1
|
Van Goor A, Pasternak A, Walker KE, Chick S, Harding JCS, Lunney JK. Altered structural and transporter-related gene expression patterns in the placenta play a role in fetal demise during Porcine reproductive and respiratory syndrome virus infection. BMC Genomics 2025; 26:279. [PMID: 40119254 PMCID: PMC11927291 DOI: 10.1186/s12864-025-11397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/21/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) can be transmitted across the maternal-fetal-interface from an infected gilt to her fetuses. Although fetal infection status and disease outcomes vary, the mechanisms are not completely understood. The objective was to assess targeted placental structural and transporter-related gene expression patterns. At day 85 of gestation pregnant pigs were challenged with PRRSV, and at 12 days post maternal infection sows and fetuses were sacrificed, and the placental tissue was collected. Grouping of fetuses was by preservation status and PRRS viral load (VL): control (CTRL, n = 14), viable and low VL fetus (VIA_LVF, n = 15), viable and high VL fetus (VIA_HVF, n = 21), meconium mild and low VL fetus (MECm_LVF, n = 14), meconium mild and high VL fetus (MECm_HVF, n = 14), and meconium severe and high VL fetus (MECs_HVF, n = 13). NanoString was used to evaluate the expression of 86 genes: actin cytoskeleton signaling, arachidonic acid pathway, integrin signaling, intercellular junctions, transporters, and VEGF signaling. Statistical analyses were performed using Limma with P ≤ 0.05 considered significant. RESULTS We identified 1, 7, 0, 29, and 39 differentially expressed genes in VIA_LVF, VIA_HVF, MECm_LVF, MECm_HVF, and MECs_HVF, respectively, contrasted to CTRL. Placental transporter genes were significantly impacted (i.e., downregulation of SLC1A3, SLC1A5, SLC2A1, SLC2A3, SLC2A5, SLC2A10, SLC2A12, SLC7A4, SLC16A5, SLC16A10, and SLC27A6; and upregulation of SLC2A2, SLC16A3, and SLC27A4), compared to CTRL. Actin cytoskeleton signaling (ARHGEF6 and ARHGEF7), arachidonic acid (PTGES3 and PTGIS), integrin signaling (FN1 and ITGB6), intercellular junctions (CDH3 and CDH11), and VEGF signaling (MAPK3 and HPSE) gene groupings were significantly impacted, compared to CTRL. CONCLUSION Data reported here indicate that fetal PRRSV infection levels rather than fetal demise is necessary for transcriptional dysregulation of the fetal placenta, with a tendency towards more downregulation in the target gene sets among susceptible fetuses. These results generally support that in susceptible fetuses there is altered solute transportation, placental structural integrity, and reduced angiogenesis. The data described here is associated with fetal PRRS resistance/resilience and susceptibility.
Collapse
Affiliation(s)
- Angelica Van Goor
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
- Division of Animal Systems, Institute of Food Production and Sustainability, NIFA, USDA, Kansas City, MO, USA
| | - Alex Pasternak
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - Shannon Chick
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD, USA.
| |
Collapse
|
2
|
Autumn M, Zeng J, Ranieri I, McMenamin SK. Experimentally Manipulating the Thyroid Hormone Axis in Zebrafish. Methods Mol Biol 2025; 2876:189-198. [PMID: 39579317 DOI: 10.1007/978-1-0716-4252-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Thyroid hormone (TH) is an endocrine factor with a diverse array of developmental, metamorphic, and metabolic functions conserved across vertebrates. Zebrafish (Danio rerio) are a tractable model for endocrinology research, and recent research efforts focus on the roles of TH in zebrafish morphogenesis, growth and behavior. Several powerful approaches have been developed in zebrafish to modulate the TH axis and peripheral sensitivity to the hormone. These approaches include gain- and loss-of-function mutations that target components of the TH signaling pathways, as well as pharmacological treatments to modulate TH synthesis and availability. Here, we review some of these approaches for generating hypo- and hyperthyroid physiology and phenotypes during post-embryonic zebrafish development. In particular, we focus on a transgenic method of producing hypothyroid fish via metronidazole-based thyroid ablation. This approach can straightforwardly generate large numbers of hypothyroid individuals along with euthyroid sibling controls, and we survey some of the research applications in which this system has been used.
Collapse
Affiliation(s)
- Melody Autumn
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Jenny Zeng
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | | |
Collapse
|
3
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W, Rong H. Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2023; 339:139769. [PMID: 37562506 DOI: 10.1016/j.chemosphere.2023.139769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Cyhexatin (CYT), an organotin acaricide, is extensively utilized in developing countries to mitigate plant diseases caused by mites and minimize agricultural crop losses. However, the comprehensive mechanisms underlying the developmental stage of non-target organisms remain largely unexplored. In this study, zebrafish embryos were firstly exposed to CYT (0.06, 0.12, and 0.20 ng/mL, referred to as CYTL, CYTM, and CYTH, respectively) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization). No developmental toxicity was observed in the CYTL and CYTM groups, except for induced deformed phenotypes in the CYTM group at 120 hpf. However, exposure to CYTH resulted in significant reductions in spontaneous movement (24 hpf), heart rate (48 hpf), hatching rate (48 and 72 hpf), body weight (30 dpf), whole body length (30 dpf), and locomotion (30 dpf). Additionally, CYTH exposure induced morphological malformations, including spinal curvature, pericardial edema, and tail curvature in zebrafish larvae. Moreover, CYTH treatment induced apoptosis, increased reactive oxygen species (ROS) production, and resulted in significant reductions in free T3, cholesterol, estradiol, and testosterone levels in zebrafish larvae, while free T4 levels were increased. RNA-Seq analysis indicated that CYTH exposure led to significant alterations in the genome-wide gene expression profiles of zebrafish, particularly in the thyroid hormone and steroid biosynthesis signaling pathways, indicating endocrine disruption. Furthermore, CYTH exposure induced global DNA hypomethylation, reduced S-adenosylmethionine (SAM) levels and the SAM/S-adenosylhomocysteine (SAH) ratio, elevated SAH levels, and suppressed the mRNA expression of DNA methyltransferases (DNMTs) while also downregulating DNMT1 at both the gene and protein levels in zebrafish larvae. Overall, this study partially elucidated the developmental toxicity and endocrine disruption caused by CYT in zebrafish, providing evidence of the environmental hazards associated with this acaricide.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Daitao Zhang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Xianghe Liu
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Sha Yang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China; Xiangyang Polytechnic, Xiangyang, 441050, PR China.
| |
Collapse
|
4
|
Farre AA, Thomas P, Huang J, Poulsen RA, Owusu Poku E, Stenkamp DL. Plasticity of cone photoreceptors in adult zebrafish revealed by thyroid hormone exposure. Sci Rep 2023; 13:15697. [PMID: 37735192 PMCID: PMC10514274 DOI: 10.1038/s41598-023-42686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Vertebrate color vision is predominantly mediated by the presence of multiple cone photoreceptor subtypes that are each maximally sensitive to different wavelengths of light. Thyroid hormone (TH) has been shown to be essential in the spatiotemporal patterning of cone subtypes in many species, including cone subtypes that express opsins that are encoded by tandemly replicated genes. TH has been shown to differentially regulate the tandemly replicated lws opsin genes in zebrafish, and exogenous treatments alter the expression levels of these genes in larvae and juveniles. In this study, we sought to determine whether gene expression in cone photoreceptors remains plastic to TH treatment in adults. We used a transgenic lws reporter line, multiplexed fluorescence hybridization chain reaction in situ hybridization, and qPCR to examine the extent to which cone gene expression can be altered by TH in adults. Our studies revealed that opsin gene expression, and the expression of other photoreceptor genes, remains plastic to TH treatment in adult zebrafish. In addition to retinal plasticity, exogenous TH treatment alters skin pigmentation patterns in adult zebrafish after 5 days. Taken together, our results show a remarkable level of TH-sensitive plasticity in the adult zebrafish.
Collapse
Affiliation(s)
- Ashley A Farre
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Preston Thomas
- WWAMI Medical Education Program, University of Washington School of Medicine, University of Idaho, Moscow, ID, USA
| | - Johnson Huang
- University of Washington School of Medicine, Spokane, WA, USA
| | | | - Emmanuel Owusu Poku
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA.
| |
Collapse
|
5
|
Taylor E, Wynen H, Heyland A. Thyroid hormone membrane receptor binding and transcriptional regulation in the sea urchin Strongylocentrotus purpuratus. Front Endocrinol (Lausanne) 2023; 14:1195733. [PMID: 37305042 PMCID: PMC10250714 DOI: 10.3389/fendo.2023.1195733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Thyroid hormones (THs) are small amino acid derived signaling molecules with broad physiological and developmental functions in animals. Specifically, their function in metamorphic development, ion regulation, angiogenesis and many others have been studied in detail in mammals and some other vertebrates. Despite extensive reports showing pharmacological responses of invertebrate species to THs, little is known about TH signaling mechanisms outside of vertebrates. Previous work in sea urchins suggests that non-genomic mechanisms are activated by TH ligands. Here we show that several THs bind to sea urchin (Strongylocentrotus purpuratus) cell membrane extracts and are displaced by ligands of RGD-binding integrins. A transcriptional analysis across sea urchin developmental stages shows activation of genomic and non-genomic pathways in response to TH exposure, suggesting that both pathways are activated by THs in sea urchin embryos and larvae. We also provide evidence associating TH regulation of gene expression with TH response elements in the genome. In ontogeny, we found more differentially expressed genes in older larvae compared to gastrula stages. In contrast to gastrula stages, the acceleration of skeletogenesis by thyroxine in older larvae is not fully inhibited by competitive ligands or inhibitors of the integrin membrane receptor pathway, suggesting that THs likely activate multiple pathways. Our data confirms a signaling function of THs in sea urchin development and suggests that both genomic and non-genomic mechanisms play a role, with genomic signaling being more prominent during later stages of larval development.
