1
|
De Vriendt S, Laporte E, Abaylı B, Hoekx J, Hermans F, Lambrechts D, Vankelecom H. Single-cell transcriptome atlas of male mouse pituitary across postnatal life highlighting its stem cell landscape. iScience 2025; 28:111708. [PMID: 39898054 PMCID: PMC11787594 DOI: 10.1016/j.isci.2024.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
The pituitary represents the master gland governing the endocrine system. We constructed a single-cell (sc) transcriptomic atlas of male mouse endocrine pituitary by incorporating existing and new data, spanning important postnatal ages in both healthy and injured condition. We demonstrate strong applicability of this new atlas to unravel pituitary (patho)biology by focusing on its stem cells and investigating their complex identity (unveiling stem cell markers) and niche (pinpointing regulatory factors). Importantly, we functionally validated transcriptomic findings using pituitary stem cell organoids, revealing roles for Krüppel-like transcription factor 5 (KLF5), activator protein-1 (AP-1) complex and epidermal growth factor (EGF) pathways in pituitary stem cell regulation. Our investigation substantiated changes in stem cell dynamics during aging, reinforcing the inflammatory/immune nature in elderly pituitary and stem cells. Finally, we show translatability of mouse atlas-based findings to humans, particularly regarding aging-associated profile. This pituitary sc map is a valuable tool to unravel pituitary (patho)biology.
Collapse
Affiliation(s)
- Silke De Vriendt
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Emma Laporte
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Berkehür Abaylı
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Julie Hoekx
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Oguchi A, Iwamoto C, Higuchi M. Differentiation potential of SOX2-positive stem cells in the bovine pituitary gland. Biochem Biophys Res Commun 2024; 738:150537. [PMID: 39167959 DOI: 10.1016/j.bbrc.2024.150537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The pituitary gland is the master endocrine gland, harboring stem cells with various genetic characteristics; however, data from non-rodent and non-human sources are scarce. In this study, we isolated putative stem cells from the bovine pituitary gland and investigated their potential for differentiation into hormone-producing cells. Immunohistochemical analysis revealed that in calves and heifers, stem cell marker sex-determining region Y-box 2 (SOX2)-positive cells were widely present in the pituitary gland and partially co-localized with anterior pituitary hormones. Next, a single-cell suspension of primary anterior lobe cells from bovines aged 0 and 12 months was subjected to two-dimensional culture. Consequently, some cells proliferated in the culture dishes. The expression levels of Sox2 and several other stem cell markers were higher in these cells after culture. In addition, almost all proliferating cells were positive for SOX2, whereas all were negative for hormones. In three-dimensional cultures, SOX2-positive cells presented a spheroid-like morphology and differentiated into endocrine cells. These results provide evidence that SOX2-positive cells are pituitary stem cells with the potential to differentiate into hormone-producing cells, regardless of age. Our data lay a theoretical foundation for further studies on controlling fundamental processes, such as body growth, reproduction, and lactation.
Collapse
Affiliation(s)
- Ai Oguchi
- Division of Basic Veterinary Science, Joint Graduate School of Veterinary Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori, 680-8553, Japan; Kurayoshi Livestock Hygiene Service Center of Tottori Prefecture, 2-132 Seidani, Kurayoshi-shi, Tottori, 682-0017, Japan
| | - Chihiro Iwamoto
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori, 680-8553, Japan
| | - Masashi Higuchi
- Division of Basic Veterinary Science, Joint Graduate School of Veterinary Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori, 680-8553, Japan; Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori, 680-8553, Japan.
| |
Collapse
|
3
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Rizzoti K, Chakravarty P, Sheridan D, Lovell-Badge R. SOX9-positive pituitary stem cells differ according to their position in the gland and maintenance of their progeny depends on context. SCIENCE ADVANCES 2023; 9:eadf6911. [PMID: 37792947 PMCID: PMC10550238 DOI: 10.1126/sciadv.adf6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Stem cell (SC) differentiation and maintenance of resultant progeny underlie cell turnover in many organs, but it is difficult to pinpoint the contribution of either process. In the pituitary, a central regulator of endocrine axes, adult SCs undergo activation after target organ ablation, providing a well-characterized paradigm to study an adaptative response in a multi-organ system. Here, we used single-cell technologies to characterize SC heterogeneity and mobilization together with lineage tracing. We show that SC differentiation occurs more frequently than thought previously. In adaptative conditions, differentiation increases and is more diverse than demonstrated by the lineage tracing experiments. Detailed examination of SC progeny suggests that maintenance of selected nascent cells underlies SC output, highlighting a trophic role for the microenvironment. Analyses of cell trajectories further predict pathways and potential regulators. Our model provides a valuable system to study the influence of evolving states on the mechanisms of SC mobilization.
Collapse
Affiliation(s)
- Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Daniel Sheridan
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
6
|
Laporte E, Vankelecom H. Organoid models of the pituitary gland in health and disease. Front Endocrinol (Lausanne) 2023; 14:1233714. [PMID: 37614709 PMCID: PMC10442803 DOI: 10.3389/fendo.2023.1233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
The pituitary gland represents the hub of our endocrine system. Its cells produce specific hormones that direct multiple vital physiological processes such as body growth, fertility, and stress. The gland also contains a population of stem cells which are still enigmatic in phenotype and function. Appropriate research models are needed to advance our knowledge on pituitary (stem cell) biology. Over the last decade, 3D organoid models have been established, either derived from the pituitary stem cells or from pluripotent stem cells, covering both healthy and diseased conditions. Here, we summarize the state-of-the-art of pituitary-allied organoid models and discuss applications of these powerful in vitro research and translational tools to study pituitary development, biology, and disease.
Collapse
Affiliation(s)
- Emma Laporte
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Laboratory of Tissue Plasticity in Health and Disease, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Laboratory of Tissue Plasticity in Health and Disease, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Willis TL, Lodge EJ, Andoniadou CL, Yianni V. Cellular interactions in the pituitary stem cell niche. Cell Mol Life Sci 2022; 79:612. [PMID: 36451046 PMCID: PMC9712314 DOI: 10.1007/s00018-022-04612-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
Stem cells in the anterior pituitary gland can give rise to all resident endocrine cells and are integral components for the appropriate development and subsequent maintenance of the organ. Located in discreet niches within the gland, stem cells are involved in bi-directional signalling with their surrounding neighbours, interactions which underpin pituitary gland homeostasis and response to organ challenge or physiological demand. In this review we highlight core signalling pathways that steer pituitary progenitors towards specific endocrine fate decisions throughout development. We further elaborate on those which are conserved in the stem cell niche postnatally, including WNT, YAP/TAZ and Notch signalling. Furthermore, we have collated a directory of single cell RNA sequencing studies carried out on pituitaries across multiple organisms, which have the potential to provide a vast database to study stem cell niche components in an unbiased manner. Reviewing published data, we highlight that stem cells are one of the main signalling hubs within the anterior pituitary. In future, coupling single cell sequencing approaches with genetic manipulation tools in vivo, will enable elucidation of how previously understudied signalling pathways function within the anterior pituitary stem cell niche.
