1
|
Gravina AG, Panarese I, Trotta MC, D'Amico M, Pellegrino R, Ferraraccio F, Galdiero M, Alfano R, Grieco P, Federico A. Melanocortin 3,5 receptors immunohistochemical expression in colonic mucosa of inflammatory bowel disease patients: A matter of disease activity? World J Gastroenterol 2024; 30:1132-1142. [PMID: 38577176 PMCID: PMC10989484 DOI: 10.3748/wjg.v30.i9.1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Melanocortin 3 and 5 receptors (i.e., MC3R and MC5R) belong to the melanocortin family. However, data regarding their role in inflammatory bowel diseases (IBD) are currently unavailable. AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn's disease (CD) and ulcerative colitis (UC), aligning them with IBD disease endoscopic and histologic activity. METHODS Colonic mucosal biopsies from CD/UC patients were sampled, and immunohistochemical analyses were conducted to evaluate the expression of MC3R and MC5R. Colonic sampling was performed on both traits with endoscopic scores (Mayo endoscopic score and CD endoscopic index of severity) consistent with inflamed mucosa and not consistent with disease activity (i.e., normal appearing mucosa). RESULTS In both CD and UC inflamed mucosa, MC3R (CD: + 7.7 fold vs normal mucosa, P < 0.01; UC: + 12 fold vs normal mucosa, P < 0.01) and MC5R (CD: + 5.5 fold vs normal mucosa, P < 0.01; UC: + 8.1 fold vs normal mucosa, P < 0.01) were significantly more expressed compared to normal mucosa. CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients. Furthermore, expression may differ according to disease endoscopic activity, with a higher degree of expression in the traits affected by disease activity in both CD and UC, suggesting a potential use of these receptors in IBD pharmacology.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Iacopo Panarese
- Pathology Division, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Franca Ferraraccio
- Pathology Division, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
2
|
Gravina AG, Pellegrino R, Durante T, Palladino G, Imperio G, D’Amico G, Trotta MC, Dallio M, Romeo M, D’Amico M, Federico A. The Melanocortin System in Inflammatory Bowel Diseases: Insights into Its Mechanisms and Therapeutic Potentials. Cells 2023; 12:1889. [PMID: 37508552 PMCID: PMC10378568 DOI: 10.3390/cells12141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The melanocortin system is a complex set of molecular mediators and receptors involved in many physiological and homeostatic processes. These include the regulation of melanogenesis, steroidogenesis, neuromodulation and the modulation of inflammatory processes. In the latter context, the system has assumed importance in conditions of chronic digestive inflammation, such as inflammatory bowel diseases (IBD), in which numerous experiences have been accumulated in mouse models of colitis. Indeed, information on how such a system can counteract colitis inflammation and intervene in the complex cytokine imbalance in the intestinal microenvironment affected by chronic inflammatory damage has emerged. This review summarises the evidence acquired so far and highlights that molecules interfering with the melanocortin system could represent new drugs for treating IBD.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Tommaso Durante
- Mental Health Department, S. Pio Hospital, Via dell’Angelo, 82100 Benevento, Italy
| | - Giovanna Palladino
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Giuseppe Imperio
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcello Dallio
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Mario Romeo
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
3
|
Bedenbaugh MN, Brener SC, Maldonado J, Lippert RN, Sweeney P, Cone RD, Simerly RB. Organization of neural systems expressing melanocortin-3 receptors in the mouse brain: Evidence for sexual dimorphism. J Comp Neurol 2022; 530:2835-2851. [PMID: 35770983 PMCID: PMC9724692 DOI: 10.1002/cne.25379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.
Collapse
Affiliation(s)
- Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Samantha C. Brener
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Patrick Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG, Olson DP. Lateral Hypothalamic Mc3R-Expressing Neurons Modulate Locomotor Activity, Energy Expenditure, and Adiposity in Male Mice. Endocrinology 2019; 160:343-358. [PMID: 30541071 PMCID: PMC6937456 DOI: 10.1210/en.2018-00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Collapse
Affiliation(s)
- Hongjuan Pei
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | | | - Amy K Sutton
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Korri H Burnett
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence: David P. Olson, MD, PhD, University of Michigan, 1000 Wall Street, Brehm Tower 6329, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
6
|
Liang J, Li L, Jin X, Xu B, Pi L, Liu S, Zhu W, Zhang C, Luan B, Gong L, Zhang C. Pharmacological effect of human melanocortin-2 receptor accessory protein 2 variants on hypothalamic melanocortin receptors. Endocrine 2018; 61:94-104. [PMID: 29704154 DOI: 10.1007/s12020-018-1596-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Melanocortin-3 receptor (MC3R), melanocortin-4 receptor (MC4R), and a recently identified melanocortin-2 receptor accessory protein 2 (MRAP2), are highly expressed in hypothalamus and coordinately regulate energy homeostasis, but the single cellular transcriptome of melanocortin system remains unknown. Several infrequent MRAP2 variants are reported from severe obese human patients but the mechanisms on how they affect melanocortin signaling are unclear. METHODS First, we performed in silico analysis of mouse hypothalamus RNA sequencing datasets at single-cell resolution from two independent studies. Next, we inspected the three-dimensional conformational alteration of three mutations on MRAP2 protein. Finally, the influence of MRAP2 variants on MC3R and MC4R signaling was analyzed in vitro. RESULTS (1) We confirmed the actual co-expression of Mrap2 with Mc3r and Mc4r, and demonstrated more broad distribution of Mrap2-positive neuronal populations than Mc3r or Mc4r in mouse hypothalamus. (2) Compared with wild-type MRAP2, MRAP2N88Y, and MRAP2R125C showed impaired α-MSH-induced MC4R or MC3R stimulation. (3) MRAP2N88Yexhibited enhanced interaction with MC4R protein and its own. CONCLUSIONS This is the first dedicated description of single-cell transcriptome signature of Mrap2, Mc3r, and Mc4r in the central nerve system and the first evidence describing the unique dimer formation, conformational change, and pharmacological effect of MRAP2 mutations on MC3R signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/pharmacology
- Computer Simulation
- Genetic Variation
- Humans
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Mice
- Mutation/genetics
- Neurons/metabolism
- Nucleic Acid Conformation
- Plasmids
- RNA/genetics
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Melanocortin/drug effects
- Signal Transduction/genetics
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Jinye Liang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuanxuan Jin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bingxin Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linyu Pi
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shangyun Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei Zhu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bing Luan
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Gonçalves JPL, Palmer D, Meldal M. MC4R Agonists: Structural Overview on Antiobesity Therapeutics. Trends Pharmacol Sci 2018; 39:402-423. [PMID: 29478721 DOI: 10.1016/j.tips.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
The melanocortin-4 receptor (MC4R) regulates adipose tissue formation and energy homeostasis, and is believed to be a monogenic target for novel antiobesity therapeutics. Several research efforts targeting this receptor have identified potent and selective agonists. While viable agonists have been characterized in vitro, undesirable side effects frequently appeared during clinical trials. The most promising candidates have diverse structures, including linear peptides, cyclic peptides, and small molecules. Herein, we present a compilation of potent MC4R agonists and discuss the pivotal structural differences within those molecules that resulted in good selectivity for MC4R over other melanocortins. We provide insight on recent progress in the field and reflect on directions for development of new agonists.