Collapse
Affiliation(s)
| | | | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Silva N, Campinho MA. In a zebrafish biomedical model of human Allan-Herndon-Dudley syndrome impaired MTH signaling leads to decreased neural cell diversity. Front Endocrinol (Lausanne) 2023; 14:1157685. [PMID: 37214246 PMCID: PMC10194031 DOI: 10.3389/fendo.2023.1157685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Background Maternally derived thyroid hormone (T3) is a fundamental factor for vertebrate neurodevelopment. In humans, mutations on the thyroid hormones (TH) exclusive transporter monocarboxylic acid transporter 8 (MCT8) lead to the Allan-Herndon-Dudley syndrome (AHDS). Patients with AHDS present severe underdevelopment of the central nervous system, with profound cognitive and locomotor consequences. Functional impairment of zebrafish T3 exclusive membrane transporter Mct8 phenocopies many symptoms observed in patients with AHDS, thus providing an outstanding animal model to study this human condition. In addition, it was previously shown in the zebrafish mct8 KD model that maternal T3 (MTH) acts as an integrator of different key developmental pathways during zebrafish development. Methods Using a zebrafish Mct8 knockdown model, with consequent inhibition of maternal thyroid hormones (MTH) uptake to the target cells, we analyzed genes modulated by MTH by qPCR in a temporal series from the start of segmentation through hatching. Survival (TUNEL) and proliferation (PH3) of neural progenitor cells (dla, her2) were determined, and the cellular distribution of neural MTH-target genes in the spinal cord during development was characterized. In addition, in-vivo live imaging was performed to access NOTCH overexpression action on cell division in this AHDS model. We determined the developmental time window when MTH is required for appropriate CNS development in the zebrafish; MTH is not involved in neuroectoderm specification but is fundamental in the early stages of neurogenesis by promoting the maintenance of specific neural progenitor populations. MTH signaling is required for developing different neural cell types and maintaining spinal cord cytoarchitecture, and modulation of NOTCH signaling in a non-autonomous cell manner is involved in this process. Discussion The findings show that MTH allows the enrichment of neural progenitor pools, regulating the cell diversity output observed by the end of embryogenesis and that Mct8 impairment restricts CNS development. This work contributes to the understanding of the cellular mechanisms underlying human AHDS.
Collapse
Affiliation(s)
- Nádia Silva
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
| | - Marco António Campinho
- Centre for Marine Sciences of the University of the Algarve, Faro, Portugal
- Algarve Biomedical Center-Research Institute, University of the Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of the Algarve, Faro, Portugal
| |
Collapse
|
7
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
8
|
Van Goor A, Pasternak A, Walugembe M, Chehab N, Hamonic G, Dekkers JCM, Harding JCS, Lunney JK. Genome wide association study of thyroid hormone levels following challenge with porcine reproductive and respiratory syndrome virus. Front Genet 2023; 14:1110463. [PMID: 36845393 PMCID: PMC9947478 DOI: 10.3389/fgene.2023.1110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in piglets and reproductive disease in sows. Piglet and fetal serum thyroid hormone (i.e., T3 and T4) levels decrease rapidly in response to Porcine reproductive and respiratory syndrome virus infection. However, the genetic control of T3 and T4 levels during infection is not completely understood. Our objective was to estimate genetic parameters and identify quantitative trait loci (QTL) for absolute T3 and/or T4 levels of piglets and fetuses challenged with Porcine reproductive and respiratory syndrome virus. Methods: Sera from 5-week-old pigs (N = 1792) at 11 days post inoculation (DPI) with Porcine reproductive and respiratory syndrome virus were assayed for T3 levels (piglet_T3). Sera from fetuses (N = 1,267) at 12 or 21 days post maternal inoculation (DPMI) with Porcine reproductive and respiratory syndrome virus of sows (N = 145) in late gestation were assayed for T3 (fetal_T3) and T4 (fetal_T4) levels. Animals were genotyped using 60 K Illumina or 650 K Affymetrix single nucleotide polymorphism (SNP) panels. Heritabilities, phenotypic correlations, and genetic correlations were estimated using ASREML; genome wide association studies were performed for each trait separately using Julia for Whole-genome Analysis Software (JWAS). Results: All three traits were low to moderately heritable (10%-16%). Phenotypic and genetic correlations of piglet_T3 levels with weight gain (0-42 DPI) were 0.26 ± 0.03 and 0.67 ± 0.14, respectively. Nine significant quantitative trait loci were identified for piglet_T3, on Sus scrofa chromosomes (SSC) 3, 4, 5, 6, 7, 14, 15, and 17, and collectively explaining 30% of the genetic variation (GV), with the largest quantitative trait loci identified on SSC5, explaining 15% of the genetic variation. Three significant quantitative trait loci were identified for fetal_T3 on SSC1 and SSC4, which collectively explained 10% of the genetic variation. Five significant quantitative trait loci were identified for fetal_T4 on SSC1, 6, 10, 13, and 15, which collectively explained 14% of the genetic variation. Several putative immune-related candidate genes were identified, including CD247, IRF8, and MAPK8. Discussion: Thyroid hormone levels following Porcine reproductive and respiratory syndrome virus infection were heritable and had positive genetic correlations with growth rate. Multiple quantitative trait loci with moderate effects were identified for T3 and T4 levels during challenge with Porcine reproductive and respiratory syndrome virus and candidate genes were identified, including several immune-related genes. These results advance our understanding of growth effects of both piglet and fetal response to Porcine reproductive and respiratory syndrome virus infection, revealing factors associated with genomic control of host resilience.
Collapse
Affiliation(s)
- Angelica Van Goor
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Alex Pasternak
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| | - Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nadya Chehab
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Glenn Hamonic
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan K. Lunney
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States,*Correspondence: Joan K. Lunney,
| |
Collapse
|
9
|
Yadav P, Sarode LP, Gaddam RR, Kumar P, Bhatti JS, Khurana A, Navik U. Zebrafish as an emerging tool for drug discovery and development for thyroid diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 130:53-60. [PMID: 36084888 DOI: 10.1016/j.fsi.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, IA, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
10
|
Crute CE, Hall SM, Landon CD, Garner A, Everitt JI, Zhang S, Blake B, Olofsson D, Chen H, Murphy SK, Stapleton HM, Feng L. Evaluating maternal exposure to an environmental per and polyfluoroalkyl substances (PFAS) mixture during pregnancy: Adverse maternal and fetoplacental effects in a New Zealand White (NZW) rabbit model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156499. [PMID: 35679923 PMCID: PMC9374364 DOI: 10.1016/j.scitotenv.2022.156499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 05/06/2023]
Abstract
Mixtures of per- and polyfluoroalkyl substances (PFAS) are often found in drinking water, and serum PFAS are detected in up to 99% of the population. However, very little is known about how exposure to mixtures of PFAS affects maternal and fetal health. The aim of this study was to investigate maternal, fetal, and placental outcomes after preconceptional and gestational exposure to an environmentally relevant PFAS mixture in a New Zealand White (NZW) rabbit model. Dams were exposed via drinking water to control (no detectable PFAS) or a PFAS mixture for 32 days. This mixture was formulated with PFAS to resemble levels measured in tap water from Pittsboro, NC (10 PFAS compounds; total PFAS load = 758.6 ng/L). Maternal, fetal, and placental outcomes were evaluated at necropsy. Thyroid hormones were measured in maternal serum and kit blood. Placental gene expression was evaluated by RNAseq and qPCR. PFAS exposure resulted in higher body weight (p = 0.01), liver (p = 0.01) and kidney (p = 0.01) weights, blood pressure (p = 0.05), and BUN:CRE ratio (p = 0.04) in dams, along with microscopic changes in renal cortices. Fetal weight, measures, and histopathology were unchanged, but a significant interaction between dose and sex was detected in the fetal: placental weight ratio (p = 0.036). Placental macroscopic changes were present in PFAS-exposed dams. Dam serum showed lower T4 and a higher T3:T4 ratio, although not statistically significant. RNAseq revealed that 11 of the 14 differentially expressed genes (adj. p < 0.1) are involved in placentation or pregnancy complications. In summary, exposure elicited maternal weight gain and signs of hypertension, renal injury, sex-specific changes in placental response, and differential expression of genes involved in placentation and preeclampsia. Importantly, these are the first results to show adverse maternal and placental effects of an environmentally-relevant PFAS mixture in vivo.
Collapse
Affiliation(s)
- Christine E Crute
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha M Hall
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Chelsea D Landon
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Angela Garner
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey I Everitt
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Bevin Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstasse 40, 14195 Berlin, Germany
| | - Henry Chen
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Heather M Stapleton
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Liping Feng
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells 2022; 11:cells11101595. [PMID: 35626631 PMCID: PMC9139329 DOI: 10.3390/cells11101595] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic–pituitary–thyroid and the hypothalamic–pituitary–adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic–pituitary–thyroid axis controls thyroid hormone production and release, whereas the hypothalamic–pituitary–adrenal/interrenal axis regulates the production and release of corticosteroids. One of the most salient effects of thyroid hormones and corticosteroids in post-embryonic developmental processes is their critical role in metamorphosis in anuran amphibians. Metamorphosis involves modifications to the morphological and biochemical characteristics of all larval tissues to enable the transition from one life stage to the next life stage that coincides with an ecological niche switch. This transition in amphibians is an example of a widespread phenomenon among vertebrates, where thyroid hormones and corticosteroids coordinate a post-embryonic developmental transition. The review addresses the functions and interactions of thyroid hormone and corticosteroid signaling in amphibian development (metamorphosis) as well as the developmental roles of these two pathways in vertebrate evolution.