Collapse
Affiliation(s)
- Thea L Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Laporte E, Hermans F, De Vriendt S, Vennekens A, Lambrechts D, Nys C, Cox B, Vankelecom H. Decoding the activated stem cell phenotype of the neonatally maturing pituitary. eLife 2022; 11:75742. [PMID: 35699412 PMCID: PMC9333987 DOI: 10.7554/elife.75742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
The pituitary represents the endocrine master regulator. In mouse, the gland undergoes active maturation immediately after birth. Here, we in detail portrayed the stem cell compartment of neonatal pituitary. Single-cell RNA-sequencing pictured an active gland, revealing proliferative stem as well as hormonal (progenitor) cell populations. The stem cell pool displayed a hybrid epithelial/mesenchymal phenotype, characteristic of development-involved tissue stem cells. Organoid culturing recapitulated the stem cells’ phenotype, interestingly also reproducing their paracrine activity. The pituitary stem cell-activating interleukin-6 advanced organoid growth, although the neonatal stem cell compartment was not visibly affected in Il6−/− mice, likely due to cytokine family redundancy. Further transcriptomic analysis exposed a pronounced WNT pathway in the neonatal gland, shown to be involved in stem cell activation and to overlap with the (fetal) human pituitary transcriptome. Following local damage, the neonatal gland efficiently regenerates, despite absence of additional stem cell proliferation, or upregulated IL-6 or WNT expression, all in line with the already high stem cell activation status, thereby exposing striking differences with adult pituitary. Together, our study decodes the stem cell compartment of neonatal pituitary, exposing an activated state in the maturing gland. Understanding stem cell activation is key to potential pituitary regenerative prospects. The pituitary gland is a pea-sized structure found just below the brain that produces hormones controlling everything from growth and stress to reproduction and immunity. To perform its role, the pituitary gland needs specialised hormone-producing cells, but it also contains stem cells. These stem cells can divide to produce more cells like themselves, or differentiate into cells of different types, including hormone-producing cells. In mice, the stem cells of the pituitary gland appear to be activated in the first few weeks after birth, and later become ‘quiescent’ (or lazy) in the adult pituitary gland. However, it remains unclear how the activated state found in the maturing gland is established and regulated. To answer this question, Laporte et al. used single-cell RNA sequencing, a technique that allows researchers to profile which genes are active in individual cells, which can provide vital information about the state and activity of a tissue. The researchers compared the cells of the maturing pituitary gland of newborn mice to the cells in the established gland of adult mice. This analysis revealed that the maturing pituitary gland is a dynamic tissue, with populations of cells that are actively dividing (including the stem cells), which the mature pituitary gland lacks. Additionally, Laporte et al. established the molecular basis for the activated state of the stem cells in the maturing pituitary gland, which relies on the activation of a cell signalling pathway called WNT. To confirm these findings, Laporte et al. used an organoid system that allowed them to recapitulate the stem cell compartment of the maturing pituitary gland in a dish. When Laporte et al. blocked WNT signalling in these organoids, the organoids failed to form or divide. Furthermore, blocking the pathway directly in newborn mice reduced the number of dividing stem cells in the pituitary gland. Both findings support the notion that WNT signalling is required to establish the activated state of the maturing pituitary gland in newborn mice. Laporte et al. also wanted to know whether the newborn pituitary gland responded to injury differently than the adult gland. It had already been established that the adult pituitary stem cells become activated upon injury, and that the gland has some regenerative capacity. However, when Laporte et al. injured the newborn pituitary gland, the gland was able to fully regenerate, despite the stem cells not becoming more activated. This is likely because these cells are already activated (or ‘primed’), and do not require further activation to divide and repair the gland with the help of other proliferating cells. With these results, Laporte et al. shed light on the activated state of the stem cells in the pituitary gland of newborn mice. This provides insight into the role of these stem cells, as well as unveiling possible routes towards regenerating pituitary tissue. This could eventually prove useful in medicine, in cases when the pituitary gland is damaged or removed.
Collapse
Affiliation(s)
- Emma Laporte
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Florian Hermans
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Silke De Vriendt
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | | | - Charlotte Nys
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Benoit Cox
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
SASAKI K, HIGUCHI M. Characterization of pituitary stem/progenitor cell populations in spontaneous dwarf rats. J Vet Med Sci 2022; 84:680-688. [PMID: 35387959 PMCID: PMC9177403 DOI: 10.1292/jvms.22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous dwarf rat (SDR) is a primary experimental animal model for the study of pituitary dwarfism with a point mutation in the Gh gene encoding growth hormone (GH). In previous studies, SDR has been reported to be associated with the GH deficiency as well as combined hormone deficiencies, the cause of which is unknown. In this study, we focused on the characteristics of pituitary stem/progenitor cell populations, which are a source of hormone-producing cells, in SDR. Immunofluorescence and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses confirmed the defects in GH-producing cells, the decreased number of prolactin- and thyroid-stimulating hormone-producing cells, and the increased number of adrenocorticotropic hormone- and luteinizing hormone-producing cells. Additionally, qRT-PCR analysis showed increased Prop1 (an embryonic stem/progenitor cell marker) expression and decreased S100b (a putative adult stem/progenitor cell marker) expression in SDRs. In the pituitary stem/progenitor cell niche, the marginal cell layer, the proportion of SOX2/PROP1-double positive cells was higher in adult SDRs than in adult Sprague Dawley (SD) rats but that of SOX2/S100β-double positive cells was much lower. Furthermore, the number of SOX2/PROP1-double positive cells in SD rats significantly decreased with growth; however, the decrease was smaller in SDRs. In contrast, the number of SOX2/S100β-double positive cells in SD rats significantly increased with growth; however, they were few in SDRs. Thus, S100β-positive pituitary stem/progenitor cells failed to settle in pituitary dwarfism with the Gh gene mutation, leading to multiple hypopituitarism including GH deficiency.
Collapse
Affiliation(s)
- Kenta SASAKI
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Masashi HIGUCHI
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
10
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Laporte E, De Vriendt S, Hoekx J, Vankelecom H. Interleukin-6 is dispensable in pituitary normal development and homeostasis but needed for pituitary stem cell activation following local injury. Front Endocrinol (Lausanne) 2022; 13:1092063. [PMID: 36619565 PMCID: PMC9815540 DOI: 10.3389/fendo.2022.1092063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, we discovered that the cytokine interleukin-6 (IL-6) acts as a pituitary stem cell-activating factor, both when administered in vivo and when added to stem cell organoid cultures in vitro. Moreover, its expression, predominantly localized in the gland's stem and mesenchymal cells, promptly increases following damage in the adult pituitary, leading to stem-cell proliferative activation. Given these findings that IL-6 is involved in pituitary stem cell regulation, we addressed the question whether the cytokine has an impact on the pituitary phenotype during active phases of the gland's remodeling, in particular embryonic development and neonatal maturation, as well as during homeostasis at adulthood and aging, all unknown today. Using the IL-6 knock-out (KO) mouse model, we show that IL-6 is dispensable for pituitary embryonic and neonatal endocrine cell development, as well as for hormonal cell homeostasis in adult and aging glands. The findings match the absence of effects on the stem cell compartment at these stages. However, using this IL-6 KO model, we found that IL-6 is needed for the acute stem-cell proliferative activation reaction upon pituitary injury. Intriguingly, regeneration still occurs which may be due to compensatory behavior by other cytokines which are upregulated in the damaged IL-6 KO pituitary, although at lower but prolonged levels, which might lead to a delayed (and less forceful) stem cell response. Taken together, our study revealed that IL-6 is dispensable for normal pituitary development and homeostasis but plays a key role in the prompt stem cell activation upon local damage, although its presence is not essentially needed for the final regenerative realization.
