1
|
Ruggiero-Ruff RE, Le BH, Villa PA, Lainez NM, Athul SW, Das P, Ellsworth BS, Coss D. Single-Cell Transcriptomics Identifies Pituitary Gland Changes in Diet-Induced Obesity in Male Mice. Endocrinology 2024; 165:bqad196. [PMID: 38146776 PMCID: PMC10791142 DOI: 10.1210/endocr/bqad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Obesity is a chronic disease with increasing prevalence worldwide. Obesity leads to an increased risk of heart disease, stroke, and diabetes, as well as endocrine alterations, reproductive disorders, changes in basal metabolism, and stress hormone production, all of which are regulated by the pituitary. In this study, we performed single-cell RNA sequencing of pituitary glands from male mice fed control and high-fat diet (HFD) to determine obesity-mediated changes in pituitary cell populations and gene expression. We determined that HFD exposure is associated with dramatic changes in somatotrope and lactotrope populations, by increasing the proportion of somatotropes and decreasing the proportion of lactotropes. Fractions of other hormone-producing cell populations remained unaffected. Gene expression changes demonstrated that in HFD, somatotropes became more metabolically active, with increased expression of genes associated with cellular respiration, and downregulation of genes and pathways associated with cholesterol biosynthesis. Despite a lack of changes in gonadotrope fraction, genes important in the regulation of gonadotropin hormone production were significantly downregulated. Corticotropes and thyrotropes were the least affected in HFD, while melanotropes exhibited reduced proportion. Lastly, we determined that changes in plasticity and gene expression were associated with changes in hormone levels. Serum prolactin was decreased corresponding to reduced lactotrope fraction, while lower luteinizing hormone and follicle-stimulating hormone in the serum corresponded to a decrease in transcription and translation. Taken together, our study highlights diet-mediated changes in pituitary gland populations and gene expression that play a role in altered hormone levels in obesity.
Collapse
Affiliation(s)
- Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Brandon H Le
- Institute for Integrative Genome Biology Bioinformatics Core Facility, University of California, Riverside, CA 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Nancy M Lainez
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sandria W Athul
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Pratyusa Das
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Buffy S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Zimerman J, Niño OMS, da Costa CS, Zanol JF, Comério M, da Gama de Souza LN, Miranda-Alves L, Miranda RA, Lisboa PC, Camilo TA, Rorato R, Alves GA, Frazão R, Zomer HD, Freitas-Lima LC, Graceli JB. Subacute high-refined carbohydrate diet leads to abnormal reproductive control of the hypothalamic-pituitary axis in female rats. Reprod Toxicol 2023; 119:108410. [PMID: 37211340 DOI: 10.1016/j.reprotox.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHβ+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHβ+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.
Collapse
Affiliation(s)
- Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio, Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Milena Comério
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Tays A Camilo
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guilherme Andrade Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
3
|
Zhu J, Jin J, Qi Q, Li L, Zhou J, Cao L, Wang L. The association of gut microbiome with recurrent pregnancy loss: A comprehensive review. Drug Discov Ther 2023; 17:157-169. [PMID: 37357394 DOI: 10.5582/ddt.2023.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The steady-state gut microbiome not only promotes the metabolism and absorption of nutrients that are difficult to digest by the host itself, but also participates in systemic metabolism. Once the dynamic balance is disturbed, the gut microbiome may lead to a variety of diseases. Recurrent pregnancy loss (RPL) affects 1-2% of women of reproductive age, and its prevalence has increased in recent years. According to the literature review, the gut microbiome is a new potential driver of the pathophysiology of recurrent abortion, and the gut microbiome has emerged as a new candidate for clinical prevention and treatment of RPL. However, few studies have concentrated on the direct correlation between RPL and the gut microbiome, and the mechanisms by which the gut microbiome influences recurrent miscarriage need further investigation. In this review, the effects of the gut microbiome on RPL were discussed and found to be associated with inflammatory response, the disruption of insulin signaling pathway and the formation of insulin resistance, maintenance of immunological tolerance at the maternal-fetal interface due to the interference with the immune imbalance of Treg/Th17 cells, and obesity.
Collapse
Affiliation(s)
- Jun Zhu
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jiaxi Jin
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
| | - Liwen Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
4
|
Bacterial diet modulates tamoxifen-induced death via host fatty acid metabolism. Nat Commun 2022; 13:5595. [PMID: 36151093 PMCID: PMC9508336 DOI: 10.1038/s41467-022-33299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Tamoxifen is a selective estrogen receptor (ER) modulator that is used to treat ER-positive breast cancer, but that at high doses kills both ER-positive and ER-negative breast cancer cells. We recapitulate this off-target effect in Caenorhabditis elegans, which does not have an ER ortholog. We find that different bacteria dramatically modulate tamoxifen toxicity in C. elegans, with a three-order of magnitude difference between animals fed Escherichia coli, Comamonas aquatica, and Bacillus subtilis. Remarkably, host fatty acid (FA) biosynthesis mitigates tamoxifen toxicity, and different bacteria provide the animal with different FAs, resulting in distinct FA profiles. Surprisingly these bacteria modulate tamoxifen toxicity by different death mechanisms, some of which are modulated by FA supplementation and others by antioxidants. Together, this work reveals a complex interplay between microbiota, FA metabolism and tamoxifen toxicity that may provide a blueprint for similar studies in more complex mammals. Here, Diot et al. use the nematode Caenorhabditis elegans as a model to identify off-target toxicity mechanisms for tamoxifen, and find that these include fatty acid metabolism and cell death, which can be modulated by different bacterial species.