Collapse
Affiliation(s)
- Juliana Pereira Lopes Gonçalves
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Zhou H, Feng L, Xu F, Sun Y, Ma Y, Zhang X, Liu H, Xu G, Wu X, Shen Y, Sun Y, Wu X, Xu Q. Berberine inhibits palmitate-induced NLRP3 inflammasome activation by triggering autophagy in macrophages: A new mechanism linking berberine to insulin resistance improvement. Biomed Pharmacother 2017; 89:864-874. [DOI: 10.1016/j.biopha.2017.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
|
9
|
Demidowich AP, Jun JY, Yanovski JA. Polymorphisms and mutations in the melanocortin-3 receptor and their relation to human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2468-2476. [PMID: 28363697 DOI: 10.1016/j.bbadis.2017.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Inactivating mutations in the melanocortin 3 receptor (Mc3r) have been described as causing obesity in mice, but the physiologic effects of MC3R mutations in humans have been less clear. Here we review the MC3R polymorphisms and mutations identified in humans, and the in vitro, murine, and human cohort studies examining their putative effects. Some, but not all, studies suggest that the common human MC3R variant T6K+V81I, as well as several other rare, function-altering mutations, are associated with greater adiposity and hyperleptinemia with altered energy partitioning. In vitro, the T6K+V81I variant appears to decrease MC3R expression and therefore cAMP generation in response to ligand binding. Knockin mouse studies confirm that the T6K+V81I variant increases feeding efficiency and the avidity with which adipocytes derived from bone or adipose tissue stem cells store triglycerides. Other MC3R mutations occur too infrequently in the human population to make definitive conclusions regarding their clinical effects. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Andrew P Demidowich
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
10
|
Butler AA, Girardet C, Mavrikaki M, Trevaskis JL, Macarthur H, Marks DL, Farr SA. A Life without Hunger: The Ups (and Downs) to Modulating Melanocortin-3 Receptor Signaling. Front Neurosci 2017; 11:128. [PMID: 28360832 PMCID: PMC5352694 DOI: 10.3389/fnins.2017.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Melanocortin neurons conserve body mass in hyper- or hypo-caloric conditions by conveying signals from nutrient sensors into areas of the brain governing appetite and metabolism. In mice, melanocortin-3 receptor (MC3R) deletion alters nutrient partitioning independently of hyperphagia, promoting accumulation of fat over muscle mass. Enhanced rhythms in insulin and insulin-responsive metabolic genes during hypocaloric feeding suggest partial insulin resistance and enhanced lipogenesis. However, exactly where and how MC3Rs affect metabolic control to alter nutrient partitioning is not known. The behavioral phenotypes exhibited by MC3R-deficient mice suggest a contextual role in appetite control. The impact of MC3R-deficiency on feeding behavior when food is freely available is minor. However, homeostatic responses to hypocaloric conditioning involving increased expression of appetite-stimulating (orexigenic) neuropeptides, binge-feeding, food anticipatory activity (FAA), entrainment to nutrient availability and enhanced feeding-related motivational responses are compromised with MC3R-deficiency. Rescuing Mc3r transcription in hypothalamic and limbic neurons improves appetitive responses during hypocaloric conditioning while having minor effects on nutrient partitioning, suggesting orexigenic functions. Rescuing hypothalamic MC3Rs also restores responses of fasting-responsive hypothalamic orexigenic neurons in hypocaloric conditions, suggesting actions that sensitize fasting-responsive neurons to signals from nutrient sensors. MC3R signaling in ventromedial hypothalamic SF1(+ve) neurons improves metabolic control, but does not restore appetitive responses or nutrient partitioning. In summary, desensitization of fasting-responsive orexigenic neurons may underlie attenuated appetitive responses of MC3R-deficient mice in hypocaloric situations. Further studies are needed to identify the specific location(s) of MC3Rs controlling appetitive responses and partitioning of nutrients between fat and lean tissues.
Collapse
Affiliation(s)
- Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Maria Mavrikaki
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - James L Trevaskis
- In vivo Pharmacology, Cardiovascular and Metabolic Disease, Medimmune Gaithersburg, MD, USA
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University Portland, OR, USA
| | - Susan A Farr
- Department of Internal Medicine, Division of Geriatrics, Saint Louis University School of MedicineSt. Louis, MO, USA; VA Medical CenterSt. Louis, MO, USA
| |
Collapse
|
11
|
You P, Hu H, Chen Y, Zhao Y, Yang Y, Wang T, Xing R, Shao Y, Zhang W, Li D, Chen H, Liu M. Effects of Melanocortin 3 and 4 Receptor Deficiency on Energy Homeostasis in Rats. Sci Rep 2016; 6:34938. [PMID: 27713523 PMCID: PMC5054679 DOI: 10.1038/srep34938] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
Melanocortin-3 and 4 receptors (MC3R and MC4R) can regulate energy homeostasis, but their respective roles especially the functions of MC3R need more exploration. Here Mc3r and Mc4r single and double knockout (DKO) rats were generated using CRISPR-Cas9 system. Metabolic phenotypes were examined and data were compared systematically. Mc3r KO rats displayed hypophagia and decreased body weight, while Mc4r KO and DKO exhibited hyperphagia and increased body weight. All three mutants showed increased white adipose tissue mass and adipocyte size. Interestingly, although Mc3r KO did not show a significant elevation in lipids as seen in Mc4r KO, DKO displayed even higher lipid levels than Mc4r KO. DKO also showed more severe glucose intolerance and hyperglycaemia than Mc4r KO. These data demonstrated MC3R deficiency caused a reduction of food intake and body weight, whereas at the same time exhibited additive effects on top of MC4R deficiency on lipid and glucose metabolism. This is the first phenotypic analysis and systematic comparison of Mc3r KO, Mc4r KO and DKO rats on a homogenous genetic background. These mutant rats will be important in defining the complicated signalling pathways of MC3R and MC4R. Both Mc4r KO and DKO are good models for obesity and diabetes research.
Collapse
Affiliation(s)
- Panpan You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Handan Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yuting Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yongliang Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yiqing Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Tongtong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Roumei Xing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Huaqing Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, Shanghai 200241, China.,Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Mavrikaki M, Girardet C, Kern A, Faruzzi Brantley A, Miller CA, Macarthur H, Marks DL, Butler AA. Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Mol Metab 2016; 5:566-579. [PMID: 27408780 PMCID: PMC4921936 DOI: 10.1016/j.molmet.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Objective Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R) in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behaviors in situations of nutrient scarcity. Here we examined whether MC3Rs expressed in mesolimbic neurons regulate feeding-related motivational responses. Methods Interactions between Mc3r genotype, cognitive function and energy balance on food self-administration were assessed using operant conditioning with fixed- and progressive ratio (FR1/PR1) settings. Inhibition of Mc3r transcription by a loxP-flanked transcriptional blocker (TB) in C57BL/6JN mice (Mc3rTB/TB) was reversed in mesolimbic neurons using DAT-Cre (DAT-MC3R). Results Caloric restriction (CR) caused 10–15% weight loss and increased motivation to acquire food rewards during training sessions. c-Fos-expression in the nucleus accumbens was increased 1 h following food presentation. While exhibiting weight loss, total food self-administration, enhanced motivation to self-administer food rewards in training sessions held during CR and c-Fos-activation in the nucleus accumbens following re-feeding were all markedly attenuated in Mc3rTB/TB mice. In contrast, cognitive abilities were normal in Mc3rTB/TB mice. Total food self-administration during FR1 sessions was not rescued in DAT-MC3R mice, however enhanced motivational responses to self-administer food rewards in PR1 conditions were restored. The nutrient-partitioning phenotype observed with Mc3r-deficiency was not rescued in DAT-MC3R mice. Conclusions Mesolimbic MC3Rs mediate enhanced motivational responses during CR. However, they are insufficient to restore normal caloric loading when food is presented during CR and do not affect metabolic conditions altering nutrient partitioning. Food-related motivational responses in mice increase with caloric restriction (CR). Melanocortin-3 receptors (MC3R) are required for food-related motivational responses. MC3Rs role in food-related motivational responses depends on metabolic condition. Mesolimbic MC3Rs increase food-related motivational responses during CR.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alicia Faruzzi Brantley
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Behavioral Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Courtney A Miller
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Heather Macarthur
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
13
|
A mouse model for a partially inactive obesity-associated human MC3R variant. Nat Commun 2016; 7:10522. [PMID: 26818770 PMCID: PMC4738366 DOI: 10.1038/ncomms10522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
We previously reported children homozygous for two MC3R sequence variants (C17A+G241A) have greater fat mass than controls. Here we show, using homozygous knock-in mouse models in which we replace murine Mc3r with wild-type human (MC3RhWT/hWT) and double-mutant (C17A+G241A) human (MC3RhDM/hDM) MC3R, that MC3RhDM/hDM have greater weight and fat mass, increased energy intake and feeding efficiency, but reduced length and fat-free mass compared with MC3RhWT/hWT. MC3RhDM/hDM mice do not have increased adipose tissue inflammatory cell infiltration or greater expression of inflammatory markers despite their greater fat mass. Serum adiponectin levels are increased in MC3RhDM/hDM mice and MC3RhDM/hDM human subjects. MC3RhDM/hDM bone- and adipose tissue-derived mesenchymal stem cells (MSCs) differentiate into adipocytes that accumulate more triglyceride than MC3RhWT/hWT MSCs. MC3RhDM/hDM impacts nutrient partitioning to generate increased adipose tissue that appears metabolically healthy. These data confirm the importance of MC3R signalling in human metabolism and suggest a previously-unrecognized role for the MC3R in adipose tissue development. The melanocortin receptor, MC3R, regulates organismal energy homeostasis. Here, Lee et al. create knock-in mice with the a mutated version of the human MC3R receptor found in obese children, and show these mice have more fat and smaller bone, yet are by and large metabolically healthy.
