrium via the autonomic nervous system. Neuroanatomical and functional evidence support a role for PACAP in energy metabolism, including thermogenesis, activity, mobilization of energy stores, and appetite. Through integration of this evidence we suggest PACAP be included in the growing list of neuropeptides that mediate energy homeostasis. Future work to uncover the intricacies of PACAP expression and the molecular pathways responsible for PACAP signaling may show potential for this neuropeptide as a therapeutic target as well as further elucidate the complex neuroanatomical networks involved in defending energy balance.
Collapse
Affiliation(s)
- Alexander P Rudecki
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George BC, V2N 4Z9, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George BC, V2N 4Z9, Canada.
| |
Collapse
|
20
|
Egri P, Fekete C, Dénes Á, Reglődi D, Hashimoto H, Fülöp BD, Gereben B. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice. Endocrinology 2016; 157:2356-66. [PMID: 27046436 DOI: 10.1210/en.2016-1043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic activation of thyroid hormones by type 2 deiodinase (D2), catalyzing the conversion of thyroxine to T3, is critical for the proper function of the hypothalamo-pituitary-thyroid (HPT) axis. Regulation of D2 expression in tanycytes alters the activity of the HPT axis. However, signals that regulate D2 expression in tanycytes are poorly understood. The pituitary adenylate cyclase-activating polypeptide (PACAP) increases intracellular cAMP level, a second messenger known to stimulate the DIO2 gene; however, its importance in tanycytes is not completely characterized. Therefore, we tested whether this ubiquitously expressed neuropeptide regulates the HPT axis through stimulation of D2 in tanycytes. PACAP increased the activity of human DIO2 promoter in luciferase reporter assay that was abolished by mutation of cAMP-response element. Furthermore, PAC1R receptor immunoreactivity was identified in hypothalamic tanycytes, suggesting that these D2-expressing cells could be regulated by PACAP. Intracerebroventricular PACAP administration resulted in increased D2 activity in the mediobasal hypothalamus, suppressed Trh expression in the hypothalamic paraventricular nucleus, and decreased Tshb expression in the pituitary demonstrating that PACAP affects the D2-mediated control of the HPT axis. To understand the role of endogenous PACAP in the regulation of HPT axis, the effect of decreased PACAP expression was studied in heterozygous Adcyap1 (PACAP) knockout mice. These animals were hypothyroid that may be the consequence of altered hypothalamic T3 degradation during set-point formation of the HPT axis. In conclusion, PACAP is an endogenous regulator of the HPT axis by affecting T3-mediated negative feedback via cAMP-induced D2 expression of tanycytes.
Collapse
Affiliation(s)
- P Egri
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - C Fekete
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - Á Dénes
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - D Reglődi
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - H Hashimoto
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - B D Fülöp
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - Balázs Gereben
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Iwasa T, Matsuzaki T, Tungalagsuvd A, Munkhzaya M, Yiliyasi M, Kato T, Kuwahara A, Irahara M. Developmental changes in the hypothalamic mRNA expression levels of PACAP and its receptor PAC1 and their sensitivity to fasting in male and female rats. Int J Dev Neurosci 2016; 52:33-7. [PMID: 27181029 DOI: 10.1016/j.ijdevneu.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/28/2016] [Accepted: 05/11/2016] [Indexed: 01/02/2023] Open
Abstract
The actions and responses of hypothalamic appetite regulatory and factors change markedly during the neonatal to pre-pubertal period. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been found to play pivotal roles in the regulation of metabolic and nutritional status through its specific receptor PAC1. PACAP/PAC1 have anorectic roles, and their functions are regulated by leptin in adulthood. In the present study, we showed that hypothalamic PACAP mRNA expression decreases during the neonatal to pre-pubertal period (from postnatal day 10-30) in both male and female rats. During this period, hypothalamic PACAP mRNA expression was not affected by 24h fasting in either sex, while the serum leptin levels (leptin is a positive regulator of hypothalamic PACAP expression in adulthood) of both sexes were decreased by fasting. On the other hand, hypothalamic PAC1 mRNA expression did not change during the neonatal to pre-pubertal period in either sex; however, its levels were consistently higher in males than in females. Hypothalamic PAC1 mRNA expression was decreased by 24h fasting in males, but no such changes were observed in females. These results indicate while hypothalamic PACAP expression is sensitive to a negative energy state and the serum leptin level in adulthood, no such relationships are seen in the pre-pubertal period. In addition, we speculate that differences in the gonadal steroidal milieu might induce sexual dimorphism in the basal hypothalamic PAC1 mRNA level and its response to fasting. The mechanisms responsible for and the physiological effects of such changes in hypothalamic PACAP and PAC1 expression during the developmental period remain to be clarified.