Collapse
|
5
|
Chen X, Xiao Z, Cai Y, Huang L, Chen C. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol Metab 2022; 33:206-217. [PMID: 35063326 DOI: 10.1016/j.tem.2021.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Ovulatory disorders are the most common clinical feature exhibited among obese women. Initiation of ovulation physiologically requires a surge of gonadotropin-releasing hormone (GnRH) released from GnRH neurons located in the hypothalamus. These GnRH neurons receive metabolic signals from circulation and vicinal neurons to regulate GnRH release. Leptin acts indirectly on GnRH via adjacent leptin receptor (LEPR)-expressing neurons such as proopiomelanocortin (POMC), neuropeptide Y (NPY)/agouti-related peptide (AgRP), and neuronal nitric oxide (NO) synthase (nNOS) neurons to affect GnRH neuronal activities. Additionally, hypothalamic inflammation also affects ovulation independent of obesity. Therefore, this review focuses on hypothalamic mechanisms that underlie the disturbance of hypothalamic-pituitary-ovarian (HPO) axis during obesity with an attempt to promote future studies and/or novel therapeutic strategies for ovulatory disorders in obesity.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Lili Huang
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Chen Chen
- School of Biomedical Science, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Garrel G, Rouch C, L’Hôte D, Tazi S, Kassis N, Giton F, Dairou J, Dournaud P, Gressens P, Magnan C, Cruciani-Guglielmacci C, Cohen-Tannoudji J. Disruption of Pituitary Gonadotrope Activity in Male Rats After Short- or Long-Term High-Fat Diets Is Not Associated With Pituitary Inflammation. Front Endocrinol (Lausanne) 2022; 13:877999. [PMID: 35498414 PMCID: PMC9043610 DOI: 10.3389/fendo.2022.877999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Overnutrition is associated with the activation of inflammatory pathways in metabolically linked organs and an early hypothalamic inflammation is now known to disrupt the central control of metabolic function. Because we demonstrated that fatty acids (FA) target the pituitary and affect gonadotropin synthesis, we asked whether overnutrition induces pituitary inflammation that may contribute to obesity-associated disorders in the control of reproduction. We analyzed pituitary inflammation and hypothalamic-pituitary-testicular axis in male rats fed a short- (4 weeks) or long-term (20 weeks) high-fat diet. The effect of diet enrichment with the ω3 polyunsaturated FA, DHA, was also analyzed. After only 4 weeks and before weight gain of rats, high-fat diet caused a significant decrease in pituitary gonadotropin and hypothalamic GnRH transcript levels despite unchanged testosterone and inhibin B levels. Contrasting with the hypothalamus, there was no concomitant increases in gene expression of pituitary inflammatory mediators and even a reduction of prototypical cytokines such as interleukin-1β and TNF-α. No inflammation was still detected in the pituitary after 20 weeks although gonadotropin transcripts and circulating levels were still altered. Gonadotropins were the only pituitary hormones remaining affected at this stage of the regimen, underlying a differential susceptibility of pituitary lineages to metabolic disorders. DHA enrichment of the diet did not prevent alterations of gonadotrope activity due to either a long- or a short-term high-fat diet although it blocked early hypothalamic inflammation and attenuated several metabolic effects. Taken together, our findings suggest that high-fat diet-induced defects in gonadotrope activity in male rats occurred despite a lack of pituitary inflammation.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claude Rouch
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - David L’Hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Salma Tazi
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Frank Giton
- AP-HP, Pôle biologie-Pathologie Henri Mondor, Inserm IMRB U955, Créteil, France
| | - Julien Dairou
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | | | | | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
- *Correspondence: Joëlle Cohen-Tannoudji,
| |
Collapse
|
7
|
Paula VG, Vesentini G, Sinzato YK, Moraes-Souza RQ, Volpato GT, Damasceno DC. Intergenerational high-fat diet impairs ovarian follicular development in rodents: a systematic review and meta-analysis. Nutr Rev 2021; 80:889-903. [PMID: 34459492 DOI: 10.1093/nutrit/nuab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
CONTEXT Excessive consumption of high-fat diets has increased in the population over time and is harmful to female fertility. OBJECTIVE To investigate and discuss the effects of a high-fat diet on ovarian follicles in rodents. DATA SOURCE A systematic literature search of PubMed, EMBASE, Web of Science, and SCOPUS was carried out. DATA EXTRACTION Study characteristics, including study design, population, intervention, outcome, and risk of bias were analyzed. DATA ANALYSIS Twenty-two articles were included in a systematic review. Given the availability of studies, a quantitative meta-analysis included 12 studies that were performed for outcomes. There was a decrease in primordial follicles in female rodents that received a high-fat diet compared with the standard diet group. The offspring of mothers exposed to a high-fat diet showed an increased number of cystic follicles and a decreased number of secondary follicles and antral follicles, compared with the control diet group. Therefore, these high-fat diet-induced follicular alterations might impair the fertility of dams and their female newborns. CONCLUSION The consumption of a high-fat diet causes damage to ovarian follicular development, and this commitment will persist in the next generation. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42019133865.
Collapse
Affiliation(s)
- Verônyca G Paula
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Giovana Vesentini
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Yuri K Sinzato
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Rafaianne Q Moraes-Souza
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Gustavo T Volpato
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Débora C Damasceno
- V.G. Paula, G. Vesentini, Y.K. Sinzato, R.Q. Moraes-Souza, and D.C. Damasceno are with the Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil. G.T. Volpato and R.Q. Moraes-Souza are with the Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| |
Collapse
|
8
|
Wen X, Han Z, Liu SJ, Hao X, Zhang XJ, Wang XY, Zhou CJ, Ma YZ, Liang CG. Phycocyanin Improves Reproductive Ability in Obese Female Mice by Restoring Ovary and Oocyte Quality. Front Cell Dev Biol 2020; 8:595373. [PMID: 33282873 PMCID: PMC7691388 DOI: 10.3389/fcell.2020.595373] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Reproductive dysfunction associated with obesity is increasing among women of childbearing age. Emerging evidence indicates that maternal obesity impairs embryo development and offspring health, and these defects are linked to oxidative stress in the ovary and in oocytes. Phycocyanin (PC) is a biliprotein from Spirulina platensis that possesses antioxidant, anti-inflammatory, and radical-scavenging properties. Our previous studies have shown that PC can reduce reactive oxygen species (ROS) accumulation in oocytes in D-gal-induced aging mice. Here, at the Institute of Cancer Research (ICR) mice fed a high-fat diet (HFD) to model obesity were used to test the effect of PC on reversing the fertility decline caused by obesity. We observed a significant increase in litter size and offspring survival rates after PC administration to obese mice. Further, we found that PC not only ameliorated the level of ovarian antioxidant enzymes, but also reduced the occurrence of follicular atresia in obese female mice. In addition, the abnormal morphology of the spindle-chromosome complex (SCC), and the abnormal mitochondrial distribution pattern in oocytes both recovered. The obesity-related accumulation of ROS, increased number of early apoptotic cells, and the abnormal expression of H3K9me3 in oocytes were all partially reversed after PC administration. In summary, this is the first demonstration that PC can improve fertility by partially increasing ovarian and oocyte quality in obese female mice and provides a new strategy for clinically treating obesity-related infertility in females.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shu-Jun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
|
10
|
Deura C, Kimura Y, Nonoyama T, Moriyama R. Gpr120 mRNA expression in gonadotropes in the mouse pituitary gland is regulated by free fatty acids. J Reprod Dev 2020; 66:249-254. [PMID: 32115468 PMCID: PMC7297631 DOI: 10.1262/jrd.2019-166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
GPR120 is a long-chain fatty acid (LCFA) receptor that is specifically expressed in gonadotropes in the anterior pituitary gland in mice. The aim of this study was to investigate
whether GPR120 is activated by free fatty acids in the pituitary of mice and mouse immortalized gonadotrope LβT2 cells. First, the effects of palmitate on GPR120, gonadotropic
hormone b-subunits, and GnRH-receptor expression in gonadotropes were investigated in vitro. We observed palmitate-induced an increase in Gpr120
mRNA expression and a decrease in follicle-stimulating hormone b-subunit (Fshb) expression in LβT2 cells. Furthermore, palmitate exposure caused the
phosphorylation of ERK1/2 in LβT2 cells, but no significant changes were observed in the expression levels of luteinizing hormone b-subunit (Lhb) and gonadotropin
releasing hormone-receptor (Gnrh-r) mRNA and number of GPR120 immunoreactive cells. Next, diurnal variation in Gpr120 mRNA expression in the male
mouse pituitary gland was investigated using ad libitum and night-time restricted feeding (active phase from 1900 to 0700 h) treatments. In ad
libitum feeding group mice, Gpr120 mRNA expression at 1700 h was transiently higher than that measured at other times, and the peak blood non-esterified
fatty acid (NEFA) levels were observed from 1300 to 1500 h. These results were not observed in night-time-restricted feeding group mice. These results suggest that GPR120 is
activated by LCFAs to regulate follicle stimulating hormone (FSH) synthesis in the mouse gonadotropes.
