1
|
Zakariah M, Agishi G, Musa EZ, Dasa JJ, Majama YB, Gazali YA, Mahdy MAA. Rate of spermatogenic cell apoptosis in the testis of domestic chicken (Gallus gallus domesticus) at different age groups. Poult Sci 2025; 104:104953. [PMID: 40031382 PMCID: PMC11919428 DOI: 10.1016/j.psj.2025.104953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
In both normal and pathological conditions, excess spermatogenic cells in the testicular tissue are known to be removed by the mechanism of apoptosis. There are a few studies on spermatogenic cell apoptosis in avian species. Therefore, the purpose of this study was to evaluate the rate of spermatogenic cell apoptosis in three different age groups of the local domestic chicken (Gallus gallus domesticus). Samples were collected from the testes of domestic chicken at three different reproductive stages; pre-pubertal, pubertal, and adult. The samples were subjected to transmission electron microscopy (TEM) and flow cytometry evaluations. TEM results revealed the morphological characteristics of apoptotic cells which included irregular nuclear and plasma membranes in the early stages of apoptosis, nuclear membrane rupture, nuclear material condensation, and fragments of apoptotic bodies in the later stages of apoptosis. The flow cytometry results revealed a significant difference between the mean percentage of apoptotic spermatogenic cells for the three age groups (P < 0.05). Post hoc analysis revealed a significant difference in the adult age group relative to the pre-pubertal age group. However, there was no significant difference between apoptotic spermatogenic cells of the pre-pubertal and the pubertal, and between the pubertal and the adult age groups. In conclusion, the present study revealed a gradual increase in the rate of apoptotic spermatogenic cells in the testes of domestic chicken during the pre-pubertal, pubertal, and adult age groups.
Collapse
Affiliation(s)
- Musa Zakariah
- Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, P. M. B. 28, Zuru, Kebbi, Nigeria; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, P. M. B. 1069 University of Maiduguri, Maiduguri, Nigeria.
| | - Geado Agishi
- Department of Veterinary Pathology, College of Veterinary Medicine, Federal University of Agriculture, P. M. B. 28, Zuru, Kebbi, Nigeria
| | - Esther Z Musa
- Department of Biological Science, College of Science, Federal University of Agriculture, P.M. B. 28, Zuru, Kebbi, Nigeria
| | - Josephine J Dasa
- Department of Biological Science, College of Science, Federal University of Agriculture, P.M. B. 28, Zuru, Kebbi, Nigeria
| | - Yagana B Majama
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, P. M. B. 1069 University of Maiduguri, Maiduguri, Nigeria
| | - Yagana A Gazali
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, P. M. B. 1069 University of Maiduguri, Maiduguri, Nigeria
| | - Mohammed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt; Department of Anatomy and Histology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| |
Collapse
|
2
|
Rehder P, Packeiser EM, Körber H, Goericke-Pesch S. Chronic asymptomatic orchitis in dogs alters Sertoli cell number and maturation status. Front Vet Sci 2025; 12:1519105. [PMID: 39974168 PMCID: PMC11836828 DOI: 10.3389/fvets.2025.1519105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Infertility due to non-obstructive azoospermia is a common diagnosis in infertile male dogs. Chronic asymptomatic orchitis (CAO) has been postulated as a significant cause of non-obstructive azoospermia in acquired male canine infertility. Despite severe microenvironmental changes, some resilient spermatogonial stem cells persist in CAO-affected testes. As Sertoli cells play an essential role in spermatogenesis and the testicular micromilieu, they represent a new target for CAO potential treatment and consequently deserve further investigation. To investigate Sertoli cell number and maturational status, different markers [Vimentin, anti-Müllerian hormone (AMH), and cytokeratin-18 (CK18)] were evaluated in healthy and CAO-affected testes at mRNA and protein levels. Sertoli cell number was reduced in CAO-affected dogs. Sertoli cells also partly returned to an immature status, as indicated by the expression of AMH and CK18 at mRNA and protein levels. The degree of spermatogenesis disruption matched with the degree of Sertoli cell alterations. The investigation of CAO in this study is limited by the number of samples and the lack of testicular volume measurements, but this does not diminish its importance in new findings. In conclusion, this study identifies alterations in Sertoli cell number and maturation status as a cause or consequence of CAO. The results indicate the need to restore Sertoli cell function as a potential therapeutic target for a successful restart of spermatogenesis.