Collapse
|
14
|
Mutations in Melanocortin-3 Receptor Gene and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:97-129. [DOI: 10.1016/bs.pmbts.2016.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Tang L, Okamoto S, Shiuchi T, Toda C, Takagi K, Sato T, Saito K, Yokota S, Minokoshi Y. Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by Inhibiting TNF-α Gene Expression in Macrophages. Endocrinology 2015; 156:3680-94. [PMID: 26132918 DOI: 10.1210/en.2015-1096] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adipose tissue macrophages (ATMs) play an important role in the inflammatory response in obese animals. How ATMs are regulated in lean animals has remained elusive, however. We now show that the sympathetic nervous system (SNS) is necessary to maintain the abundance of the mRNA for the proinflammatory cytokine TNF-α at a low level in ATMs of lean mice. Intracerebroventricular injection of agouti-related neuropeptide increased the amount of TNF-α mRNA in epididymal (epi) white adipose tissue (WAT), but not in interscapular brown adipose tissue (BAT), through inhibition of sympathetic nerve activity in epiWAT. The surgical denervation and β-adrenergic antagonist propranolol up-regulated TNF-α mRNA in both epiWAT and BAT in vivo. Signaling by the β2-adrenergic receptor (AR) and protein kinase A down-regulated TNF-α mRNA in epiWAT explants and suppressed lipopolysaccharide-induced up-regulation of TNF-α mRNA in the stromal vascular fraction of this tissue. β-AR-deficient (β-less) mice manifested an increased plasma TNF-α concentration and increased TNF-α mRNA abundance in epiWAT and BAT. TNF-α mRNA abundance was greater in ATMs (CD11b(+) cells of the stromal vascular fraction) from epiWAT or BAT of wild-type mice than in corresponding CD11b(-) cells, and β2-AR mRNA abundance was greater in ATMs than in CD11b(-) cells of epiWAT. Our results show that the SNS and β2-AR-protein kinase A pathway maintain an anti-inflammatory state in ATMs of lean mice in vivo, and that the brain melanocortin pathway plays a role in maintaining this state in WAT of lean mice via the SNS.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/innervation
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/innervation
- Adipose Tissue, White/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Agouti-Related Protein/administration & dosage
- Animals
- Cell Line
- Epididymis/drug effects
- Epididymis/metabolism
- Gene Expression/drug effects
- Immunoblotting
- Inflammation Mediators/metabolism
- Injections, Intraventricular
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Peptide Fragments/administration & dosage
- Propranolol/pharmacology
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sympathectomy
- Sympathetic Nervous System/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Lijun Tang
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Tetsuya Shiuchi
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Chitoku Toda
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Kazuyo Takagi
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Tatsuya Sato
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Kumiko Saito
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Shigefumi Yokota
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism (L.T., S.O., K.T., T.Sa., K.S., S.Y., Y.M.), Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences (S.O., T.Sa., Y.M.), Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Department of Integrative Physiology (T.Sh.), Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, Tokushima 770-8503, Japan; and Section of Comparative Medicine (C.T.), Yale University School of Medicine, New Haven, Connecticut 06520-8016
| |
Collapse
|
16
|
Hassan HA, El-Gharib NE. Obesity and Clinical Riskiness Relationship: Therapeutic Management by Dietary Antioxidant Supplementation—a Review. Appl Biochem Biotechnol 2015; 176:647-69. [DOI: 10.1007/s12010-015-1602-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 03/31/2015] [Indexed: 01/03/2023]
|
17
|
Macrophage migration inhibitory factor in obese and non obese women with polycystic ovary syndrome. ACTA ACUST UNITED AC 2014; 62:31-7. [PMID: 25458401 DOI: 10.1016/j.endonu.2014.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 09/11/2014] [Accepted: 09/28/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To measure macrophage migration inhibitory factor (MIF) concentrations in obese and non-obese women diagnosed with polycystic ovary syndrome (PCOS). METHODS Women diagnosed with PCOS and age-matched healthy controls with regular menses and normal ovaries on ultrasound examination were selected and divided into 4 groups (group A, PCOS and obese; group B, PCOS and non-obese; group C, obese controls; and group D, non-obese controls) based on body mass index (obese >30 kg/m2 and non-obese <25 kg/m2). Luteinizing hormone, follicle-stimulating hormone, androstenedione, testosterone, sex hormone-binding globulin, serum glucose, insulin and MIF levels were measured. RESULTS Obese and non-obese women with PCOS had higher luteinizing hormone, follicle-stimulating hormone, androstenedione, testosterone, and insulin levels as compared to the obese and non-obese control groups, respectively (P < .0001). Women with PCOS had significantly higher MIF levels (group A, 48.6 ± 9.9 mg/ml; group B, 35.2 ± 6.0 ng/ml) as compared to controls (group C, 13.5 ± 6.0 ng/ml; group D, 12.0 ± 4.3 ng/dl; P < .0001). A weak, positive and significant correlation was seen between fasting blood glucose and insulin levels in women with PCOS (P < .05). CONCLUSION Significant differences exist in plasma MIF levels between obese and non-obese women with and without PCOS.
Collapse
|
18
|
Hughey CC, Wasserman DH, Lee-Young RS, Lantier L. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mamm Genome 2014; 25:522-38. [PMID: 25074441 DOI: 10.1007/s00335-014-9533-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
Obesity and type 2 diabetes lessen the quality of life of those afflicted and place considerable burden on the healthcare system. Furthermore, the detrimental impact of these pathologies is expected to persist or even worsen. Diabetes is characterized by impaired insulin action and glucose homeostasis. This has led to a rapid increase in the number of mouse models of metabolic disease being used in the basic sciences to assist in facilitating a greater understanding of the metabolic dysregulation associated with obesity and diabetes, the identification of therapeutic targets, and the discovery of effective treatments. This review briefly describes the most frequently utilized models of metabolic disease. A presentation of standard methods and technologies on the horizon for assessing metabolic phenotypes in mice, with particular emphasis on glucose handling and energy balance, is provided. The article also addresses issues related to study design, selection and execution of metabolic tests of glucose metabolism, the presentation of data, and interpretation of results.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, 823 Light Hall, 2215 Garland Ave, Nashville, TN, 37232, USA,
| | | | | | | |
Collapse
|
19
|
Girardet C, Begriche K, Ptitsyn A, Koza RA, Butler AA. Unravelling the mysterious roles of melanocortin-3 receptors in metabolic homeostasis and obesity using mouse genetics. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S37-44. [PMID: 27152165 DOI: 10.1038/ijosup.2014.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The central nervous melanocortin system maintains body mass and adiposity within a 'healthy' range by regulating satiety and metabolic homeostasis. Neural melanocortin-4 receptors (MC4R) modulate satiety signals and regulate autonomic outputs governing glucose and lipid metabolism in the periphery. The functions of melanocortin-3 receptors (MC3R) have been less well defined. We have observed that food anticipatory activity (FAA) is attenuated in Mc3r-/- mice housed in light:dark or constant dark conditions. Mc3r-/- mice subjected to the restricted feeding protocol that was used to induce FAA also developed insulin resistance, dyslipidaemia, impaired glucose tolerance and evidence of a cellular stress response in the liver. MC3Rs may thus function as modulators of oscillator systems that govern circadian rhythms, integrating signals from nutrient sensors to facilitate synchronizing peak foraging behaviour and metabolic efficiency with nutrient availability. To dissect the functions of MC3Rs expressed in hypothalamic and extra-hypothalamic structures, we inserted a 'lox-stop-lox' (TB) sequence into the Mc3r gene. Mc3r (TB/TB) mice recapitulate the phenotype reported for Mc3r-/- mice: increased adiposity, accelerated diet-induced obesity and attenuated FAA. The ventromedial hypothalamus exhibits high levels of Mc3r expression; however, restoring the expression of the LoxTB Mc3r allele in this nucleus did not restore FAA. However, a surprising outcome came from studies using Nestin-Cre to restore the expression of the LoxTB Mc3r allele in the nervous system. These data suggest that 'non-neural' MC3Rs have a role in the defence of body weight. Future studies examining the homeostatic functions of MC3Rs should therefore consider actions outside the central nervous system.