Collapse
Affiliation(s)
- Chikaya Deura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Yusuke Kimura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Takumi Nonoyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| |
Collapse
|
11
|
Fang Y, Liu J, Mao Y, He Y, Li M, Yang L, Zhu Q, Tong Q, Zhou W. Pre-pregnancy body mass index and time to pregnancy among couples pregnant within a year: A China cohort study. PLoS One 2020; 15:e0231751. [PMID: 32324768 PMCID: PMC7179844 DOI: 10.1371/journal.pone.0231751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/31/2020] [Indexed: 11/30/2022] Open
Abstract
Background Extreme pre-pregnancy body mass index (BMI) values have been associated with reduced fecundability and prolonged time to pregnancy in previous studies. However, the effect in fertile couples is unclear. Objectives This study aimed to evaluate the association between pre-pregnancy BMI and fecundability, measured as time to pregnancy (TTP), among couples that achieved pregnancy within 1 year. Methods This was a retrospective cohort study of 50,927 couples wishing to conceive, enrolled in the National Free Preconception Health Examination Project (NFPHEP) in Chongqing, China, during 2012–2016. Participants’ weight and height were measured by NFPHEP-trained preconception guidance physicians. TTP measured in months was used to determine subfecundity (TTP >6 months). The strength of association between BMI and TTP/subfecundity was measured with fecundability odds ratios (FOR)/odds ratios (OR) and their corresponding 95% confidence intervals (CI), calculated with Cox and logistic regression analysis. We used restricted cubic spline regression (RCS) to test the observed FOR trends. Results Compared to women with normal BMI, women with pre-pregnancy overweight/obesity had longer TTP (FOR = 0.96, 95% CI: 0.94–0.99) and increased risk of subfecundity (OR = 1.08, 95% CI: 1.00–1.17). There was no association between TTP and male BMI. RCS trends varied when data were stratified by male pre-pregnancy BMI, with the greatest change detected in pre-pregnancy underweight men. Conclusions Pre-pregnancy overweight/obesity was associated with longer TTP and subfecundity among women who became pregnant within 1 year; this effect was likely mediated by their partners’ pre-pregnancy BMI. These findings indicate that BMI could affect fecundability, independently of affecting the risk of sterility. Advice on weight management and maintaining healthy weight should be included in couples’ preconception guidance.
Collapse
Affiliation(s)
- Yuhang Fang
- School of Public Health, Fudan University, Shanghai, China
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Jun Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Yanyan Mao
- School of Public Health, Fudan University, Shanghai, China
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Yang He
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Min Li
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Liu Yang
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Qianxi Zhu
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Qi Tong
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
- * E-mail: (QT); (WZ)
| | - Weijin Zhou
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
- * E-mail: (QT); (WZ)
| |
Collapse
|
12
|
Deura C, Moriyama R. Short-term but not long-term high-fat diet induces an increase in gene expression of gonadotropic hormones and GPR120 in the male mouse pituitary gland. J Reprod Dev 2020; 66:143-148. [PMID: 31902809 PMCID: PMC7175384 DOI: 10.1262/jrd.2019-144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-fat diet (HFD) is associated with the regulation of reproductive functions. This study aimed to investigate the effects of short-term HFD on the mRNA expression levels of
follicle-stimulating hormone β subunit (FSHβ), luteinizing hormone β subunit (LHβ), gonadotropin-releasing hormone receptor, and long-chain fatty acid receptor, GPR120, in the matured male
mouse pituitary gland. Adult male mice were fed either control chow or HFD for 1, 2, 5, 10, 30 and 150 days. Fshb and Gpr120 mRNA expression levels in the
pituitary glands were significantly increased during 2 to 30 days of HFD feeding. Gnrh-r mRNA in the 30 days HFD fed group and body weight in the 30 and 150 days HFD fed
groups were higher than control. However, there were no significant differences in plasma non-esterified fatty acids or glucose levels during the 150 days of HFD feeding. These results
suggest that male mice feeding a short-term HFD induces FSHβ synthesis and GPR120 expression in their pituitary gonadotropes.
Collapse
Affiliation(s)
- Chikaya Deura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
13
|
Liu X, Li F, Xie J, Huang D, Xie M. Fetal and neonatal genistein exposure aggravates to interfere with ovarian follicle development of obese female mice induced by high-fat diet. Food Chem Toxicol 2019; 135:110982. [PMID: 31747621 DOI: 10.1016/j.fct.2019.110982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/02/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
With epidemic of obesity, it affects aspects of female reproduction. Genistein could ameliorate obesity in people and animals, but might exert adverse effects on the female reproductive system. To evaluate the effects of fetal and neonatal genistein exposure on the ovarian health of F1 obese female mice with obesity induced by high-fat diet after weaning, we simulated a diet-induced obesity model to observe and determine biological effects of genistein exposure on the ovarian follicle of overfed female mice. Results showed that F1 female mice with obesity induced by high-fat diet significantly prolonged the estrus cycle, disrupted sex hormonal balance and ovarian follicle development after they were exposed to 25 mg/kg b.w./day of genistein during the fetal and neonatal stages. Genistein significantly up-regulated the ovarian mRNA expression of estrogen receptor beta in F1 obese female mice, and high-fat diet influenced the ovarian mRNA expression of estrogen receptor alpha, luteinizing hormone receptor and follicle-stimulating hormone receptor. Hence, genistein exposure from the fetal stage might increase the risk of reproductive diseases in obese females in later life. Thus, the long-term risks of genistein to obese females should be thoroughly assessed.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Fenfen Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
14
|
Shi Z, Enayatullah H, Lv Z, Dai H, Wei Q, Shen L, Karwand B, Shi F. Freeze-Dried Royal Jelly Proteins Enhanced the Testicular Development and Spermatogenesis in Pubescent Male Mice. Animals (Basel) 2019; 9:ani9110977. [PMID: 31731648 PMCID: PMC6912309 DOI: 10.3390/ani9110977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Spermatogenesis and hormones secretions are serious life-threating and complicated process, which can be improve through science-based approaches. Royal jelly is a thick white milky fluid secreted by the hypopharyngeal and mandibular glands of young nurse worker bees (Apis mellifera) and used to feed their queen to expand their life. The results of the study revealed that, the growth performance of testis in exposed mice to freeze-dried Royal Jelly for 35 consecutive days were significantly enhanced in moderate dose among other treated doses. However, at Post Natal Days (PNDs 14 and PNDs 21), obviously changes were observed in histological examination of the testis while at PNDs-07 no major changes were observed. The Tunnel assay showed that, less apoptotic cells were detected in the testis of mice in high dose of freeze-dried RJ and oral administration of freeze-dried royal jelly can aggravate adverse effects via tempestuous on sexual hormone secretion at both PNDs 21 and PNDs 35 respectively. Abstract Spermatogenesis and hormones secretions are crucial endocrine and physiological process for maintaining the life. Royal Jelly (RJ) bioactive components are Major Royal Jelly Proteins (MRJPs), owing exceptional biological properties. However, the effects of RJ on pup’s testicular development during neonatal and pubertal period exposure hasn’t been adequately studied. The aim of the study was to detect neonatal sexual hormones concentration and histopathological changes on testicular development of the male progeny after oral exposure to freeze-dried RJ for 35 consecutive days. After mice give birth, male pups were collected together, separated by sex, and randomly standardized to seven (7) male pups