1
|
Nied E, Simonneaux M, Simonneaux V. The ticking clock sets the pace for female fertility. ANNALES D'ENDOCRINOLOGIE 2025; 86:101785. [PMID: 40339688 DOI: 10.1016/j.ando.2025.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
At a time when an increasing number of men and women face fertility issues, it is necessary to understand the basic mechanisms involved in mammalian reproductive activity in order to propose adapted therapeutic tools. This review describes how endogenous circadian clocks take part in the timing of reproductive cycles in female mammals and, consequently, how exposure to circadian disruption may impair female fertility. In female mammals, the master circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), uses a vasopressinergic output to knock on preoptic kisspeptin (Kp) neurons each day at the onset of the active period. Kp is a potent activator of neurons producing the gonadotropin-releasing hormone (GnRH) controlling the release of the pituitary gonadotropins luteinizing (LH) and follicle-stimulating (FSH) hormones, which in turn promote ovarian gameto- and steroido-genesis. Estradiol, produced as oocytes mature, exerts positive feedback on Kp neurons. This dual control of Kp neuronal activity by the clock-driven vasopressin output and the elevated circulating estradiol allows a large increase in GnRH-induced LH release at the onset of the waking period, at the end of the follicular phase, triggering the release of mature oocytes. Additionally, different parts of the reproductive axis also host secondary circadian clocks that participate in the daily and ovarian regulation of female reproductive cycles. Different experiments revealed the functional significance of the circadian regulation of female reproduction. Indeed, exposure of female rodents to different protocols of circadian disruption impairs estrous cycle robustness, LH surge timing, and gestational success. Additionally, epidemiological studies indicate that women working non-standard schedules face increased risks of reproductive issues. Therefore, when women seek medical assistance for infertility, lifestyle factors, including work schedule organization, should be assessed. Chronotherapeutic interventions could then be considered to enhance the robustness of female reproductive cycles and, as a result, improve their reproductive health.
Collapse
Affiliation(s)
- Elisa Nied
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Marine Simonneaux
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Valérie Simonneaux
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 8 allée du Général Rouvillois, 67000 Strasbourg, France.
| |
Collapse
|
2
|
Le DC, Ngo MHT, Kuo YC, Chen SH, Lin CY, Ling TY, Pham QTT, Au HK, Myung J, Huang YH. Secretome from estrogen-responding human placenta-derived mesenchymal stem cells rescues ovarian function and circadian rhythm in mice with cyclophosphamide-induced primary ovarian insufficiency. J Biomed Sci 2024; 31:95. [PMID: 39390588 PMCID: PMC11468397 DOI: 10.1186/s12929-024-01085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) is an early decline in ovarian function that leads to ovarian failure. Conventional treatments for POI are inadequate, and treatments based on mesenchymal stem cells (MSCs) have emerged as an option. However, the lack of consideration of the estrogen niche in ovarian tissue significantly reduces the therapeutic efficacy, with an unclear mechanism in the MSCs in POI treatment. Furthermore, the disruption of circadian rhythm associated with POI has not been previously addressed. METHODS Conditioned medium (CM) and estradiol-conditioned medium (E2-CM) were generated from estrogen receptor positive MSCs (ER+pcMSCs). Chemotherapy-induced POI models were established using C57BL/6 mice (in vivo) and KGN cells (in vitro) treated with cyclophosphamide (CTX) or 4-hydroperoxycyclophosphamide (4-OOH-CP). Gene/protein expressions were detected using RT-qPCR, Western blotting, and immunohistochemistry assays. Locomotor activity was monitored for behavioral circadian rhythmicity. Cytokine arrays and miRNA analysis were conducted to analyze potential factors within CM/E2-CM. RESULTS The secretome of ER+pcMSCs (CM and E2-CM) significantly reduced the CTX-induced defects in ovarian folliculogenesis and circadian rhythm. CM/E2-CM also reduced granulosa cell apoptosis and rescued angiogenesis in POI ovarian tissues. E2-CM had a more favorable effect than the CM. Notably, ER+pcMSC secretome restored CTX-induced circadian rhythm defects, including the gene expressions associated with the ovarian circadian clock (e.g., Rora, E4bp4, Rev-erbα, Per2 and Dbp) and locomotor activity. Additionally, the cytokine array analysis revealed a significant increase in cytokines and growth factors associated with immunomodulation and angiogenesis, including angiogenin. Neutralizing the angiogenin in CM/E2-CM significantly reduced its ability to promote HUVEC tube formation in vitro. Exosomal miRNA analysis revealed the miRNAs involved in targeting the genes associated with POI rescue (PTEN and PDCD4), apoptosis (caspase-3, BIM), estrogen synthesis (CYP19A1), ovarian clock regulation (E4BP4, REV-ERBα) and fibrosis (COL1A1). CONCLUSION This study is the first to demonstrate that, in considering the estrogen niche in ovarian tissue, an estrogen-priming ER+pcMSC secretome achieved ovarian regeneration and restored the circadian rhythm in a CTX-induced POI mouse model. The potential factors involved include angiogenin and exosomal miRNAs in the ER+pcMSC secretome. These findings offer insights into potential stem cell therapies for chemotherapy-induced POI and circadian rhythm disruption.
Collapse
Affiliation(s)
- Duy-Cuong Le
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Laboratory, Vinmec International Hospital, Minh Khai Street, Hai Ba Trung, Hanoi, Vietnam
| | - Mai-Huong T Ngo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Fishery Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 10617, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Quoc Thao Trang Pham
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Heng-Kien Au
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 11042, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11042, Taiwan.
| | - Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Wuxing Street, Taipei, 11031, Taiwan.
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11042, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Chen R, Qin Y, Du J, Liu J, Dai S, Lei M, Zhu H. Circadian clock gene BMAL1 regulates STAR expression in goose ovarian preovulatory granulosa cells. Poult Sci 2023; 102:103159. [PMID: 37871489 PMCID: PMC10598734 DOI: 10.1016/j.psj.2023.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
The ovarian circadian clock plays a regulatory role in the avian ovulation-oviposition cycle. However, little is known regarding the ovarian circadian clock of geese. In this study, we investigated rhythmic changes in clock genes over a 48-h period and identified potential clock-controlled genes involved in progesterone synthesis in goose ovarian preovulatory granulosa cells. The results showed that BMAL1, CRY1, and CRY2, as well as 4 genes (LHR, STAR, CYP11A1, and HSD3B) involved in progesterone synthesis exhibited rhythmic expression patterns in goose ovarian preovulatory granulosa cells over a 48-h period. Knockdown of BMAL1 decreased the progesterone concentration and downregulated STAR mRNA and protein levels in goose ovarian preovulatory granulosa cells. Overexpression of BMAL1 increased the progesterone concentration and upregulated the STAR mRNA level in goose ovarian preovulatory granulosa cells. Moreover, we demonstrated that the BMAL1/CLOCK complex activated the transcription of goose STAR gene by binding to an E-box motif. These results suggest that the circadian clock is involved in the regulation of progesterone synthesis in goose ovarian preovulatory granulosa cells by orchestrating the transcription of steroidogenesis-related genes.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yifei Qin
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Jie Liu
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shudi Dai
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mingming Lei
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huanxi Zhu
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
6
|
Ono M, Ando H, Daikoku T, Fujiwara T, Mieda M, Mizumoto Y, Iizuka T, Kagami K, Hosono T, Nomura S, Toyoda N, Sekizuka-Kagami N, Maida Y, Kuji N, Nishi H, Fujiwara H. The Circadian Clock, Nutritional Signals and Reproduction: A Close Relationship. Int J Mol Sci 2023; 24:ijms24021545. [PMID: 36675058 PMCID: PMC9865912 DOI: 10.3390/ijms24021545] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The circadian rhythm, which is necessary for reproduction, is controlled by clock genes. In the mouse uterus, the oscillation of the circadian clock gene has been observed. The transcription of the core clock gene period (Per) and cryptochrome (Cry) is activated by the heterodimer of the transcription factor circadian locomotor output cycles kaput (Clock) and brain and muscle Arnt-like protein-1 (Bmal1). By binding to E-box sequences in the promoters of Per1/2 and Cry1/2 genes, the CLOCK-BMAL1 heterodimer promotes the transcription of these genes. Per1/2 and Cry1/2 form a complex with the Clock/Bmal1 heterodimer and inactivate its transcriptional activities. Endometrial BMAL1 expression levels are lower in human recurrent-miscarriage sufferers. Additionally, it was shown that the presence of BMAL1-depleted decidual cells prevents trophoblast invasion, highlighting the importance of the endometrial clock throughout pregnancy. It is widely known that hormone synthesis is disturbed and sterility develops in Bmal1-deficient mice. Recently, we discovered that animals with uterus-specific Bmal1 loss also had poor placental development, and these mice also had intrauterine fetal death. Furthermore, it was shown that time-restricted feeding controlled the uterine clock's circadian rhythm. The uterine clock system may be a possibility for pregnancy complications, according to these results. We summarize the most recent research on the close connection between the circadian clock and reproduction in this review.