Collapse
|
12
|
Guido CB, Sosa LDV, Perez PA, Zlocoswki N, Velazquez FN, Gutierrez S, Petiti JP, Mukdsi JH, Torres AI. Changes of stem cell niche during experimental pituitary tumor development. J Neuroendocrinol 2021; 33:e13051. [PMID: 34708474 DOI: 10.1111/jne.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
To investigate the putative stem cell/tumor stem cell (SC/TSC) niche contribution to hyperplasic/adenomatous pituitary lesions, we analyzed variation in the pituitary stem cell population during the development of experimental pituitary tumors. Pituitary tumors were induced in female F344 rats with estradiol benzoate for 5, 10, 20 and 30 days. Cells positive for GFRa2, Sox2, Sox9, Nestin, CD133 and CD44 were identified in the marginal zone and in the adenoparenchyma in both control and 30D groups, with predominant adenoparenchyma localization of GRFa2 and SOX9 found in tumoral pituitaries. GFRa2, Nestin, CD133 and CD44 were upregulated at the initial stages of tumor growth, whereas Sox9 significantly decreased at 5D, with Sox2 remaining invariable during the hyperplasic/adenomatous development. In addition, isolated pituispheres from normal and tumoral pituitary glands enriched in SC/TSC were characterized. Pituispheres from the 30D glands were positive for the above-mentioned markers and showed a significant increase in the proliferation. In conclusion, our data revealed pituitary SC pool fluctuations during hyperplastic/adenomatous development, with differential localization of the SC/TSC niche in this process. These findings may help to provide a better understanding of these cell populations, which is crucial for achieving advancements in the field of pituitary tumor biology.
Collapse
Affiliation(s)
- Carolina Beatriz Guido
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Liliana Del Valle Sosa
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Pablo Aníbal Perez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Natacha Zlocoswki
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Fabiola Noelia Velazquez
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutierrez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan Pablo Petiti
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Jorge Humberto Mukdsi
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia Inés Torres
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
13
|
Vennekens A, Laporte E, Hermans F, Cox B, Modave E, Janiszewski A, Nys C, Kobayashi H, Malengier-Devlies B, Chappell J, Matthys P, Garcia MI, Pasque V, Lambrechts D, Vankelecom H. Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proc Natl Acad Sci U S A 2021; 118:e2100052118. [PMID: 34161279 PMCID: PMC8237615 DOI: 10.1073/pnas.2100052118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.
Collapse
Affiliation(s)
- Annelies Vennekens
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Emma Laporte
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Laboratory of Morphology, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Benoit Cox
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Elodie Modave
- Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, 3000 Leuven, Belgium
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Laboratory for Cellular Reprogramming and Epigenetic Regulation, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Charlotte Nys
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Hiroto Kobayashi
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Bert Malengier-Devlies
- Immunity and Inflammation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joel Chappell
- Laboratory for Cellular Reprogramming and Epigenetic Regulation, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Patrick Matthys
- Immunity and Inflammation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marie-Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Medicine, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Vincent Pasque
- Laboratory for Cellular Reprogramming and Epigenetic Regulation, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, 3000 Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
14
|
Nys C, Vankelecom H. Pituitary disease and recovery: How are stem cells involved? Mol Cell Endocrinol 2021; 525:111176. [PMID: 33503464 DOI: 10.1016/j.mce.2021.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
The pituitary gland embodies our endocrine hub and rigorously regulates hormone balances in the body, thereby ruling over vital developmental and physiological processes. Pituitary dysfunction and disease strongly impact the organism's biology. Physical damage, tumour development and ageing all negatively affect pituitary state and functionality. On top of its hormone-producing cells, the pituitary contains a population of stem cells. Not only their physiological role is still largely unknown, also whether or how these stem cells are involved in pituitary disease and recovery from defective functionality remains enigmatic. Here, we summarize what is known on the phenotypical and functional behaviour of pituitary stem cells in diseased or dysfunctional gland, as particularly caused by injury, tumourigenesis and ageing.
Collapse
Affiliation(s)
- Charlotte Nys
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000, Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000, Leuven, Belgium.
| |
Collapse
|
15
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
16
|
Ozaki H, Suga H, Arima H. Hypothalamic-pituitary organoid generation through the recapitulation of organogenesis. Dev Growth Differ 2021; 63:154-165. [PMID: 33662152 DOI: 10.1111/dgd.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/26/2022]
Abstract
This paper overviews the development and differentiation of the hypothalamus and pituitary gland from embryonic stem (ES) and induced pluripotent stem (iPS) cells. It is important to replicate the developmental process in vivo to create specific cells/organoids from ES/iPS cells. We also introduce the latest findings and discuss future issues for clinical application. Neuroectodermal progenitors are induced from pluripotent stem cells by strictly removing exogenous patterning factors during the early differentiation period. The induced progenitors differentiate into rostral hypothalamic neurons, in particular magnocellular vasopressin+ neurons. In three-dimensional cultures, ES/iPS cells differentiate into hypothalamic neuroectoderm and nonneural head ectoderm adjacently. Rathke's pouch-like structures self-organize at the interface between the two layers and generate various endocrine cells, including corticotrophs and somatotrophs. Our next objective is to sophisticate our stepwise methodology to establish a novel transplantation treatment for hypopituitarism and apply it to developmental disease models.
Collapse
Affiliation(s)
- Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Mullany LK, Lonard DM, O’Malley BW. Wound Healing-related Functions of the p160 Steroid Receptor Coactivator Family. Endocrinology 2021; 162:6042238. [PMID: 33340403 PMCID: PMC7814297 DOI: 10.1210/endocr/bqaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Multicellular organisms have evolved sophisticated mechanisms to recover and maintain original tissue functions following injury. Injury responses require a robust transcriptomic response associated with cellular reprogramming involving complex gene expression programs critical for effective tissue repair following injury. Steroid receptor coactivators (SRCs) are master transcriptional regulators of cell-cell signaling that is integral for embryogenesis, reproduction, normal physiological function, and tissue repair following injury. Effective therapeutic approaches for facilitating improved tissue regeneration and repair will likely involve temporal and combinatorial manipulation of cell-intrinsic and cell-extrinsic factors. Pleiotropic actions of SRCs that are critical for wound healing range from immune regulation and angiogenesis to maintenance of metabolic regulation in diverse organ systems. Recent evidence derived from studies of model organisms during different developmental stages indicates the importance of the interplay of immune cells and stromal cells to wound healing. With SRCs being the master regulators of cell-cell signaling integral to physiologic changes necessary for wound repair, it is becoming clear that therapeutic targeting of SRCs provides a unique opportunity for drug development in wound healing. This review will provide an overview of wound healing-related functions of SRCs with a special focus on cellular and molecular interactions important for limiting tissue damage after injury. Finally, we review recent findings showing stimulation of SRCs following cardiac injury with the SRC small molecule stimulator MCB-613 can promote cardiac protection and inhibit pathologic remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Lisa K Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Correspondence: Bert W. O’Malley, MD, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA.
| |
Collapse
|
18
|
Laporte E, Vennekens A, Vankelecom H. Pituitary Remodeling Throughout Life: Are Resident Stem Cells Involved? Front Endocrinol (Lausanne) 2021; 11:604519. [PMID: 33584539 PMCID: PMC7879485 DOI: 10.3389/fendo.2020.604519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary's endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.