Collapse
Affiliation(s)
- C Girardet
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| | - K Begriche
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| | - A Ptitsyn
- The Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, LA, USA
| | - R A Koza
- The Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, LA, USA
| | - A A Butler
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
20
|
Lippert RN, Ellacott KLJ, Cone RD. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology 2014; 155:1718-27. [PMID: 24605830 PMCID: PMC3990839 DOI: 10.1210/en.2013-2049] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.
Collapse
MESH Headings
- Animals
- Appetitive Behavior
- Behavior, Animal
- Dopamine/metabolism
- Dopaminergic Neurons/cytology
- Dopaminergic Neurons/metabolism
- Female
- Food Preferences
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Homeostasis
- Limbic System/cytology
- Limbic System/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Ovariectomy
- Promoter Regions, Genetic
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Sex Characteristics
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Rachel N Lippert
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0165
| | | | | |
Collapse
|
21
|
Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:482-94. [PMID: 23680515 DOI: 10.1016/j.bbadis.2013.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
Abstract
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
MESH Headings
- Animals
- Body Weight/genetics
- Cardiovascular Diseases/complications
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/pathology
- Mice
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
22
|
Begriche K, Girardet C, McDonald P, Butler AA. Melanocortin-3 receptors and metabolic homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:109-46. [PMID: 23317784 DOI: 10.1016/b978-0-12-386933-3.00004-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Attenuated activity of the central nervous melanocortin system causes obesity and insulin resistance. Obese rodents treated with melanocortins exhibit improvements in obesity and metabolic homeostasis that are not mutually dependent, suggesting metabolic actions that are independent of weight changes. These responses are generally thought to involve G-protein-coupled receptors expressed in the brain. Melanocortin-4 receptors (MC4Rs) regulate satiety and autonomic nervous system and thyroid function. MC3Rs are expressed in hypothalamic and limbic regions involved in controlling ingestive behaviors and autonomic function. Mc3r-/- mice exhibit increased adiposity and an accelerated diet-induced obesity. While this phenotype is not dependent on hyperphagia, data on the regulation of food intake by MC3Rs are inconsistent. Recent investigations by our laboratory suggest a unique combination of behavioral and metabolic disorders in Mc3r-/- mice. MC3Rs are critical for the expression of the anticipatory response and metabolic homeostasis when food intake occurs outside the normal voluntary rhythms driven by photoperiod. Using a Cre-Lox strategy, we can now investigate MC3Rs expressed in different brain regions and organ systems in the periphery. While focusing on the functions of neural MC3Rs, early results suggest an additional layer of complexity with central and peripheral MC3Rs involved in the defense of body weight.
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | | | | | | |
Collapse
|
23
|
Fellmann L, Nascimento AR, Tibiriça E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther 2012. [PMID: 23178510 DOI: 10.1016/j.pharmthera.2012.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome has been described as the association of insulin resistance, hypertension, hyperlipidemia and obesity. Its prevalence increased dramatically, mainly in developed countries. Animal models are essential to understand the pathophysiology of this syndrome. This review presents the murine models of metabolic syndrome the most often used in pharmacological studies. The most common metabolic syndrome models exhibit a non-functional leptin pathway, or metabolic disorders induced by high fat diets. In a first part, and after a short introduction on leptin, its receptor and mechanism of action, we provide a detailed description of each model: SHROB, SHHF, JCR:LA-cp, Zucker, ZDF, Wistar Ottawa Karlsburg W, and Otsuka Long-Evans Tokushima Fatty rats, ob/ob, db/db, agouti yellow and Mc4R KO mice. The second part of this review is dedicated to metabolic syndrome models obtained by high fat feeding.
Collapse
Affiliation(s)
- Lyne Fellmann
- Laboratory of Neurobiology and Cardiovascular Pharmacology, EA4438, Faculty of Medicine, University of Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Henagan TM, Forney L, Dietrich MA, Harrell BR, Stewart LK. Melanocortin receptor expression is associated with reduced CRP in response to resistance training. J Appl Physiol (1985) 2012; 113:393-400. [PMID: 22678961 PMCID: PMC4422369 DOI: 10.1152/japplphysiol.00107.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/03/2012] [Indexed: 12/18/2022] Open
Abstract
The existing paradigm of exercise-induced decreases in chronic inflammation focuses on the expression of inflammatory receptors on systemic monocytes in response to exercise training, with the role of anti-inflammatory receptors largely ignored. Our recent preliminary studies indicate that the anti-inflammatory melanocortin receptors (MCRs) may play a role in modulating exercise-induced decreases in chronic inflammation. Here, we present a study designed to determine the effect of intense, resistance exercise training on systemic monocyte MCR expression. Because low-grade chronic inflammation is associated with elevated cardiometabolic risk in healthy populations and exercise decreases chronic inflammation, we investigated the associations between systemic monocyte cell surface expression of MCRs and inflammatory markers as a possible mechanism for the beneficial anti-inflammatory effects of resistance training. To this end, the present study includes 40 adults (aged 19-27 yr) and implements a 12-wk periodized, intensive resistance training intervention. Melanocortin 1 and 3 receptor expression on systemic monocytes and inflammatory markers, including C-reactive protein (CRP), interleukin (IL)-6, IL-1β, and IL-10, were measured before and after the intervention. Resistance training significantly altered MCR systemic monocyte cell surface expression, had no chronic effects on IL-6, IL-1β, or IL-10 expression, but significantly decreased CRP levels from a moderate to a low cardiovascular disease risk category. More specifically, decreased melanocortin 3 receptor expression significantly correlated with decreased CRP, independent of changes in adiposity. These data suggest that the observed responses in MCR expression and decreases in cardiovascular disease risk in response to resistance training represent an important anti-inflammatory mechanism in regulating exercise-induced decreases in chronic inflammation that occur independent of chronic changes in systemic cytokines.
Collapse
Affiliation(s)
- Tara M Henagan
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
The melanocortin-3 receptor-deficient (MC3-R(-/-)) mouse exhibits mild obesity without hyperphagia or hypometabolism. MC3-R deletion is reported to increase adiposity, reduce lean mass and white adipose tissue inflammation, and increase sensitivity to salt-induced hypertension. We show here that the MC3-R(-/-) mouse exhibits defective fasting-induced white adipose tissue lipolysis, fasting-induced liver triglyceride accumulation, fasting-induced refeeding, and fasting-induced regulation of the adipostatic and hypothalamic-adrenal-pituitary axes. Close examination of the hypothalamic-pituitary-adrenal axis showed that MC3-R(-/-) mice exhibit elevated nadir corticosterone as well as a blunted fasting-induced activation of the axis. The previously described phenotypes of this animal and the reduced bone density reported here parallel those of Cushing syndrome. Thus, MC3-R is required for communicating nutritional status to both central and peripheral tissues involved in nutrient partitioning, and this defect explains much of the metabolic phenotype in the model.