Collapse
Affiliation(s)
- Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Correspondence: ; Tel.: +81-3-3342-6111
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takiko Daikoku
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto 606-0848, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Natsumi Toyoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naomi Sekizuka-Kagami
- Department of Nursing, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshiko Maida
- Department of Nursing, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naoaki Kuji
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
7
|
Zhang J, Zhao L, Li Y, Dong H, Zhang H, Zhang Y, Ma T, Yang L, Gao D, Wang X, Jiang H, Li C, Wang A, Jin Y, Chen H. Circadian clock regulates granulosa cell autophagy through NR1D1-mediated inhibition of ATG5. Am J Physiol Cell Physiol 2021; 322:C231-C245. [PMID: 34936504 DOI: 10.1152/ajpcell.00267.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy of granulosa cells (GCs) is involved in follicular atresia, which occurs repeatedly during the ovarian development cycle. Several circadian clock genes are rhythmically expressed in both rodent ovarian tissues and GCs. Nuclear receptor subfamily 1 group D member 1 (NR1D1), an important component of the circadian clock system, is involved in the autophagy process through the regulation of autophagy-related genes. However, there are no reports illustrating the role of the circadian clock system in mouse GC autophagy. In the present study, we found that core circadian clock genes (Bmal1, Per2, Nr1d1, and Dbp) and an autophagy-related gene (Atg5) exhibited rhythmic expression patterns across 24 h in mouse ovaries and primary GCs. Treatment with SR9009, an agonist of NR1D1, significantly reduced the expression of Bmal1, Per2, and Dbp in mouse GCs. ATG5 expression was significantly attenuated by SR9009 treatment in mouse GCs. Conversely, Nr1d1 knockdown increased ATG5 expression in mouse GCs. Decreased NR1D1 expression at both the mRNA and protein levels was detected in the ovaries of Bmal1-/- mice, along with elevated expression of ATG5. Dual-luciferase reporter assay and electrophoretic mobility shift assay showed that NR1D1 inhibited Atg5 transcription by binding to two putative retinoic acid-related orphan receptor response elements within the promoter. In addition, rapamycin-induced autophagy and ATG5 expression were partially reversed by SR9009 treatment in mouse GCs. Taken together, our current data demonstrated that the circadian clock regulates GC autophagy through NR1D1-mediated inhibition of ATG5 expression, and thus, plays a role in maintaining autophagy homeostasis in GCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Wang L, Li J, Zhang L, Shi S, Zhou X, Hu Y, Gao L, Yang G, Pang W, Chen H, Zhao L, Chu G, Cai C. NR1D1 targeting CYP19A1 inhibits estrogen synthesis in ovarian granulosa cells. Theriogenology 2021; 180:17-29. [PMID: 34933195 DOI: 10.1016/j.theriogenology.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
The circadian system performs an important role in mammalian reproduction with significant effects on hormone secretion. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor in the circadian system and affects granulosa cells (GCs), but how it regulates estrogen synthesis has not been clarified. We investigated the effect of NR1D1 on estrogen synthesis and found that NR1D1 was highly expressed in GCs, mainly in cell nuclei. Additionally, the expression of NR1D1 and estrogen synthesis key genes CYP19A1, CYP11A1 and StAR showed rhythmic changes in porcine ovarian GCs. Activation of NR1D1 enhances its ability to inhibit the transcriptional activity of CYP19A1 by binding to the RORE on the CYP19A1 promoter, resulting in a decrease in estradiol content. Interference with NR1D1 can eliminate the transcriptional inhibition of CYP19A1 and promote the synthesis of estradiol. The results suggest that the hormone secretion of the ovary itself is also regulated by the biological clock, and any factors that affect the circadian rhythm can affect the endocrine and reproductive performance of sows, so the natural rhythm of sows should be maintained in production.
Collapse
Affiliation(s)
- Liguang Wang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Jingjing Li
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lutong Zhang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Shengjie Shi
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Xiaoge Zhou
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Yamei Hu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Wang F, Xie N, Wu Y, Zhang Q, Zhu Y, Dai M, Zhou J, Pan J, Tang M, Cheng Q, Shi B, Guo Q, Li X, Xie L, Wang B, Yang D, Weng Q, Guo L, Ye J, Pan M, Zhang S, Zhou H, Zhen C, Liu P, Ning K, Brackenridge L, Hardiman PJ, Qu F. Association between circadian rhythm disruption and polycystic ovary syndrome. Fertil Steril 2020; 115:771-781. [PMID: 33358334 DOI: 10.1016/j.fertnstert.2020.08.1425] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the association of circadian rhythm disruption with polycystic ovary syndrome (PCOS) and the potential underlying mechanism in ovarian granulosa cells (GCs). DESIGN Multicenter questionnaire-based survey, in vivo and ex vivo studies. SETTING Twelve hospitals in China, animal research center, and research laboratory of a women's hospital. PATIENTS/ANIMALS A total of 436 PCOS case subjects and 715 control subjects were recruited for the survey. In vivo and ex vivo studies were conducted in PCOS-model rats and on ovarian GCs collected from women with PCOS and control subjects. INTERVENTION(S) The PCOS rat model was established with the use of testosterone propionate. MAIN OUTCOME MEASURE(S) Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), RNA sequencing, rhythmicity analysis, functional enrichment analysis. RESULT(S) There was a significant correlation between night shift work and PCOS. PCOS-model rats presented distinct differences in the circadian variation of corticotropin-releasing hormone, adrenocorticotropic hormone, prolactin, and a 4-h phase delay in thyrotropic hormone levels. The motif enrichment analysis of ATAC-seq revealed the absence of clock-related transcription factors in specific peaks of PCOS group, and RNA sequencing ex vivo at various time points over 24 hours demonstrated the differential rhythmic expression patterns of women with PCOS. Kyoto Encyclopedia of Genes and Genomes analysis further highlighted metabolic dysfunction, including both carbohydrate and amino acid metabolism and the tricarboxylic acid cycle. CONCLUSION(S) There is a significant association of night shift work with PCOS, and genome-wide chronodisruption exists in ovarian GCs.
Collapse
Affiliation(s)
- Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Institute for Women's Health, University College London, London, United Kingdom
| | - Ningning Xie
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Wu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuhang Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Minchen Dai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China; Institute for Women's Health, University College London, London, United Kingdom
| | - Jiexue Pan
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mengling Tang
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Qi Cheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Biwei Shi
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qinyuan Guo
- Maternal and Child Healthcare Hospital of Liuzhou, Liuzhou, China
| | - Xinling Li
- Maternal and Child Healthcare Hospital of Liuzhou, Liuzhou, China
| | - Lifeng Xie
- Maternal and Child Healthcare Hospital of Liuzhou, Liuzhou, China
| | - Bing Wang
- Second Hospital of Jiaxing, Jiaxing, China
| | - Dongxia Yang
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Weng
- First People's Hospital of Yuhang District of Hangzhou, Hangzhou, China
| | - Lanzhong Guo
- Dongyang Women's and Children's Hospital, Dongyang, China
| | - Jisheng Ye
- Dongyang Women's and Children's Hospital, Dongyang, China
| | - Mingwo Pan
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuyi Zhang
- Baiyin City Maternity and Childcare Hospital, Baiyin, China
| | - Hua Zhou
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cailan Zhen
- People's Hospital of Lucheng, Lucheng, China
| | - Ping Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second Hospital, Chengdu, People's Republic of China
| | - Ke Ning
- Department of Social Science, Institute of Education, University College London, London, United Kingdom
| | - Lisa Brackenridge
- Institute for Women's Health, University College London, London, United Kingdom
| | - Paul J Hardiman
- Institute for Women's Health, University College London, London, United Kingdom
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Institute for Women's Health, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Leysen V, Prevot V. Reproductive Function During Chronodisruption: Model of Shiftwork in Rodents. Endocrinology 2020; 161:5898154. [PMID: 32853386 PMCID: PMC7640781 DOI: 10.1210/endocr/bqaa151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022]
Affiliation(s)
- Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Labex DistAlz, Lille, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Labex DistAlz, Lille, France
- Correspondence: Vincent E. Prevot, PhD, Inserm U1172, Lille, Cedex France. E-mail:
| |
Collapse
|
11
|
Ohara T, Nakamura TJ, Nakamura W, Tokuda IT. Modeling circadian regulation of ovulation timing: age-related disruption of estrous cyclicity. Sci Rep 2020; 10:16767. [PMID: 33028871 PMCID: PMC7541497 DOI: 10.1038/s41598-020-73669-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 11/21/2022] Open
Abstract
The circadian clocks within the hypothalamic–pituitary–gonadal axis control estrous cycles in female rodents. The suprachiasmatic nucleus (SCN), where the central clock is located, generates daily signals to trigger surge release of luteinizing hormone (LH), which in turn induces ovulation. It has been observed in aged rodents that output from the SCN such as neuronal firing activity is declined, and estrous cycles become irregular and finally stop. Circadian clock mutants display accelerated reproductive aging, suggesting the complicated interplay between the circadian system and the endocrine system. To investigate such circadian regulation of estrous cycles, we construct a mathematical model that describes dynamics of key hormones such as LH and of circadian clocks in the SCN and in the ovary, and simulate estrous cycles for various parameter values. Our simulation results demonstrate that reduction of the amplitude of the SCN signal, which is a symptom of aging, makes estrous cycles irregular. We also show that variation in the phase of the SCN signal and changes in the period of ovarian circadian clocks exacerbates the aging effect on estrous cyclicity. Our study suggests that misalignment between the SCN and ovarian circadian oscillations is one of the primary causes of the irregular estrous cycles.
Collapse
Affiliation(s)
- Takayuki Ohara
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Tokyo, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kyoto, Japan.
| |
Collapse
|
12
|
Bedont JL, Iascone DM, Sehgal A. The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annu Rev Cell Dev Biol 2020; 36:469-509. [PMID: 33021821 PMCID: PMC10826104 DOI: 10.1146/annurev-cellbio-100818-125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.