Collapse
Affiliation(s)
| | | | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
19
|
Recent Progress in Stem Cell Research of the Pituitary Gland and Pituitary Adenoma. ENDOCRINES 2020. [DOI: 10.3390/endocrines1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and anti-tumoral therapy have been developed through understanding tissue stem cells and cancer stem cells (CSCs). The concept of tissue stem cells has been applied to the pituitary gland (PG). Recently, PG stem cells (PGSCs) were successfully differentiated from human embryonic stem cells and induced pluripotent stem cells, showing an in vivo therapeutic effect in a hypopituitary model. Pituitary adenomas (PAs) are common intracranial neoplasms that are generally benign, but treatment resistance remains a major concern. The concept of CSCs applies to PA stem cells (PASCs). Genetic alterations in human PGSCs result in PASC development, leading to treatment-resistant PAs. To determine an efficient treatment against refractory PAs, it is of paramount importance to understand the relationship between PGSCs, PASCs and PAs. The goal of this review is to discuss several new findings about PGSCs and the roles of PASCs in PA tumorigenesis.
Collapse
|
20
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
21
|
Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Front Endocrinol (Lausanne) 2020; 11:54. [PMID: 32153500 PMCID: PMC7044184 DOI: 10.3389/fendo.2020.00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas, accounting for 15% of diagnosed intracranial neoplasms, are usually benign and pharmacologically and surgically treatable; however, the critical location, mass effects and hormone hypersecretion sustain their significant morbidity. Approximately 35% of pituitary tumors show a less benign course since they are highly proliferative and invasive, poorly resectable, and likely recurring. The latest WHO classification of pituitary tumors includes pituitary transcription factor assessment to determine adenohypophysis cell lineages and accurate designation of adenomas, nevertheless little is known about molecular and cellular pathways which contribute to pituitary tumorigenesis. In malignant tumors the identification of cancer stem cells radically changed the concepts of both tumorigenesis and pharmacological approaches. Cancer stem cells are defined as a subset of undifferentiated transformed cells from which the bulk of cancer cells populating a tumor mass is generated. These cells are able to self-renew, promoting tumor progression and recurrence of malignant tumors, also conferring cytotoxic drug resistance. On the other hand, the existence of stem cells within benign tumors is still debated. The presence of adult stem cells in human and murine pituitaries where they sustain the high plasticity of hormone-producing cells, allowed the hypothesis that putative tumor stem cells might exist in pituitary adenomas, reinforcing the concept that the cancer stem cell model could also be applied to pituitary tumorigenesis. In the last few years, the isolation and phenotypic characterization of putative pituitary adenoma stem-like cells was performed using a wide and heterogeneous variety of experimental models and techniques, although the role of these cells in adenoma initiation and progression is still not completely definite. The assessment of possible pituitary adenoma-initiating cell population would be of extreme relevance to better understand pituitary tumor biology and to identify novel potential diagnostic markers and pharmacological targets. In this review, we summarize the most updated studies focused on the definition of pituitary adenoma stem cell phenotype and functional features, highlighting the biological processes and intracellular pathways potentially involved in driving tumor growth, relapse, and therapy resistance.
Collapse
Affiliation(s)
- Roberto Würth
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Stefano Thellung
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Federica Barbieri
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
22
|
Pradilla Dieste A, Chenlo M, Perez-Romero S, Garcia-Rendueles ÁR, Suarez-Fariña M, Garcia-Lavandeira M, Bernabeu I, Cameselle-Teijeiro JM, Alvarez CV. GFRα 1-2-3-4 co-receptors for RET Are co-expressed in Pituitary Stem Cells but Individually Retained in Some Adenopituitary Cells. Front Endocrinol (Lausanne) 2020; 11:631. [PMID: 33071961 PMCID: PMC7543094 DOI: 10.3389/fendo.2020.00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022] Open
Abstract
The RET tyrosine kinase receptor is expressed by the endocrine somatotroph cells of the pituitary where it has important functions regulating survival/apoptosis. However, RET is also expressed by the GPS pituitary stem cells localized in a niche between the adenopituitary and the intermediate lobe. To bind any of its four ligands, RET needs one of four co-receptors called GFRα1-4. It has been previously shown that GFRα1 is expressed by somatotroph cells and acromegaly tumors. GFRα2 was shown to be expressed by pituitary stem cells. GFRα4 was proposed as not expressed in the pituitary. Here we study the RNA and protein expression of the four GFRα co-receptors for RET in rat and human pituitary. The four co-receptors were abundantly expressed at the RNA level both in rat and human pituitary, although GFRα4 was the less abundant. Multiple immunofluorescence for each co-receptor and β-catenin, a marker of stem cell niche was performed. The four GFRα co-receptors were co-expressed by the GPS cells at the niche colocalizing with β-catenin. Isolated individual scattered cells positive for one or other receptor could be found through the adenopituitary with low β-catenin expression. Some of them co-express GFRα1 and PIT1. Immunohistochemistry in normal human pituitary confirmed the data. Our data suggest that the redundancy of GFRα co-expression is a self-supportive mechanism which ensures niche maintenance and proper differentiation.
Collapse
Affiliation(s)
- Alberto Pradilla Dieste
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ángela R. Garcia-Rendueles
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Garcia-Lavandeira
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ignacio Bernabeu
- Department of Endocrinology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Instituto de Investigación Sanitaria de Santiago (IDIS), USC, Santiago de Compostela, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Clara V. Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- *Correspondence: Clara V. Alvarez
| |
Collapse
|
23
|
Edwards W, Raetzman LT. Complex integration of intrinsic and peripheral signaling is required for pituitary gland development. Biol Reprod 2019; 99:504-513. [PMID: 29757344 DOI: 10.1093/biolre/ioy081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Vennekens A, Vankelecom H. Traumatic brain injury and resultant pituitary dysfunction: insights from experimental animal models. Pituitary 2019; 22:212-219. [PMID: 31020506 DOI: 10.1007/s11102-019-00961-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is a major worldwide cause of disability, often burdening young people with serious lifelong health problems. A frequent clinical complication is post-traumatic hypopituitarism (PTHP) manifesting in several hypothalamus-pituitary axes. The head trauma-induced mechanisms underlying PTHP remain largely unknown. Several hypotheses have been proposed including direct damage to the pituitary gland and hypothalamus, vascular events and autoimmunity. This review aims to provide a summary of the currently limited number of studies exploring hypothalamus-pituitary dysfunction in experimental animal TBI models. RESULTS Although the impact of different forms of TBI on a number of hypothalamus-pituitary axes has been investigated, consequences for pituitary tissue and function have only scarcely been described. Moreover, mechanisms underlying the endocrine dysfunctions remain under explored. CONCLUSIONS Studies on TBI-induced pituitary dysfunction are still scarce. More research is needed to acquire mechanistic insights into the pathophysiology of PTHP which may eventually open up the horizon toward better treatments, including pituitary-regenerative approaches.