Collapse
|
12
|
Cohen A, Popowitz J, Delbridge-Perry M, Rowe CJ, Connaughton VP. The Role of Estrogen and Thyroid Hormones in Zebrafish Visual System Function. Front Pharmacol 2022; 13:837687. [PMID: 35295340 PMCID: PMC8918846 DOI: 10.3389/fphar.2022.837687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Visual system development is a highly complex process involving coordination of environmental cues, cell pathways, and integration of functional circuits. Consequently, a change to any step, due to a mutation or chemical exposure, can lead to deleterious consequences. One class of chemicals known to have both overt and subtle effects on the visual system is endocrine disrupting compounds (EDCs). EDCs are environmental contaminants which alter hormonal signaling by either preventing compound synthesis or binding to postsynaptic receptors. Interestingly, recent work has identified neuronal and sensory systems, particularly vision, as targets for EDCs. In particular, estrogenic and thyroidogenic signaling have been identified as critical modulators of proper visual system development and function. Here, we summarize and review this work, from our lab and others, focusing on behavioral, physiological, and molecular data collected in zebrafish. We also discuss different exposure regimes used, including long-lasting effects of developmental exposure. Overall, zebrafish are a model of choice to examine the impact of EDCs and other compounds targeting estrogen and thyroid signaling and the consequences of exposure in visual system development and function.
Collapse
Affiliation(s)
- Annastelle Cohen
- Department of Biology, American University, Washington, DC, WA, United States
| | - Jeremy Popowitz
- Department of Biology, American University, Washington, DC, WA, United States
| | | | - Cassie J. Rowe
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States,*Correspondence: Victoria P. Connaughton,
| |
Collapse
|
13
|
Romersi RF, Nicklisch SCT. Interactions of Environmental Chemicals and Natural Products With ABC and SLC Transporters in the Digestive System of Aquatic Organisms. Front Physiol 2022; 12:767766. [PMID: 35095552 PMCID: PMC8793745 DOI: 10.3389/fphys.2021.767766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
An organism’s diet is a major route of exposure to both beneficial nutrients and toxic environmental chemicals and natural products. The uptake of dietary xenobiotics in the intestine is prevented by transporters of the Solute Carrier (SLC) and ATP Binding Cassette (ABC) family. Several environmental chemicals and natural toxins have been identified to induce expression of these defense transporters in fish and aquatic invertebrates, indicating that they are substrates and can be eliminated. However, certain environmental chemicals, termed Transporter-Interfering Chemicals or TICs, have recently been shown to bind to and inhibit fish and mammalian P-glycoprotein (ABCB1), thereby sensitizing cells to toxic chemical accumulation. If and to what extent other xenobiotic defense or nutrient uptake transporters can also be inhibited by dietary TICs is still unknown. To date, most chemical-transporter interaction studies in aquatic organisms have focused on ABC-type transporters, while molecular interactions of xenobiotics with SLC-type transporters are poorly understood. In this perspective, we summarize current advances in the identification, localization, and functional analysis of protective MXR transporters and nutrient uptake systems in the digestive system of fish and aquatic invertebrates. We collate the existing literature data on chemically induced transporter gene expression and summarize the molecular interactions of xenobiotics with these transport systems. Our review emphasizes the need for standardized assays in a broader panel of commercially important fish and seafood species to better evaluate the effects of TIC and other xenobiotic interactions with physiological substrates and MXR transporters across the aquatic ecosystem and predict possible transfer to humans through consumption.
Collapse
|
14
|
Quesada-Espinosa JF, Garzón-Lorenzo L, Lezana-Rosales JM, Gómez-Rodríguez MJ, Sánchez-Calvin MT, Palma-Milla C, Gómez-Manjón I, Hidalgo-Mayoral I, Pérez de la Fuente R, Arteche-López A, Álvarez-Mora MI, Camacho-Salas A, Cruz-Rojo J, Lázaro-Rodríguez I, Morales-Conejo M, Nuñez-Enamorado N, Bustamante-Aragones A, Simón de Las Heras R, Gomez-Cano MA, Ramos-Gómez P, Sierra-Tomillo O, Juárez-Rufián A, Gallego-Merlo J, Rausell-Sánchez L, Moreno-García M, Sánchez Del Pozo J. First female with Allan-Herndon-Dudley syndrome and partial deletion of X-inactivation center. Neurogenetics 2021; 22:343-346. [PMID: 34296368 DOI: 10.1007/s10048-021-00660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Allan-Herndon-Dudley is an X-linked recessive syndrome caused by pathogenic variants in the SLC16A2 gene. Clinical manifestations are a consequence of impaired thyroid metabolism and aberrant transport of thyroid hormones to the brain. Carrier females are generally asymptomatic and may show subtle symptoms of the disease. We describe a female with a complete Allan-Herndon-Dudley phenotype, carrying a de novo 543-kb deletion of the X chromosome. The deletion encompasses exon 1 of the SLC16A2 gene and JPX and FTX genes; it is known that the latter two genes participate in the X-inactivation process upregulating XIST gene expression. Subsequent studies in the patient demonstrated the preferential expression of the X chromosome with the JPX and FTX deletion.
Collapse
Affiliation(s)
- Juan F Quesada-Espinosa
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain. .,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.
| | - Lucía Garzón-Lorenzo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain. .,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain.
| | - José M Lezana-Rosales
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - María J Gómez-Rodríguez
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Cancer Research Network (CIBERONC), 28029, Madrid, Spain
| | - María T Sánchez-Calvin
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Carmen Palma-Milla
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Gómez-Manjón
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Hidalgo-Mayoral
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Rubén Pérez de la Fuente
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - María I Álvarez-Mora
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Fundació Clínic Per La Recerca Biomèdica, Barcelona, Spain
| | - Ana Camacho-Salas
- Pediatrics Department, Neurology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Jaime Cruz-Rojo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Irene Lázaro-Rodríguez
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Montserrat Morales-Conejo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Internal Medicine Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Noemí Nuñez-Enamorado
- Pediatrics Department, Neurology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | - María A Gomez-Cano
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| | - Patricia Ramos-Gómez
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Ollalla Sierra-Tomillo
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Alexandra Juárez-Rufián
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Jesús Gallego-Merlo
- Department of Genetics, IIS-Fundación Jiménez Díaz UAM, CIBERER, Madrid, Spain
| | | | - Marta Moreno-García
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain.,UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | - Jaime Sánchez Del Pozo
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain.,Pediatrics Department, Endocrinology Unit, 12 de Octubre University Hospital, Madrid, Spain
| |
Collapse
|
15
|
Little AG. Thyroid hormone regulation of thermal acclimation in ectotherms: Physiological mechanisms and ecoevolutionary implications. Mol Cell Endocrinol 2021; 530:111285. [PMID: 33891994 DOI: 10.1016/j.mce.2021.111285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
The pathways that regulate adaptive thermal plasticity in ectothermic vertebrates have received little attention relative to those in birds and mammals. However, there is increasing evidence that thyroid hormone represents a critical regulator of thermal plasticity in both ectothermic and endothermic vertebrates. In this review, I summarize the evidence for thyroid hormone-mediated thermal compensation responses in ectothermic vertebrates, with specific focus on effects on the whole animal, skeletal muscle, and cardiac muscle. Interestingly, these effects can differ wildly between focal tissues and species. I move on to discuss what the role of thyroid hormone in ectotherm thermal plasticity can reveal about stressor interactions and central vs. peripheral levels of thyroid hormone regulation. Lastly, I focus on the conserved nature of thyroid hormone signaling in animal thermal responses, with specific reference to the ectotherm → endotherm spectrum. I use this framework to highlight research avenues that will further resolve the evolutionary trajectory of thyroid hormone actions across animals. I hope to emphasize what thyroid hormone-mediated cold acclimation in a 3 cm fish can contribute to ongoing debates surrounding the impacts of stressor interactions, the potential costs of plasticity, the evolution of endothermy, and the impacts of global change.