Collapse
|
26
|
Wu L, Parekh VV, Gabriel CL, Bracy DP, Marks-Shulman PA, Tamboli RA, Kim S, Mendez-Fernandez YV, Besra GS, Lomenick JP, Williams B, Wasserman DH, Van Kaer L. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci U S A 2012; 109:E1143-52. [PMID: 22493234 PMCID: PMC3358828 DOI: 10.1073/pnas.1200498109] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity triggers a low-grade systemic inflammation, which plays an important role in the development of obesity-associated metabolic diseases. In searching for links between lipid accumulation and chronic inflammation, we examined invariant natural killer T (iNKT) cells, a subset of T lymphocytes that react with lipids and regulate inflammatory responses. We show that iNKT cells respond to dietary lipid excess and become activated before or at the time of tissue recruitment of inflammatory leukocytes, and that these cells progressively increase proinflammatory cytokine production in obese mice. Such iNKT cells skew other leukocytes toward proinflammatory cytokine production and induce an imbalanced proinflammatory cytokine environment in multiple tissues. Further, iNKT cell deficiency ameliorates tissue inflammation and provides protection against obesity-induced insulin resistance and hepatic steatosis. Conversely, chronic iNKT cell stimulation using a canonical iNKT cell agonist exacerbates tissue inflammation and obesity-associated metabolic disease. These findings place iNKT cells into the complex network linking lipid excess to inflammation in obesity and suggest new therapeutic avenues for obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Lan Wu
- Departments of Microbiology and Immunology
| | | | | | - Deanna P. Bracy
- Molecular Physiology and Biophysics, and
- Vanderbilt–National Institutes of Health Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | | | | | | | | | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | - David H. Wasserman
- Molecular Physiology and Biophysics, and
- Vanderbilt–National Institutes of Health Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | | |
Collapse
|
27
|
Begriche K, Levasseur PR, Zhang J, Rossi J, Skorupa D, Solt LA, Young B, Burris TP, Marks DL, Mynatt RL, Butler AA. Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane G-protein-coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis. J Biol Chem 2011; 286:40771-81. [PMID: 21984834 PMCID: PMC3220494 DOI: 10.1074/jbc.m111.278374] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/05/2011] [Indexed: 01/29/2023] Open
Abstract
The melanocortin-3 receptor (MC3R) gene is pleiotropic, influencing body composition, natriuresis, immune function, and entrainment of circadian rhythms to nutrient intake. MC3Rs are expressed in hypothalamic and limbic regions of the brain and in peripheral tissues. To investigate the roles of central MC3Rs, we inserted a "lox-stop-lox" (LoxTB) 5' of the translation initiation codon of the mouse Mc3r gene and reactivated transcription using neuron-specific Cre transgenic mice. As predicted based on earlier observations of Mc3r knock-out mice, Mc3r(TB/TB) mice displayed reduced lean mass, increased fat mass, and accelerated diet-induced obesity. Surprisingly, rescuing Mc3r expression in the nervous system using the Nestin-Cre transgene only partially rescued obesity in chow-fed conditions and had no impact on the accelerated diet-induced obesity phenotype. The ventromedial hypothalamus (VMH), a critical node in the neural networks regulating feeding-related behaviors and metabolic homeostasis, exhibits dense Mc3r expression relative to other brain regions. To target VMH MC3R expression, we used the steroidogenic factor-1 Cre transgenic mouse. Although restoring VMH MC3R signaling also had a modest impact on obesity, marked improvements in metabolic homeostasis were observed. VMH MC3R signaling was not sufficient to rescue the lean mass phenotype or the regulation of behaviors anticipating food anticipation. These results suggest that actions of MC3Rs impacting on energy homeostasis involve both central and peripheral sites of action. The impact of central MC3Rs on behavior and metabolism involves divergent pathways; VMH MC3R signaling improves metabolic homeostasis but does not significantly impact on the expression of behaviors anticipating nutrient availability.
Collapse
Affiliation(s)
| | - Peter R. Levasseur
- the Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239, and
| | - Jingying Zhang
- the Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - Jari Rossi
- From the Departments of Metabolism and Aging and
| | | | | | - Brandon Young
- the Genomics Core, The Scripps Research Institute, Jupiter, Florida 33458
| | | | - Daniel L. Marks
- the Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239, and
| | - Randall L. Mynatt
- the Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | | |
Collapse
|
28
|
Begriche K, Sutton GM, Butler AA. Homeostastic and non-homeostatic functions of melanocortin-3 receptors in the control of energy balance and metabolism. Physiol Behav 2011; 104:546-54. [PMID: 21497617 PMCID: PMC3139773 DOI: 10.1016/j.physbeh.2011.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/04/2011] [Accepted: 04/08/2011] [Indexed: 01/05/2023]
Abstract
The central nervous melanocortin system is a neural network linking nutrient-sensing systems with hypothalamic, limbic and hindbrain neurons regulating behavior and metabolic homeostasis. Primary melanocortin neurons releasing melanocortin receptor ligands residing in the hypothalamic arcuate nucleus are regulated by nutrient-sensing and metabolic signals. A smaller group of primary neurons releasing melanocortin agonists in the nucleus tractus solitarius in the brainstem are also regulated by signals of metabolic state. Two melanocortin receptors regulate energy homeostasis. Melanocortin-4 receptors regulate satiety and autonomic outputs controlling peripheral metabolism. The functions of melanocortin-3 receptors (MC3R) expressed in hypothalamic and limbic structures are less clear. Here we discuss published data and preliminary observations from our laboratory suggesting that neural MC3R regulate inputs into systems governing the synchronization of rhythms in behavior and metabolism with nutrient intake. Mice subjected to a restricted feeding protocol, where a limited number of calories are presented at a 24h interval, rapidly exhibit bouts of increased wakefulness and activity which anticipate food presentation. The full expression of these responses is dependent on MC3R. Moreover, MC3R knockout mice are unique in exhibiting a dissociation of weight loss from improved glucose homeostasis when subject to a restricted feeding protocol. While mice lacking MC3R fed ad libitum exhibit normal to moderate hyperinsulinemia, when subjected to a restricted protocol they develop hyperglycemia, glucose intolerance, and dyslipidemia. Collectively, our data suggest that the central nervous melanocortin system is a point convergence in the control of energy balance and the expression of rhythms anticipating nutrient intake.
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute-Florida, Jupiter, FL 33458, USA
| | - Gregory M. Sutton
- Pennington Biomedical Research Center, Lousiana State University System, Baton Rouge, LA 70808
| | - Andrew A. Butler
- Department of Metabolism and Aging, The Scripps Research Institute-Florida, Jupiter, FL 33458, USA
| |
Collapse
|
29
|
Renquist BJ, Lippert RN, Sebag JA, Ellacott KLJ, Cone RD. Physiological roles of the melanocortin MC₃ receptor. Eur J Pharmacol 2011; 660:13-20. [PMID: 21211527 PMCID: PMC3095771 DOI: 10.1016/j.ejphar.2010.12.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
Abstract
The melanocortin MC(3) receptor remains the most enigmatic of the melanocortin receptors with regard to its physiological functions. The receptor is expressed both in the CNS and in multiple tissues in the periphery. It appears to be an inhibitory autoreceptor on proopiomelanocortin neurons, yet global deletion of the receptor causes an obesity syndrome. Knockout of the receptor increases adipose mass without a readily measurable increase in food intake or decrease in energy expenditure. And finally, no melanocortin MC(3) receptor null humans have been identified and associations between variant alleles of the melanocortin MC(3) receptor and diseases remain controversial, so the physiological role of the receptor in humans remains to be determined.
Collapse
Affiliation(s)
- Benjamin J Renquist
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
30
|
Thomas AP, Dunn TN, Oort PJ, Grino M, Adams SH. Inflammatory phenotyping identifies CD11d as a gene markedly induced in white adipose tissue in obese rodents and women. J Nutr 2011; 141:1172-80. [PMID: 21508205 DOI: 10.3945/jn.110.127068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In severe obesity, white adipose tissue (WAT) inflammation and macrophage infiltration are thought to contribute to WAT and whole-body insulin resistance. Specific players involved in triggering and maintaining inflammation (i.e. those regulating adipokine release and WAT macrophage recruitment, retention, or function) remain to be fully elaborated, and the degree to which moderate obesity promotes WAT inflammation remains to be clarified further. Therefore, we characterized adiposity and metabolic phenotypes in adult male C57BL/6J mice fed differing levels of dietary fat (10, 45, and 60% of energy) for 12 wk, concurrent with determinations of WAT inflammation markers and mRNA expression of leukocyte-derived integrins (CD11b, CD11c, CD11d) involved in macrophage extravasation and tissue macrophage homing/retention. As expected, a lard-based, very high-fat diet (60% energy) significantly increased adiposity and glucose intolerance compared with 10% fat-fed controls, coincident with higher retroperitoneal (RP) WAT transcript levels for proinflammatory factors and macrophage markers, including TNFα and CD68 mRNA, which were ~3- and ~15-fold of control levels, respectively (P < 0.001). Mice fed the 45% fat diet had more moderate obesity, less glucose intolerance, and lower WAT macrophage/inflammatory marker mRNA abundances compared with 60% fat-fed mice; TNFα and CD68 mRNA levels were ~2- and ~5-fold of control levels (P < 0.01). Relative WAT expression of CD11d was massively induced by obesity to an extent greater than any other inflammatory marker (to >300-fold of controls in the 45 and 60% fat groups) (P < 0.0001) and this induction was WAT specific. Because we found that CD11d expression also increased in RP-WAT of Zucker obese rats and in the subcutaneous WAT of obese adult women, this appears to be a common feature of obesity. Observed correlations of WAT macrophage transcript marker abundances with body weight in lean to modestly obese mice raises an interesting possibility that the activities of at least some WAT macrophages are closely linked to the normal adipose remodeling that is a requisite for changes in WAT energy storage capacity.