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Maira Yiliyasi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Takeshi Kato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| |
Collapse
|
22
|
Brown Adipose Tissue Thermogenic Capacity Is Regulated by Elovl6. Cell Rep 2015; 13:2039-47. [PMID: 26628376 PMCID: PMC4688035 DOI: 10.1016/j.celrep.2015.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/18/2015] [Accepted: 10/31/2015] [Indexed: 01/20/2023] Open
Abstract
Although many transcriptional pathways regulating BAT have been identified, the role of lipid biosynthetic enzymes in thermogenesis has been less investigated. Whereas cold exposure causes changes in the fatty acid composition of BAT, the functional consequences of this remains relatively unexplored. In this study, we demonstrate that the enzyme Elongation of Very Long Chain fatty acids 6 (Elovl6) is necessary for the thermogenic action of BAT. Elovl6 is responsible for converting C16 non-essential fatty acids into C18 species. Loss of Elovl6 does not modulate traditional BAT markers; instead, it causes reduced expression of mitochondrial electron transport chain components and lower BAT thermogenic capacity. The reduction in BAT activity appears to be counteracted by increased beiging of scWAT. When beige fat is disabled by thermoneutrality or aging, Elovl6 KO mice gain weight and have increased scWAT mass and impaired carbohydrate metabolism. Overall, our study suggests fatty acid chain length is important for BAT function. The fatty acid elongase Elovl6 is a thermogenically regulated gene in BAT Elovl6 is necessary for full thermogenic recruitment of brown adipose tissue Elovl6 acts by regulating mitochondrial function in brown adipose tissue
Collapse
|
23
|
Vu JP, Goyal D, Luong L, Oh S, Sandhu R, Norris J, Parsons W, Pisegna JR, Germano PM. PACAP intraperitoneal treatment suppresses appetite and food intake via PAC1 receptor in mice by inhibiting ghrelin and increasing GLP-1 and leptin. Am J Physiol Gastrointest Liver Physiol 2015; 309:G816-G825. [PMID: 26336928 PMCID: PMC4652141 DOI: 10.1152/ajpgi.00190.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 01/31/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is expressed within the gastroenteric system, where it has profound physiological effects. PACAP was shown to regulate food intake and thermogenesis centrally; however, PACAP peripheral regulation of appetite and feeding behavior is unknown. Therefore, we studied PACAP's effect on appetite and food intake control by analyzing feeding behavior and metabolic hormones in PAC1-deficient (PAC1-/-) and age-matched wild-type (WT) mice intraperitoneally injected with PACAP1-38 or PACAP1-27 before the dark phase of feeding. Food intake and feeding behavior were analyzed using the BioDAQ system. Active ghrelin, glucagon-like peptide-1 (GLP-1), leptin, peptide YY, pancreatic polypeptide, and insulin were measured following PACAP1-38 administration in fasted WT mice. PACAP1-38/PACAP1-27 injected into WT mice significantly decreased in a dose-dependent manner cumulative food intake and reduced bout and meal feeding parameters. Conversely, PACAP1-38 injected into PAC1-/- mice failed to significantly change food intake. Importantly, PACAP1-38 reduced plasma levels of active ghrelin compared with vehicle in WT mice. In PAC1-/- mice, fasting levels of active ghrelin, GLP-1, insulin, and leptin and postprandial levels of active ghrelin and insulin were significantly altered compared with levels in WT mice. Therefore, PAC1 is a novel regulator of appetite/satiety. PACAP1-38/PACAP1-27 significantly reduced appetite and food intake through PAC1. In PAC1-/- mice, the regulation of anorexigenic/orexigenic hormones was abolished, whereas active ghrelin remained elevated even postprandially. PACAP significantly reduced active ghrelin in fasting conditions. These results establish a role for PACAP via PAC1 in the peripheral regulation of appetite/satiety and suggest future studies to explore a therapeutic use of PACAP or PAC1 agonists for obesity treatment.