Collapse
Affiliation(s)
- Joseph Lewis Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Daniel Maxim Iascone
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- The Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Jiang Z, Zou K, Liu X, Gu H, Meng Y, Lin J, Shi W, Yu C, Jin L, Wang L, Liu X, Sheng J, Huang H, Ding G. Aging attenuates the ovarian circadian rhythm. J Assist Reprod Genet 2020; 38:33-40. [PMID: 32926298 PMCID: PMC7822988 DOI: 10.1007/s10815-020-01943-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/03/2020] [Indexed: 01/13/2023] Open
Abstract
Objective To study the effect of aging on ovarian circadian rhythm. Design Human and animal study. Setting University hospital and research laboratory. Patients/animals Human granulosa cells were obtained by follicular aspiration from women undergoing in vitro fertilization (IVF), and ovarian and liver tissues were obtained from female C57BL/6 mice. Intervention(s) None. Main outcome measure(s) Expression of circadian genes in young and older human granulosa cells and circadian rhythm in ovaries and livers of young and older mice. Result(s) All examined circadian clock genes in human granulosa cells showed a downward trend in expression with aging, and their mRNA expression levels were negatively correlated with age (P < 0.05). Older patients (≥ 40 years of age) had significantly reduced serum anti-Müllerian hormone (AMH) levels. Except for Rev-erbα, all other examined circadian clock genes were positively correlated with the level of AMH (P < 0.05). The circadian rhythm in the ovaries of older mice (8 months) was changed significantly relative to that in ovaries of young mice (12 weeks), although the circadian rhythm in the livers of older mice was basically consistent with that of young mice. Conclusion(s) Lower ovarian reserve in older women is partially due to ovarian circadian dysrhythmia as a result of aging. Electronic supplementary material The online version of this article (10.1007/s10815-020-01943-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziru Jiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Kexin Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xia Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hangchao Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yicong Meng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jing Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chuanjin Yu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Li Jin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Li Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xinmei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jianzhong Sheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - Guolian Ding
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
14
|
Bahougne T, Kretz M, Angelopoulou E, Jeandidier N, Simonneaux V. Impact of Circadian Disruption on Female Mice Reproductive Function. Endocrinology 2020; 161:5758065. [PMID: 32100021 DOI: 10.1210/endocr/bqaa028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
In female mammals, cycles in reproductive function depend both on the biological clock synchronized to the light/dark cycle and on a balance between the negative and positive feedbacks of estradiol, whose concentration varies during oocyte maturation. In women, studies report that chronodisruptive environments such as shiftwork may impair fertility and gestational success. The objective of this study was to explore the effects of shifted light/dark cycles on both the robustness of the estrous cycles and the timing of the preovulatory luteinizing hormone (LH) surge in female mice. When mice were exposed to a single 10-hour phase advance or 10-hour phase delay, the occurrence and timing of the LH surge and estrous cyclicity were recovered at the third estrous cycle. By contrast, when mice were exposed to chronic shifts (successive rotations of 10-hoursour phase advances for 3 days followed by 10-hour phase delays for 4 days), they exhibited a severely impaired reproductive activity. Most mice had no preovulatory LH surge at the beginning of the chronic shifts. Furthermore, the gestational success of mice exposed to chronic shifts was reduced, because the number of pups was 2 times lower in shifted than in control mice. In conclusion, this study reports that exposure of female mice to a single phase shift has minor reproductive effects, whereas exposure to chronically disrupted light/dark cycles markedly impairs the occurrence of the preovulatory LH surge, leading to reduced fertility.
Collapse
Affiliation(s)
- Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and University of Strasbourg, Strasbourg, France
- Service d'Endocrinologie et Diabète, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mathilda Kretz
- Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and University of Strasbourg, Strasbourg, France
- Service d'Endocrinologie et Diabète, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eleni Angelopoulou
- Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and University of Strasbourg, Strasbourg, France
| | - Nathalie Jeandidier
- Service d'Endocrinologie et Diabète, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and University of Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. J Neurosci Res 2020; 99:294-308. [PMID: 32128870 DOI: 10.1002/jnr.24606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Molecular and behavioral timekeeping is regulated by the circadian system which includes the brain's suprachiasmatic nucleus (SCN) that translates environmental light information into neuronal and endocrine signals aligning peripheral tissue rhythms to the time of day. Despite the critical role of circadian rhythms in fertility, it remains unexplored how circadian rhythms change within reproductive tissues during pregnancy. To determine how estrous cycle and pregnancy impact phase relationships of reproductive tissues, we used PER2::Luciferase (PER2::LUC) circadian reporter mice and determined the time of day of PER2::LUC peak (phase) in the SCN, pituitary, uterus, and ovary. The relationships between reproductive tissue PER2::LUC phases changed throughout the estrous cycle and late pregnancy and were accompanied by changes to PER2::LUC period in the SCN, uterus, and ovary. To determine if the phase relationship adaptations were driven by sex steroids, we asked if progesterone, a hormone involved in estrous cyclicity and pregnancy, could regulate Per2-luciferase expression. Using an in vitro transfection assay, we found that progesterone increased Per2-luciferase expression in immortalized SCN (SCN2.2) and arcuate nucleus (KTAR) cells. In addition, progesterone shortened PER2::LUC period in ex vivo uterine tissue recordings collected during pregnancy. As progesterone dramatically increases during pregnancy, we evaluated wheel-running patterns in PER2::LUC mice. We confirmed that activity levels decrease during pregnancy and found that activity onset was delayed. Although SCN, but not arcuate nucleus, PER2::LUC period changed during late pregnancy, onset of locomotor activity did not correlate with SCN or arcuate nucleus PER2::LUC period.
Collapse
Affiliation(s)
- Alexandra M Yaw
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Thu V Duong
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Silva CC, Domínguez R. Clock control of mammalian reproductive cycles: Looking beyond the pre-ovulatory surge of gonadotropins. Rev Endocr Metab Disord 2020; 21:149-163. [PMID: 31828563 DOI: 10.1007/s11154-019-09525-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several aspects of the physiology and behavior of organisms are expressed rhythmically with a 24-h periodicity and hence called circadian rhythms. Such rhythms are thought to be an adaptive response that allows to anticipate cyclic events in the environment. In mammals, the circadian system is a hierarchically organized net of endogenous oscillators driven by the hypothalamic suprachiasmatic nucleus (SCN). This system is synchronized by the environment throughout afferent pathways and in turn it organizes the activity of tissues by means of humoral secretions and neuronal projections. It has been shown that reproductive cycles are regulated by the circadian system. In rodents, the lesion of the SCN results on alterations of the estrous cycle, sexual behavior, tonic and phasic secretion of gonadotropin releasing hormone (GnRH)/gonadotropins and in the failure of ovulation. Most of the studies regarding the circadian control of reproduction, in particular of ovulation, have only focused on the participation of the SCN in the triggering of the proestrus surge of gonadotropins. Here we review aspects of the evolution and organization of the circadian system with particular focus on its relationship with the reproductive cycle of laboratory rodents. Experimental evidence of circadian control of neuroendocrine events indispensable for ovulation that occur prior to proestrus are discussed. In order to offer a working model of the circadian regulation of reproduction, its participation on aspects ranging from gamete production, neuroendocrine regulation, sexual behavior, mating coordination, pregnancy and deliver of the product should be assessed experimentally.
Collapse
Affiliation(s)
- Carlos-Camilo Silva
- Chronobiology of Reproduction Research Lab-UIBR, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Roberto Domínguez
- Chronobiology of Reproduction Research Lab-UIBR, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, Mexico.
| |
Collapse
|
17
|
Nicolaides NC, Chrousos GP. Sex differences in circadian endocrine rhythms: Clinical implications. Eur J Neurosci 2020; 52:2575-2585. [PMID: 32012359 DOI: 10.1111/ejn.14692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022]
Abstract
Organisms have developed a highly conserved and tightly regulated circadian system, to adjust their daily activities to day/night cycles. This system consists of a central clock, which is located in the hypothalamic suprachiasmatic nucleus, and the peripheral clocks that are ubiquitously expressed in all tissues. Both the central and peripheral clocks communicate with each other and achieve circadian oscillations of gene expression through transcriptional/translational loops mediated by clock transcription factors. It is worth mentioning that circadian non-transcriptional/non-translational rhythms also occur in non-nucleated cells. Interestingly, sex has been identified as an important factor influencing the activity of the circadian system. Indeed, several sex differences have been documented in the anatomy, physiology and pathophysiology that pertain to circadian rhythms. In this review, we present the historical milestones of understanding circadian rhythms, describe the central and peripheral components of the circadian clock system, discuss representative examples of sexual dimorphism of circadian rhythms, and present the most relevant clinical implications.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,UNESCO Chair on Adolescent Health Care, and University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,UNESCO Chair on Adolescent Health Care, and University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
18
|
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol 2020; 501:110655. [PMID: 31756424 PMCID: PMC6962569 DOI: 10.1016/j.mce.2019.110655] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Precise timing in hormone release from the hypothalamus, the pituitary and ovary is critical for fertility. Hormonal release patterns of the reproductive axis are regulated by a feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. The timing and rhythmicity of hormone release and tissue sensitivity in the HPG axis is regulated by circadian clocks located in the hypothalamus (suprachiasmatic nucleus, kisspeptin and GnRH neurons), the pituitary (gonadotrophs), the ovary (theca and granulosa cells), the testis (Leydig cells), as well as the uterus (endometrium and myometrium). The circadian clocks integrate environmental and physiological signals to produce cell endogenous rhythms generated by a transcriptional-translational feedback loop of transcription factors that are collectively called the "molecular clock". This review specifically focuses on the contribution of molecular clock transcription factors in regulating hormone release patterns in the reproductive axis, with an emphasis on the female reproductive system. Specifically, we discuss the contributions of circadian rhythms in distinct neuronal populations of the female hypothalamus, the molecular clock in the pituitary and its overall impact on female and male fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Pepe G, Locati M, Della Torre S, Mornata F, Cignarella A, Maggi A, Vegeto E. The estrogen-macrophage interplay in the homeostasis of the female reproductive tract. Hum Reprod Update 2019; 24:652-672. [PMID: 30256960 DOI: 10.1093/humupd/dmy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Estrogens are known to orchestrate reproductive events and to regulate the immune system during infections and following tissue damage. Recent findings suggest that, in the absence of any danger signal, estrogens trigger the physiological expansion and functional specialization of macrophages, which are immune cells that populate the female reproductive tract (FRT) and are increasingly being recognized to participate in tissue homeostasis beyond their immune activity against infections. Although estrogens are the only female gonadal hormones that directly target macrophages, a comprehensive view of this endocrine-immune communication and its involvement in the FRT is still missing. OBJECTIVE AND RATIONALE Recent accomplishments encourage a revision of the literature on the ability of macrophages to respond to estrogens and induce tissue-specific functions required for reproductive events, with the aim to envision macrophages as key players in FRT homeostasis and mediators of the regenerative and trophic actions of estrogens. SEARCH METHODS We conducted a systematic search using PubMed and Ovid for human, animal (rodents) and cellular studies published until 2018 on estrogen action in macrophages and the activity of these cells in the FRT. OUTCOMES Our search identified the remarkable ability of macrophages to activate biochemical processes in response to estrogens in cell culture experiments. The distribution at specific locations, interaction with selected cells and acquisition of distinct phenotypes of macrophages in the FRT, as well as the cyclic renewal of these properties at each ovarian cycle, demonstrate the involvement of these cells in the homeostasis of reproductive events. Moreover, current evidence suggests an association between estrogen-macrophage signaling and the generation of a tolerant and regenerative environment in the FRT, although a causative link is still missing. WIDER IMPLICATIONS Dysregulation of the functions and estrogen responsiveness of FRT macrophages may be involved in infertility and estrogen- and macrophage-dependent gynecological diseases, such as ovarian cancer and endometriosis. Thus, more research is needed on the physiology and pharmacological control of this endocrine-immune interplay.