Collapse
Affiliation(s)
- Annelies Vennekens
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, Herestraat 49, 3000, Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Campus Gasthuisberg O&N4, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
25
|
Cox B, Laporte E, Vennekens A, Kobayashi H, Nys C, Van Zundert I, Uji-I H, Vercauteren Drubbel A, Beck B, Roose H, Boretto M, Vankelecom H. Organoids from pituitary as a novel research model toward pituitary stem cell exploration. J Endocrinol 2019; 240:287-308. [PMID: 30475227 DOI: 10.1530/joe-18-0462] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
The pituitary is the master endocrine gland, harboring stem cells of which the phenotype and role remain poorly characterized. Here, we established organoids from mouse pituitary with the aim to generate a novel research model to study pituitary stem cell biology. The organoids originated from the pituitary cells expressing the stem cell marker SOX2 were long-term expandable, displayed a stemness phenotype during expansive culture and showed specific hormonal differentiation ability, although limited, after subrenal transplantation. Application of the protocol to transgenically injured pituitary harboring an activated stem cell population, resulted in more numerous organoids. Intriguingly, these organoids presented with a cystic morphology, whereas the organoids from undamaged gland were predominantly dense and appeared more limited in expandability. Transcriptomic analysis revealed distinct epithelial phenotypes and showed that cystic organoids more resembled the pituitary phenotype, at least to an immature state, and displayed in vitro differentiation, although yet moderate. Organoid characterization further exposed facets of regulatory pathways of the putative stem cells of the pituitary and advanced new injury-activated markers. Taken together, we established a novel organoid research model revealing new insights into the identity and regulation of the putative pituitary stem cells. This organoid model may eventually lead to an interesting tool to decipher pituitary stem cell biology in both healthy and diseased gland.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Emma Laporte
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Hiroto Kobayashi
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Charlotte Nys
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Indra Van Zundert
- Department of Chemistry, Laboratory of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Laboratory of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | | | - Benjamin Beck
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Heleen Roose
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Matteo Boretto
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
26
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|
27
|
Suga H. Application of pluripotent stem cells for treatment of human neuroendocrine disorders. Cell Tissue Res 2018; 375:267-278. [PMID: 30078102 DOI: 10.1007/s00441-018-2880-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
The neuroendocrine system is composed of many types of functional cells. Matured cells are generally irreversible to progenitor cells and it is difficult to obtain enough from our body. Therefore, studying specific subtypes of human neuroendocrine cells in vitro has not been feasible. One of the solutions is pluripotent stem cells, such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. These are unlimited sources and, in theory, are able to give rise to all cell types of our body. Therefore, we can use them for regenerative medicine, developmental basic research and disease modeling. Based on this idea, differentiation methods have been studied for years. Recent studies have successfully induced hypothalamic-like progenitors from mouse and human ES/iPS cells. The induced hypothalamic-like progenitors generated hypothalamic neurons, for instance, vasopressin neurons. Induction to adenohypophysis was also reported in the manner of self-formation by three-dimensional floating cultures. Rathke's pouch-like structures, i.e., pituitary anlage, were self-organized in accordance with pituitary development in embryo. Pituitary hormone-producing cells were subsequently differentiated. The induced corticotrophs secreted adrenocorticotropic hormone in response to corticotropin-releasing hormone. When engrafted in vivo, these cells rescued systemic glucocorticoid levels in hypopituitary mice. These culture methods were characterized by replication of stepwise embryonic differentiation. It is based on the idea of mimicking the molecular environment of embryogenesis. Thanks to these improvements, these days, we can generate hormone-secreting neuroendocrine cells from pluripotent stem cells. The next problems that need to be solved are improving differentiation efficiency even further and structuring networks.
Collapse
Affiliation(s)
- Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
28
|
Ellsworth BS, Stallings CE. Molecular Mechanisms Governing Embryonic Differentiation of Pituitary Somatotropes. Trends Endocrinol Metab 2018; 29:510-523. [PMID: 29759686 DOI: 10.1016/j.tem.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
Pituitary somatotropes secrete growth hormone (GH), which is essential for normal growth and metabolism. Somatotrope defects result in GH deficiency (GHD), leading to short stature in childhood and increased cardiovascular morbidity and mortality in adulthood. Current hormone replacement therapies fail to recapitulate normal pulsatile GH secretion. Stem cell therapies could overcome this problem but are dependent on a thorough understanding of somatotrope differentiation. Although several transcription factors, signaling pathways, and hormones that regulate this process have been identified, the mechanisms of action are not well understood. The purpose of this review is to highlight the known players in somatotrope differentiation while emphasizing the need to better understand these pathways to serve patients with GHD.
Collapse
Affiliation(s)
- Buffy S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901-6523, USA.
| | - Caitlin E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901-6523, USA
| |
Collapse
|
29
|
Haston S, Manshaei S, Martinez-Barbera JP. Stem/progenitor cells in pituitary organ homeostasis and tumourigenesis. J Endocrinol 2018; 236:R1-R13. [PMID: 28855316 PMCID: PMC5744558 DOI: 10.1530/joe-17-0258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 01/06/2023]
Abstract
Evidence for the presence of pituitary gland stem cells has been provided over the last decade using a combination of approaches including in vitro clonogenicity assays, flow cytometric side population analysis, immunohistochemical analysis and genetic approaches. These cells have been demonstrated to be able to self-renew and undergo multipotent differentiation to give rise to all hormonal lineages of the anterior pituitary. Furthermore, evidence exists for their contribution to regeneration of the organ and plastic responses to changing physiological demand. Recently, stem-like cells have been isolated from pituitary neoplasms raising the possibility that a cytological hierarchy exists, in keeping with the cancer stem cell paradigm. In this manuscript, we review the evidence for the existence of pituitary stem cells, their role in maintaining organ homeostasis and the regulation of their differentiation. Furthermore, we explore the emerging concept of stem cells in pituitary tumours and their potential roles in these diseases.
Collapse
Affiliation(s)
- Scott Haston
- Developmental Biology and Cancer Research ProgrammeBirth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Saba Manshaei
- Developmental Biology and Cancer Research ProgrammeBirth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Research ProgrammeBirth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
30
|
Major depletion of SOX2 + stem cells in the adult pituitary is not restored which does not affect hormonal cell homeostasis and remodelling. Sci Rep 2017; 7:16940. [PMID: 29208952 PMCID: PMC5717068 DOI: 10.1038/s41598-017-16796-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
The pituitary gland contains SOX2-expressing stem cells. However, their functional significance remains largely unmapped. We investigated their importance by depleting SOX2+ cells through diphtheria toxin (DT)-mediated ablation. DT treatment of adult Sox2CreERT2/+;R26iDTR/+ mice (after tamoxifen-induced expression of DT receptor in SOX2+ cells) resulted in 80% obliteration of SOX2+ cells in the endocrine pituitary, coinciding with reduced pituisphere-forming activity. Counterintuitively for a stem cell population, the SOX2+ cell compartment did not repopulate. Considering the more active phenotype of the stem cells during early-postnatal pituitary maturation, SOX2+ cell ablation was also performed in 4- and 1-week-old animals. Ablation grade diminished with decreasing age and was accompanied by a proliferative reaction of the SOX2+ cells, suggesting a rescue attempt. Despite this activation, SOX2+ cells did also not recover. Finally, the major SOX2+ cell depletion in adult mice did not affect the homeostatic maintenance of pituitary hormonal cell populations, nor the corticotrope remodelling response to adrenalectomy challenge. Taken together, our study shows that pituitary SOX2+ fail to regenerate after major depletion which does not affect adult endocrine cell homeostasis and remodelling. Thus, pituitary SOX2+ cells may constitute a copious stem cell reserve or may have other critical role(s) still to be clearly defined.