per dam. Male pups were assigned to control diet (CON group), low dose RJ (L-RJ group) diet (control diet + 125 mg/kg/day RJ), moderate dose RJ (M-RJ group) diet (control diet + 250 mg/kg/day RJ) and high dose of RJ (H-RJ group) diet (control diet + 500 mg/kg/day RJ). After weaning, male pups were continuously fed with freeze-dried RJ until the age of PNDs 35. The results revealed that, oral M-RJ (250 mg/kg/day) administration significantly (p < 0.05) increased the testis weight, the diameter of seminiferous tubule and the height of seminiferous epithelium of offspring mice at PNDs 14. However, high-dose RJ (500 mg/kg/day) decreased the diameter of seminiferous tubule but increased the height of seminiferous epithelium of male offspring (p < 0.05) at the same time point. Furthermore, oral M-RJ treatment significantly (p < 0.05) increased the testis weight and spermatogenesis at PNDs 21. Whereas, oral H-RJ treatment significantly (p < 0.05) reduced the diameter of seminiferous tubule and the height of seminiferous epithelium at PNDs 21. At PNDs 35, oral M-RJ treatment increased the testis weight, the diameter of seminiferous tubule and the level of FSH. While, high-dose of RJ reduced testis weight and size (diameter of seminiferous tubule and height of seminiferous epithelium), ratio of apoptotic germ cells and incomplete spermatogenesis collectively. In addition, sexual hormone secretions (FSH, LH, E2) were decreased after RJs treatment (L-RJ, M-RJ, H-RJ) at PNDs 21 respectively. In conclusion, the results concluded that oral administration of low and moderate doses of RJ could enhance the development of testis at neonate period until pubescent, whereas unfavorable adverse effects induced by high dose of RJ might remain.
Collapse
Affiliation(s)
- Zhicheng Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (H.E.); (Z.L.); (H.D.); (Q.W.)
| | - Hamdard Enayatullah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (H.E.); (Z.L.); (H.D.); (Q.W.)
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (H.E.); (Z.L.); (H.D.); (Q.W.)
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (H.E.); (Z.L.); (H.D.); (Q.W.)
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (H.E.); (Z.L.); (H.D.); (Q.W.)
| | - Lirong Shen
- College of Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Babrak Karwand
- Faculty of Veterinary Science, Kunduz University, Kunduz City 0093, Afghanistan;
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (H.E.); (Z.L.); (H.D.); (Q.W.)
- Correspondence: ; Tel./Fax: +86-25-84399112
| |
Collapse
|
15
|
Lainez NM, Coss D. Obesity, Neuroinflammation, and Reproductive Function. Endocrinology 2019; 160:2719-2736. [PMID: 31513269 PMCID: PMC6806266 DOI: 10.1210/en.2019-00487] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
The increasing occurrence of obesity has become a significant public health concern. Individuals with obesity have higher prevalence of heart disease, stroke, osteoarthritis, diabetes, and reproductive disorders. Reproductive problems include menstrual irregularities, pregnancy complications, and infertility due to anovulation, in women, and lower testosterone and diminished sperm count, in men. In particular, women with obesity have reduced levels of both gonadotropin hormones, and, in obese men, lower testosterone is accompanied by diminished LH. Taken together, these findings indicate central dysregulation of the hypothalamic-pituitary-gonadal axis, specifically at the level of the GnRH neuron function, which is the final brain output for the regulation of reproduction. Obesity is a state of hyperinsulinemia, hyperlipidemia, hyperleptinemia, and chronic inflammation. Herein, we review recent advances in our understanding of how these metabolic and immune changes affect hypothalamic function and regulation of GnRH neurons. In the latter part, we focus on neuroinflammation as a major consequence of obesity and discuss findings that reveal that GnRH neurons are uniquely positioned to respond to inflammatory changes.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
- Correspondence: Djurdjica Coss, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 303 SOM Research Building, 900 University Avenue, Riverside, California 92521. E-mail:
| |
Collapse
|
16
|
Lainez NM, Jonak CR, Nair MG, Ethell IM, Wilson EH, Carson MJ, Coss D. Diet-Induced Obesity Elicits Macrophage Infiltration and Reduction in Spine Density in the Hypothalami of Male but Not Female Mice. Front Immunol 2018; 9:1992. [PMID: 30254630 PMCID: PMC6141693 DOI: 10.3389/fimmu.2018.01992] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing prevalence in obesity has become a significant public concern. C57BL/6J mice are prone to diet-induced obesity (DIO) when fed high-fat diet (HFD), and develop chronic inflammation and metabolic syndrome, making them a good model to analyze mechanisms whereby obesity elicits pathologies. DIO mice demonstrated profound sex differences in response to HFD with respect to inflammation and hypothalamic function. First, we determined that males are prone to DIO, while females are resistant. Ovariectomized females, on the other hand, are susceptible to DIO, implying protection by ovarian hormones. Males, but not females, exhibit changes in hypothalamic neuropeptide expression. Surprisingly, ovariectomized females remain resistant to neuroendocrine changes, showing that ovarian hormones are not necessary for protection. Second, obese mice exhibit sex differences in DIO-induced inflammation. Microglial activation and peripheral macrophage infiltration is seen in the hypothalami of males, while females are protected from the increase in inflammatory cytokines and do not exhibit microglia morphology changes nor monocyte-derived macrophage infiltration, regardless of the presence of ovarian hormones. Strikingly, the anti-inflammatory cytokine IL-10 is increased in the hypothalami of females but not males. Third, this study posits a potential mechanism of obesity-induced impairment of hypothalamic function whereby obese males exhibit reduced levels of synaptic proteins in the hypothalamus and fewer spines in GnRH neurons, located in the areas exhibiting macrophage infiltration. Our studies suggest that inflammation-induced synaptic remodeling is potentially responsible for hypothalamic impairment that may contribute to diminished levels of gonadotropin hormones, testosterone, and sperm numbers, which we observe and corresponds to the observations in obese humans. Taken together, our data implicate neuro-immune mechanisms underlying sex-specific differences in obesity-induced impairment of the hypothalamic function with potential consequences for reproduction and fertility.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Monica J Carson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
17
|
Maillard V, Elis S, Desmarchais A, Hivelin C, Lardic L, Lomet D, Uzbekova S, Monget P, Dupont J. Visfatin and resistin in gonadotroph cells: expression, regulation of LH secretion and signalling pathways. Reprod Fertil Dev 2018; 29:2479-2495. [PMID: 28672116 DOI: 10.1071/rd16301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Visfatin and resistin appear to interfere with reproduction in the gonads, but their potential action at the hypothalamic-pituitary level is not yet known. The aim of the present study was to investigate the mRNA and protein expression of these adipokines in murine gonadotroph cells and to analyse the effects of different concentrations of recombinant mouse visfatin and resistin (0.01, 0.1, 1 and 10ngmL-1) on LH secretion and signalling pathways in LβT2 cells and/or in primary female mouse pituitary cells. Both visfatin and resistin mRNA and protein were found in vivo in gonadotroph cells. In contrast with resistin, the primary tissue source of visfatin in the mouse was the skeletal muscle, and not adipose tissue. Visfatin and resistin both decreased LH secretion from LβT2 cells after 24h exposure of cells (P<0.03). These results were confirmed for resistin in primary cell culture (P<0.05). Both visfatin (1ngmL-1) and resistin (1ngmL-1) increased AMP-activated protein kinase α phosphorylation in LβT2 cells after 5 or 10min treatment, up to 60min (P<0.04). Extracellular signal-regulated kinase 1/2 phosphorylation was transiently increased only after 5min resistin (1ngmL-1) treatment (P<0.01). In conclusion, visfatin and resistin are expressed in gonadotroph cells and they may affect mouse female fertility by regulating LH secretion at the level of the pituitary.