Collapse
Affiliation(s)
- John P Vu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Deepinder Goyal
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Leon Luong
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California
| | - Suwan Oh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Ravneet Sandhu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Joshua Norris
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - William Parsons
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California
| | - Joseph R Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, California; and
| | - Patrizia M Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, California; and Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
24
|
Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 2015; 78:167-77. [PMID: 25636177 PMCID: PMC4461555 DOI: 10.1016/j.biopsych.2014.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology, and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with posttraumatic stress disorder in humans.
Collapse
Affiliation(s)
- Sayamwong E. Hammack
- Department of Psychological Science, University of Vermont, John Dewey Hall, 2 Colchester Avenue, Burlington, Vermont 05405-0134, Phone: 802.656.1041, Fax: 802.656.8783
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 428, Burlington, VT 05405, Phone: 802.656.4579
| |
Collapse
|
25
|
Banki E, Pakai E, Gaszner B, Zsiboras C, Czett A, Bhuddi PRP, Hashimoto H, Toth G, Tamas A, Reglodi D, Garami A. Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents. J Mol Neurosci 2014; 54:543-54. [PMID: 24994541 DOI: 10.1007/s12031-014-0361-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022]
Abstract
Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap (-/-)). Freely moving Pacap (-/-) mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap (-/-) mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap (-/-) mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls.
Collapse
Affiliation(s)
- Eszter Banki
- Department of Anatomy PTE-MTA "Lendulet" PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
High-Level Expression, Purification, and Characterization of the Recombinant Grass Carp Pituitary Adenylate Cyclase-Activating Polypeptide. Biosci Biotechnol Biochem 2014; 72:1550-7. [DOI: 10.1271/bbb.80057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Arsenijevic T, Gregoire F, Chiadak J, Courtequisse E, Bolaky N, Perret J, Delporte C. Pituitary adenylate cyclase activating peptide (PACAP) participates in adipogenesis by activating ERK signaling pathway. PLoS One 2013; 8:e72607. [PMID: 24039785 PMCID: PMC3767812 DOI: 10.1371/journal.pone.0072607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase activating peptide (PACAP) belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP) family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2), strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ).
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Jeanne Chiadak
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Elodie Courtequisse
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Nargis Bolaky
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Ji H, Zhang Y, Shen X, Gao F, Huang CY, Abad C, Busuttil RW, Waschek JA, Kupiec-Weglinski JW. Neuropeptide PACAP in mouse liver ischemia and reperfusion injury: immunomodulation by the cAMP-PKA pathway. Hepatology 2013; 57:1225-37. [PMID: 22532103 PMCID: PMC3479352 DOI: 10.1002/hep.25802] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatic ischemia and reperfusion injury (IRI), an exogenous antigen-independent local inflammation response, occurs in multiple clinical settings, including liver transplantation, hepatic resection, trauma, and shock. The immune system and the nervous system maintain extensive communication and mount a variety of integrated responses to danger signals through intricate chemical messengers. This study examined the function and potential therapeutic potential of neuropeptide pituitary adenylate cyclase-activating polypeptides (PACAP) in a murine model of partial liver "warm" ischemia (90 minutes) followed by reperfusion. Liver IRI readily triggered the expression of intrinsic PACAP and its receptors, whereas the hepatocellular damage was exacerbated in PACAP-deficient mice. Conversely, PACAP27, or PACAP38 peptide monotherapy, which elevates intracellular cyclic adenosine monophosphate/protein kinase A (cAMP-PKA) signaling, protected livers from IRI, as evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture. The liver protection rendered by PACAP peptides was accompanied by diminished neutrophil/macrophage infiltration and activation, reduced hepatocyte necrosis/apoptosis, and selectively augmented hepatic interleukin (IL)-10 expression. Strikingly, PKA inhibition readily restored liver damage in otherwise IR-resistant, PACAP-conditioned mice. In vitro, PACAP treatment not only diminished macrophage tumor necrosis factor alpha/IL-6/IL-12 levels in a PKA-dependent manner, but also prevented necrosis and apoptosis in primary mouse hepatocyte cultures. CONCLUSION Our novel findings document the importance of PACAP-mediated cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. Because the enhancement of neural modulation differentially regulates local inflammation and prevents hepatocyte death, these results provide the rationale for novel approaches to manage liver inflammation and IRI in transplant patients.