Collapse
Affiliation(s)
- A G Little
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
16
|
Hernández-Avilés C, Ramírez-Agámez L, Love CC, Friedrich M, Pearson M, Kelley DE, Beckham AMN, Teague SR, LaCaze KA, Brinsko SP, Varner DD. The effects of metabolic substrates glucose, pyruvate, and lactate added to a skim milk-based semen extender for cooled storage of stallion sperm. Theriogenology 2020; 161:83-97. [PMID: 33302166 DOI: 10.1016/j.theriogenology.2020.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Under in vitro conditions, stallion sperm might preferentially use energy substrates that primarily undergo mitochondrial metabolism. The present study sought to determine the effects of glucose, pyruvate, lactate, or their combinations on the quality of stallion sperm subjected to cooled storage at different temperatures, when using a skim milk-based semen extender. In Experiment 1, no substrate (Control), glucose (40 mM; Glu-40), pyruvate (2 mM, 19.8 mM; Pyr-2, Pyr-19), lactate (2 mM, 19.8 mM; Lac-2, Lac-19, respectively), or their combinations (G/P/L-2 or G/P/L-19, respectively) were added to a milk-based extender and their effects were determined on motion characteristics, viability/acrosomal intactness (VAI), lipid peroxidation status (VLPP), and DNA integrity (COMPα-t) of sperm incubated for 1 h at 37 °C, or sperm stored for 24 h at either 10 or 20 °C. At any period and temperature tested, Glu-40, G/P/L-2, and G/P-L-19 resulted in similar motion characteristics (P > 0.05) but were higher than that of other treatment groups (P < 0.05). Mean VAI was highest in Glu-40 (P < 0.05). Mean VLPP was highest in G/P/L-2 and G/P/L-19 groups (P < 0.05), and mean COMPα-t was lowest in Control, Glu-40, G/P/L-2 and G/P/L-19 groups (P < 0.05). All measures of sperm quality were higher in semen stored at 10 °C than 20 °C (P < 0.05). In Experiment 2, increasing concentrations of either pyruvate or lactate (Pyr-40, Lac-40 or Pyr-80, Lac-80) were added to the extender as energy substrates and compared to glucose (40 mM), following storage for 72 h at either 10 or 20 °C. Groups Glu-40 and Pyr-40 yielded similar sperm motion characteristics and VAI, while VLPP and COMPα-t were reduced in these treatment groups, as compared to Pyr-80, Lac-40, and Lac-80 (P < 0.05). All measures of sperm quality were higher in semen stored at 10 °C vs 20 °C (P < 0.05). This study demonstrates that at storage temperatures of 10 or 20 °C, stallion sperm quality is optimized by the presence of glucose in a skim milk-based semen extender. The addition of substrates that readily support oxidative phosphorylation (i.e., pyruvate or lactate) did not improve the quality of stallion sperm over that of glucose alone and resulted in deleterious effects on sperm quality over time. These effects appeared to be associated with oxidative stress. Use of pyruvate (40 mM) as an alternative energy substrate to glucose generally yielded similar results to that of glucose when sperm were stored at 10 °C only.
Collapse
Affiliation(s)
- Camilo Hernández-Avilés
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Luisa Ramírez-Agámez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Charles C Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Macy Friedrich
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mariah Pearson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dale E Kelley
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Anne M N Beckham
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sheila R Teague
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katrina A LaCaze
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Steven P Brinsko
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Saikrithi P, Balasubramanian CP, Otta SK, Tomy S. Expression dynamics of solute carrier family 15 member 4 (SLC15A4) and its potential regulatory role in ovarian development of the Indian white shrimp, Penaeus indicus. Mol Biol Rep 2020; 47:3797-3805. [PMID: 32363413 DOI: 10.1007/s11033-020-05471-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
Solute carrier proteins (SLC) are essential membrane transport proteins responsible for transporting lipids, amino acids, sugars, neurotransmitters, and drugs across the biological membranes. Dysfunction of these carrier proteins may lead to an imbalance of biological mechanisms and also in the failure of the transporting pathways of several signaling neurotransmitters. In the present study, a 646 bp of a solute carrier protein (SLC15A4) was cloned and sequenced from the Indian white shrimp, Penaeus indicus. Multiple sequence alignment using ClustalW and phylogenetic analysis of putative SLC15A4 fragment from P. indicus (PiSLC15A4) was performed using Mega X tool. Tissue distribution analysis was carried out using real-time PCR. The differential expressions of PiSLC15A4 were also analyzed in the ovaries and brain tissues of wild-caught female shrimps at different maturation stages and in the brain tissues of captive females subjected to induce maturation by eyestalk ablation. Significant diversity in SLC15A4 sequence obtained from P. indicus was observed when compared to the other species. Tissue distribution analysis confirmed the ubiquitous expression of PiSLC15A4 in all the tissues examined. The differential expressions of PiSLC15A4 indicated higher expression of the gene in brain tissue of females at the vitellogenic stage, while the expressions in ovaries were significantly higher in the immature stage. The differential expressions of PiSLC15A4 in the brain tissues were substantially higher in eyestalk ablated shrimps compared to the eyestalk intact females. The study suggests a role for SLC15A4 in the endocrine signaling pathways stimulating ovarian maturation in P. indicus.
Collapse
Affiliation(s)
- P Saikrithi
- Nutrition, Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, R.A. Puram, Chennai, Tamil Nadu, 600028, India
| | - C P Balasubramanian
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, R.A. Puram, Chennai, Tamil Nadu, 600028, India
| | - Subhendu Kumar Otta
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, R.A. Puram, Chennai, Tamil Nadu, 600028, India
| | - Sherly Tomy
- Nutrition, Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, R.A. Puram, Chennai, Tamil Nadu, 600028, India.
| |
Collapse
|
18
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Giusti N, Gillotay P, Trubiroha A, Opitz R, Dumont JE, Costagliola S, De Deken X. Inhibition of the thyroid hormonogenic H 2O 2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol Cell Endocrinol 2020; 500:110635. [PMID: 31678421 DOI: 10.1016/j.mce.2019.110635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) synthesis requires extracellular hydrogen peroxide generated by the NADPH oxidases, DUOX1 and DUOX2, with maturation factors, DUOXA1 and DUOXA2. In zebrafish, only one duox and one duoxa gene are present. Using a thyroid-specific reporter line, we investigated the role of Duox and Duoxa for TH biosynthesis in zebrafish larvae. Analysis of several zebrafish duox and duoxa mutant models consistently recovered hypothyroid phenotypes with hyperplastic goiter caused by impaired TH synthesis. Mutant larvae developed enlarged thyroids and showed increased expression of the EGFP reporter and thyroid functional markers including wild-type and mutated duox and duoxa transcripts. Treatment of zebrafish larvae with the NADPH oxidase inhibitor VAS2870 phenocopied the thyroid effects observed in duox or duoxa mutants. Additional functional in vitro assays corroborated the pharmacological inhibition of Duox activity by VAS2870. These data support the utility of this new experimental model to characterize endocrine disruptors of the thyroid function.
Collapse
Affiliation(s)
- Nicoletta Giusti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Achim Trubiroha
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Present Address: German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Robert Opitz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jacques-Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
20
|
Gothié J, Vancamp P, Demeneix B, Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol (Oxf) 2020; 228:e13316. [PMID: 31121082 PMCID: PMC9286394 DOI: 10.1111/apha.13316] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro‐ and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro‐ and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.
Collapse
Affiliation(s)
- Jean‐David Gothié
- Department of Neurology & Neurosurgery Montreal Neurological Institute & Hospital, McGill University Montreal Quebec Canada
| | - Pieter Vancamp
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| | | | - Sylvie Remaud
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| |
Collapse
|
21
|
Differential expression and immunoreactivity of thyroid hormone transporters MCT8 and OATP1C1 in rat ovary. Acta Histochem 2019; 121:151440. [PMID: 31561916 DOI: 10.1016/j.acthis.2019.151440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) regulate several physiological processes in female mammals, many of which are related to reproduction such as steroidogenesis in the ovary, oocyte and granulosa cells maturation, follicular development and differentiation, and ovulation. THs actions require the presence of THs transporters to facilitate their cellular uptake and efflux. MCT8 and OATP1C1 are the principal THs transporters. The aim of the present study was to determine the gene expression and cellular localization of MCT8 and OATP1C1 in the rat ovary during the diestrus-II cycle phase. Ovaries of virgin adult rats were histologically processed. Reverse Transcription-PCR and immunohistochemistry analyses for MCT8 and OATP1C1 were done. MCT8 gene expression level was significantly higher (P ≤ 0.01) than that of OATP1C1 in the rat ovary. MCT8 and OATP1C1 were found in all types of ovarian cells but with different immunoreactivity. MCT8 showed stronger immunoreactivity in tertiary and Graafian follicles, corpus luteum and blood vessels, whereas OATP1C1's immunoreactivity was stronger in stroma cells, tunica albuginea, and blood vessels. Our results provide evidence that THs and their transporters are both necessary for ovarian function and that any alteration in these transporters could interfere with reproductive processes such as ovulation and steroidogenesis, compromising fertility.