Collapse
Affiliation(s)
- Virginie Maillard
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Sébastien Elis
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Alice Desmarchais
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Céline Hivelin
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Lionel Lardic
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Didier Lomet
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Philippe Monget
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Joëlle Dupont
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
18
|
Li S, Mbong EF, John DT, Terasaka T, Li D, Lawson MA. Induction of Stress Signaling In Vitro and Suppression of Gonadotropin Secretion by Free Fatty Acids in Female Mouse Gonadotropes. Endocrinology 2018; 159:1074-1087. [PMID: 29315384 PMCID: PMC5793794 DOI: 10.1210/en.2017-00638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022]
Abstract
An emerging body of evidence supports the concept that the pituitary is a site for integration of multiple physiological and metabolic signals that inform and modulate endocrine pathways. Multiple endocrine mediators of energy balance and adiposity are known to impinge on the neuroendocrine axis regulating reproduction. Observations in humans show that obesity is correlated with decreased gonadotropin secretion, and studies have also suggested that pituitary sensitivity to stimulation by gonadotropin-releasing hormone (GnRH) is decreased in obese individuals. Free fatty acids are a potential mediator of adiposity and energy balance, but their impact as an endocrine modulator of pituitary function has not been closely examined. We evaluated the impact of free fatty acids on a pituitary gonadotrope cell line and in primary pituitary cultures of female mice. We show that increasing physiologically relevant doses of the monounsaturated ω-9 fatty acid oleate induces cellular stress and increases production of reactive oxygen species in a mouse gonadotrope cell line. In contrast, the unsaturated ω-3 α-linolenic and ω-6 linoleic fatty acids do not have this effect. Additionally, oleate can activate immediate-early gene expression independent of GnRH stimulation but has a negative impact on GnRH induction and expression of the gonadotropin subunit gene Lhb. Further, oleate suppresses gonadotropin secretion in response to pulsatile stimulation by GnRH. These results indicate that free fatty acids can directly alter gonadotropin gene expression and secretion in response to GnRH and may provide a link between energy sensing and reproduction.
Collapse
Affiliation(s)
- Song Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
- Neonatal Intensive Care Unit, Dongguan Eighth People’s Hospital, Dongguan 523000, People’s Republic of China
| | - Ekaette F. Mbong
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Denise T. John
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
19
|
Fernandez MO, Hsueh K, Park HT, Sauceda C, Hwang V, Kumar D, Kim S, Rickert E, Mahata S, Webster NJG. Astrocyte-Specific Deletion of Peroxisome-Proliferator Activated Receptor- γ Impairs Glucose Metabolism and Estrous Cycling in Female Mice. J Endocr Soc 2017; 1:1332-1350. [PMID: 29264458 PMCID: PMC5686676 DOI: 10.1210/js.2017-00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023] Open
Abstract
Mice lacking peroxisome-proliferator activated receptor-γ (PPARγ) in neurons do not become leptin resistant when placed on a high-fat diet (HFD). In male mice, this results in decreased food intake and increased energy expenditure, causing reduced body weight, but this difference in body weight is not observed in female mice. In addition, estrous cycles are disturbed and the ovaries present with hemorrhagic follicles. We observed that PPARγ was more highly expressed in astrocytes than neurons, so we created an inducible, conditional knockout of PPARγ in astrocytes (AKO). The AKO mice had impaired glucose tolerance and hepatic steatosis that did not worsen with HFD. Expression of gluconeogenic genes was elevated in the mouse livers, as was expression of several genes involved in lipogenesis, lipid transport, and storage. The AKO mice also had a reproductive phenotype with fewer estrous cycles, elevated plasma testosterone levels, reduced corpora lutea formation, and alterations in hypothalamic and ovarian gene expression. Thus, the phenotypes of the AKO mice were very different from those seen in the neuronal knockout mice, suggesting distinct roles for PPARγ in these two cell types.
Collapse
Affiliation(s)
- Marina O Fernandez
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, CONICET. Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Katherine Hsueh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Hyun Tae Park
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul 136-705, Korea
| | - Consuelo Sauceda
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Vicky Hwang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Deepak Kumar
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sun Kim
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Emily Rickert
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sumana Mahata
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Nicholas J G Webster
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Medical Research Service, VA San Diego Healthcare System, San Diego, California 92161.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
20
|
Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci Rep 2017; 7:43475. [PMID: 28276438 PMCID: PMC5343591 DOI: 10.1038/srep43475] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a crucial role in maintaining a series of cellular functions. It has been found that autophagy is closely involved in the physiological process of spermatogenesis and the regulation of sperm survival and motility. However, the role of autophagy in high-fat diet (HFD)-induced impaired spermatogenesis remains unknown. This study was designed to investigate the role of autophagy in HFD-induced spermatogenesis deficiency and employed chloroquine (CQ) to inhibit autophagy and rapamycin (RAP) to induce autophagy. 3-methyladenine (3-MA) and CQ were administered via intratesticular injection in vivo. The effects of CQ and 3-MA on the parameters of spermatozoa co-cultured with palmitic acid (PA) in vitro were also investigated. Human semen samples from obese, subfertile male patients were also collected to examine the level of autophagy. The results suggested that HFD mice subjected to CQ showed improved spermatogenesis. Inhibiting autophagy with CQ improved the decreased fertility of HFD male mice. Moreover, the in vivo and in vitro results indicated that both CQ and 3-MA could suppress the pathological changes in spermatozoa caused by HFD or PA treatment. Additionally, the excessive activation of autophagy was also observed in sperm samples from obese, subfertile male patients.