Collapse
Affiliation(s)
- Giovanna Pepe
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Segrate, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi, Segrate, Italy
| | - Sara Della Torre
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Federica Mornata
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padua, Largo Meneghetti 2, Padua, Italy
| | - Adriana Maggi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, via Balzaretti, 9 Milan, Italy
| |
Collapse
|
20
|
Murphy BA. Circadian and Circannual Regulation in the Horse: Internal Timing in an Elite Athlete. J Equine Vet Sci 2019; 76:14-24. [PMID: 31084748 DOI: 10.1016/j.jevs.2019.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Biological rhythms evolved to provide temporal coordination across all tissues and organs and allow synchronization of physiology with predictable environmental cycles. Most important of these are circadian and circannual rhythms, primarily regulated via photoperiod signals from the retina. Understanding the nature of physiological rhythms in horses is crucially important for equine management. Predominantly, they have been removed from exposure to their natural environmental stimuli; the seasonally changing photoperiod, continuous foraging and feeding activity, social herd interactions, and the continuous low-intensity exercise of a grassland dweller. These have been replaced in many cases with confined indoor housing, regimental feeding and exercise times, social isolation, and exposure to lighting that is often erratic and does not come close to mimicking the spectral composition of sunlight. Man has further altered seasonal timing cues through the use of artificial lighting programs that impact reproductive behavior, breeding efficiency, and the development of youngstock. Understanding how these new environmental cues (some stronger and some weaker) impact the internal physiology of the horse in the context of the natural endogenous rhythms that evolved over millennia is key to helping to improve equine health, welfare, and performance, now and into the future. This review provides an overview of the field, highlights the recent discoveries related to biological timing in horses, and discusses the implications that these findings may have for the production and management of the elite equine athlete.
Collapse
Affiliation(s)
- Barbara A Murphy
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Simonneaux V. A Kiss to drive rhythms in reproduction. Eur J Neurosci 2018; 51:509-530. [DOI: 10.1111/ejn.14287] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et IntégrativesCNRSUniversité de Strasbourg Strasbourg France
| |
Collapse
|
22
|
Brzezinski A, Saada A, Miller H, Brzezinski-Sinai NA, Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J Ovarian Res 2018; 11:95. [PMID: 30463623 PMCID: PMC6247686 DOI: 10.1186/s13048-018-0471-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background It has been shown – mostly in animal models - that circadian clock genes are expressed in granulosa cells and in corpora luteum and might be essential for the ovulatory process and steroidogenesis. Objective We sought to investigate which circadian clock genes exist in human granulosa cells and whether their expression and activity decrease during aging of the ovary. Study design Human luteinized granulosa cells were isolated from young (age 18–33) and older (age 39–45) patients who underwent in-vitro fertilization treatment. Levels of clock genes expression were measured in these cells 36 h after human chorionic gonadotropin stimulation. Methods Human luteinized granulosa cells were isolated from follicular fluid during oocyte retrieval. The mRNA expression levels of the circadian genes CRY1, CRY2, PER1, PER2, CLOCK, ARNTL, ARNTL2, and NPAS2 were analyzed by quantitative polymerase chain reaction. Results We found that the circadian genes CRY1, CRY2, PER1, PER2, CLOCK, ARNTL, ARNTL2, and NPAS2, are expressed in cultured human luteinized granulosa cells. Among these genes, there was a general trend of decreased expression in cells from older women but it reached statistical significance only for PER1 and CLOCK genes (fold change of 0.27 ± 0.14; p = 0.03 and 0.29 ± 0.16; p = 0.05, respectively). Conclusions This preliminary report indicates that molecular circadian clock genes exist in human luteinized granulosa cells. There is a decreased expression of some of these genes in older women. This decline may partially explain the decreased fertility and steroidogenesis of reproductive aging.
Collapse
Affiliation(s)
- Amnon Brzezinski
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel.
| | - A Saada
- Department of Genetics & Metabolism, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - H Miller
- Department of Genetics & Metabolism, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - N A Brzezinski-Sinai
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - A Ben-Meir
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
23
|
Gotlieb N, Moeller J, Kriegsfeld LJ. Circadian Control of Neuroendocrine Function: Implications for Health and Disease. CURRENT OPINION IN PHYSIOLOGY 2018; 5:133-140. [PMID: 30957055 DOI: 10.1016/j.cophys.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The circadian timing system orchestrates daily rhythms in physiology and behavior via the suprachiasmatic nucleus (SCN), the master brain clock. Because endocrine secretions have far-reaching influence on the brain and periphery, circadian regulation of hormones is essential for normal functioning and disruptions to circadian timing (e.g., irregular sleep patterns, limited exposure to sunlight, jet lag, nighttime light exposure) have detrimental health consequences. Herein, we provide an overview of circadian timing in three major endocrine axes, the hypothalamo-pituitary-gonadal (HPG), hypothalamo-pituitary-adrenal (HPA) and hypothalamo-pituitary-thyroid (HPT) axes, and then consider the negative health consequences of circadian disruptions in each of these systems. For example, disruptions to HPG axis circadian timing lead to a host of negative reproductive outcomes such as irregular menstrual cycles, low sperm density and increased rates of miscarriages and infertility. Dysregulation of HPA axis timing is associated with obesity and metabolic disease, whereas disruptions to the HPT axis are associated with dysregulated metabolic gene rhythms in the heart. Together, this overview underscores the significance of circadian endocrine rhythms in normal health and disease prevention.
Collapse
Affiliation(s)
- Neta Gotlieb
- Department of Psychology, University of California, Berkeley, CA, 94720
| | - Jacob Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, CA 94720
| | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, 94720.,Graduate Group in Endocrinology, University of California, Berkeley, CA 94720.,The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720
| |
Collapse
|
24
|
Simonneaux V, Piet R. Neuroendocrine pathways driving daily rhythms in the hypothalamic pituitary gonadal axis of female rodents. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Chen M, Xu Y, Miao B, Zhao H, Gao J, Zhou C. Temporal effects of human chorionic gonadotropin on expression of the circadian genes and steroidogenesis-related genes in human luteinized granulosa cells. Gynecol Endocrinol 2017; 33:570-573. [PMID: 28277108 DOI: 10.1080/09513590.2017.1296423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE It has been shown in animal models that circadian clock exists in corpora luteum which is essential for maintaining pregnancy. However, it is unknown whether circadian clock exists in corpora luteum and its relation with steroidogenesis in human ovary. STUDY DESIGN Human luteinized granulosa cells from patients who underwent in vitro fertilization treatment were purified and cultured in vitro. Accumulation patterns of circadian gene and steroidogenesis-related gene mRNAs in human luteinized granulosa cells were observed during the 48 hours after treatment with human chorionic gonadotropin (hCG) by quantitative PCR. RESULTS We found that the circadian genes CLOCK, PER2, and BMAL1 were expressed in cultured human luteinized granulosa cells. Among these genes, only expression of PER2 displayed oscillating patterns with a 16-h period in these cells after stimulation by hCG. Expression of CLOCK and BMAL1 did not show significant oscillating patterns. Expression of the steroidal acute regulatory protein (STAR) gene showed an oscillating pattern that was similar to that of PER2. Expression of CYP11A1, HSD3B2, and CYP19A1 increased significantly after hCG stimulation; however, none of these genes displayed significant oscillating patterns. CONCLUSIONS Molecular circadian clock exists in human luteinized granulosa cells and may be related with steroidogenesis in human ovary.