Collapse
|
22
|
Groeneweg S, Kersseboom S, van den Berge A, Dolcetta-Capuzzo A, van Geest FS, van Heerebeek REA, Arjona FJ, Meima ME, Peeters RP, Visser WE, Visser TJ. In Vitro Characterization of Human, Mouse, and Zebrafish MCT8 Orthologues. Thyroid 2019; 29:1499-1510. [PMID: 31436139 DOI: 10.1089/thy.2019.0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause MCT8 deficiency, characterized by severe intellectual and motor disability and abnormal serum thyroid function tests. Various Mct8 knock-out mouse models as well as mct8 knock-out and knockdown zebrafish models are used as a disease model for MCT8 deficiency. Although important for model eligibility, little is known about the functional characteristics of the MCT8 orthologues in these species. Therefore, we here compared the functional characteristics of mouse (mm) MCT8 and zebrafish (dr) Mct8 to human (hs) MCT8. Methods: We performed extensive transport studies in COS-1 and JEG-3 cells transiently transfected with hsMCT8, drMct8, and mmMCT8. Protein expression levels and subcellular localization were assessed by immunoblotting, surface biotinylation, and immunocytochemistry. Sequence alignment and structural modeling were used to interpret functional differences between the orthologues. Results: hsMCT8, drMct8, and mmMCT8 all facilitated the uptake and efflux of 3,3'-diiodothyronine (3,3'-T2), rT3, triiodothyronine (T3), and thyroxine (T4), although the initial uptake rates of drMct8 were 1.5-4.0-fold higher than for hsMCT8 and mmMCT8. drMct8 exhibited 3-50-fold lower apparent IC50 values than hsMCT8 and mmMCT8 for all tested substrates, and substrate preference of drMct8 (3,3'-T2, T3 > T4 > rT3) differed from hsMCT8 and mmMCT8 (T3 > T4 > rT3, 3,3'-T2). Compared with hsMCT8 and mmMCT8, cis-inhibition studies showed that T3 uptake by drMct8 was inhibited at a lower concentration and by a broader spectrum of TH metabolites. Total and cell surface expression levels of drMct8 and hsMCT8 were equal and both significantly exceeded those of mmMCT8. Structural modeling located most non-conserved residues outside the substrate pore, except for H192 in hsMCT8, which is replaced by a glutamine in drMct8. However, a H192Q substituent of hsMCT8 did not alter its transporter characteristics. Conclusion: Our studies substantiate the eligibility of mice and zebrafish models for human MCT8 deficiency. However, differences in the intrinsic transporter properties of MCT8 orthologues may exist, which should be realized when comparing MCT8 deficiency in different in vivo models. Moreover, our findings may indicate that the protein domains outside the substrate channel may play a role in substrate selection and protein stability.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Simone Kersseboom
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Amanda van den Berge
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Anna Dolcetta-Capuzzo
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
- Department of Endocrinology and Internal Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Ramona E A van Heerebeek
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Francisco J Arjona
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Eales JG. The relationship between ingested thyroid hormones, thyroid homeostasis and iodine metabolism in humans and teleost fish. Gen Comp Endocrinol 2019; 280:62-72. [PMID: 30980803 DOI: 10.1016/j.ygcen.2019.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/27/2022]
Abstract
Oral l-thyroxine (T4) therapy is used to treat human hypothyroidism but T4 fed to teleost fish does not raise plasma thyroid hormone (TH) levels nor induce growth, even though oral 3,5,3'-triiodo-l-thyronine (T3) is effective. This suggests a major difference in TH metabolism between teleosts and humans, often used as a starting thyroid model for lower vertebrates. To gain further insight on the proximate (mechanistic) and ultimate (survival value) factors underlying this difference, the several steps in TH homeostasis from intestinal TH uptake to hypothalamic-hypophyseal regulation were compared between humans and teleosts, and following dietary TH challenges. A major proximate factor limiting trout T4 uptake is a potent constitutive thiol-inhibited intestinal complete T4 deiodination that is ineffective for T3. At the hepatic level, T4 deiodination, conjugation and extensive biliary excretion with negligible T4 enterohepatic recycling can further block teleost T4 uptake to plasma. Such protection of plasma T4 from dietary T4 may be particularly critical for piscivorous fish consuming thyroid tissue, rich in T4 but not T3. It would prevent disruption by unregulated ingested T4 of the characteristic acute and transient changes in teleost plasma T4 due to diel rhythms, food intake and stress-related factors. These marked natural short-term fluctuations in teleost plasma T4 levels are enabled by the relatively small and rapidly-cleared plasma T4 pool, stemming largely from properties of the plasma T4-binding proteins. Humans, however, due mainly to plasma T4-binding globulin, have a relatively massive circulating pool of T4 and an extremely well-buffered free T4 level, consistent with the major TH role in regulating basal metabolic rate. Furthermore, this large well-buffered and slowly-cleared plasma T4 pool, in conjuction with enterohepatic recycling and relaxation of hypothalamic-hypophyseal negative feedback, allows humans to temporarily 'store' ingested T4 in plasma, thereby sparing endogenous TH secretion and conserving thyroidal iodine reserves. Indeed, iodine conservation is likely the key ultimate factor determining the divergent evolution of the human and teleost systems. For humans, ingested iodine in the form of I-, or TH and their derivatives, is the sole iodine source and may be limiting in many environments. However, most freshwater teleosts, in addition to their ability to assimilate dietary I-, can derive sufficient I- from their copious gill irrigation, with no selective advantage in absorbing dietary T4 which would disrupt their natural acute and transient changes in plasma T4. Thus T4 may act also as a vitamin (vitamone) in humans but not in teleosts; in contrast, T3, naturally ingested at much lower levels, may act as a vitamone in both humans and teleosts.
Collapse
Affiliation(s)
- J Geoffrey Eales
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| |
Collapse
|
24
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
25
|
Vancamp P, Houbrechts AM, Darras VM. Insights from zebrafish deficiency models to understand the impact of local thyroid hormone regulator action on early development. Gen Comp Endocrinol 2019; 279:45-52. [PMID: 30244055 DOI: 10.1016/j.ygcen.2018.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Thyroid hormones (THs) stimulate and coordinate a wide range of processes to ensure normal development, mainly by binding of the most active TH 3,5,3'-triiodothyronine (T3) to nuclear receptors resulting in changes in gene transcription. Local TH action is monitored at three distinct levels by different types of regulators: transmembrane transporters (TH influx and efflux), deiodinases (TH activation and inactivation) and nuclear receptors (TH signalling). Since TH regulators are strongly conserved among vertebrate species, the externally and rapidly developing zebrafish (Danio rerio) has become one of the favourite models to study their role in TH-dependent development. Most regulators are expressed in zebrafish from early stages in development in a dynamic and tissue-specific pattern. Transient or permanent disruption of a given regulator severely perturbs development of multiple organs. These zebrafish deficiency models help to explain why, next to overall hypo-/hyperthyroidism, inactivating mutations in the genes encoding TH regulators such as MCT8 and THRA/B have irreversible adverse effects on human development. Zebrafish are also increasingly used as a high-throughput model to assess the toxicity of various xenobiotics and their impact on development. While adverse effects on TH metabolism and gene expression have been shown, information on direct interaction with TH regulators is scarce, albeit essential to fully understand their mechanism of action. For the future, the combination of novel gene silencing tools, fluorescent reporter lines and (single-cell) transcriptomics holds promise for new zebrafish models to further elucidate the role of each TH regulator in vertebrate development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Anne M Houbrechts
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
26
|
Zak MA, Manzon RG. Expression and activity of lipid and oxidative metabolism enzymes following elevated temperature exposure and thyroid hormone manipulation in juvenile lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2019; 275:51-64. [PMID: 30721659 DOI: 10.1016/j.ygcen.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/11/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Temperature has unequivocal effects on several aspects of fish physiology, but the full extent of its interaction with key endocrine signaling systems to influence metabolic function remains unknown. The aim of the current study was to assess the individual and combined effects of elevated temperature and hyperthyroidism on hepatic metabolism in juvenile lake whitefish by quantifying mRNA abundance and activity of key metabolic enzymes. Fish were exposed to 13 (control), 17 or 21 °C for 0, 4, 8 or 24 days in the presence or absence of low-T4 (1 µg × g body weight-1) or high-T4 (10 µg × g body weight-1) treatment. Our results demonstrate moderate sensitivity to elevated temperature in this species, characterized by short-term changes in mRNA abundance of several metabolic enzymes and long-term declines in citrate synthase (CS) and cytochrome c oxidase (COX) activities. T4-induced hyperthyroidism also had several short-term effects on mRNA abundance of metabolic transcripts, including depressions in acetyl-coA carboxylase β (accβ) and carnitine palmitoyltransferase 1β (cpt1β), and stabilization of cs mRNA levels; however, these effects were primarily limited to elevated temperature groups, indicating temperature-dependent effects of exogenous T4 treatment in this species. In contrast, maximal CS and COX activities were not altered by hyperthyroidism at any temperature. Collectively, our data suggest that temperature has the potential to manipulate thyroid hormone physiology in juvenile lake whitefish and, under warm-conditions, hyperthyroidism may suppress certain elements of the β-oxidation pathway without substantial impacts on overall cellular oxidative capacity.
Collapse
Affiliation(s)
- Megan A Zak
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
27
|
Walter KM, Miller GW, Chen X, Yaghoobi B, Puschner B, Lein PJ. Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 272:20-32. [PMID: 30448381 PMCID: PMC6331280 DOI: 10.1016/j.ygcen.2018.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022]
Abstract
Thyroid hormones (THs) regulate neurodevelopment, thus TH disruption is widely posited as a mechanism of developmental neurotoxicity for diverse environmental chemicals. Zebrafish have been proposed as an alternative model for studying the role of TH in developmental neurotoxicity. To realize this goal, it is critical to characterize the normal ontogenetic expression profile of TH signaling molecules in the developing zebrafish and determine the sensitivity of these molecules to perturbations in TH levels. To address these gaps in the existing database, we characterized the transcriptional profiles of TH transporters, deiodinases (DIOs), receptors (TRs), nuclear coactivators (NCOAs), nuclear corepressors (NCORs), and retinoid X receptors (RXRs) in parallel with measurements of endogenous TH concentrations and tshβ mRNA expression throughout the first five days of zebrafish development. Transcripts encoding these TH signaling components were identified and observed to be upregulated around 48-72 h post fertilization (hpf) concurrent with the onset of larval production of T4. Exposure to exogenous T4 and T3 upregulated mct8, dio3-b, trα-a, trβ, and mbp-a levels, and downregulated expression of oatp1c1. Morpholino knockdown of TH transporter mct8 and treatment with 6-propyl-2-thiouracil (PTU) was used to reduce cellular uptake and production of TH, an effect that was associated with downregulation of dio3-b at 120 hpf. Collectively, these data confirm that larval zebrafish express orthologs of TH signaling molecules important in mammalian development and suggest that there may be species differences with respect to impacts of TH disruption on gene transcription.