Collapse
Affiliation(s)
- Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Yu Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuda Shen
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Feng Gao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Cynthia Y. Huang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Catalina Abad
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - James A. Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
29
|
Sakurai Y, Inoue H, Shintani N, Arimori A, Hamagami KI, Hayata-Takano A, Baba A, Hashimoto H. Compensatory recovery of blood glucose levels in KKA(y) mice fed a high-fat diet: insulin-sparing effects of PACAP overexpression in β cells. J Mol Neurosci 2012; 48:647-53. [PMID: 22477644 DOI: 10.1007/s12031-012-9758-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/19/2012] [Indexed: 12/20/2022]
Abstract
Inadequate compensatory insulin secretion is observed during the development of type 2 diabetes and deteriorates over time in a manner that is difficult to reverse. Here, we found that plasma glucose levels in genetically diabetic KKA(y) mice fed a high-fat diet were markedly increased in young mice. However, the levels started to decrease at 22 weeks of age and returned to normal levels at around 40 weeks of age. These changes were accompanied by a marked increase in insulin levels from week 25 onwards. Decreased energy intake and suppressed fat pad accumulation were observed at 44-45 weeks of age compared with those at 19-22 weeks of age. β cell-specific overexpression of pituitary adenylate cyclase-activating polypeptide (PACAP), an insulinotropic neuropeptide, decreased the insulin levels required to compensate for hyperglycemia. Glucose disposal was significantly enhanced despite impaired insulin sensitivity in 41-44-week-old A(y) mice without or with PACAP overexpression. In conclusion, the present results provide further evidence that PACAP is involved in the regulation of hyperinsulinemia and islet hyperplasia in type 2 diabetes. Our results also indicate that A(y) mice fed a high-fat diet constitute an animal model suitable to study compensatory islet hyperplasia.
Collapse
Affiliation(s)
- Yusuke Sakurai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Anderson LL, Scanes CG. Nanobiology and physiology of growth hormone secretion. Exp Biol Med (Maywood) 2012; 237:126-42. [DOI: 10.1258/ebm.2011.011306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth hormone (GH) secretion is controlled by hypothalamic releasing hormones from the median eminence together with hormones and neuropeptides produced by peripheral organs. Secretion of GH involves movement of secretory vesicles along microtubules, transient ‘docking’ with the porosome in the cell membrane and subsequent release of GH. Release of GH is stimulated by GH releasing hormone (GHRH) and inhibited by somatostatin (SRIF). Ghrelin may be functioning to stimulate GH release from somatotropes acting via the GH secretagogue (GHS) receptor (GHSR). However, recent physiological studies militate against this. In addition, ghrelin does influence GH release acting within the hypothalamus. Release of GH from the somatotropes involves the GH-containing secretory granules moving close to the cell surface followed by transitory fusion of the secretory granules with the porosomes located in multiple secretory pits in the cell membrane. Other peptides/proteins can influence GH secretion, particularly in species of non-mammalian vertebrates.
Collapse
Affiliation(s)
- Lloyd L Anderson
- Department of Animal Science
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011
| | - Colin G Scanes
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| |
Collapse
|
31
|
Rand CM, Patwari PP, Rodikova EA, Zhou L, Berry-Kravis EM, Wilson RJA, Bech-Hansen T, Weese-Mayer DE. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation: analysis of hypothalamic and autonomic candidate genes. Pediatr Res 2011; 70:375-8. [PMID: 21691246 DOI: 10.1203/pdr.0b013e318229474d] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is a rare and complex pediatric disorder. Despite increased identification and advancing knowledge of the disease course, the variable onset and timing of phenotypic features in ROHHAD often result in delayed or missed diagnosis, potentially leading to fatal central hypoventilation, cardiorespiratory arrest, and impaired neurocognitive development. The 5-hydroxytryptamine receptor 1A (HTR1A), orthopedia (OTP), and pituitary adenylate cyclase activating polypeptide (PACAP) genes were targeted in the etiology of ROHHAD based on their roles in the embryologic development of the hypothalamus and autonomic nervous system. We hypothesized that variations of HTR1A, OTP, and/or PACAP would be associated with ROHHAD. All coding regions and intron-exon boundaries of the HTR1A, OTP, and PACAP genes, in addition to the promoter region of the HTR1A gene, were analyzed by standard sequencing in 25 ROHHAD cases and 25 matched controls. Thirteen variations, including six protein-changing mutations, were identified. None of these variations were significantly correlated with ROHHAD. This report provides evidence that variation of the HTR1A, OTP, and PACAP genes are not responsible for ROHHAD. These results represent a further step in the investigation of the genetic determinants of ROHHAD.