Collapse
Affiliation(s)
- Minghui Chen
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Yanwen Xu
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Benyu Miao
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Hui Zhao
- b Department of Hepatic Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China
| | - Jun Gao
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Canquan Zhou
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| |
Collapse
|
26
|
Zhang Z, Lai S, Wang Y, Li L, Yin H, Wang Y, Zhao X, Li D, Yang M, Zhu Q. Rhythmic expression of circadian clock genes in the preovulatory ovarian follicles of the laying hen. PLoS One 2017; 12:e0179019. [PMID: 28604799 PMCID: PMC5467841 DOI: 10.1371/journal.pone.0179019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
The circadian clock is reported to play a role in the ovaries in a variety of vertebrate species, including the domestic hen. However, the ovary is an organ that changes daily, and the laying hen maintains a strict follicular hierarchy. The aim of this study was to examine the spatial-temporal expression of several known canonical clock genes in the granulosa and theca layers of six hierarchy follicles. We demonstrated that the granulosa cells (GCs) of the F1-F3 follicles harbored intrinsic oscillatory mechanisms in vivo. In addition, cultured granulosa cells (GCs) from F1 follicles exposed to luteinizing hormone (LH) synchronization displayed Per2 mRNA oscillations, whereas, the less mature GCs (F5 plus F6) displayed no circadian change in Per2 mRNA levels. Cultures containing follicle-stimulating hormone (FSH) combined with LH expressed levels of Per2 mRNA that were 2.5-fold higher than those in cultures with LH or FSH alone. These results show that there is spatial specificity in the localization of clock cells in hen preovulatory follicles. In addition, our results support the hypothesis that gonadotropins provide a cue for the development of the functional cellular clock in immature GCs.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Shuang Lai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yagang Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Liang Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Xiaoling Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
- * E-mail:
| |
Collapse
|
27
|
Yan L, Silver R. Neuroendocrine underpinnings of sex differences in circadian timing systems. J Steroid Biochem Mol Biol 2016; 160:118-26. [PMID: 26472554 PMCID: PMC4841755 DOI: 10.1016/j.jsbmb.2015.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
Abstract
There are compelling reasons to study the role of steroids and sex differences in the circadian timing system. A solid history of research demonstrates the ubiquity of circadian changes that impact virtually all behavioral and biological responses. Furthermore, steroid hormones can modulate every attribute of circadian responses including the period, amplitude and phase. Finally, desynchronization of circadian rhythmicity, and either enhancing or damping amplitude of various circadian responses can produce different effects in the sexes. Studies of the neuroendocrine underpinnings of circadian timing systems and underlying sex differences have paralleled the overall development of the field as a whole. Early experimental studies established the ubiquity of circadian rhythms by cataloging daily and seasonal changes in whole organism responses. The next generation of experiments demonstrated that daily changes are not a result of environmental synchronizing cues, and are internally orchestrated, and that these differ in the sexes. This work was followed by the revelation of molecular circadian rhythms within individual cells. At present, there is a proliferation of work on the consequences of these daily oscillations in health and in disease, and awareness that these may differ in the sexes. In the present discourse we describe the paradigms used to examine circadian oscillation, to characterize how these internal timing signals are synchronized to local environmental conditions, and how hormones of gonadal and/or adrenal origin modulate circadian responses. Evidence pointing to endocrinologically and genetically mediated sex differences in circadian timing systems can be seen at many levels of the neuroendocrine and endocrine systems, from the cell, the gland and organ, and to whole animal behavior, including sleep/wake or rest/activity cycles, responses to external stimuli, and responses to drugs. We review evidence indicating that the analysis of the circadian timing system is amenable to experimental analysis at many levels of the neuraxis, and on several different time scales, rendering it especially useful for the exploration of mechanisms associated with sex differences.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Rae Silver
- Psychology Department, Barnard College, New York, NY 10027, USA; Department of Psychology, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY 10032, USA
| |
Collapse
|
28
|
Mereness AL, Murphy ZC, Forrestel AC, Butler S, Ko C, Richards JS, Sellix MT. Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice. Endocrinology 2016; 157:913-27. [PMID: 26671182 PMCID: PMC5393362 DOI: 10.1210/en.2015-1645] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
Rhythmic events in female reproductive physiology, including ovulation, are tightly controlled by the circadian timing system. The molecular clock, a feedback loop oscillator of clock gene transcription factors, dictates rhythms of gene expression in the hypothalamo-pituitary-ovarian axis. Circadian disruption due to environmental factors (eg, shift work) or genetic manipulation of the clock has negative impacts on fertility. Although the central pacemaker in the suprachiasmatic nucleus classically regulates the timing of ovulation, we have shown that this rhythm also depends on phasic sensitivity to LH. We hypothesized that this rhythm relies on clock function in a specific cellular compartment of the ovarian follicle. To test this hypothesis we generated mice with deletion of the Bmal1 locus in ovarian granulosa cells (GCs) (Granulosa Cell Bmal1 KO; GCKO) or theca cells (TCs) (Theca Cell Bmal1 KO; TCKO). Reproductive cycles, preovulatory LH secretion, ovarian morphology and behavior were not grossly altered in GCKO or TCKO mice. We detected phasic sensitivity to LH in wild-type littermate control (LC) and GCKO mice but not TCKO mice. This decline in sensitivity to LH is coincident with impaired fertility and altered patterns of LH receptor (Lhcgr) mRNA abundance in the ovary of TCKO mice. These data suggest that the TC is a pacemaker that contributes to the timing and amplitude of ovulation by modulating phasic sensitivity to LH. The TC clock may play a critical role in circadian disruption-mediated reproductive pathology and could be a target for chronobiotic management of infertility due to environmental circadian disruption and/or hormone-dependent reprogramming in women.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- Animals
- Behavior, Animal
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Circadian Rhythm/genetics
- Cryptochromes/genetics
- Cryptochromes/metabolism
- Female
- Fertility/genetics
- Gene Expression
- Granulosa Cells/metabolism
- Infertility/genetics
- Luteinizing Hormone/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Ovarian Follicle/metabolism
- Ovary/anatomy & histology
- Ovulation/genetics
- Ovulation Induction
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Theca Cells/metabolism
Collapse
Affiliation(s)
- Amanda L Mereness
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Zachary C Murphy
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Andrew C Forrestel
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Susan Butler
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - CheMyong Ko
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael T Sellix
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
29
|
Chen H, Isayama K, Kumazawa M, Zhao L, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Integration of the nuclear receptor REV-ERBα linked with circadian oscillators in the expressions ofAlas1, Ppargc1a, andIl6genes in rat granulosa cells. Chronobiol Int 2015; 32:739-49. [DOI: 10.3109/07420528.2015.1042582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Chan KA, Bernal AB, Vickers MH, Gohir W, Petrik JJ, Sloboda DM. Early life exposure to undernutrition induces ER stress, apoptosis, and reduced vascularization in ovaries of adult rat offspring. Biol Reprod 2015; 92:110. [PMID: 25810471 DOI: 10.1095/biolreprod.114.124149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
Maternal nutritional restriction has been shown to induce impairments in a number of organ systems including the ovary. We have previously shown that maternal undernutrition induces fetal growth restriction and low birth weight, and results in an offspring ovarian phenotype characteristic of premature ovarian aging with reduced ovarian reserve. In the present study, we set out to investigate the underlying mechanisms that lead offspring of undernourished mothers to premature ovarian aging. Pregnant dams were randomized to 1) a standard diet throughout pregnancy and lactation (control), 2) a calorie-restricted (50% of control) diet during pregnancy, 3) a calorie-restricted (50% of control) diet during pregnancy and lactation, or 4) a calorie-restricted (50% of control) diet during lactation alone. The present study shows that early life undernutrition-induced reduction of adult ovarian follicles may be mediated by increased ovarian endoplasmic reticulum stress in a manner that increased follicular apoptosis but not autophagy. These changes were associated with a loss of ovarian vessel density and are consistent with an accelerated ovarian aging phenotype. Whether these changes are mediated specifically by a reduction in the local antioxidant environment is unclear, although our data suggest the possibility that ovarian melatonin may play a part in early life nutritional undernutrition and impaired offspring folliculogenesis.
Collapse
Affiliation(s)
- Kaitlyn A Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Angelica B Bernal
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, New Zealand
| | - Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jim J Petrik
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Mereness AL, Murphy ZC, Sellix MT. Developmental programming by androgen affects the circadian timing system in female mice. Biol Reprod 2015; 92:88. [PMID: 25695720 DOI: 10.1095/biolreprod.114.126409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 12/16/2022] Open
Abstract
Circadian clocks play essential roles in the timing of events in the mammalian hypothalamo-pituitary-ovarian (HPO) axis. The molecular oscillator driving these rhythms has been localized to tissues of the HPO axis. It has been suggested that synchrony among these oscillators is a feature of normal reproductive function. The impact of fertility disorders on clock function and the role of the clock in the etiology of endocrine pathology remain unknown. Polycystic ovarian syndrome (PCOS) is a particularly devastating fertility disorder, affecting 5%-10% of women at childbearing age with features including a polycystic ovary, anovulation, and elevated serum androgen. Approximately 40% of these women have metabolic syndrome, marked by hyperinsulinemia, dyslipidemia, and insulin resistance. It has been suggested that developmental exposure to excess androgen contributes to the etiology of fertility disorders, including PCOS. To better define the role of the timing system in these disorders, we determined the effects of androgen-dependent developmental programming on clock gene expression in tissues of the metabolic and HPO axes. Female PERIOD2::luciferase (PER2::LUC) mice were exposed to androgen (dihydrotestosterone [DHT]) in utero (Days 16-18 of gestation) or for 9-10 wk (DHT pellet) beginning at weaning (pubertal androgen excess [PAE]). As expected, both groups of androgen-treated mice had disrupted estrous cycles. Analysis of PER2::LUC expression in tissue explants revealed that excess androgen produced circadian misalignment via tissue-dependent effects on phase distribution. In vitro treatment with DHT differentially affected the period of PER2::LUC expression in tissue explants and granulosa cells, indicating that androgen has direct and tissue-specific effects on clock gene expression that may account for the effects of developmental programming on the timing system.
Collapse
Affiliation(s)
- Amanda L Mereness
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Zachary C Murphy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
32
|
Simonneaux V, Bahougne T. A Multi-Oscillatory Circadian System Times Female Reproduction. Front Endocrinol (Lausanne) 2015; 6:157. [PMID: 26539161 PMCID: PMC4611855 DOI: 10.3389/fendo.2015.00157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023] Open
Abstract
Rhythms in female reproduction are critical to insure that timing of ovulation coincides with oocyte maturation and optimal sexual arousal. This fine tuning of female reproduction involves both the estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei (SCN) as an indicator of the time of the day. Herein, we are providing an overview of the state of knowledge regarding the differential inhibitory and stimulatory effects of estradiol at different stages of the reproductive axis, and the mechanisms through which the two main neurotransmitters of the SCN, arginine vasopressin, and vasoactive intestinal peptide, convey daily time cues to the reproductive axis. In addition, we will report the most recent findings on the putative functions of peripheral clocks located throughout the reproductive axis [kisspeptin (Kp) neurons, gonadotropin-releasing hormone neurons, gonadotropic cells, the ovary, and the uterus]. This review will point to the critical position of the Kp neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock. Finally, given the critical role of the light/dark cycle in the synchronization of female reproduction, we will discuss the impact of circadian disruptions observed during shift-work conditions on female reproductive performance and fertility in both animal model and humans.