Collapse
Affiliation(s)
- Kyla M Walter
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Galen W Miller
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Xiaopeng Chen
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
28
|
Verschuren EHJ, Hoenderop JGJ, Peters DJM, Arjona FJ, Bindels RJM. Tubular flow activates magnesium transport in the distal convoluted tubule. FASEB J 2018; 33:5034-5044. [DOI: 10.1096/fj.201802094r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eric H. J. Verschuren
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| | - Joost G. J. Hoenderop
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| | - Dorien J. M. Peters
- Department of Human GeneticsLeiden University Medical Centre Leiden The Netherlands
| | - Francisco J. Arjona
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| | - René J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
29
|
Vancamp P, Darras VM. From zebrafish to human: A comparative approach to elucidate the role of the thyroid hormone transporter MCT8 during brain development. Gen Comp Endocrinol 2018; 265:219-229. [PMID: 29183795 DOI: 10.1016/j.ygcen.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates transmembrane transport of thyroid hormones (THs) ensuring their action on gene expression during vertebrate neurodevelopment. A loss of MCT8 in humans results in severe psychomotor deficits associated with the Allan-Herndon-Dudley Syndrome (AHDS). However, where and when exactly a lack of MCT8 causes the neurological manifestations remains unclear because of the varying expression pattern of MCT8 between specific brain regions and cells. Here, we elaborate on the animal models that have been generated to elucidate the mechanisms underlying MCT8-deficient brain development. The absence of a clear neurological phenotype in Mct8 knockout mice made it clear that a single species would not suffice. The evolutionary conservation of TH action on neurodevelopment as well as the components regulating TH signalling however offers the opportunity to answer different aspects of MCT8 function in brain development using different vertebrate species. Moreover, the plethora of tools for genome editing available today facilitates gene silencing in these animals as well. Studies in the recently generated mct8-deficient zebrafish and Mct8/Oatp1c1 double knockout mice have put forward the current paradigm of impaired TH uptake at the level of the blood-brain barrier during peri- and postnatal development as being the main pathophysiological mechanism of AHDS. RNAi vector-based, cell-specific induction of MCT8 knockdown in the chicken embryo points to an additional function of MCT8 at the level of the neural progenitors during early brain development. Future studies including also additional in vivo models like Xenopus or in vitro approaches such as induced pluripotent stem cells will continue to help unravelling the exact role of MCT8 in developmental events. In the end, this multispecies approach will lead to a unifying thesis regarding the cellular and molecular mechanisms responsible for the neurological phenotype in AHDS patients.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
Chen C, Xie Z, Shen Y, Xia SF. The Roles of Thyroid and Thyroid Hormone in Pancreas: Physiology and Pathology. Int J Endocrinol 2018; 2018:2861034. [PMID: 30013597 PMCID: PMC6022313 DOI: 10.1155/2018/2861034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that thyroid hormones (THs), secreted from the thyroid, play important roles in energy metabolism. It is also known that THs also alter the functioning of other endocrine glands; however, their effects on pancreatic function have not yet been reviewed. One of the main functions of the pancreas is insulin secretion, which is altered in diabetes. Diabetes, therefore, could be related to thyroid dysfunction. Earlier research on this subject focused on TH regulation of pancreas function (such as insulin secretion) or on insulin function through TH-mediated increase of energy metabolism. Afterwards, epidemiological investigations and animal test research found a link between autoimmune diseases, thyroid dysfunction, and pancreas pathology; however, the underlying mechanisms remain unknown. Furthermore, recent studies have shown that THs also play important roles in pancreas development and on islet pathology, both in diabetes and in pancreatic cancer. Therefore, an overview of the effects of thyroid and THs on pancreas physiology and pathology is presented. The topics contained in this review include a summary of the relationship between autoimmune thyroid dysfunction and autoimmune pancreas lesions and the effects of THs on pancreas development and pancreas pathology (diabetes and pancreatic cancer).
Collapse
Affiliation(s)
- Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Jinming Avenue 475004, Henan, Kaifeng, China
| | - Yingbin Shen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shu Fang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Zada D, Blitz E, Appelbaum L. Zebrafish - An emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol Cell Endocrinol 2017; 459:53-58. [PMID: 28274736 DOI: 10.1016/j.mce.2017.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/18/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Thyroid hormones (THs) regulate a variety of fundamental physiological processes, including the development and maintenance of the brain. For decades, it was thought that THs enter the cells by passive diffusion. However, it is now clear that TH transport across the cell membrane requires specific transporter proteins that facilitate the uptake and efflux of THs. Several thyroid hormone transmembrane transporters (THTTs) have been identified, including monocarboxylate transporter 8 (MCT8), MCT10, and organic anion transporting polypeptide 1C1 (OATP1C1). The critical role of THTTs in regulating metabolism and brain function is demonstrated in the Allan-Herndon-Dudley syndrome (AHDS), an X-linked psychomotor retardation associated with mutations in the MCT8/SLC16A2 gene. In addition to traditional research on humans, cell-lines, and rodents, the zebrafish has recently emerged as an attractive model to study THTTs and neuroendocrinological-related disorders. In this review, we describe the unique contribution of zebrafish studies to the understanding of the functional role of THTTs in live animals, and how this transparent vertebrate model can be used for translational studies on TH-related disorders.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Einat Blitz
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
32
|
Abstract
As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.
Collapse
Affiliation(s)
- Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Lori A Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
33
|
McLean TR, Rank MM, Smooker PM, Richardson SJ. Evolution of thyroid hormone distributor proteins. Mol Cell Endocrinol 2017; 459:43-52. [PMID: 28249735 DOI: 10.1016/j.mce.2017.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
Abstract
Thyroid hormones (THs) are evolutionarily old hormones, having effects on metabolism in bacteria, invertebrates and vertebrates. THs bind specific distributor proteins (THDPs) to ensure their efficient distribution through the blood and cerebrospinal fluid in vertebrates. Albumin is a THDP in the blood of all studied species of vertebrates, so may be the original vertebrate THDP. However, albumin has weak affinity for THs. Transthyretin (TTR) has been identified in the blood across different lineages in adults vs juveniles. TTR has intermediate affinity for THs. Thyroxine-binding globulin has only been identified in mammals and has high affinity for THs. Of these THDPs, TTR is the only one known to be synthesised in the brain and is involved in moving THs from the blood into the cerebrospinal fluid. We analysed the rates of evolution of these three THDPs: TTR has been most highly conserved and albumin has had the highest rate of divergence.
Collapse
Affiliation(s)
- Thomas R McLean
- School of Science, RMIT University, Bundoora, 3083 Victoria, Australia.
| | - Michelle M Rank
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083 Victoria, Australia.
| | - Peter M Smooker
- School of Science, RMIT University, Bundoora, 3083 Victoria, Australia.
| | - Samantha J Richardson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083 Victoria, Australia.
| |
Collapse
|
34
|
Silva N, Louro B, Trindade M, Power DM, Campinho MA. Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis. Sci Rep 2017; 7:16657. [PMID: 29192226 PMCID: PMC5709499 DOI: 10.1038/s41598-017-16951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.
Collapse
Affiliation(s)
- Nadia Silva
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Marco A Campinho
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
35
|
Deficiency of the Thyroid Hormone Transporter Monocarboxylate Transporter 8 in Neural Progenitors Impairs Cellular Processes Crucial for Early Corticogenesis. J Neurosci 2017; 37:11616-11631. [PMID: 29109240 DOI: 10.1523/jneurosci.1917-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs) are essential for establishing layered brain structures, a process called corticogenesis, by acting on transcriptional activity of numerous genes. In humans, deficiency of the monocarboxylate transporter 8 (MCT8), involved in cellular uptake of THs before their action, results in severe neurological abnormalities, known as the Allan-Herndon-Dudley syndrome. While the brain lesions predominantly originate prenatally, it remains unclear how and when exactly MCT8 dysfunction affects cellular processes crucial for corticogenesis. We investigated this by inducing in vivo RNAi vector-based knockdown of MCT8 in neural progenitors of the chicken optic tectum, a layered structure that shares many developmental features with the mammalian cerebral cortex. MCT8 knockdown resulted in cellular hypoplasia and a thinner optic tectum. This could be traced back to disrupted cell-cycle kinetics and a premature shift to asymmetric cell divisions impairing progenitor cell pool expansion. Birth-dating experiments confirmed diminished neurogenesis in the MCT8-deficient cell population as well as aberrant migration of both early-born and late-born neuroblasts, which could be linked to reduced reelin signaling and disorganized radial glial cell fibers. Impaired neurogenesis resulted in a reduced number of glutamatergic and GABAergic neurons, but the latter additionally showed decreased differentiation. Moreover, an accompanying reduction in untransfected GABAergic neurons suggests hampered intercellular communication. These results indicate that MCT8-dependent TH uptake in the neural progenitors is essential for early events in corticogenesis, and help to understand the origin of the problems in cortical development and function in Allan-Herndon-Dudley syndrome patients.SIGNIFICANCE STATEMENT Thyroid hormones (THs) are essential to establish the stereotypical layered structure of the human forebrain during embryonic development. Before their action on gene expression, THs require cellular uptake, a process facilitated by the TH transporter monocarboxylate transporter 8 (MCT8). We investigated how and when dysfunctional MCT8 can induce brain lesions associated with the Allan-Herndon-Dudley syndrome, characterized by psychomotor retardation. We used the layered chicken optic tectum to model cortical development, and induced MCT8 deficiency in neural progenitors. Impaired cell proliferation, migration, and differentiation resulted in an underdeveloped optic tectum and a severe reduction in nerve cells. Our data underline the need for MCT8-dependent TH uptake in neural progenitors and stress the importance of local TH action in early development.