Collapse
|
21
|
Chosich J, Bradford AP, Allshouse AA, Reusch JEB, Santoro N, Schauer IE. Acute recapitulation of the hyperinsulinemia and hyperlipidemia characteristic of metabolic syndrome suppresses gonadotropins. Obesity (Silver Spring) 2017; 25:553-560. [PMID: 28158916 PMCID: PMC5323271 DOI: 10.1002/oby.21754] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To determine the effect of lipid/heparin versus saline infusion, with or without concurrent euglycemic hyperinsulinemia, on serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Obesity is associated with hyperlipidemia, insulin resistance, and relative hypogonadotropic hypogonadism. It was hypothesized that acutely elevated fatty acids and insulin would impair gonadotropin secretion. METHODS Regularly cycling women and men without obesity underwent a crossover 6-hour infusion study over four visits. Participants received infusions of saline-control, lipid/heparin, insulin, and lipid/heparin plus insulin. Serum FSH and LH were measured by immunoassay. RESULTS In women (n = 10), infusion of lipid plus insulin significantly reduced LH, from 4.6 IU/L (3.7-5.4) (mean [95% confidence interval]) to 3.3 IU/L (2.3-4.4); P = 0.03, and FSH, from 3.9 IU/L (3.2-4.6) to 3.1 IU/L (2.3-3.8); P = 0.03, compared to saline-control. Similarly, in men (n = 10), LH, 3.3 IU/L (2.4-4.1), and FSH, 2.1 IU/L (1.4-2.8), were significantly reduced after the combined infusion (2.2 [1.3-3.1] IU/L and 1.5 [0.8-2.1] IU/L; P = 0.03, P = 0.02, respectively). Neither lipid nor insulin alone significantly impacted gonadotropin levels compared to saline-control. CONCLUSIONS Hyperinsulinemia combined with elevated lipids acutely suppresses LH and FSH, providing a possible mechanism underlying the relative hypogonadotropic hypogonadism of obesity. Effects of insulin on the hypothalamic-pituitary-gonadal axis may be dependent on the concomitant metabolic environment.
Collapse
Affiliation(s)
- Justin Chosich
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine
| | - Amanda A Allshouse
- Department of Biostatistics and Informatics, Colorado School of Public Health
| | - Jane E. B. Reusch
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine
- Endocrinology Section, Denver Veterans Affairs Medical Center
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine
| | - Irene E Schauer
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine
- Endocrinology Section, Denver Veterans Affairs Medical Center
| |
Collapse
|
22
|
Fernandez MO, Sharma S, Kim S, Rickert E, Hsueh K, Hwang V, Olefsky JM, Webster NJG. Obese Neuronal PPARγ Knockout Mice Are Leptin Sensitive but Show Impaired Glucose Tolerance and Fertility. Endocrinology 2017; 158:121-133. [PMID: 27841948 PMCID: PMC5412981 DOI: 10.1210/en.2016-1818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022]
Abstract
The peroxisome-proliferator activated receptor γ (PPARγ) is expressed in the hypothalamus in areas involved in energy homeostasis and glucose metabolism. In this study, we created a deletion of PPARγ brain-knockout (BKO) in mature neurons in female mice to investigate its involvement in metabolism and reproduction. We observed that there was no difference in age at puberty onset between female BKOs and littermate controls, but the BKOs gave smaller litters when mated and fewer oocytes when ovulated. The female BKO mice had regular cycles but showed an increase in the number of cycles with prolonged estrus. The mice also had increased luteinizing hormone (LH) levels during the LH surge and histological examination showed hemorrhagic corpora lutea. The mice were challenged with a 60% high-fat diet (HFD). Metabolically, the female BKO mice showed normal body weight, glucose and insulin tolerance, and leptin levels but were protected from obesity-induced leptin resistance. The neuronal knockout also prevented the reduction in estrous cycles due to the HFD. Examination of ovarian histology showed a decrease in the number of primary and secondary follicles in both genotypes due to the HFD, but the BKO ovaries showed an increase in the number of hemorrhagic follicles. In summary, our results show that neuronal PPARγ is required for optimal female fertility but is also involved in the adverse effects of diet-induced obesity by creating leptin resistance potentially through induction of the repressor Socs3.
Collapse
Affiliation(s)
| | | | - Sun Kim
- Department of Medicine, School of Medicine, and
| | | | | | - Vicky Hwang
- Department of Medicine, School of Medicine, and
| | | | - Nicholas J G Webster
- Department of Medicine, School of Medicine, and
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; and
- Medical Research Service, VA San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
23
|
Tran DQ, Ramos EH, Belsham DD. Induction of Gnrh mRNA expression by the ω-3 polyunsaturated fatty acid docosahexaenoic acid and the saturated fatty acid palmitate in a GnRH-synthesizing neuronal cell model, mHypoA-GnRH/GFP. Mol Cell Endocrinol 2016; 426:125-35. [PMID: 26923440 DOI: 10.1016/j.mce.2016.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons coordinate reproduction. However, whether GnRH neurons directly sense free fatty acids (FFAs) is unknown. We investigated the individual effects of the FFAs docosahexaenoic acid (DHA), palmitate, palmitoleate, and oleate (100 μM each) on Gnrh mRNA expression in the mHypoA-GnRH/GFP neuronal cell model. We report that 2 h exposure to palmitate or DHA increases Gnrh transcription. Using the inhibitors AH7614, K252c, U0126, wortmannin, and LY294002, we demonstrate that the effect of DHA is mediated through GPR120 to downstream PKC/MAPK and PI3K signaling. Our results indicate that the effect of palmitate may depend on palmitoyl-coA synthesis and PI3K signaling. Finally, we demonstrate that both DHA and palmitate increase Gnrh enhancer-derived RNA levels. Overall, these studies provide evidence that GnRH neurons directly sense FFAs. This will advance our understanding of the mechanisms underlying FFA sensing in the brain and provides insight into the links between nutrition and reproductive function.