Collapse
Affiliation(s)
- Anthony P Thomas
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
31
|
Hruby VJ, Cai M, Nyberg J, Muthu D. Approaches to the rational design of selective melanocortin receptor antagonists. Expert Opin Drug Discov 2011; 6:543-57. [PMID: 22646078 DOI: 10.1517/17460441.2011.565743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION When establishing the physiological roles of specific receptors in normal and disease states, it is critical to have selective antagonist ligands for each receptor in a receptor system with several subtypes. The melanocortin receptors have five subtypes referred to as the melanocortin 1 receptor, melanocortin 2 receptor, melanocortin 3 receptor, melanocortin 4 receptor and melanocortin 5 receptor, and they are of critical importance for many aspects of human health and disease. AREAS COVERED This article reviews the current efforts to design selective antagonistic ligands for the five human melanocortin receptors summarizing the currently published orthosteric and allosteric antagonists for each of these receptors. EXPERT OPINION Though there has been progress, there are still few drugs available that address the many significant biological activities and diseases that are associated with these receptors, which is possibly due to the lack of receptor selectivity that these designed ligands are currently showing. The authors believe that further studies into the antagonists' 3D conformational and topographical properties in addition to future mutagenesis studies will provide greater insight into these ligands which could play a role in the treatment of various diseases in the future.
Collapse
Affiliation(s)
- Victor J Hruby
- University of Arizona, Department of Chemistry and Biochemistry , 1306 E. University Blvd., Tucson, AZ 85721 , USA
| | | | | | | |
Collapse
|
32
|
Adapala VJ, Buhman KK, Ajuwon KM. Novel anti-inflammatory role of SLPI in adipose tissue and its regulation by high fat diet. JOURNAL OF INFLAMMATION-LONDON 2011; 8:5. [PMID: 21356117 PMCID: PMC3051881 DOI: 10.1186/1476-9255-8-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/28/2011] [Indexed: 01/22/2023]
Abstract
Background Secretory leucocyte protease inhibitor (SLPI) is an anti-inflammatory protein that is constitutively expressed in multiple cell types where it functions to counteract localized tissue inflammation by its anti-inflammatory, antimicrobial and anti-protease properties. Little is known about the expression and implication of SLPI in the regulation of adipose tissue inflammation. Therefore, we tested the hypothesis that obesity induces expression of SLPI in adipose tissue where it functions to counteract adipocyte inflammation. Methods Male C57BL6 mice were fed a high fat (60% fat calories) or a control diet (10% fat calories) diet for 12 weeks. Adipose tissue expression of SLPI was determined by western blotting and PCR. Fully differentiated adipocytes (3T3-L1) were treated with lipopolysaccharide (LPS, 100 ng/ml) or peptidoglycan (10 μg/ml) for 24 hours in the presence or absence of SLPI. Media was collected for interleukin 6 (IL-6) analysis by enzyme-linked immune absorbent assay (ELISA). RNA was isolated for gene expression analysis by real-time polymerase chain reaction (RT-PCR). Results Visceral fat (mesenteric and epididymal) express a higher level of SLPI than subcutaneous fat. The expression of SLPI is mostly in the stromal vascular fraction compared to adipocytes. We also confirmed in vitro that activation of TLR2 and 4 with peptidoglycan and LPS respectively leads to induction of SLPI. Finally, we confirmed that SLPI exerted an anti-inflammatory effect in adipocytes treated with LPS by causing a reduction in expression of IL-6 via a mechanism that included stabilization of cellular IKBα expression. Conclusion Our results show that SLPI is also expressed in adipocytes and adipose tissue where it could play an important feedback role in the resolution of inflammation.
Collapse
Affiliation(s)
- Venkata J Adapala
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, 47907, USA.
| | | | | |
Collapse
|
33
|
Henagan TM, Phillips MD, Cheek DJ, Kirk KM, Barbee JJ, Stewart LK. The melanocortin 3 receptor: a novel mediator of exercise-induced inflammation reduction in postmenopausal women? J Aging Res 2011; 2011:512593. [PMID: 21253483 PMCID: PMC3022199 DOI: 10.4061/2011/512593] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/09/2010] [Accepted: 12/14/2010] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to determine whether resistance exercise training-induced reductions in inflammation are mediated via melanocortin 3 receptor expression in obese (BMI 32.7 ± 3.7) women (65.6 ± 2.8 yrs) randomized to either a control (N = 11) or resistance training group (N = 12). The resistance trained group performed resistance training 3 days/week for 12 weeks. Resting blood samples were collected before and after the training intervention in both resistance trained and control groups. Resistance training upregulated melanocortin 3 receptor mRNA by 16-fold (P = .035) and decreased monocyte count, without changing leukocyte number, body composition, or body weight. Resistance trained individuals exhibited increased sensitivity to inflammatory stimuli, whereas control individuals exhibited no change. While there was no change in whole blood tumor necrosis factor alpha mRNA between the groups, whole blood interleukin 10 mRNA was higher in the resistance trained group following the intervention period. In summary, it appears that resistance training may modulate melanocortin 3 receptor expression, providing a possible mechanism for the anti-inflammatory effects of exercise training.
Collapse
Affiliation(s)
- Tara M Henagan
- Department of Kinesiology, Louisiana State University, 112 Long Fieldhouse, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Fridmanis D, Petrovska R, Kalnina I, Slaidina M, Peculis R, Schiöth HB, Klovins J. Identification of domains responsible for specific membrane transport and ligand specificity of the ACTH receptor (MC2R). Mol Cell Endocrinol 2010; 321:175-83. [PMID: 20206229 DOI: 10.1016/j.mce.2010.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/26/2022]
Abstract
The adrenocorticotropic hormone (ACTH) receptor has highly specific membrane expression that is limited to adrenal cells; in other cell types the polypeptide fails to be transported to the cell surface. Unlike other evolutionarily related members of the melanocortin receptor family (MC1R-MC5R) that recognize different melanocortin peptides, ACTHR (MC2R) binds only ACTH. We used a mutagenesis approach involving systematic construction of chimeric ACTHR/MC4R receptors to identify the domains determining the selectivity of ACTHR membrane transport and ACTH binding. In total 15 chimeric receptors were created by replacement of selected domains of human ACTHR with the corresponding regions of human MC4R. We developed an analytical method to accurately quantify cell-membrane localization of recombinant receptors fused with enhanced green fluorescent protein by confocal fluorescence microscopy. The chimeric receptors were also tested for their ability to bind ACTH (1-24) and the melanocyte-stimulating hormone (MSH) analog, Nle4, DPhe7-alpha-MSH, and to induce a cAMP response. Our results indicate that substitution of the MC4R N-terminal segment with the homologous segment of ACTHR significantly decreased membrane transport. We also identified another signal localized in the third and fourth transmembrane regions as the main determinant of ACTHR intracellular retention. In addition, we found that the fourth and fifth transmembrane domains of the ACTHR are involved in ACTH binding selectivity. We discuss the mechanisms involved in bypassing these arrest signals via an interaction with melanocortin 2 receptor accessory protein (MRAP) and the possible mechanisms that determine the high ligand-binding specificity of ACTHR.
Collapse
|
36
|
Abstract
The metabolic syndrome (MetS) is characterized by obesity concomitant with other metabolic abnormalities such as hypertriglyceridemia, reduced high-density lipoprotein levels, elevated blood pressure and raised fasting glucose levels. The precise definition of MetS, the relationships of its metabolic features, and what initiates it, are debated. However, obesity is on the rise worldwide, and its association with these metabolic symptoms increases the risk for diabetes and cardiovascular disease (among many other diseases). Research needs to determine the mechanisms by which obesity and MetS increase the risk of disease. In light of this growing epidemic, it is imperative to develop animal models of MetS. These models will help determine the pathophysiological basis for MetS and how MetS increases the risk for other diseases. Among the various animal models available to study MetS, mice are the most commonly used for several reasons. First, there are several spontaneously occurring obese mouse strains that have been used for decades and that are very well characterized. Second, high-fat feeding studies require only months to induce MetS. Third, it is relatively easy to study the effects of single genes by developing transgenic or gene knockouts to determine the influence of a gene on MetS. For these reasons, this review will focus on the benefits and caveats of the most common mouse models of MetS. It is our hope that the reader will be able to use this review as a guide for the selection of mouse models for their own studies.