Collapse
Affiliation(s)
| | | | | | - Sandra Goericke-Pesch
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
3
|
Gomes-Silva AP, Cunha de Medeiros PD, Silva LN, Da Silva Araújo Santiago M, Perobelli JE. Exposure to manganese during sertoli cell formation and proliferation disturbs early testicular development in rats. Reprod Toxicol 2023; 120:108447. [PMID: 37499885 DOI: 10.1016/j.reprotox.2023.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Manganese (Mn) is a metal and important micronutrient. However, exposure to supraphysiological levels of Mn, which occur through fungicides, atmospheric emissions, drainages, and spills, has been related to health risks, including morphometric changes in the male reproductive organs and impairment on gametogenesis and sperm quality, impacting the fertile ability of adult animals. Despite the relevance of the fetal/perinatal period for toxicological studies on Mn, previous data only deal with the physical and neurological development of the offspring, without mentioning their reproductive development. The present study investigated whether exposure to Mn during fetal/perinatal phase, specifically during the period of formation and proliferation of Sertoli cells, impairs the reproductive development of male offspring in early postnatal life. Therefore, pregnant Wistar rats were randomly distributed into 3 experimental groups: Ctl (received saline solution), Mn-9 (received 9 mg/kg of MnCl2), and Mn-90 (received 90 mg/kg of MnCl2). The female rats received the experimental treatment by gavage from gestational day 13 to lactational day 15, i.e., postnatal day (PND) 15 of the pups. Oxidative damage to the genetic material of germ and Sertoli cells, together with a decrease in connexin 43 immunolabeling were observed in the testis of male pups evaluated at PND 15. In addition, an increase in the seminiferous tubules presenting slight epithelium vacuolization and cells with eosinophilic cytoplasm were observed, without apparent epididymal changes. In conclusion, it was demonstrated that Mn perturbed the initial testicular development by altering Sertoli cell integrity through oxidative insult, which may compromise the spermatogenesis in the long-term.
Collapse
Affiliation(s)
- Ana Priscila Gomes-Silva
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Paloma da Cunha de Medeiros
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Laís Nogueira Silva
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Marcella Da Silva Araújo Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Juliana Elaine Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil.
| |
Collapse
|
4
|
Morawietz J, Körber H, Packeiser EM, Beineke A, Goericke-Pesch S. Insights into Canine Infertility: Apoptosis in Chronic Asymptomatic Orchitis. Int J Mol Sci 2023; 24:ijms24076083. [PMID: 37047053 PMCID: PMC10094104 DOI: 10.3390/ijms24076083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic asymptomatic orchitis (CAO) is a common cause of acquired non-obstructive azoospermia in dogs. To understand the impact and mode of action of apoptosis, we investigated TUNEL, Bax, Bcl-2, Fas/Fas ligand, and caspase 3/8/9 in testicular biopsies of CAO-affected dogs and compared the results to undisturbed spermatogenesis in healthy males (CG). TUNEL+ cells were significantly increased in CAO, correlating with the disturbance of spermatogenesis. Bcl-2, Bax (p < 0.01 each), caspase 9 (p < 0.05), Fas, caspase 8 (p < 0.01 each), and caspase 3 (p < 0.05) were significantly increased at the mRNA level, whereas FasL expression was downregulated. Cleaved caspase 3 staining was sporadic in CAO but not in CG. Sertoli cells, some peritubular (CAO/CG) and interstitial immune cells (CAO) stained Bcl-2+, with significantly more immunopositive cells in both compartments in CAO compared to CG. Bcl-2 and CD20 co-expressing B lymphocytes were encountered interstitially and in CAO occasionally also found intratubally, underlining their contribution to the maintenance of CAO. Our results support the crucial role of the intrinsic and extrinsic apoptotic pathways in the pathophysiology of canine CAO. Autoprotective Bcl-2 expression in Sertoli cells and B lymphocytes seems to be functional, however, thereby also maintaining and promoting the disease by immune cell activation.
Collapse
Affiliation(s)
- Judith Morawietz
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hanna Körber
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sandra Goericke-Pesch
- Reproductive Unit-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
5
|
Mfoundou JDL, Guo Y, Yan Z, Wang X. Morpho-Histology and Morphometry of Chicken Testes and Seminiferous Tubules among Yellow-Feathered Broilers of Different Ages. Vet Sci 2022; 9:vetsci9090485. [PMID: 36136701 PMCID: PMC9504805 DOI: 10.3390/vetsci9090485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Testes are important male reproductive organs that in chickens have been greatly investigated, from pre-hatch to after sexual maturity. The present study investigated the changes in components that occur during growth, and evaluated morphometry of the seminiferous tubules (ST), as well as gonadosomatic index (GSI) in Gallus domesticus at different age stages. The left and right testes were harvested from 70 chickens, then fixed in alcoholic acetate formalin (AAF) fixative solution, and hematoxylin- and eosin-stained tissues were used for microscopic observations. The results revealed that the left testis (LT) and the right testis (RT) exhibited fuzzy ST features, with apoptotic resorption of many tubules observed in both testes of 1-wk-old chicks only. ST formation was completed at 1 month, with an increase of all morphometric parameters in both testes until sexual maturity (3-mo-old): the age at which we recorded the greatest GSI. This study provides details on ST apoptotic resorption, which is a process not yet reported in existing publications, as well as ST morphometry and GSI, from a juvenile stage of growth towards sexual maturity. This can serve as reference material and also as a data update to better understand the morpho-histological changes that occur in chicken testes during growth. Abstract Unlike in many mammals, poultry testes are found in the abdominal cavity where they develop and perform spermatogenesis at high body temperature. Scarce reports among current publications detail the growth of testes and ST morphometry among juvenile chicks. Therefore, this study aims to investigate changes in components occurring in Gallus domesticus testes, by assessing the GSI and morphologically and histologically evaluating the testes and ST morphometry from 1-wk- to 4-mo-old. Right and left testes were collected from 70 healthy chickens divided into seven age-related groups (n = 10) and then immersed into the alcoholic acetate formalin (AAF) fixative solution. Hematoxylin- and eosin-stained tissues were used for microscopic observations. The findings revealed that both testes exhibited smooth features from 1-wk-old to 1-mo-old, and thereafter showed a consistent increase in vascularization until 4-mo-old. Histologically, both testes exhibited unclear ST, with ST apoptotic resorption observed in the 1-wk-old chicks. Until 1-mo-old, ST formed and few spermatogonia differentiated into primary spermatocytes, with all spermatogenic cells observed at 3-mo-old, i.e., sexual maturity. These findings suggest that both testes develop in analogy, and their sizes including increases in length and diameter are related to the spermatogenic activity in the ST. Subsequently, ST resorption by apoptosis is assumed to participate in the physiological mechanism regulating germ cells (GC). Finally, the GSI tended to increase with growth.