Collapse
|
31
|
Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is pulling the strings? J Endocrinol 2017; 234:R135-R158. [PMID: 28615294 DOI: 10.1530/joe-17-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heleen Roose
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
32
|
Lara-Velazquez M, Akinduro OO, Reimer R, Woodmansee WW, Quinones-Hinojosa A. Stem cell therapy and its potential role in pituitary disorders. Curr Opin Endocrinol Diabetes Obes 2017; 24:292-300. [PMID: 28520591 DOI: 10.1097/med.0000000000000346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The pituitary gland is one of the key components of the endocrine system. Congenital or acquired alterations can mediate destruction of cells in the gland leading to hormonal dysfunction. Even though pharmacological treatment for pituitary disorders is available, exogenous hormone replacement is neither curative nor sustainable. Thus, alternative therapies to optimize management and improve quality of life are desired. RECENT FINDINGS An alternative modality to re-establish pituitary function is to promote endocrine cell regeneration through stem cells that can be obtained from the pituitary parenchyma or pluripotent cells. Stem cell therapy has been successfully applied to a plethora of other disorders, and is a promising alternative to hormonal supplementation for resumption of normal hormone homeostasis. SUMMARY In this review, we describe the common causes for pituitary deficiencies and the advances in cellular therapy to restore the physiological pituitary function.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- aDepartment of Neurological Surgery, Mayo Clinic, Florida bNational Autonomous University of Mexico, PECEM, Mexico cDepartment of Endocrinology, Mayo Clinic, Florida, USA
| | | | | | | | | |
Collapse
|
33
|
Yoshida S, Kato T, Kanno N, Nishimura N, Nishihara H, Horiguchi K, Kato Y. Cell type-specific localization of Ephs pairing with ephrin-B2 in the rat postnatal pituitary gland. Cell Tissue Res 2017; 370:99-112. [PMID: 28660300 DOI: 10.1007/s00441-017-2646-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/06/2017] [Indexed: 01/20/2023]
Abstract
Sox2-expressing stem/progenitor cells in the anterior lobe of the pituitary gland form two types of micro-environments (niches): the marginal cell layer and dense cell clusters in the parenchyma. In relation to the mechanism of regulation of niches, juxtacrine signaling via ephrin and its receptor Eph is known to play important roles in various niches. The ephrin and Eph families are divided into two subclasses to create ephrin/Eph signaling in co-operation with confined partners. Recently, we reported that ephrin-B2 localizes specifically to both pituitary niches. However, the Ephs interacting with ephrin-B2 in these pituitary niches have not yet been identified. Therefore, the present study aims to identify the Ephs interacting with ephrin-B2 and the cells that produce them in the rat pituitary gland. In situ hybridization and immunohistochemistry demonstrated cell type-specific localization of candidate interacting partners for ephrin-B2, including EphA4 in cells located in the posterior lobe, EphB1 in gonadotropes, EphB2 in corticotropes, EphB3 in stem/progenitor cells and EphB4 in endothelial cells in the adult pituitary gland. In particular, double-immunohistochemistry showed cis-interactions between EphB3 and ephrin-B2 in the apical cell membranes of stem/progenitor cell niches throughout life and trans-interactions between EphB2 produced by corticotropes and ephrin-B2 located in the basolateral cell membranes of stem/progenitor cells in the early postnatal pituitary gland. These data indicate that ephrin-B2 plays a role in pituitary stem/progenitor cell niches by selective interaction with EphB3 in cis and EphB2 in trans.
Collapse
Affiliation(s)
- Saishu Yoshida
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan.,Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan
| | - Takako Kato
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan
| | - Naoko Kanno
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Naoto Nishimura
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Hiroto Nishihara
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan. .,Institute of Reproduction and Endocrinology, Meiji University, Kanagawa, Japan. .,Department of Life Science, School of Agriculture, Meiji University, Kanagawa, Japan.
| |
Collapse
|
34
|
Cheung LYM, Davis SW, Brinkmeier ML, Camper SA, Pérez-Millán MI. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Mol Cell Endocrinol 2017; 445:14-26. [PMID: 27650955 PMCID: PMC5590650 DOI: 10.1016/j.mce.2016.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208-0001, USA.
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| | - María Inés Pérez-Millán
- Institute of Biomedical Investgations (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells. Cell Tissue Res 2017; 369:353-368. [DOI: 10.1007/s00441-017-2603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
|
36
|
Vankelecom H, Roose H. The Stem Cell Connection of Pituitary Tumors. Front Endocrinol (Lausanne) 2017; 8:339. [PMID: 29255445 PMCID: PMC5722833 DOI: 10.3389/fendo.2017.00339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors in the pituitary gland are typically benign but cause serious morbidity due to compression of neighboring structures and hormonal disruptions. Overall, therapy efficiency remains suboptimal with negative impact on health and comfort of life, including considerable risk of therapy resistance and tumor recurrence. To date, little is known on the pathogenesis of pituitary tumors. Stem cells may represent important forces in this process. The pituitary tumors may contain a driving tumor stem cell population while the resident tissue stem cells may be directly or indirectly linked to tumor development and growth. Here, we will briefly summarize recent studies that afforded a glance behind the scenes of this stem cell connection. A better knowledge of the mechanisms underlying pituitary tumorigenesis is essential to identify more efficacious treatment modalities and improve clinical management.
Collapse
Affiliation(s)
- Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
- *Correspondence: Hugo Vankelecom,
| | - Heleen Roose
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
37
|
Abstract
Sheehan syndrome or postpartum hypopituitarism is a condition characterized by hypopituitarism due to necrosis of the pituitary gland. The initial insult is caused by massive postpartum haemorrhage (PPH), leading to impaired blood supply to the pituitary gland, which has become enlarged during pregnancy. Small sella turcica size, vasospasms (caused by PPH) and/or thrombosis (associated with pregnancy or coagulation disorders) are predisposing factors; autoimmunity might be involved in the progressive worsening of pituitary functions. Symptoms are caused by a decrease or absence of one or more of the pituitary hormones, and vary, among others, from failure to lactate and nonspecific symptoms (such as fatigue) to severe adrenal crisis. In accordance with the location of hormone-secreting cells relative to the vasculature, the secretion of growth hormone and prolactin is most commonly affected, followed by follicle-stimulating hormone and luteinizing hormone; severe necrosis of the pituitary gland also affects the secretion of thyroid-stimulating hormone and adrenocorticotropic hormone. Symptoms usually become evident years after delivery, but can, in rare cases, develop acutely. The incidence of Sheehan syndrome depends, to a large extent, on the occurrence and management of PPH. Sheehan syndrome is an important cause of hypopituitarism in developing countries, but has become rare in developed countries. Diagnosis is based on clinical manifestations combined with a history of severe PPH; hormone levels and/or stimulation tests can confirm clinical suspicion. Hormone replacement therapy is the only available management option so far.
Collapse
Affiliation(s)
- Züleyha Karaca
- Department of Endocrinology, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Bashir A Laway
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Hatice S Dokmetas
- Department of Endocrinology, Istanbul Medipol University Medical School, Istanbul, Turkey
| | - Hulusi Atmaca
- Department of Endocrinology, Ondokuz Mayıs University Medical School, Samsun, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Erciyes University Medical School, 38039, Kayseri, Turkey
| |
Collapse
|
38
|
Lecoq AL, Chanson P. [Hypopituitarism following traumatic brain injury: diagnostic and therapeutic issues]. ANNALES D'ENDOCRINOLOGIE 2016; 76:S10-8. [PMID: 26776284 DOI: 10.1016/s0003-4266(16)30003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traumatic Brain Injury (TBI) is a well-known public health problem worldwide and is a leading cause of death and disability, particularly in young adults. Besides neurological and psychiatric issues, pituitary dysfunction can also occur after TBI, in the acute or chronic phase. The exact prevalence of post-traumatic hypopituitarism is difficult to assess due to the wide heterogeneity of published studies and bias in interpretation of hormonal test results in this specific population. Predictive factors for hypopituitarism have been proposed and are helpful for the screening. The pathophysiology of pituitary dysfunction after TBI is not well understood but the vascular hypothesis is privileged. Activation of pituitary stem/progenitor cells is probably involved in the recovery of pituitary functions. Those cells also play a role in the induction of pituitary tumors, highlighting their crucial place in pituitary conditions. This review updates the current data related to anterior pituitary dysfunction after TBI and discusses the bias and difficulties encountered in its diagnosis.