Collapse
|
36
|
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is essential for intracellular TH metabolism and action, and this is mediated by specific transporter proteins. During the last two decades several transporters capable of transporting TH have been identified, including monocarboxylate transporter 8 (MCT8), MCT10 and organic anion transporting polypeptide 1C1 (OATP1C1). In particular MCT8 and OATP1C1 are important for the regulation of local TH activity in the brain and thus for brain development. MCT8 is a protein containing 12 transmembrane domains, and is encoded by the SLC16A2 gene located on the X chromosome. It facilitates both TH uptake and efflux across the cell membrane. Male subjects with hemizygous mutations in MCT8 are afflicted with severe intellectual and motor disability, also known as the Allan-Herndon-Dudley syndrome (AHDS), which goes together with low serum T4 and high T3 levels. This review concerns molecular and clinical aspects of MCT8 function.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Theo J Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Jones RA, Cohn WB, Wilkes AA, MacKenzie DS. Negative feedback regulation of thyrotropin subunits and pituitary deiodinases in red drum, Sciaenops ocellatus. Gen Comp Endocrinol 2017; 240:19-26. [PMID: 27597549 DOI: 10.1016/j.ygcen.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
Thyroxine (T4) undergoes dynamic daily cycles in the perciform fish the red drum, Sciaenops ocellatus, that are inversely timed to cycles of thyrotropin (TSH) subunit mRNA expression in the pituitary gland. We have proposed that these daily cycles are regulated by negative feedback of circulating T4 on expression of pituitary thyroid hormone deiodinase type 3 (Dio3), such that elevated circulating T4 results in diminished pituitary thyroid hormone catabolism and consequent increased negative feedback on expression of TSH subunits during the day. To determine whether thyroid hormones function to modulate expression of pituitary deiodinase enzymes we developed an immersion technique to administer physiological doses of T3 and T4in vivo. Immersion in T4 or T3 significantly inhibited the mRNA expression of the TSH α and β subunits from 4 to 66h of immersion. Pituitary Dio3 expression was significantly diminished by T3 and T4 at 22h. These results indicate that both T4 and T3 are capable of negative feedback regulation of TSH subunit expression in red drum at physiological concentrations and on a time scale consistent with the T4 daily cycle. Furthermore, thyroid hormones negatively regulate Dio3 expression in the pituitary in a manner suggesting that negative thyroxine feedback on Dio3 promotes the release of TSH subunits from TH inhibition and may be an important mechanism for generating daily thyroid hormone cycles. These results highlight a potentially important role for D3 in mediating thyroid hormone feedback on TSH expression, not previously described in other species.
Collapse
Affiliation(s)
- R A Jones
- Department of Biology, Texas A&M University, 3258 TAMUS, College Station, TX 77843-3258, USA.
| | - W B Cohn
- Department of Biology, Texas A&M University, 3258 TAMUS, College Station, TX 77843-3258, USA.
| | - A A Wilkes
- Department of Biology, Texas A&M University, 3258 TAMUS, College Station, TX 77843-3258, USA.
| | - D S MacKenzie
- Department of Biology, Texas A&M University, 3258 TAMUS, College Station, TX 77843-3258, USA.
| |
Collapse
|
38
|
Geven EJW, Klaren PHM. The teleost head kidney: Integrating thyroid and immune signalling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:73-83. [PMID: 27387152 DOI: 10.1016/j.dci.2016.06.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
The head kidney, analogous to the mammalian adrenal gland, is an organ unique for teleost fish. It comprises cytokine-producing lymphoid cells from the immune system and endocrine cells secreting cortisol, catecholamines, and thyroid hormones. The intimate organization of the immune system and endocrine system in one single organ makes bidirectional signalling between these possible. In this review we explore putative interactions between the thyroid and immune system in the head kidney. We give a short overview of the thyroid system, and consider the evidence for the presence of thyroid follicles in the head kidney as a normal, healthy trait in fishes. From mammalian studies we gather data on the effects of three important pro-inflammatory cytokines (TNFα, IL-1β, IL-6) on the thyroid system. A general picture that emerges is that pro-inflammatory cytokines inhibit the activity of the thyroid system at different targets. Extrapolating from these studies, we suggest that the interaction of the thyroid system by paracrine actions of cytokines in the head kidney is involved in fine-tuning the availability and redistribution of energy substrates during acclimation processes such as an immune response or stress response.
Collapse
Affiliation(s)
- Edwin J W Geven
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Peter H M Klaren
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
39
|
Lema SC, Chow MI, Resner EJ, Westman AA, May D, Dittman AH, Hardy KM. Endocrine and metabolic impacts of warming aquatic habitats: differential responses between recently isolated populations of a eurythermal desert pupfish. CONSERVATION PHYSIOLOGY 2016; 4:cow047. [PMID: 27833749 PMCID: PMC5100229 DOI: 10.1093/conphys/cow047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Temperatures of inland aquatic habitats are increasing with climate change, and understanding how fishes respond physiologically to thermal stress will be crucial for identifying species most susceptible to these changes. Desert fishes may be particularly vulnerable to rising temperatures because many species occupy only a fraction of their historical range and occur in habitats with already high temperatures. Here, we examined endocrine and metabolic responses to elevated temperature in Amargosa pupfish, Cyprinodon nevadensis amargosae. We studied C. n. amargosae from two habitats with distinct thermal conditions: the Amargosa River, which experiences diurnally and seasonally variable temperatures (0.2-40°C); and Tecopa Bore, a spring and marsh fed by hot groundwater (47.5°C) from an artesian borehole. These allopatric populations differ in morphology, and prior evidence suggests that temperature might contribute to these differences via altered thyroid hormone (TH) regulation of morphological development. Here, we document variation in hepatic iodothyronine deiodinase type 2 (dio2) and type 3 (dio3) and TH receptor β (trβ) gene transcript abundance between the Amargosa River and Tecopa Bore wild populations. Fish from these populations acclimated to 24 or 34°C retained differences in hepatic dio2, dio3 and trβ mRNAs and also varied in transcripts encoding the TH membrane transporters monocarboxylate transporter 8 (mct8) and organic anion-transporting protein 1c1 (oatp1c1). Tecopa Bore pupfish also exhibited higher dio2 and trβ mRNA levels in skeletal muscle relative to Amargosa River fish. Muscle citrate synthase activity was lower at 34°C for both populations, whereas lactate dehydrogenase activity and lactate dehydrogenase A-chain (ldhA) transcripts were both higher and 3,5,3'-triiodothryonine responsive in Tecopa Bore pupfish only. These findings reveal that local population variation and thermal experience interact to shape how pupfish respond to elevated temperatures, and point to the need to consider such interactions in management actions for desert fishes under a changing climate.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Michelle I Chow
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Alex A Westman
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98112, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
40
|
Zada D, Tovin A, Lerer-Goldshtein T, Appelbaum L. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish. Dis Model Mech 2016; 9:1339-1348. [PMID: 27664134 PMCID: PMC5117236 DOI: 10.1242/dmm.027227] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
Hypomyelination is a key symptom of Allan-Herndon-Dudley syndrome (AHDS), a psychomotor retardation associated with mutations in the thyroid-hormone (TH) transporter MCT8 (monocarboxylate transporter 8). AHDS is characterized by severe intellectual deficiency, neuromuscular impairment and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8-/-) zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8-/- larvae and adults. Live imaging of single glial cells showed that the number of oligodendrocytes and the length of their extensions are reduced, and the number of peripheral Schwann cells is increased, in mct8-/- larvae compared with wild type. Pharmacological analysis showed that TH analogs and clemastine partially rescued the hypomyelination in the CNS of mct8-/- larvae. Intriguingly, triiodothyronine (T3) treatment rescued hypomyelination in mct8-/- embryos before the maturation of the blood-brain barrier (BBB), but did not affect hypomyelination in older larvae. Thus, we expressed Mct8-tagRFP in the endothelial cells of the vascular system and showed that even relatively weak mosaic expression completely rescued hypomyelination in mct8-/- larvae. These results suggest potential pharmacological treatments and BBB-targeted gene therapy that can enhance myelination in AHDS and possibly in other TH-dependent brain disorders.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Tovin
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
41
|
Houbrechts AM, Delarue J, Gabriëls IJ, Sourbron J, Darras VM. Permanent Deiodinase Type 2 Deficiency Strongly Perturbs Zebrafish Development, Growth, and Fertility. Endocrinology 2016; 157:3668-81. [PMID: 27580812 DOI: 10.1210/en.2016-1077] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iodothyronine deiodinases are selenocysteine-containing enzymes that activate or inactivate thyroid hormones (THs). Deiodinase type 2 (Dio2) catalyzes the conversion of the prohormone T4 into the transcriptionally active T3 and is the predominant activating deiodinase in zebrafish. Using zinc finger nucleases, we generated two different dio2(-/-) mutant zebrafish lines to investigate the physiological function of this TH activator. The first line contains a deletion of 9 bp, resulting in an in-frame elimination of three conserved amino acids. The other line is characterized by an insertion of 4 bp, leading to the introduction of a premature stop-codon. Both lines completely lack Dio2 activity, resulting in a strong reduction of T3 abundancy in all tissues tested. Early development is clearly perturbed in these animals, as shown by a diverse set of morphometric parameters, defects in swim bladder inflation, and disturbed locomotor activity tested between 1 and 7 days after fertilization. Permanent Dio2 deficiency also provokes long-term effects because growth and especially fertility are severely hampered. Possible compensatory mechanisms were investigated in adult dio2(-/-) mutants, revealing a down-regulation of the inactivating deiodinase Dio3 and TH receptor transcript levels. As the first nonmammalian model with permanent Dio2 deficiency, these mutant zebrafish lines provide evidence that Dio2 is essential to assure normal development and to obtain a normal adult phenotype.