Collapse
Affiliation(s)
- Casey M Rand
- Department of Pediatrics, Children's Memorial Hospital, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Resch JM, Boisvert JP, Hourigan AE, Mueller CR, Yi SS, Choi S. Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1625-34. [PMID: 21957159 DOI: 10.1152/ajpregu.00334.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous studies have demonstrated that the hypothalamic ventromedial nuclei (VMN) regulate energy homeostasis by integrating and utilizing behavioral and metabolic mechanisms. The VMN heavily express pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptors (PAC1R). Despite the receptor distribution, most PACAP experiments investigating affects on feeding have focused on intracerebroventricular administration or global knockout mice. To identify the specific contribution of PACAP signaling in the VMN, we injected PACAP directly into the VMN and measured feeding behavior and indices of energy expenditure. Following an acute injection of PACAP, nocturnal food intake was significantly reduced for 6 h after injections without evidence of malaise. In addition, PACAP-induced suppression of feeding also occurred following an overnight fast and could be blocked by a specific PAC1R antagonist. Metabolically, VMN-specific injections of PACAP significantly increased both core body temperature and spontaneous locomotor activity with a concurrent increase in brown adipose uncoupling protein 1 mRNA expression. To determine which signaling pathways were responsive to PACAP administration into the VMN, we measured mRNA expression of well-characterized hypothalamic neuropeptide regulators of feeding. One hour after PACAP administration, expression of pro-opiomelanocortin mRNA was significantly increased in the arcuate nuclei (ARC), with no changes in neuropeptide Y and agouti-related polypeptide mRNA levels. This suggests that PAC1R expressing VMN neurons projecting to pro-opiomelanocortin neurons contribute to hypophagia by involving melanocortin signaling. While the VMN also abundantly express PACAP protein, the present study demonstrates that PACAP input to the VMN can influence the control of energy homeostasis.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
33
|
Inglott MA, Farnham MMJ, Pilowsky PM. Intrathecal PACAP-38 causes prolonged widespread sympathoexcitation via a spinally mediated mechanism and increases in basal metabolic rate in anesthetized rat. Am J Physiol Heart Circ Physiol 2011; 300:H2300-7. [PMID: 21460201 DOI: 10.1152/ajpheart.01052.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla differentially regulates sympathetic output to different vascular beds, possibly through the release of various neurotransmitters and peptides that may include pituitary adenylate cyclase-activating polypeptide (PACAP). An intrathecal administration of PACAP increases splanchnic sympathetic nerve activity and heart rate, but not mean arterial blood pressure. The mechanism behind this response is unknown but may be due to a differential control of sympathetic outflows. In this study we sought 1) to investigate whether intrathecal PACAP differentially affects sympathetic outflow, 2) to determine whether the intrathecal responses to PACAP are solely due to a spinally mediated mechanism, and 3) to determine whether intrathecal PACAP affects metabolic function. Experiments using urethane-anesthetized, vagotomized, ventilated, and paralyzed adult male Sprague-Dawley rats were conducted in this study. Intrathecal injections of PACAP-38 were given, and mean arterial pressure, heart rate, the activity of regional sympathetic nerves, end-tidal CO(2), and core temperature were recorded. The novel findings of this study are that 1) intrathecal PACAP-38 causes a prolonged widespread sympathoexcitation in multiple sympathetic beds, 2) this widespread sympathoexcitation is mediated within the spinal cord itself since spinal transection does not abrogate the response, and 3) that intrathecal PACAP-38 increases basal metabolic rate. Therefore, we conclude that intrathecal PACAP acts in the spinal cord to cause a prolonged widespread sympathoexcitation and that PACAP also causes an increase in basal metabolic rate that includes an increase in brown adipose tissue thermogenesis in our rat preparation.