Collapse
Affiliation(s)
- A-L Lecoq
- INSERM Unité 1185, Faculté de Médecine Paris-Sud, 63 rue Gabriel Péri, 94276 Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, 94275 Le Kremlin Bicêtre, France; Université Paris-Sud, UMR S1185, 94276 Le Kremlin-Bicêtre, France.
| | - P Chanson
- INSERM Unité 1185, Faculté de Médecine Paris-Sud, 63 rue Gabriel Péri, 94276 Le Kremlin Bicêtre, France; Assistance Publique-Hôpitaux de Paris, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, 94275 Le Kremlin Bicêtre, France; Université Paris-Sud, UMR S1185, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
39
|
Zhu X, Tollkuhn J, Taylor H, Rosenfeld MG. Notch-Dependent Pituitary SOX2(+) Stem Cells Exhibit a Timed Functional Extinction in Regulation of the Postnatal Gland. Stem Cell Reports 2016; 5:1196-1209. [PMID: 26651607 PMCID: PMC4682291 DOI: 10.1016/j.stemcr.2015.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Although SOX2+ stem cells are present in the postnatal pituitary gland, how they are regulated molecularly and whether they are required for pituitary functions remain unresolved questions. Using a conditional knockout animal model, here we demonstrate that ablation of the canonical Notch signaling in the embryonic pituitary gland leads to progressive depletion of the SOX2+ stem cells and hypoplastic gland. Furthermore, we show that the SOX2+ stem cells initially play a significant role in contributing to postnatal pituitary gland expansion by self-renewal and differentiating into distinct lineages in the immediate postnatal period. However, we found that within several weeks postpartum, the SOX2+ stem cells switch to an essentially dormant state and are no longer required for homeostasis/tissue adaptation. Our results present a dynamic tissue homeostatic model in which stem cells provide an initial contribution to the growth of the neonatal pituitary gland, whereas the mature gland can be maintained in a stem cell-independent fashion. Notch signaling is necessary to maintain Sox2+ stem cells in the pituitary gland Sox2+ cells and differentiated cells contribute to postnatal pituitary expansion Sox2+ stem cells prove to be dispensable for adult pituitary gland homeostasis Differentiated cells retain mitotic capacity and respond to physiological demands
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Jessica Tollkuhn
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Havilah Taylor
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Yoshida S, Nishimura N, Ueharu H, Kanno N, Higuchi M, Horiguchi K, Kato T, Kato Y. Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell Res 2016; 17:318-329. [DOI: 10.1016/j.scr.2016.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023] Open
|
41
|
Abstract
The hypothalamic-pituitary system is essential for maintaining life and controlling systemic homeostasis. The functional disorder makes patients suffer from various symptoms all their lives. Pluripotent stem cells, such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, differentiate into neuroectodermal progenitors when cultured as floating aggregates under serum-free conditions. Recent results have shown that strict removal of exogenous patterning factors during the early differentiation period induces rostral hypothalamic-like progenitors from mouse ES cells. The use of growth factor-free, chemically defined medium was critical for this induction. The ES cell-derived hypothalamic-like progenitors generated rostral-dorsal hypothalamic neurons, in particular magnocellular vasopressinergic neurons. We subsequently reported self-formation of adenohypophysis in three-dimensional floating cultures of mouse ES cells. The ES cell aggregates were stimulated to differentiate into both non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers. Self-organization of Rathke's pouch-like structures occurred at the interface of the two epithelia in vitro. Various pituitary endocrine cells including corticotrophs and somatotrophs were subsequently produced from the Rathke's pouch-like structures. The induced corticotrophs efficiently secreted ACTH in response to CRH. Furthermore, when engrafted in vivo, these cells rescued systemic glucocorticoid levels in hypopituitary mice. Our latest study aimed to prepare hypothalamic and pituitary tissues from human pluripotent stem cells. We succeeded in establishing the differentiation method using human ES/iPS cells. The culture method is characterized by replication of stepwise embryonic differentiation. Therefore, these methods could potentially be used as developmental and disease models, as well as for future regenerative medicine.
Collapse
Affiliation(s)
- Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Hospital, Nagoya 466-8550, Japan
| |
Collapse
|
42
|
Vaca AM, Guido CB, Sosa LDV, Nicola JP, Mukdsi J, Petiti JP, Torres AI. The expansion of adult stem/progenitor cells and their marker expression fluctuations are linked with pituitary plastic adaptation during gestation and lactancy. Am J Physiol Endocrinol Metab 2016; 311:E367-79. [PMID: 27302752 DOI: 10.1152/ajpendo.00077.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Extensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear. In this work, we used immunoelectron microscopy to identify adult pituitary stem/progenitor cells (SC/P) localized in the marginal zone (MZ), and additionally, we detected GFRa2-, Sox2-, and Sox9-positive cells in the adenoparenchyma (AP) by fluorescence microscopy. Then, we evaluated fluctuations of SC/P mRNA and protein level markers in MZ and AP during gestation and lactancy. An upregulation in stemness markers was shown at term of gestation (AT) in MZ, whereas there were more progenitor cell markers in the middle of gestation and active lactancy. Concerning committed cell markers, we detected a rise in AP at beginning of lactancy (d1L). We performed a BrdU uptake analysis in MZ and AP cells. The highest level of BrdU uptake was observed in MZ AT cells, whereas in AP this was detected in d1L, followed by a decrease in both the MZ and AP. Finally, we detected double immunostaining for BrdU-GFRa2 in MZ AT cells and BrdU-Sox9 in the AP d1L cells. Taken together, we hypothesize that the expansion of the SC/P niche took place mainly in MZ from pituitary rats in AT and d1L. These results suggest that the SC niche actively participates in pituitary plasticity during these reproductive states, contributing to the origin of hormone cell populations.
Collapse
Affiliation(s)
- Alicia Maldré Vaca
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Carolina Beatriz Guido
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Liliana Del Valle Sosa
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Centro de Investigaciones en Bioquímica Clínica e Inmunología-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Jorge Mukdsi
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Petiti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Alicia Ines Torres
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| |
Collapse
|
43
|
Cao D, Ma X, Cai J, Luan J, Liu AJ, Yang R, Cao Y, Zhu X, Zhang H, Chen YX, Shi Y, Shi GX, Zou D, Cao X, Grusby MJ, Xie Z, Zhang WJ. ZBTB20 is required for anterior pituitary development and lactotrope specification. Nat Commun 2016; 7:11121. [PMID: 27079169 PMCID: PMC4835541 DOI: 10.1038/ncomms11121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
The anterior pituitary harbours five distinct hormone-producing cell types, and their cellular differentiation is a highly regulated and coordinated process. Here we show that ZBTB20 is essential for anterior pituitary development and lactotrope specification in mice. In anterior pituitary, ZBTB20 is highly expressed by all the mature endocrine cell types, and to some less extent by somatolactotropes, the precursors of prolactin (PRL)-producing lactotropes. Disruption of Zbtb20 leads to anterior pituitary hypoplasia, hypopituitary dwarfism and a complete loss of mature lactotropes. In ZBTB20-null mice, although lactotrope lineage commitment is normally initiated, somatolactotropes exhibit profound defects in lineage specification and expansion. Furthermore, endogenous ZBTB20 protein binds to Prl promoter, and its knockdown decreases PRL expression and secretion in a lactotrope cell line MMQ. In addition, ZBTB20 overexpression enhances the transcriptional activity of Prl promoter in vitro. In conclusion, our findings point to ZBTB20 as a critical regulator of anterior pituitary development and lactotrope specification.