Collapse
Affiliation(s)
- Arion J. Kennedy
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kate L. J. Ellacott
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Victoria L. King
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Alyssa H. Hasty
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
37
|
Patel HB, Leoni G, Melendez TM, Sampaio ALF, Perretti M. Melanocortin Control of Cell Trafficking in Vascular Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:88-106. [DOI: 10.1007/978-1-4419-6354-3_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Tanaka M, Suganami T, Sugita S, Shimoda Y, Kasahara M, Aoe S, Takeya M, Takeda S, Kamei Y, Ogawa Y. Role of central leptin signaling in renal macrophage infiltration. Endocr J 2010; 57:61-72. [PMID: 19851035 DOI: 10.1507/endocrj.k09e-296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monocytes/macrophages are key mediators of wound repair, tissue remodeling, and inflammation. However, the molecular mechanisms underlying macrophage recruitment to the site of inflammation is not fully understood. Leptin acts directly on the hypothalamus, thereby regulating food intake and energy expenditure. The leptin receptor, a single transmembrane protein that belongs to the gp130 family of cytokine receptor superfamily, is expressed not only in the hypothalamus but in a variety of peripheral tissues, suggesting the role of leptin as a pro-inflammatory adipocytokine in peripheral tissues. Here, we show that deficiency of leptin signaling reduces renal macrophage infiltration after unilateral ureteral obstruction (UUO). Bone marrow transplantation studies using leptin signaling-deficient db/db mice revealed that leptin signaling in bone marrow cells may not play a major role in the UUO-induced renal macrophage infiltration. Interestingly, central leptin administration reverses the otherwise reduced UUO-induced renal macrophage infiltration in leptin-deficient ob/ob mice. This is effectively abolished by central co-administration of SHU9119, a melanocortin-3 receptor/melanocortin-4 receptor antagonist. This study demonstrates that central leptin administration in ob/ ob mice accelerates renal macrophage infiltration through the melanocortin system, thereby suggesting that the central nervous system, which is inherent to integrate information from throughout the organism, is able to control peripheral inflammation.
Collapse
Affiliation(s)
- Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Begriche K, Sutton GM, Fang J, Butler AA. The role of melanocortin neuronal pathways in circadian biology: a new homeostatic output involving melanocortin-3 receptors? Obes Rev 2009; 10 Suppl 2:14-24. [PMID: 19849798 PMCID: PMC4834055 DOI: 10.1111/j.1467-789x.2009.00662.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Obesity, insulin resistance and increased propensity for type 2 diabetes and cardiovascular disease result from an imbalance between energy intake and expenditure. The cloning of genes involved in energy homeostasis produced a simple feedback model for the homeostatic regulation of adipose mass. Serum leptin secreted from adipocytes signals nutrient sufficiency, curbing appetite and supporting energy expenditure. A rapid decline in leptin during nutrient scarcity instigates adaptive mechanisms, including increased appetite and reduced energy expenditure. Hypothalamic melanocortin neurons are important mediators of this response, integrating inputs of energy status from leptin with other peripheral signals. While this feedback response prolongs survival during fasting, other mechanisms allowing the prediction of nutrient availability also confer a selective advantage. This adaptation has been commonly studied in rodents using restricted feeding paradigms constraining food intake to limited periods at 24-h intervals. Restricted feeding rapidly elicits rhythmic bouts of activity and wakefulness anticipating food presentation. While the response exhibits features suggesting a clock-like mechanism, the neuromolecular mechanisms governing expression of food anticipatory behaviours are poorly understood. Here we discuss a model whereby melanocortin neurons regulating the homeostatic adaptation to variable caloric availability also regulate inputs into neural networks governing anticipatory rhythms in wakefulness, activity and metabolism.
Collapse
Affiliation(s)
- K Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
40
|
Kumar KG, Sutton GM, Dong JZ, Roubert P, Plas P, Halem HA, Culler MD, Yang H, Dixit VD, Butler AA. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides 2009; 30:1892-900. [PMID: 19646498 PMCID: PMC2755620 DOI: 10.1016/j.peptides.2009.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 12/20/2022]
Abstract
Melanocortin receptor agonists act in the brain to regulate food intake and body weight and, independently of these actions, affect insulin sensitivity. These experiments investigated the function of novel non-selective melanocortin receptor agonists (BIM-22493, BIM-22511) that cross the blood-brain barrier when administered peripherally. Treatment of diet induced obese C57BL/6J (B6) mice with melanocortin agonists administered peripherally improved obesity, hyperinsulinemia (approximately 50%) and fatty liver disease. Specificity of function was determined using B6 melanocortin-3 and melanocortin-4 receptor knockout mice (MC3RKO, MC4RKO). Chow fed MC4RKO but not MC3RKO used for these tests exhibited obesity, hyperinsulinemia and severe hepatosteatosis associated with increased expression of insulin-stimulated genes involved in lipogenesis. Reduced food intake associated with acute BIM-22493 treatment, and weight loss associated with 14 days of treatment with BIM-22511, required functional MC4R but not MC3R. However, while 14 days of treatment with BIM-22511 did not affect body weight and even increased cumulative food intake in MC4RKO, a significant reduction (approximately 50%) in fasting insulin was still observed. Despite lowering insulin, chronic treatment with BIM-22511 did not improve hepatosteatosis in MC4RKO, and did not affect hepatic lipogenic gene expression. Together, these results demonstrate that peripherally administered melanocortin receptor agonists regulate body weight, liver metabolism and glucose homeostasis through independent pathways. MC4R are necessary for melanocortin agonist-induced weight loss and improvements in liver metabolism, but are not required for improvements in hyperinsulinemia. Agonists with activity at MC4R improve glucose homeostasis at least partially by causing weight loss, however other melanocortin receptors may have potential for treating aberrations in glucose homeostasis associated with obesity.
Collapse
MESH Headings
- Animals
- Diet
- Eating
- Energy Metabolism
- Female
- Glucose/metabolism
- Humans
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Weight Loss
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- K. Ganesh Kumar
- Neuropeptides Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Gregory M. Sutton
- Neuropeptides Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jesse Z. Dong
- Biomeasure Incorporated, IPSEN, Milford, MA 01757, USA
| | | | | | | | | | - Hyunwon Yang
- Laboratory of Neuroendocrine Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Vishwa D. Dixit
- Laboratory of Neuroendocrine Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Andrew A. Butler
- Neuropeptides Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| |
Collapse
|
41
|
Millward CA, Burrage LC, Shao H, Sinasac DS, Kawasoe JH, Hill-Baskin AE, Ernest SR, Gornicka A, Hsieh CW, Pisano S, Nadeau JH, Croniger CM. Genetic factors for resistance to diet-induced obesity and associated metabolic traits on mouse chromosome 17. Mamm Genome 2009; 20:71-82. [PMID: 19137372 PMCID: PMC3831881 DOI: 10.1007/s00335-008-9165-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/02/2008] [Indexed: 01/01/2023]
Abstract
Obesity is associated with increased susceptibility to dyslipidemia, insulin resistance, and hypertension, a combination of traits that comprise the traditional definition of the metabolic syndrome. Recent evidence suggests that obesity is also associated with the development of nonalcoholic fatty liver disease (NAFLD). Despite the high prevalence of obesity and its related conditions, their etiologies and pathophysiology remains unknown. Both genetic and environmental factors contribute to the development of obesity and NAFLD. Previous genetic analysis of high-fat, diet-induced obesity in C57BL/6J (B6) and A/J male mice using a panel of B6-Chr(A/J)/NaJ chromosome substitution strains (CSSs) demonstrated that 17 CSSs conferred resistance to high-fat, diet-induced obesity. One of these CSS strains, CSS-17, which is homosomic for A/J-derived chromosome 17, was analyzed further and found to be resistant to diet-induced steatosis. In the current study we generated seven congenic strains derived from CCS-17, fed them either a high-fat, simple-carbohydrate (HFSC) or low-fat, simple-carbohydrate (LFSC) diet for 16 weeks and then analyzed body weight and related traits. From this study we identified several quantitative trait loci (QTLs). On a HFSC diet, Obrq13 protects against diet-induced obesity, steatosis, and elevated fasting insulin and glucose levels. On the LFSC diet, Obrq13 confers lower hepatic triglycerides, suggesting that this QTL regulates liver triglycerides regardless of diet. Obrq15 protects against diet-induced obesity and steatosis on the HFSC diet, and Obrq14 confers increased final body weight and results in steatosis and insulin resistance on the HFSC diet. In addition, on the LFSC diet, Obrq 16 confers decreased hepatic triglycerides and Obrq17 confers lower plasma triglycerides on the LFSC diet. These congenic strains provide mouse models to identify genes and metabolic pathways that are involved in the development of NAFLD and aspects of diet-induced metabolic syndrome.