Collapse
Affiliation(s)
- Melissa A Inglott
- Australian School of Advanced Medicine, L1, F10A, Macquarie Univ., NSW 2109, Sydney, Australia
| | | | | |
Collapse
|
34
|
Lugo JM, Oliva A, Morales A, Reyes O, Garay HE, Herrera F, Cabrales A, Pérez E, Estrada MP. The biological role of pituitary adenylate cyclase-activating polypeptide (PACAP) in growth and feeding behavior in juvenile fish. J Pept Sci 2011; 16:633-43. [PMID: 20853308 DOI: 10.1002/psc.1275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, many technologies have been developed to increase efficiency in aquaculture, but very few successful biotechnology molecules have arrived on the market. In this context, marine biotechnology has an opportunity to develop products to improve the output of fish in aquaculture. Published in vivo studies on the action of the pituitary adenylate cyclase-activating polypeptide (PACAP) in fish are scarce. Recently, our group, for the first time, demonstrated the biological role of this neuropeptide administrated by immersion baths in the growth and development of larval fish. In this work, we have evaluated the effects of recombinant Clarias gariepinus PACAP administration by intraperitoneal injection on growth performance and feeding behavior in juvenile fish. Our results showed the physiological role of this peptide for growth control in fish, including the juvenile stage, and confirm that its biological functions are well conserved in fish, since C. gariepinus PACAP stimulated growth in juvenile tilapia Oreochromis niloticus. In addition, we have observed that the growth-promoting effect of PACAP in juvenile tilapia was correlated with higher GH concentration in serum. With regard to the neuroendocrine regulation of growth control by PACAP, it was demonstrated that PACAP stimulates food intake in juvenile tilapia. In general, PACAP appears to act in the regulation of the growth control in juvenile fish. These findings propose that PACAP is a prominent target with the potential to stimulate fish growth in aquaculture.
Collapse
Affiliation(s)
- Juana Maria Lugo
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana 10600, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The role of PACAP in central cardiorespiratory regulation. Respir Physiol Neurobiol 2010; 174:65-75. [PMID: 20470908 DOI: 10.1016/j.resp.2010.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/03/2010] [Accepted: 05/03/2010] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) plays a role in almost every biological process from reproduction to hippocampal function. One area where a role for PACAP is not clearly delineated is central cardiorespiratory regulation. PACAP and its receptors (PAC1, VPAC1 and VPAC2) are present in cardiovascular areas of the ventral medulla and spinal cord and in the periphery. Central administration of PACAP generally increases arterial pressure. Knowledge about the role of PACAP in central cardiovascular regulation is growing, but even less is known about PACAP in central respiratory regulation. No specific data is currently available regarding the presence of PACAP or receptors in key respiratory centers, although it is known that neonatal PACAP knock-out mice die suddenly in a manner similar to sudden infant death syndrome (SIDS). Future studies in mature preparations investigating the role of PACAP in the physiology and integration of central cardiorespiratory reflexes are clearly essential for a full understanding of this important neuropeptide in breathing.
Collapse
|
36
|
Regulation of autonomic nerve activities by central pituitary adenylate cyclase-activating polypeptide. ACTA ACUST UNITED AC 2010; 161:73-80. [DOI: 10.1016/j.regpep.2010.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/18/2010] [Accepted: 02/11/2010] [Indexed: 11/21/2022]
|
37
|
|
38
|
Lijnen HR, Freson K, Hoylaerts MF. Effect of VPAC1 Blockade on Adipose Tissue Formation and Composition in Mouse Models of Nutritionally Induced Obesity. J Obes 2010; 2010:359527. [PMID: 20721340 PMCID: PMC2915750 DOI: 10.1155/2010/359527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/18/2010] [Indexed: 01/04/2023] Open
Abstract
Background. The pituitary adenylate cyclase activating polypeptide (PACAP) may affect adipogenesis and adipose tissue formation through interaction with its G-protein-coupled receptor VPAC1. Methods. We have used a monoclonal antibody (MAb 23A11) blocking VPAC1 in mouse models of nutritionally induced obesity. Results. Administration of MAb 23A11 (25 mg/kg body weight i.p. twice weekly) to 5-week old male C57Bl/6 mice kept on a high-fat diet for 15 weeks had no significant effect on weight gain, nor on subcutaneous (SC) or gonadal (GON) adipose tissue mass, as compared to the control MAb 1C8. However, adipocyte hypertrophy was observed in SC adipose tissue of MAb 23A11 treated mice. In a second study, 24 weeks old obese mice were treated for 5 weeks with MAb 23A11, without effect on body weight or fat mass, as compared to treatment with MAb 1C8. In addition, MAb 23A11 had no significant effect on glucose tolerance or insulin resistance in lean or obese C57Bl/6 mice. Conclusion. Blocking VPAC1 does not significantly affect adipose tissue formation in mouse models of diet-induced obesity, although it may be associated with mild adipocyte hypertrophy.