Collapse
Affiliation(s)
- Dean Q Tran
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ernesto H Ramos
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Moriyama R, Yamazaki T, Kato T, Kato Y. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. J Reprod Dev 2016; 62:195-9. [PMID: 26853521 PMCID: PMC4848577 DOI: 10.1262/jrd.2015-138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we assessed the effects of long-chain fatty acids (LCFAs) and the LCFA receptor agonist GW9508 on the
transcription of the gonadotropin subunit genes Cga, Lhb and
Fshb because LCFA receptor GPR120 was observed in mouse gonadotropes in our recent study. A
transcription assay using LβT2 cells demonstrated that LCFAs, oleic acid, α-linolenic acid, docosahexaenoic
acid and palmitate, repressed the expression of Cga, Lhb, and
Fshb at concentrations between 50 and 100 µM. On the other hand, treatment with 10 µM
unsaturated LCFAs, oleic acid, α-linolenic acid and docosahexaenoic acid, repressed only Fshb
expression, while the same dose of a saturated LCFA, palmitate, had no effect on the expression of
gonadotropin subunit genes. Furthermore, GW9508 did not affect promoter activity. Next, we examined deletion
mutants of the upstream region of Fshb and found that the upstream regulatory region (-2824
to -2343 bp) of Fshb was responsible for the notable repression by 10 µM unsaturated LCFAs.
Our results suggest that the upstream region of Fshb is susceptible to unsaturated LCFAs. In
addition, unsaturated LCFAs play a role in repressing Fshb expression through the distal
-2824 to -2343 bp region, which might be independent of the LCFA receptor GPR120 pathway.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kinki University, Osaka 577-8502, Japan
| | | | | | | |
Collapse
|
25
|
Gohir W, Whelan FJ, Surette MG, Moore C, Schertzer JD, Sloboda DM. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother's periconceptional diet. Gut Microbes 2015; 6:310-20. [PMID: 26322500 PMCID: PMC4826136 DOI: 10.1080/19490976.2015.1086056] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shifts in the maternal gut microbiome have been implicated in metabolic adaptations to pregnancy. We investigated how pregnancy and diet interact to influence the composition of the maternal gut microbiota. Female C57BL/6 mice were fed either a control or a high fat diet for 8 weeks prior to mating. After confirmation of pregnancy, maternal weight gain and food intake were recorded. Fecal pellets were collected at 2 timepoints prior to mating (at the beginning of the experiment, and after 6 weeks of the specified diet) and at 4 timepoints during pregnancy (gestation day 0.5, 5.5, 10.5, and 15.5). The microbial composition and predicted metabolic functionality of the non-pregnant and pregnant gut was determined via sequencing of the variable 3 region of the 16S rRNA gene. Upon conception, differences in gut microbial communities were observed in both control and high fat-fed mice, including an increase in mucin-degrading bacteria. Control versus high fat-fed pregnant mice possessed the most profound changes to their maternal gut microbiota as indicated by statistically significant taxonomic differences. High fat-fed pregnant mice, when compared to control-fed animals, were found to be significantly enriched in microbes involved in metabolic pathways favoring fatty acid, ketone, vitamin, and bile synthesis. We show that pregnancy-induced changes in the female gut microbiota occur immediately at the onset of pregnancy, are vulnerable to modulation by diet, but are not dependent upon increases in maternal weight gain during pregnancy. High fat diet intake before and during pregnancy results in distinctive shifts in the pregnant gut microbiota in a gestational-age dependent manner and these shifts predict significant differences in the abundance of genes that favor lipid metabolism, glycolysis and gluconeogenic metabolic pathways over the course of pregnancy.
Collapse
Affiliation(s)
- Wajiha Gohir
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada
| | - Fiona J Whelan
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada
| | - Michael G Surette
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada,Department of Medicine; McMaster University, Hamilton, Canada
| | - Caroline Moore
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada,Department of Pediatrics and Obstetrics and Gynecology; McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada,Department of Pediatrics and Obstetrics and Gynecology; McMaster University, Hamilton, Canada,Correspondence to: Deborah M Sloboda;
| |
Collapse
|
26
|
Kim T, Lawson MA. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology 2015; 156:2185-99. [PMID: 25849727 PMCID: PMC4430611 DOI: 10.1210/en.2014-1709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The appropriate control of synthesis and secretion of the gonadotropin hormones LH and FSH by pituitary gonadotropes is essential for the regulation of reproduction. The hypothalamic neuropeptide GnRH is the central regulator of both processes, coordinating secretion with transcription and translation of the gonadotropin hormone subunit genes. The MAPK family of second messengers is strongly induced in gonadotropes upon GnRH stimulation, and multiple pathways activate these kinases. Intracellular reactive oxygen species participate in signaling cascades that target MAPKs, but also participate in signaling events indicative of cell stress. The NADPH oxidase (NOX)/dual oxidase (DUOX) family is a major enzymatic source of intracellular reactive oxygen, and we show that GnRH stimulation of mouse primary pituitary cells and the LβT2 gonadotrope cell line elevates intracellular reactive oxygen via NOX/DUOX activity. Mouse pituitary and LβT2 cells abundantly express NOX/DUOX and cofactor mRNAs. Pharmacological inhibition of NOX/DUOX activity diminishes GnRH-stimulated activation of MAPKs, immediate-early gene expression, and gonadotropin subunit gene expression. Inhibitor studies implicate the calcium-activated DUOX family as a major, but not exclusive, participant in GnRH signaling. Knockdown of DUOX2 in LβT2 cells reduces GnRH-induced Fshb, but not Lhb mRNA levels, suggesting differential sensitivity to DUOX activity. Finally, GnRH pulse-stimulated FSH and LH secretion are suppressed by inhibition of NOX/DUOX activity. These results indicate that reactive oxygen is a potent signaling intermediate produced in response to GnRH stimulation and further suggest that reactive oxygen derived from other sources may influence the gonadotrope response to GnRH stimulation.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | | |
Collapse
|
27
|
Oszkiel H, Wilczak J, Jank M. Biologically active substances-enriched diet regulates gonadotrope cell activation pathway in liver of adult and old rats. GENES AND NUTRITION 2014; 9:427. [PMID: 25156242 PMCID: PMC4172640 DOI: 10.1007/s12263-014-0427-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/11/2014] [Indexed: 01/23/2023]
Abstract
According to the Hippocrates’ theorem “Let food be your medicine and medicine be your food”, dietary interventions may induce changes in the metabolic and inflammatory state by modulating the expression of important genes involved in the chronic disorders. The aim of the present study was to evaluate the influence of long-term (14 months) use of biologically active substances-enriched diet (BASE-diet) on transcriptomic profile of rats’ liver. The experiment was conducted on 36 Sprague–Dawley rats divided into two experimental groups (fed with control or BASE-diet, both n = 18). Control diet was a semi-synthetic diet formulated according to the nutritional requirements for laboratory animals. The BASE-diet was enriched with a mixture of polyphenolic compounds, β-carotene, probiotics, and n-3 and n-6 polyunsaturated fatty acids. In total, n = 3,017 differentially expressed (DE) genes were identified, including n = 218 DE genes between control and BASE groups after 3 months of feeding and n = 1,262 after 14 months. BASE-diet influenced the expression of genes involved particularly in the gonadotrope cell activation pathway and guanylate cyclase pathway, as well as in mast cell activation, gap junction regulation, melanogenesis and apoptosis. Especially genes involved in regulation of GnRH were strongly affected by BASE-diet. This effect was stronger with the age of animals and the length of diet use. It may suggest a link between the diet, reproductive system function and aging.