Collapse
Affiliation(s)
- Carrie A. Millward
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Lindsay C. Burrage
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Haifeng Shao
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - David S. Sinasac
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jean H. Kawasoe
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Annie E. Hill-Baskin
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Sheila R. Ernest
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Aga Gornicka
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Chang-Wen Hsieh
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Sorana Pisano
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Joseph H. Nadeau
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Colleen M. Croniger
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| |
Collapse
|
42
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH. The metabolic syndrome. Endocr Rev 2008; 29:777-822. [PMID: 18971485 PMCID: PMC5393149 DOI: 10.1210/er.2008-0024] [Citation(s) in RCA: 1335] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The "metabolic syndrome" (MetS) is a clustering of components that reflect overnutrition, sedentary lifestyles, and resultant excess adiposity. The MetS includes the clustering of abdominal obesity, insulin resistance, dyslipidemia, and elevated blood pressure and is associated with other comorbidities including the prothrombotic state, proinflammatory state, nonalcoholic fatty liver disease, and reproductive disorders. Because the MetS is a cluster of different conditions, and not a single disease, the development of multiple concurrent definitions has resulted. The prevalence of the MetS is increasing to epidemic proportions not only in the United States and the remainder of the urbanized world but also in developing nations. Most studies show that the MetS is associated with an approximate doubling of cardiovascular disease risk and a 5-fold increased risk for incident type 2 diabetes mellitus. Although it is unclear whether there is a unifying pathophysiological mechanism resulting in the MetS, abdominal adiposity and insulin resistance appear to be central to the MetS and its individual components. Lifestyle modification and weight loss should, therefore, be at the core of treating or preventing the MetS and its components. In addition, there is a general consensus that other cardiac risk factors should be aggressively managed in individuals with the MetS. Finally, in 2008 the MetS is an evolving concept that continues to be data driven and evidence based with revisions forthcoming.
Collapse
Affiliation(s)
- Marc-Andre Cornier
- University of Colorado Denver, Division of Endocrinology, Metabolism, and Diabetes, Mail Stop 8106, 12801 East 17 Avenue, Room 7103, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sutton GM, Perez-Tilve D, Nogueiras R, Fang J, Kim JK, Cone RD, Gimble JM, Tschöp MH, Butler AA. The melanocortin-3 receptor is required for entrainment to meal intake. J Neurosci 2008; 28:12946-55. [PMID: 19036988 PMCID: PMC2613653 DOI: 10.1523/jneurosci.3615-08.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/19/2008] [Accepted: 10/14/2008] [Indexed: 11/21/2022] Open
Abstract
Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other hypothalamic structures. Here, we report that the melanocortin system, which resides in hypothalamic structures required for food entrainment, is required for expression of food entrainable rhythms. Food anticipatory activity was assessed in wild-type (WT) and melanocortin-3 receptor-deficient (Mc3r-/-) C57BL/J mice by wheel running, spontaneous locomotory movement, and measurement of wakefulness. WT mice housed in wheel cages subject to RF exhibited increased wheel activity during the 2 h preceding meal presentation, which corresponded with an increase in wakefulness around meal time and reduced wakefulness during the dark. WT mice also exhibited increased x- and z-movements centered around food initiation. The activity-based responses to RF were significantly impaired in mice lacking Mc3r. RF also failed to increase wakefulness in the 2 h before food presentation in Mc3r-/- mice. Food entrainment requires expression of Neuronal PAS domain 2 (Npas2) and Period2 (Per2) genes, components of the transcriptional machinery maintaining a clock rhythm. Analysis of cortical gene expression revealed severe abnormalities in rhythmic expression of clock genes (Bmal1, Npas2, Per2) under ad libitum and RF conditions. In summary, Mc3r are required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for normal regulation of cortical clock function.
Collapse
Affiliation(s)
| | - Diego Perez-Tilve
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Ruben Nogueiras
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- Department of Psychiatry, Obesity Research Centre, University of Cincinnati, Cincinnati, Ohio 45226
| | | | - Jason K. Kim
- Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Roger D. Cone
- Center for the Study of Weight Regulation and Associated Disorders and the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Jeffrey M. Gimble
- Clinical Nutrition Research Unit, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - Matthias H. Tschöp
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- Department of Psychiatry, Obesity Research Centre, University of Cincinnati, Cincinnati, Ohio 45226
| | - Andrew A. Butler
- Neuropeptides Laboratory
- Clinical Nutrition Research Unit, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| |
Collapse
|
45
|
Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 2008; 8:301-9. [PMID: 18840360 PMCID: PMC2630775 DOI: 10.1016/j.cmet.2008.08.015] [Citation(s) in RCA: 658] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/13/2008] [Accepted: 08/21/2008] [Indexed: 12/16/2022]
Abstract
Obese adipose tissue is characterized by infiltration of macrophages. We and others recently showed that a specific subset of macrophages is recruited to obese adipose and muscle tissue. This subset expresses CD11c and produces high levels of proinflammatory cytokines that are linked to the development of obesity-associated insulin resistance. Here, we used a conditional cell ablation system, based on transgenic expression of the diphtheria toxin receptor under the control of the CD11c promoter, to study the effects of depletion of CD11c+ cells in obese mouse models. Our results show that CD11c+ cell depletion results in rapid normalization of insulin sensitivity. Furthermore, CD11c+ cell ablation leads to a marked decrease in inflammatory markers, both locally and systemically, as reflected by gene expression and protein levels. Together, these results indicate that these CD11c+ cells are a potential therapeutic target for treatment of obesity-related insulin resistance and type II diabetes.
Collapse
Affiliation(s)
- David Patsouris
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ping-Ping Li
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Divya Thapar
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Jerrold M. Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jaap G. Neels
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
46
|
Leoni G, Patel HB, Sampaio ALF, Gavins FNE, Murray JF, Grieco P, Getting SJ, Perretti M. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion. FASEB J 2008; 22:4228-38. [PMID: 18757499 PMCID: PMC2700033 DOI: 10.1096/fj.08-113886] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The existence of anti-inflammatory circuits centered on melanocortin receptors (MCRs) has been supported by the inhibitory properties displayed by melanocortin peptides in models of inflammation and tissue injury. Here we addressed the pathophysiological effect that one MCR, MCR type 3 (MC3R), might have on vascular inflammation. After occlusion (35 min) and reopening of the superior mesenteric artery, MC3R-null mice displayed a higher degree of plasma extravasation (45 min postreperfusion) and cell adhesion and emigration (90 min postreperfusion). These cellular alterations were complemented by higher expression of mesenteric tissue CCL2 and CXCL1 (mRNA and protein) and myeloperoxydase, as compared with wild-type animals. MC1R and MC3R mRNA and protein were both expressed in the inflamed mesenteric tissue; however, no changes in vascular responses were observed in a mouse colony bearing an inactive MC1R. Pharmacological treatment of animals with a selective MC3R agonist ([d-Trp8]-γ-melanocyte-stimulating hormone; 10 μg i.v.) produced marked attenuation of cell adhesion, emigration, and chemokine generation; such effects were absent in MC3R-null mice. These new data reveal the existence of a tonic inhibitory signal provided by MC3R in the mesenteric microcirculation of the mouse, acting to down-regulate cell trafficking and local mediator generation.—Leoni, G., Patel, H. B., Sampaio, A. L. F., Gavins, F. N. E., Murray, J. F., Grieco, P., Getting, S. J., Perretti, M. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion.
Collapse
Affiliation(s)
- Giovanna Leoni
- William Harvey Research Institute, Barts and The London School of Medicine, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | | | |
Collapse
|