Collapse
Affiliation(s)
- H. Roger Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N 1, Herestraat 49, P.O. Box 911, B-3000 Leuven, Belgium
- *H. Roger Lijnen:
| | - Kathleen Freson
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N 1, Herestraat 49, P.O. Box 911, B-3000 Leuven, Belgium
| | - Marc F. Hoylaerts
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O & N 1, Herestraat 49, P.O. Box 911, B-3000 Leuven, Belgium
| |
Collapse
|
39
|
Han B, Wu J. DcR3 Protects Islet β Cells from Apoptosis through Modulating Adcyap1 and Bank1 Expression. THE JOURNAL OF IMMUNOLOGY 2009; 183:8157-66. [DOI: 10.4049/jimmunol.0901165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 858] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Roch GJ, Wu S, Sherwood NM. Hormones and receptors in fish: do duplicates matter? Gen Comp Endocrinol 2009; 161:3-12. [PMID: 19007784 DOI: 10.1016/j.ygcen.2008.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 11/20/2022]
Abstract
Modern fish are the result of major changes in evolution including three possible duplications of the whole genome. Retained duplicate genes are often involved with metabolism, transcription, neurogenic processes and development. Here we examine the consequences of the most recent (350 mya) teleost-specific duplication in five fishes (zebrafish, fugu, medaka, stickleback and rainbow trout) in regard to duplicate copies of hormones and receptors in the secretin superfamily. This subset of genes was selected as the superfamily is limited to ten hormones and their receptors and includes some important members: glucagon, growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP). We used reports from the literature and an extensive database search of the fish genomes to evaluate the status of the superfamily and its duplicate genes. We found that all five fish species have an almost complete set of orthologs with the human superfamily of hormones, although they lack secretin and its receptor. Receptor orthologs are present in zebrafish, fugu, medaka, stickleback and to a lesser extent in salmonids. Zebrafish retain duplicate copies for seven hormones and five receptors. Duplicated genes in fugu, medaka, stickleback and salmonids are also present, based mainly on genome annotation or mRNA transcription. Separate chromosome locations and synteny support zebrafish duplicates as the result of large-scale duplications. Novel changes in fish include the modification of a duplicate glucagon receptor to a GLP-1 receptor and, unlike humans, the presence of bioactive and specific PHI and GHRH-like peptide receptors. We conclude that fish duplicates in the secretin superfamily are a rich, mostly unexplored area for endocrine research.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|
42
|
Dickson L, Finlayson K. VPAC and PAC receptors: From ligands to function. Pharmacol Ther 2008; 121:294-316. [PMID: 19109992 DOI: 10.1016/j.pharmthera.2008.11.006] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 02/03/2023]
Abstract
Vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase activating polypeptides (PACAPs) share 68% identity at the amino acid level and belong to the secretin peptide family. Following the initial discovery of VIP almost four decades ago a substantial amount of knowledge has been presented describing the mechanisms of action, distribution and pleiotropic functions of these related peptides. It is now known that the physiological actions of these widely distributed peptides are produced through activation of three common G-protein coupled receptors (VPAC(1), VPAC(2) and PAC(1)R) which preferentially stimulate adenylate cyclase and increase intracellular cAMP, although stimulation of other intracellular messengers, including calcium and phospholipase D, has been reported. Using a range of in vitro and in vivo approaches, including cell-based functional assays, transgenic animals and rodent models of disease, VPAC/PAC receptor activation has been associated with numerous physiological processes (e.g. control of circadian rhythms) and clinical conditions (e.g. pulmonary hypertension), which underlies on-going research efforts and makes these peptides and their cognate receptors attractive targets for the pharmaceutical industry. However, despite the considerable interest in VPAC/PAC receptors and the processes which they mediate, there is still a paucity of selective and available, non-peptide ligands, which has hindered further advances in this field both at the basic research and clinical level. This review summarises the current knowledge of VIP/PACAP and the VPAC/PAC receptors with regard to their distribution, pharmacology, signalling pathways, splice variants and finally, the utility of animal models in exploring their physiological roles.
Collapse
Affiliation(s)
- Louise Dickson
- Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, UK
| | | |
Collapse
|