Collapse
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), Strasbourg, France
- *Correspondence: Valérie Simonneaux, Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), 5 rue Blaise Pascal, Strasbourg 67084, France,
| | - Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), Strasbourg, France
- Service d’Endocrinologie et Diabète, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Liu J, Cheng KM, Silversides FG. Recovery of fertility from adult ovarian tissue transplanted into week-old Japanese quail chicks. Reprod Fertil Dev 2015; 27:281-4. [DOI: 10.1071/rd13256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/30/2013] [Indexed: 01/21/2023] Open
Abstract
Fertility of cryopreserved ovarian tissue from immature chickens and Japanese quail has been recovered by transplantation. This is of special importance for non-mammalian vertebrates in which cryopreservation and in vitro maturation of oocytes are challenging because their oogenesis is characterised by vitellogenesis. This study tested whether fertility of adult quail ovarian tissue could be recovered by transplantation. Ovaries were isolated from mature Japanese quail hens, trimmed, cut into 3- to 4-mm2 pieces and transplanted into ovariectomised, week-old chicks. Recipients were administered an immunosuppressant for two weeks. Ten of 12 recipients survived until sexual maturity and seven laid eggs, but all stopped laying by 17 weeks of age. The age at first egg of recipients laying eggs (75.7 ± 4.2 days) was greater than that of untreated hens (51.8 ± 1.7 days) and egg production of recipients during the laying period (21.7 ± 5.7) was less than that of untreated hens (60.8 ± 3.5). Recipients were paired with males from the WB line for test mating. Only two hens laid eggs during the test period but both produced 100% donor-derived offspring. This research demonstrated that the reproductive potential of ovarian tissue from adult quail hens can be restored by transplantation.
Collapse
|
34
|
Abstract
Rhythmic events in the female reproductive system depend on the coordinated and synchronized activity of multiple neuroendocrine and endocrine tissues. This coordination is facilitated by the timing of gene expression and cellular physiology at each level of the hypothalamo-pituitary-ovarian (HPO) axis, including the basal hypothalamus and forebrain, the pituitary gland, and the ovary. Central to this pathway is the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) that, through its myriad outputs, provides a temporal framework for gonadotropin release and ovulation. The heart of the timing system, a transcription-based oscillator, imparts SCN pacemaker cells and a company of peripheral tissues with the capacity for daily oscillations of gene expression and cellular physiology. Although the SCN sits comfortably at the helm, peripheral oscillators (such as the ovary) have undefined but potentially critical roles. Each cell type of the ovary, including theca cells, granulosa cells, and oocytes, harbor a molecular clock implicated in the processes of follicular growth, steroid hormone synthesis, and ovulation. The ovarian clock is influenced by the reproductive cycle and diseases that perturb the cycle and/or follicular growth can disrupt the timing of clock gene expression in the ovary. Chronodisruption is known to negatively affect reproductive function and fertility in both rodent models and women exposed to shiftwork schedules. Thus, influencing clock function in the HPO axis with chronobiotics may represent a novel avenue for the treatment of common fertility disorders, particularly those resulting from chronic circadian disruption.
Collapse
Affiliation(s)
- Michael T. Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
35
|
Loh DH, Kuljis DA, Azuma L, Wu Y, Truong D, Wang HB, Colwell CS. Disrupted reproduction, estrous cycle, and circadian rhythms in female mice deficient in vasoactive intestinal peptide. J Biol Rhythms 2014; 29:355-69. [PMID: 25252712 DOI: 10.1177/0748730414549767] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The female reproductive cycle is gated by the circadian timing system and may be vulnerable to disruptions in the circadian system. Prior work suggests that vasoactive intestinal peptide (VIP)-expressing neurons in the suprachiasmatic nucleus (SCN) are one pathway by which the circadian clock can influence the estrous cycle, but the impact of the loss of this peptide on reproduction has not been assessed. In the present study, we first examine the impact of the genetic loss of the neuropeptide VIP on the reproductive success of female mice. Significantly, mutant females produce about half the offspring of their wild-type sisters even when mated to the same males. We also find that VIP-deficient females exhibit a disrupted estrous cycle; that is, ovulation occurs less frequently and results in the release of fewer oocytes compared with controls. Circadian rhythms of wheel-running activity are disrupted in the female mutant mice, as is the spontaneous electrical activity of dorsal SCN neurons. On a molecular level, the VIP-deficient SCN tissue exhibits lower amplitude oscillations with altered phase relationships between the SCN and peripheral oscillators as measured by PER2-driven bioluminescence. The simplest explanation of our data is that the loss of VIP results in a weakened SCN oscillator, which reduces the synchronization of the female circadian system. These results clarify one of the mechanisms by which disruption of the circadian system reduces female reproductive success.
Collapse
Affiliation(s)
- D H Loh
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - D A Kuljis
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California Department of Neurobiology, University of California-Los Angeles
| | - L Azuma
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - Y Wu
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - D Truong
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - H B Wang
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - C S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| |
Collapse
|
36
|
Amaral FG, Castrucci AM, Cipolla-Neto J, Poletini MO, Mendez N, Richter HG, Sellix MT. Environmental control of biological rhythms: effects on development, fertility and metabolism. J Neuroendocrinol 2014; 26:603-12. [PMID: 24617798 DOI: 10.1111/jne.12144] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/21/2022]
Abstract
Internal temporal organisation properly synchronised to the environment is crucial for health maintenance. This organisation is provided at the cellular level by the molecular clock, a macromolecular transcription-based oscillator formed by the clock and the clock-controlled genes that is present in both central and peripheral tissues. In mammals, melanopsin in light-sensitive retinal ganglion cells plays a considerable role in the synchronisation of the circadian timing system to the daily light/dark cycle. Melatonin, a hormone synthesised in the pineal gland exclusively at night and an output of the central clock, has a fundamental role in regulating/timing several physiological functions, including glucose homeostasis, insulin secretion and energy metabolism. As such, metabolism is severely impaired after a reduction in melatonin production. Furthermore, light pollution during the night and shift work schedules can abrogate melatonin synthesis and impair homeostasis. Chronodisruption during pregnancy has deleterious effects on the health of progeny, including metabolic, cardiovascular and cognitive dysfunction. Developmental programming by steroids or steroid-mimetic compounds also produces internal circadian disorganisation that may be a significant factor in the aetiology of fertility disorders such as polycystic ovary syndrome. Thus, both early and late in life, pernicious alterations of the endogenous temporal order by environmental factors can disrupt the homeostatic function of the circadian timing system, leading to pathophysiology and/or disease.
Collapse
Affiliation(s)
- F G Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Yoder JM, Brandeland M, Engeland WC. Phase-dependent resetting of the adrenal clock by ACTH in vitro. Am J Physiol Regul Integr Comp Physiol 2014; 306:R387-93. [PMID: 24477539 DOI: 10.1152/ajpregu.00519.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The adrenal cortex has a molecular clock that generates circadian rhythms in glucocorticoids, yet how the clock is synchronized to the external environment is unknown. Using mPER2::Luciferase (mPER2Luc) knockin mice, in which luciferase is rhythmically expressed under the control of the mouse Per2 clock gene, we hypothesized that ACTH transmits entrainment signals to the adrenal. Adrenal explants were administered ACTH at different phases of the mPER2Luc rhythm. Treatment with ACTH 1-39 produced a phase delay that was phase-dependent, with a maximum at circadian time (CT)18; ACTH did not alter the period or amplitude of the rhythm. Forskolin produced a parallel response, suggesting that the phase delay was cAMP-mediated. The response to ACTH was concentration-dependent and peptide-specific. Pulse administration (60 min) of ACTH 1-39 also produced phase delays restricted to late CTs. In contrast to ACTH 1-39, other ACTH fragments, including α-melanocyte-stimulating hormone, which do not activate the melanocortin 2 (MC2/ACTH) receptor, had no effect. The finding that ACTH in vitro phase delays the adrenal mPER2luc rhythm in a monophasic fashion argues for ACTH as a key resetter, but not the sole entrainer, of the adrenal clock.
Collapse
Affiliation(s)
- J Marina Yoder
- Department of Neuroscience, University of Minnesota, Minneapolis, Minneapolis
| | | | | |
Collapse
|
38
|
Nishide SY, Hashimoto K, Nishio T, Honma KI, Honma S. Organ-specific development characterizes circadian clock gene Per2 expression in rats. Am J Physiol Regul Integr Comp Physiol 2014; 306:R67-74. [DOI: 10.1152/ajpregu.00063.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To explore developmental changes in circadian organization of central and peripheral oscillators, circadian rhythms in clock gene expression were examined in 12 organs in transgenic rats carrying a bioluminescence reporter for Per2. Organ slices were obtained from different developmental stages starting at postnatal day 5 and tissue was cultured for more than 6 days. In addition, four organs were examined from embryonic day 20. Robust circadian rhythms in bioluminescence were detected in all organs examined. The circadian period in vitro was specific to each organ and remained essentially the same during development. The circadian peak phase on the first day of culture was significantly different not only among organs but also in the same organ. Three patterns in circadian phase were detected during development. Thus, during development, circadian phase did not change in the suprachiasmatic nucleus, adrenal gland, and liver, whereas delay shifts were seen in the pineal, lung, heart, kidney, spleen, thymus, and testis. Finally, circadian phase advanced at postnatal day 10–15 and subsequently delayed in skeletal muscle and stomach.Circadian amplitude also showed developmental changes in several organs. These findings indicate that the temporal orders of physiological functions of various organs change during development. Such age-dependent and organ-specific changes in the phase relationship among circadian clocks most likely reflect entrainment to organ-specific time cues at different developmental stages.