Collapse
Affiliation(s)
- Hanna Oszkiel
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159 Str., 02-776, Warsaw, Poland
| | | | | |
Collapse
|
28
|
Moriyama R, Deura C, Imoto S, Nose K, Fukushima N. Expression of the long-chain fatty acid receptor GPR120 in the gonadotropes of the mouse anterior pituitary gland. Histochem Cell Biol 2014; 143:21-7. [PMID: 25112963 DOI: 10.1007/s00418-014-1257-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Abstract
G-protein-coupled receptor 120 (GPR120) has been known to be a receptor of long-chain fatty acids. Here, we investigated GPR120 expression in the mouse pituitary gland via real-time PCR, in situ hybridization, and immunohistochemistry. GPR120 mRNA was abundantly expressed in the pituitary gland of ad-lib fed animals. In situ hybridization and immunohistochemistry revealed GPR120 expression in the gonadotropes of the anterior pituitary gland, but not in thyrotropes, somatotropes, lactotropes, corticotropes, melanotropes, and the posterior pituitary gland. Furthermore, 24 h of fasting induced an increase in GPR120 mRNA expression in the pituitary gland. These results demonstrate that GPR120 in mouse pituitary gonadotropes is upregulated by fasting and that it may play a role in controlling gonadotropin secretion.
Collapse
Affiliation(s)
- Ryutaro Moriyama
- Laboratory of Molecular Neurobiology, Department of Life Science, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan,
| | | | | | | | | |
Collapse
|
29
|
Wu S, Divall S, Nwaopara A, Radovick S, Wondisford F, Ko C, Wolfe A. Obesity-induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabetes 2014; 63:1270-82. [PMID: 24379345 PMCID: PMC3964497 DOI: 10.2337/db13-1514] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/16/2013] [Indexed: 01/21/2023]
Abstract
Women with polycystic ovary syndrome (PCOS) exhibit elevated androgen levels, oligoanovulation, infertility, and insulin resistance in metabolic tissues. The aims of these studies were to determine the role of insulin signaling in the development and function of ovarian theca cells and the pathophysiologic effects of hyperinsulinism on ovarian function in obesity. We disrupted the insulin receptor (IR) gene specifically in the theca-interstitial (TI) cells of the ovaries (Cyp17IRKO). No changes in reproductive development or function were observed in lean Cyp17IRKO female mice, suggesting that insulin signaling in TI cell is not essential for reproduction. However, when females were fed a high-fat diet, diet-induced obesity (DIO) wild-type (DIO-WT) mice were infertile and experienced increased circulating testosterone levels, whereas DIO-Cyp17IRKO mice exhibited improved fertility and testosterone levels comparable to those found in lean mice. The levels of phosphorylated IRS1 and CYP17 protein were higher in the ovary of DIO-WT compared with DIO-Cyp17IRKO or lean mice. Ex vivo studies using a whole ovary culture model demonstrated that insulin acts independently or additively with human chorionic gonadotropin to enhance androstenedione secretion. These studies reveal the causal pathway linking hyperinsulinism with ovarian hyperandrogenism and the infertility of obesity.
Collapse
Affiliation(s)
- Sheng Wu
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sara Divall
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Nwaopara
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sally Radovick
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Fredric Wondisford
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Andrew Wolfe
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
30
|
Garrel G, Simon V, Denoyelle C, Ishaq M, Rouch C, Dairou J, Magnan C, Migrenne S, Cruciani-Guglielmacci C, Cohen-Tannoudji J. Unsaturated fatty acids disrupt Smad signaling in gonadotrope cells leading to inhibition of FSHβ gene expression. Endocrinology 2014; 155:592-604. [PMID: 24248462 DOI: 10.1210/en.2013-1833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive function is highly dependent on nutritional input. We recently provided evidence that the unsaturated ω6 fatty acid (FA), linoleic acid (linoleic), interferes with transcription and secretion of the gonadotropin LH, highlighting the existence of a lipid sensing in pituitary gonadotropes. Here, we show, using a combination of in vivo and in vitro models, that linoleic differentially regulates Lhb and Fshb expression. Central exposure of rats to linoleic over 7 days was associated with increase of Lhb but not Fshb transcript levels. Consistently, exposure of rat pituitary cells or LβT2 cells to linoleic increased Lhb, whereas it dramatically decreased Fshb transcript levels without affecting its stability. This effect was also induced by ω9 and ω3-polyunsaturated FA but not by saturated palmitic acid. Analysis of the underlying mechanisms in LβT2 cells using small interfering RNA revealed that early growth response protein 1 mediates linoleic stimulation of Lhb expression. Furthermore, we demonstrated that linoleic counteracts activin and bone morphogenetic protein-2 stimulation of Fshb expression. Using Western blotting and Smad-responsive reporter gene assays, linoleic was shown to decrease basal Smad2/3 phosphorylation levels as well as activin- and bone morphogenetic protein-2-dependent activation of Smad, uncovering a new FA-sensitive signaling cascade. Finally, the protein phosphatase magnesium-dependent 1A was shown to mediate linoleic inhibition of basal Smad phosphorylation and Fshb expression, identifying protein phosphatase magnesium-dependent 1A as a new target of FA in gonadotropes. Altogether, this study provides a novel mechanism by which FAs target gene expression and underlines the relevant role of pituitary gonadotropes in mediating the effects of nutritional FA on reproductive function.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Physiology of the Gonadotrope Axis (G.G., V.S., C.D., M.I., J.C.-T.), Nervous and Endocrine Regulation of Energy Homeostasis (C.R., C.M., S.M., C.C.-G.), and Molecular and Cellular Responses to Xenobiotics (J.D.), Université Paris-Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Equipe d'Accueil Conventionnée par le Centre National de la Recherche Scientifique 4413, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dupont J, Reverchon M, Bertoldo MJ, Froment P. Nutritional signals and reproduction. Mol Cell Endocrinol 2014; 382:527-537. [PMID: 24084162 DOI: 10.1016/j.mce.2013.09.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/17/2023]
Abstract
There is extensive evidence that nutrition influences reproductive function in various mammalian species (agricultural animals, rodents and human). However, the mechanisms underlying the relationship between nutrition, energy metabolism and reproductive function are poorly understood. This review considers nutrient sensors as a molecular link between food molecules and consequences for female and male fertility. It focuses on the roles and the molecular mechanisms of some of the relevant hormones, such as insulin and adipokines, and of energy substrates (glucose, fatty acids and amino acids), in the gonadotropic axis (central nervous system and gonads). A greater understanding of the interactions between nutrition and fertility is required for both better management of the physiological processes and the development of new molecules to prevent or cure metabolic diseases and their consequences for fertility.
Collapse
Affiliation(s)
- Joëlle Dupont
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France.
| | - Maxime Reverchon
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | - Michael J Bertoldo
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | - Pascal Froment
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| |
Collapse
|
32
|
Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J Neurosci 2013; 33:17874-83. [PMID: 24198376 DOI: 10.1523/jneurosci.2278-13.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.
Collapse
|