Collapse
Affiliation(s)
- Dongmei Cao
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jiao Cai
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jing Luan
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.,Department of Pathophysiology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - An-Jun Liu
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.,Department of Cell Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Rui Yang
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yi Cao
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.,Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Xiaotong Zhu
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.,Department of Pathophysiology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Hai Zhang
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yuguang Shi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245, USA
| | - Guang-Xia Shi
- Department of Pathophysiology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Dajin Zou
- Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Molecular Biology and Department of Immunology, Chinese Academy of Medical Sciences, 9 Dongdan Santiao, Beijing, 100005, China
| | - Michael J Grusby
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.,Department of Cell Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
44
|
Yoshida S, Kato T, Kato Y. EMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration. J Clin Med 2016; 5:jcm5040043. [PMID: 27058562 PMCID: PMC4850466 DOI: 10.3390/jcm5040043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/17/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in the postnatal period seems to be reduced compared to that in the embryonic period, it is hypothesized that stem/progenitor cells in the adult pituitary re-migrate from their microenvironment niche to contribute to the regeneration system. Therefore, elucidation of EMT in the pituitary stem/progenitor cells will promote understanding of pituitary development and regeneration, as well as diseases such as pituitary adenoma. In this review, so as to gain more insights into the mechanisms of pituitary development and regeneration, we summarize the EMT in the pituitary by focusing on the migration of pituitary stem/progenitor cells during both embryonic and postnatal organogenesis.
Collapse
Affiliation(s)
- Saishu Yoshida
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.
| | - Takako Kato
- Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kanagawa 214-8571, Japan.
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa 214-8571, Japan.
| | - Yukio Kato
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa 214-8571, Japan.
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.
- Department of Life Science, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan.
| |
Collapse
|
45
|
Willems C, Fu Q, Roose H, Mertens F, Cox B, Chen J, Vankelecom H. Regeneration in the Pituitary After Cell-Ablation Injury: Time-Related Aspects and Molecular Analysis. Endocrinology 2016; 157:705-21. [PMID: 26653762 DOI: 10.1210/en.2015-1741] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently showed that the mouse pituitary holds regenerative competence. Young-adult GHCre/iDTR mice, expressing diphtheria toxin (DT) receptor in GH-producing cells, regenerate the GH(+) cells, as ablated by 3-day DT treatment (3DT), up to 60% after 5 months. The pituitary's stem cells participate in this restoration process. Here, we characterized this regenerative capacity in relation to age and recovery period and started to search for underlying molecular mechanisms. Extending the recovery period (up to 19 mo) does not result in higher regeneration levels. In addition, the regenerative competence disappears at older age, coinciding with a reduction in pituitary stem cell number and fitness. Surprisingly, prolonging DT treatment of young-adult mice to 10 days (10DT) completely blocks the regeneration, although the stem cell compartment still reacts by promptly expanding, and retains in vitro stem cell functionality. To obtain a first broad view on molecular grounds underlying reparative capacity and/or failure, the stem cell-clustering side population was analyzed by whole-genome expression analysis. A number of stemness factors and components of embryonic, epithelial-mesenchymal transition, growth factor and Hippo pathways are higher expressed in the stem cell-clustering side population of the regenerating pituitary (after 3DT) when compared with the basal gland and to the nonregenerating pituitary (after 10DT). Together, the regenerative capacity of the pituitary is limited both in age-related terms and final efficacy, and appears to rely on stem cell-associated pathway activation. Dissection of the molecular profiles may eventually identify targets to induce or boost regeneration in situations of (injury-related) pituitary deficiency.
Collapse
Affiliation(s)
- Christophe Willems
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Qiuli Fu
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Heleen Roose
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Freya Mertens
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Benoit Cox
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Jianghai Chen
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Hugo Vankelecom
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| |
Collapse
|
46
|
Affiliation(s)
- Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, Illinois 62901-6523
| |
Collapse
|
47
|
Vankelecom H. Pituitary Stem Cells: Quest for Hidden Functions. STEM CELLS IN NEUROENDOCRINOLOGY 2016. [DOI: 10.1007/978-3-319-41603-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Karaca Z, Tanrıverdi F, Ünlühızarcı K, Kelestimur F. GH and Pituitary Hormone Alterations After Traumatic Brain Injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 138:167-91. [PMID: 26940391 DOI: 10.1016/bs.pmbts.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a crucially important public health problem around the world, which gives rise to increased mortality and is the leading cause of physical and psychological disability in young adults, in particular. Pituitary dysfunction due to TBI was first described 95 years ago. However, until recently, only a few papers have been published in the literature and for this reason, TBI-induced hypopituitarism has been neglected for a long time. Recent studies have revealed that TBI is one of the leading causes of hypopituitarism. TBI which causes hypopituitarism may be characterized by a single head injury such as from a traffic accident or by chronic repetitive head trauma as seen in combative sports including boxing, kickboxing, and football. Vascular damage, hypoxic insult, direct trauma, genetic predisposition, autoimmunity, and neuroinflammatory changes may have a role in the development of hypopituitarism after TBI. Because of the exceptional structure of the hypothalamo-pituitary vasculature and the special anatomic location of anterior pituitary cells, GH is the most commonly lost hormone after TBI, and the frequency of isolated GHD is considerably high. TBI-induced pituitary dysfunction remains undiagnosed and therefore untreated in most patients because of the nonspecific and subtle clinical manifestations of hypopituitarism. Treatment of TBI-induced hypopituitarism depends on the deficient anterior pituitary hormones. GH replacement therapy has some beneficial effects on metabolic parameters and neurocognitive dysfunction. Patients with TBI without neuroendocrine changes and those with TBI-induced hypopituitarism share the same clinical manifestations, such as attention deficits, impulsion impairment, depression, sleep abnormalities, and cognitive disorders. For this reason, TBI-induced hypopituitarism may be neglected in TBI victims and it would be expected that underlying hypopituitarism would aggravate the clinical picture of TBI itself. Therefore, the diagnosis and treatment of unrecognized hypopituitarism due to TBI are very important not only to decrease morbidity and mortality due to hypopituitarism but also to alleviate the chronic sequelae caused by TBI.
Collapse
Affiliation(s)
- Züleyha Karaca
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Fatih Tanrıverdi
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Kürşad Ünlühızarcı
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey.
| |
Collapse
|
49
|
Willems C, Vankelecom H. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism? Regen Med 2015; 9:513-34. [PMID: 25159067 DOI: 10.2217/rme.14.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.
Collapse
Affiliation(s)
- Christophe Willems
- Department of Development & Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
50
|
Candlish M, Angelis RD, Götz V, Boehm U. Gene Targeting in Neuroendocrinology. Compr Physiol 2015; 5:1645-76. [DOI: 10.1002/cphy.c140079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|