Collapse
Affiliation(s)
- Shin-ya Nishide
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Takuya Nishio
- Hokkaido University School of Medicine, Sapporo, Japan; and
| | - Ken-ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
39
|
Urlep Z, Rozman D. The Interplay between Circadian System, Cholesterol Synthesis, and Steroidogenesis Affects Various Aspects of Female Reproduction. Front Endocrinol (Lausanne) 2013; 4:111. [PMID: 24065951 PMCID: PMC3778439 DOI: 10.3389/fendo.2013.00111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/13/2013] [Indexed: 01/22/2023] Open
Abstract
Circadian aspect of reproduction has gained much attention in recent years. In mammals, it is very important that the timing of greatest sexual motivation is in line with the highest fertility. Peripheral clocks have been found to reside also in reproductive organs, such as the uterus and ovary. The timing signal from the suprachiasmatic nucleus is suggested to be transmitted via hormonal and neural mechanisms, and could thus mediate circadian expression of target genes in these organs. In turn, estrogens from the ovary have been found to signal back to the hypothalamus, completing the feedback loop. In this review we will focus on the interplay between clock and estrogens. Estradiol has been directly linked with expression of Per1 and Per2 in the uterus. CLOCK, on the other hand, has been shown to alter estradiol signaling. We also present the idea that cholesterol could play a vital role in the regulation of reproduction. Cholesterol synthesis itself is circadially regulated and has been found to interfere with steroidogenesis in the ovary on the molecular level. This review presents a systems view on how the interplay between circadian clock, steroidogenesis, and cholesterol synthesis affect various aspects of mammalian reproduction.
Collapse
Affiliation(s)
- Ziga Urlep
- Center for Functional Genomics and Bio-Chips, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Damjana Rozman, Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia e-mail:
| |
Collapse
|
40
|
Schwartz MD, Mong JA. Estradiol modulates recovery of REM sleep in a time-of-day-dependent manner. Am J Physiol Regul Integr Comp Physiol 2013; 305:R271-80. [PMID: 23678032 PMCID: PMC3743004 DOI: 10.1152/ajpregu.00474.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/06/2013] [Indexed: 11/22/2022]
Abstract
Ovarian hormones are thought to modulate sleep and fluctuations in the hormonal milieu are coincident with sleep complaints in women. In female rats, estradiol increases waking and suppresses sleep. In this study, we asked whether this effect is mediated via circadian or homeostatic regulatory mechanisms. Ovariectomized female rats received daily injections of estradiol benzoate (EB) or sesame oil that mimicked the rapid increase and subsequent decline of circulating estradiol at proestrus. In one experiment, animals were sleep deprived for 6 h starting at lights-on, so that recovery began in the mid-light phase; in the second experiment, animals were sleep deprived starting in the mid-light phase, so that recovery began at lights-off. EB suppressed baseline rapid eye movement (REM) and non-REM (NREM) sleep and increased waking in the dark phase. In both experiments, EB enhanced REM recovery in the light phase while suppressing it in the dark compared with oil; this effect was most pronounced in the first 6 h of recovery. By contrast, NREM recovery was largely unaffected by EB. In summary, EB enhanced waking and suppressed sleep, particularly REM sleep, in the dark under baseline and recovery conditions. These strong temporally dependent effects suggest that EB consolidates circadian sleep-wake rhythms in female rats.
Collapse
Affiliation(s)
- Michael D Schwartz
- Center for Neuroscience, Biosciences Division, SRI international, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | | |
Collapse
|
41
|
Chu A, Zhu L, Blum ID, Mai O, Leliavski A, Fahrenkrug J, Oster H, Boehm U, Storch KF. Global but not gonadotrope-specific disruption of Bmal1 abolishes the luteinizing hormone surge without affecting ovulation. Endocrinology 2013; 154:2924-35. [PMID: 23736292 DOI: 10.1210/en.2013-1080] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although there is evidence for a circadian regulation of the preovulatory LH surge, the contributions of individual tissue clocks to this process remain unclear. We studied female mice deficient in the Bmal1 gene (Bmal1(-/-)), which is essential for circadian clock function, and found that they lack the proestrous LH surge. However, spontaneous ovulation on the day of estrus was unaffected in these animals. Bmal1(-/-) females were also deficient in the proestrous FSH surge, which, like the LH surge, is GnRH-dependent. In the absence of circadian or external timing cues, Bmal1(-/-) females continued to cycle in constant darkness albeit with increased cycle length and time spent in estrus. Because pituitary gonadotropes are the source of circulating LH and FSH, we assessed hypophyseal circadian clock function and found that female pituitaries rhythmically express clock components throughout all cycle stages. To determine the role of the gonadotrope clock in the preovulatory LH and FSH surge process, we generated mice that specifically lack BMAL1 in gonadotropes (GBmal1KO). GBmal1KO females exhibited a modest elevation in both proestrous and baseline LH levels across all estrous stages. BMAL1 elimination from gonadotropes also led to increased variability in estrous cycle length, yet GBmal1KO animals were otherwise reproductively normal. Together our data suggest that the intrinsic clock in gonadotropes is dispensable for LH surge regulation but contributes to estrous cycle robustness. Thus, clocks in the suprachiasmatic nucleus or elsewhere must be involved in the generation of the LH surge, which, surprisingly, is not required for spontaneous ovulation.
Collapse
Affiliation(s)
- Adrienne Chu
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen H, Zhao L, Kumazawa M, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Downregulation of core clock gene Bmal1 attenuates expression of progesterone and prostaglandin biosynthesis-related genes in rat luteinizing granulosa cells. Am J Physiol Cell Physiol 2013; 304:C1131-40. [DOI: 10.1152/ajpcell.00008.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ovarian circadian oscillators have been implicated in the reproductive processes of mammals. However, there are few reports regarding the detection of ovarian clock-controlled genes (CCGs). The present study was designed to unravel the mechanisms through which CCG ovarian circadian oscillators regulate fertility, primarily using quantitative RT-PCR and RNA interference against Bmal1 in rat granulosa cells. Mature granulosa cells were prepared from mouse Per2-destabilized luciferase ( dLuc) reporter gene transgenic rats. A real-time monitoring system of Per2 promoter activity was employed to detect Per2-dLuc oscillations. The cells exposed to luteinizing hormone (LH) displayed clear Per2-dLuc oscillations and a rhythmic expression of clock genes ( Bmal1, Per1, Per2, Rev-erbα, and Dbp). Meanwhile, the examined ovarian genes ( Star, Cyp19a1, Cyp11a1, Ptgs2, Lhcgr, and p53) showed rhythmic transcript profiles except for Hsd3b2, indicating that these rhythmic expression genes may be CCGs. Notably, Bmal1 small interfering (si)RNA treatment significantly decreased both the amplitude of Per2-dLuc oscillations and Bmal1 mRNA levels compared with nonsilencing RNA treatment in luteinizing granulosa cells. Depletion of Bmal1 by siRNA decreased the transcript levels of clock genes ( Per1, Per2, Rev-erbα, and Dbp) and examined ovarian genes ( Star, Cyp19a1, Cyp11a1, Ptgs2, Hsd3b2, and Lhcgr). Accordingly, knockdown of Bmal1 also inhibited the synthesis of progesterone and prostaglandin E2, which are associated with crucial reproductive processes. Collectively, these data suggest that ovarian circadian oscillators regulate the synthesis of steroid hormones and prostaglandins through ovarian-specific CCGs in response to LH stimuli. The present study provides new insights into the physiologic significance of Bmal1 related to fertility in ovarian circadian oscillators.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Lijia Zhao
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Makoto Kumazawa
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan; and
| | | | - Masa-aki Hattori
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
43
|
Sellix MT, Murphy ZC, Menaker M. Excess androgen during puberty disrupts circadian organization in female rats. Endocrinology 2013; 154:1636-47. [PMID: 23417420 PMCID: PMC3602624 DOI: 10.1210/en.2012-2066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian clocks have been described in each tissue of the hypothalamo-pituitary-ovarian axis. Although a role for the clock in the timing of ovulation is indicated, the impact of diseases that disrupt fertility on clock function or the clocks' role in the etiology of these pathologies has yet to be fully appreciated. Polycystic ovary syndrome (PCOS) is a particularly devastating endocrinopathy, affecting approximately 10% of women at childbearing age. Common features of PCOS are a polycystic ovary, amenorrhea, and excess serum androgen. Approximately 40% of these women have metabolic syndrome, including hyperinsulinemia, dyslipidemia, and hyperleptinemia. It has been suggested that excess androgen is a critical factor in the etiology of PCOS. We have examined the effects of androgen excess during puberty on the phase of circadian clocks in tissues of the metabolic and hypothalamo-pituitary-ovarian axes. Female period1-luciferase (per1-luc) rats were exposed to androgen (5α-dihydrotestosterone [DHT]) or placebo for 4-6 weeks (short term) or 9-15 weeks (long term). As expected, DHT-treated animals gained more weight than controls and had disrupted estrous cycles. At the end of treatment, tissues, including the liver, lung, kidney, white adipose, cornea, pituitary, oviduct, and ovarian follicles, were cultured, and per1-luc expression in each was recorded. Analysis of per1-luc expression revealed that DHT exposure increased phase distribution of multiple oscillators, including ovarian follicles, liver, and adipose, and altered phase synchrony between animals. These data suggest that excess androgen during puberty, a common feature of PCOS, negatively affects internal circadian organization in both the reproductive and metabolic axes.