Collapse
Affiliation(s)
- Anne M Houbrechts
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Julie Delarue
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Isabelle J Gabriëls
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Jo Sourbron
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
42
|
Pérez JH, Furlow JD, Wingfield JC, Ramenofsky M. Regulation of vernal migration in Gambel's white-crowned sparrows: Role of thyroxine and triiodothyronine. Horm Behav 2016; 84:50-6. [PMID: 27234300 DOI: 10.1016/j.yhbeh.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/21/2022]
Abstract
Appropriate timing of migratory behavior is critical for migrant species. For many temperate zone birds in the spring, lengthening photoperiod is the initial cue leading to morphological, physiological and behavior changes that are necessary for vernal migration and breeding. Strong evidence has emerged in recent years linking thyroid hormone signaling to the photoinduction of breeding in birds while more limited information suggest a potential role in the regulation of vernal migration in photoperiodic songbirds. Here we investigate the development and expression of the vernal migratory life history stage in captive Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) in a hypothyroidic state, induced by chemical inhibition of thyroid hormone production. To explore possible variations in the effects of the two thyroid hormones, triiodothyronine and thyroxine, we subsequently performed a thyroid inhibition coupled with replacement therapy. We found that chemical inhibition of thyroid hormones resulted in complete abolishment of mass gain, fattening, and muscle hypertrophy associated with migratory preparation as well as resulting in failure to display nocturnal restlessness behavior. Replacement of thyroxine rescued all of these elements to near control levels while triiodothyronine replacement displayed partial or delayed rescue. Our findings support thyroid hormones as being necessary for the expression of changes in morphology and physiology associated with migration as well as migratory behavior itself.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - J David Furlow
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Marilyn Ramenofsky
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
43
|
Bourgeois NMA, Van Herck SLJ, Vancamp P, Delbaere J, Zevenbergen C, Kersseboom S, Darras VM, Visser TJ. Characterization of Chicken Thyroid Hormone Transporters. Endocrinology 2016; 157:2560-74. [PMID: 27070099 DOI: 10.1210/en.2015-2025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (TH) transmembrane transporters are key regulators of TH availability in target cells where correct TH signaling is essential for normal development. Although the chicken embryo is a valuable model for developmental studies, the only functionally characterized chicken TH transporter so far is the organic anion transporting polypeptide 1C1 (OATP1C1). We therefore cloned the chicken L-type amino acid transporter 1 (LAT1) and the monocarboxylate transporters 8 (MCT8) and 10 (MCT10), and functionally characterized them, together with OATP1C1, in JEG3, COS1, and DF-1 cells. In addition, we used in situ hybridization to study their mRNA expression pattern during development. MCT8 and OATP1C1 are both high affinity transporters for the prohormone T4, whereas receptor-active T3 is preferably transported by MCT8 and MCT10. The latter one shows lower affinity but has a high Vmax and seems to be especially good at T3 export. Also, LAT1 has a lower affinity for its preferred substrate 3,3'-diiodothyronine. Reverse T3 is transported by all 4 TH transporters and is a good export product for OATP1C1. TH transporters are strongly expressed in eye (LAT1, MCT8, MCT10), pancreas (LAT1, MCT10), kidney, and testis (MCT8). Their extensive expression in the central nervous system, especially at the brain barriers, indicates an important role in brain development. In conclusion, we show TH transport by chicken MCT8, MCT10, and LAT1. Together with OATP1C1, these transporters have functional characteristics similar to their mammalian orthologs and are interesting target genes to further elucidate the role of THs during embryonic development.
Collapse
Affiliation(s)
- Nele M A Bourgeois
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Joke Delbaere
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Chantal Zevenbergen
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Simone Kersseboom
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Theo J Visser
- Laboratory of Comparative Endocrinology (N.M.A.B., S.L.J.V.H., P.V., J.D., V.M.D.), Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; and Department of Internal Medicine (C.Z., S.K., T.J.V.), Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
44
|
Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, Reinhard R, Clark MS, Rønnestad I, Power DM. The transcriptome of metamorphosing flatfish. BMC Genomics 2016; 17:413. [PMID: 27233904 PMCID: PMC4884423 DOI: 10.1186/s12864-016-2699-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. RESULTS De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. CONCLUSIONS A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana S Gomes
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Kurt Stueber
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Mbaye Tine
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.,Current address: Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Richard Reinhard
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
45
|
Little AG. A review of the peripheral levels of regulation by thyroid hormone. J Comp Physiol B 2016; 186:677-88. [DOI: 10.1007/s00360-016-0984-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
|
46
|
Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters-functions and clinical implications. Nat Rev Endocrinol 2015; 11:690. [PMID: 26485690 DOI: 10.1038/nrendo.2015.186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Abstract
The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations.
Collapse
Affiliation(s)
- Juan Bernal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Beatriz Morte
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
48
|
Van Herck SLJ, Delbaere J, Bourgeois NMA, McAllan BM, Richardson SJ, Darras VM. Expression of thyroid hormone transporters and deiodinases at the brain barriers in the embryonic chicken: Insights into the regulation of thyroid hormone availability during neurodevelopment. Gen Comp Endocrinol 2015; 214:30-9. [PMID: 25745816 DOI: 10.1016/j.ygcen.2015.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 02/02/2023]
Abstract
Thyroid hormones (THs) are key regulators in the development of the vertebrate brain. Therefore, TH access to the developing brain needs to be strictly regulated. The brain barriers separate the central nervous system from the rest of the body and impose specific transport mechanisms on the exchange of molecules between the general circulation and the nervous system. As such they form ideal structures for regulating TH exchange between the blood and the brain. To investigate the mechanism by which the developing brain regulates TH availability, we investigated the ontogenetic expression profiles of TH transporters, deiodinases and the TH distributor protein transthyretin (TTR) at the brain barriers during embryonic and early postnatal development using the chicken as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), organic anion transporting polypeptide 1C1 (OATP1C1) and L-type amino acid transporter 1 (LAT1) and the inactivating type 3 deiodinase (D3) in the choroid plexus which forms the blood-cerebrospinal fluid barrier. This was confirmed by quantitative PCR which additionally indicated strongly increasing expression of TTR as well as detectable expression of the activating type 2 deiodinase (D2) and the (in)activating type 1 deiodinase (D1). In the brain capillaries forming the blood-brain barrier in situ hybridisation showed exclusive expression of LAT1 and D2. The combined presence of LAT1 and D2 in brain capillaries suggests that the blood-brain barrier forms the main route for receptor-active T3 uptake into the embryonic chicken brain. Expression of multiple transporters, deiodinases and TTR in the choroid plexus indicates that the blood-cerebrospinal fluid barrier is also important in regulating early TH availability. The impact of these barrier systems can be deduced from the clear difference in T3 and T4 levels as well as the T3/T4 ratio between the developing brain and the general circulation. We conclude that the tight regulation of TH exchange at the brain barriers from early embryonic stages is one of the factors needed to allow the brain to develop within a relative microenvironment.
Collapse
Affiliation(s)
- Stijn L J Van Herck
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Joke Delbaere
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Nele M A Bourgeois
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium
| | - Bronwyn M McAllan
- The University of Sydney, Physiology, School of Medical Sciences, and Bosch Institute, Sydney, Australia
| | | | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, Leuven, Belgium.
| |
Collapse
|
49
|
Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:130-41. [DOI: 10.1016/j.bbagrm.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|
50
|
Sasaki S, Futagi Y, Kobayashi M, Ogura J, Iseki K. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J Biol Chem 2014; 290:2303-11. [PMID: 25371203 DOI: 10.1074/jbc.m114.581892] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thyrotropin-releasing hormone is a tripeptide that consists of 5-oxoproline, histidine, and proline. The peptide is rapidly metabolized by various enzymes. 5-Oxoproline is produced by enzymatic hydrolysis in a variety of peptides. Previous studies showed that 5-oxoproline could become a possible biomarker for autism spectrum disorders. Here we demonstrate the involvement of SLC16A1 in the transport of 5-oxoproline. An SLC16A1 polymorphism (rs1049434) was recently identified. However, there is no information about the effect of the polymorphism on SLC16A1 function. In this study, the polymorphism caused an observable change in 5-oxoproline and lactate transport via SLC16A1. The Michaelis constant (Km) was increased in an SLC16A1 mutant compared with that in the wild type. In addition, the proton concentration required to produce half-maximal activation of transport activity (K0.5, H (+)) was increased in the SLC16A1 mutant compared with that in the wild type. Furthermore, we examined the transport of 5-oxoproline in T98G cells as an astrocyte cell model. Despite the fact that 5-oxoproline is an amino acid derivative, Na(+)-dependent and amino acid transport systems scarcely contributed to 5-oxoproline transport. Based on our findings, we conclude that H(+)-coupled 5-oxoproline transport is mediated solely by SLC16A1 in the cells.
Collapse
Affiliation(s)
- Shotaro Sasaki
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Yuya Futagi
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Masaki Kobayashi
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Jiro Ogura
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Ken Iseki
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and the Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan
| |
Collapse
|