Collapse
Affiliation(s)
- Michael T Sellix
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
44
|
Menaker M, Murphy ZC, Sellix MT. Central control of peripheral circadian oscillators. Curr Opin Neurobiol 2013; 23:741-6. [PMID: 23537900 DOI: 10.1016/j.conb.2013.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/22/2022]
Abstract
The suprachiasmatic nucleus of the hypothalamus and at least two other unidentified central pacemakers regulate the temporal structure of a circadian network that involves almost every organ in the body. Phase control is central to the efficient function of this system. Individual circadian oscillators in tissues and organs in the periphery bear adaptive phase relationships to the external light cycle, the central pacemakers and to each other. The known signals that regulate and maintain these phase relationships come from the autonomic nervous system, the pineal and adrenal glands, behavioral cycles of feeding and activity and the rhythm of body temperature. It is likely that there are many unknown signals as well. Disrupting the network can produce severe pathology.
Collapse
Affiliation(s)
- Michael Menaker
- Department of Biology, University of Virginia, Charlottesville, VA, United States.
| | | | | |
Collapse
|
45
|
Chen H, Zhao L, Chu G, Kito G, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. Am J Physiol Endocrinol Metab 2013; 304:E566-75. [PMID: 23299500 DOI: 10.1152/ajpendo.00432.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to assess the relationship between gap junctions and the maturation of a clock system in rat granulosa cells stimulated by follicle-stimulating hormone (FSH). Immature and mature granulosa cells were prepared by puncturing the ovaries of diethylstilbestrol- and equine chorionic gonadotropin (eCG)-treated mouse Period2 (Per2)-dLuc reporter gene transgenic rats, respectively. Mature granulosa cells exposed to dexamethasone (DXM) synchronization displayed several Per2-dLuc oscillations and a rhythmic expression of clock genes. Intriguingly, we observed clear evidence that the FSH stimulation significantly increased the amplitude of Per2 oscillations in the granulosa cells, which was confirmed by the elevation of the Per2 and Rev-erbα (Nr1d1) mRNA levels. FSH also induced a major phase-advance shift of Per2 oscillations. The mature granulosa cells cultured for 2 days with FSH expressed higher mRNA levels of Per2, Rev-erbα, Bmal1 (Arnt1), Lhcgr, and connexin (Cx) 43 (Gja1) compared with the immature granulosa cells. Consistently, our immunofluorescence results revealed abundant Cx43 protein in antral follicles stimulated with eCG and weak or no fluorescence signal of Cx43 in primary and preantral follicles. Similar results were confirmed by Western blotting analysis. Two gap junction blockers, lindane and carbenoxolone (CBX), significantly decreased the amplitude of Per2 oscillations, which further adhered significant decreases in Per2 and Rev-erbα transcript levels. In addition, both lindane and CBX induced a clear phase-delay shift of Per2 oscillations. These findings suggest that FSH induces the development of the clock system by increasing the expression of Cx43.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gamble KL, Resuehr D, Johnson CH. Shift work and circadian dysregulation of reproduction. Front Endocrinol (Lausanne) 2013; 4:92. [PMID: 23966978 PMCID: PMC3736045 DOI: 10.3389/fendo.2013.00092] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/10/2013] [Indexed: 01/18/2023] Open
Abstract
Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans), the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work) or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep-wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift work-induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization.
Collapse
Affiliation(s)
- Karen L. Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Resuehr
- Department of Cell and Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- *Correspondence: Carl Hirschie Johnson, Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA e-mail:
| |
Collapse
|
47
|
Sellix MT. Clocks underneath: the role of peripheral clocks in the timing of female reproductive physiology. Front Endocrinol (Lausanne) 2013; 4:91. [PMID: 23888155 PMCID: PMC3719037 DOI: 10.3389/fendo.2013.00091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 11/13/2022] Open
Abstract
The central circadian pacemaker in the suprachiasmatic nucleus (SCN) is a critical component of the neuroendocrine circuit controlling gonadotropin secretion from the pituitary gland. The SCN conveys photic information to hypothalamic targets including the gonadotropin releasing hormone neurons. Many of these target cells are also cell autonomous clocks. It has been suggested that, rather then being singularly driven by the SCN, the timing of gonadotropin secretion depends on the activity of multiple hypothalamic oscillators. While this view provides a novel twist to an old story, it does little to diminish the central role of rhythmic hypothalamic output in this system. It is now clear that the pituitary, ovary, uterus, and oviduct have functional molecular clocks. Evidence supports the notion that the clocks in these tissues contribute to the timing of events in reproductive physiology. The aim of this review is to highlight the current evidence for molecular clock function in the peripheral components of the female hypothalamo-pituitary-gonadal axis as it relates to the timing of gonadotropin secretion, ovulation, and parturition.
Collapse
Affiliation(s)
- Michael T. Sellix
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- *Correspondence: Michael T. Sellix, Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA e-mail:
| |
Collapse
|
48
|
Kino T. Circadian rhythms of glucocorticoid hormone actions in target tissues: potential clinical implications. Sci Signal 2012; 5:pt4. [PMID: 23033538 PMCID: PMC3777266 DOI: 10.1126/scisignal.2003333] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Organisms face unforeseen short- and long-term changes in the environment (stressors). To defend against these changes, organisms have developed a stress system that includes the hypothalamic-pituitary-adrenal (HPA) axis, which employs glucocorticoids and the glucocorticoid receptor (GR) for signal transduction. In addition, organisms live under the strong influence of day-night cycles and, hence, have also developed a highly conserved circadian clock system for adjusting their activities to recurring environmental changes. This regulatory system creates and maintains internal circadian rhythmicity by employing a self-oscillating molecular pacemaker composed of the Clock-Bmal1 heterodimer and other transcription factors. The circadian clock consists of a central master clock in the suprachiasmatic nucleus of the brain hypothalamus and peripheral slave clocks in virtually all organs and tissues. The HPA axis and the circadian clock system communicate with each other at multiple levels. The central clock controls the HPA axis, creating the diurnal oscillation of circulating adrenocorticotropic hormone and cortisol, and the HPA axis adjusts the circadian rhythmicity of the peripheral clocks in response to various stressors through the GR. Further, Clock-Bmal1 regulates the response to glucocorticoids in peripheral tissues through acetylation of the GR, possibly antagonizing the biologic actions of diurnally fluctuating circulating cortisol. Importantly, dysregulation in the clock system and the HPA axis may cause similar pathologic manifestations--including obesity, metabolic syndrome, and cardiovascular disease--by uncoupling circulating cortisol concentrations from tissue sensitivity to glucocorticoids.
Collapse
Affiliation(s)
- Tomoshige Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development-NICHD, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Pezük P, Mohawk JA, Wang LA, Menaker M. Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology 2012; 153:4775-83. [PMID: 22893723 PMCID: PMC3512018 DOI: 10.1210/en.2012-1486] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian circadian organization is governed by pacemaker neurons in the brain that communicate with oscillators in peripheral tissues. Adrenal glucocorticoids are important time-giving signals to peripheral circadian oscillators. We investigated the rhythm of Per1-luc expression in pineal, pituitary, salivary glands, liver, lung, kidney, cornea as well as suprachiasmatic nucleus from adrenalectomized and sham-operated rats kept under light-dark cycles, or exposed to single 6-h phase delays or advances of their light cycles. Adrenalectomy shifted the phases of Per1-luc in liver, kidney, and cornea and caused phase desynchrony and significant dampening in the rhythmicity of cornea. Treatment with hydrocortisone shifted the phases of Per1-luc in most of the tissues examined, even those that were not affected by adrenalectomy. The rhythm in cornea recovered in animals given hydrocortisone in vivo or when corneas were treated with dexamethasone in vitro. Adrenalectomy increased the rate of reentrainment after phase shifts in liver, kidney, cornea, pineal, lung, and suprachiasmatic nucleus but not in pituitary and salivary glands. Our data show that glucocorticoids act as strong entraining signals for peripheral circadian oscillators and may feed back on central oscillators as well.
Collapse
Affiliation(s)
- Pinar Pezük
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA
| | | | | | | |
Collapse
|
50
|
Gräs S, Georg B, Jørgensen HL, Fahrenkrug J. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy. Cell Tissue Res 2012; 350:539-48. [PMID: 22940729 DOI: 10.1007/s00441-012-1489-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Daily oscillations of clock genes have recently been demonstrated in the ovaries of several species. Clock gene knockout or mutant mice demonstrate a variety of reproductive defects. Accumulating evidence suggests that these rhythms act to synchronise the expression of specific ovarian genes to hypothalamo-pituitary signals and that they are regulated by one or both of the gonadotropins. The aim of this study has been to examine the spatio-temporal expression of the clock genes Per1 and Bmal1 during gonadotropin-independent and gonadotropin-dependent follicle development in the rat ovary. We have examined the ovaries of prepubertal rats, of prepubertal rats stimulated with equine chorionic gonadotropin (eCG)/human chorionic gonadotropin (hCG) and of hypophysectomised adult animals. Using quantitative reverse transcription with the polymerase chain reaction, in situ hybridisation histochemistry and immunohistochemistry, we have demonstrated that the expression of the two clock genes is low and arrhythmic in ovarian cells during early gonadotropin-independent follicle development in prepubertal animals and in hypophysectomised animals. We have also demonstrated that the expression of the clock genes becomes rhythmic following eCG stimulation in the theca interna cells and the secondary interstitial cells and that, following additional hCG stimulation, the expression of the clock genes also becomes rhythmic in the granulosa cells of preovulatory follicles. These findings link the initiation of clock gene rhythms in the rat ovary to the luteinising hormone receptor and suggest a functional link to androgen and progesterone production. In hypophysectomised animals, rhythmic clock gene expression is also observed in the corpora lutea and in secondary interstitial cells demonstrating that, in these compartments, entrainment of clock gene rhythms is gonadotropin-independent.
Collapse
Affiliation(s)
- Søren Gräs
- Department of Obstetrics and Gynecology, Herlev Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|