Collapse
Affiliation(s)
| | - Yajun Guo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinrong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-182-9310-5688
| |
Collapse
|
6
|
Karabulut S, Gürsoy Gürgen D, Kutlu P, Keskin İ. The Role of TNF-α and Its Target HSP-70 in Triggering Apoptosis in Normozoospermic and Non-Normozoospermic Samples. Biopreserv Biobank 2022; 20:485-492. [PMID: 35652686 DOI: 10.1089/bio.2021.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Semen analysis is performed as one of the screening tests for infertility, including motility, morphology, and concentration observation. We aimed to investigate the expression rates of tumor necrosis factor-α (TNF-α) and heat shock protein (HSP)-70 as two opposite affectors of apoptosis in men with normal semen parameters and abnormal parameters to find the possible effect of this pathway on sperm parameters. We also aimed to investigate the apoptotic markers (DNA fragmentation and Caspase-3 expression) to observe the correlation of this pathway with apoptosis. Materials and Methods: A total of 32 men who applied for infertility evaluation were included in the study. Semen analysis was performed according to WHO criteria. Liquefaction time, appearance, volume, pH, viscosity, sperm concentration, total motility rate, sperm motility, and percentage of spermatozoa with normal morphology were determined. TNF-α, HSP-70, and Caspase-3 immunolocalization were scored histologically. A sperm chromatin dispersion test was used to observe DNA fragmentation. Results: There was no significant difference in TNF-α protein expression rate (mild level). The HSP-70 expression rate was lower, especially in the head region of normo. Caspase-3 was higher totally in non-normo. DNA fragmentation levels were similar in both the groups. Conclusion: From TNF-α protein expression at the mild level in both the groups, it may be hypothesized that the apoptotic pathway might not be triggered by the extrinsic pathway. We found a negative correlation between HSP-70 and Caspase-3 expressions, providing further evidence that HSP-70 works as an inhibitor to apoptosis. This, particularly on specific points, made us think the communication might begin in the anterior chamber, then flow through the cell body to the tail. HSP-70 expression was lower in normo than in non-normo, indicating the possible role of HSP-70 as an answer to any type of stressor in non-normozoospermic patients. Correspondingly, it may be concluded that HSP has an antiapoptotic effect, causing inhibition in the elimination of abnormal sperm cells impairing sperm parameters.
Collapse
Affiliation(s)
- Seda Karabulut
- Department of Histology and Embryology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Gürsoy Gürgen
- Department of Histology and Embryology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Pelin Kutlu
- Fertility Center, Çamlıca Medicana Hospital, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, Istanbul Medipol University, School of Medicine, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
7
|
Phytomedicinal therapeutics for male infertility: critical insights and scientific updates. J Nat Med 2022; 76:546-573. [PMID: 35377028 DOI: 10.1007/s11418-022-01619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Infertility is a significant cause of anxiety, depression, and social stigma among couples and families. In such cases, male reproductive factors contribute widely to the extent of 20-70%. Male infertility is a multifactorial disease with several complications contributing to its diagnosis. Although its management encompasses both modern and traditional medicine arenas, the first line of treatment, adopted by most males, focuses on the reasonably successful medicinal plant-based conventional therapies. Phyto-therapeutics, which relies on active ingredients from traditionally known herbs, influences sexual behavior and male fertility factors. The potency of these phyto-actives depends on their preparation methods and forms of consumption, including decoctions, extracts, semi-purified compounds, etc., as inferred from in vitro and in vivo (laboratory animal models and human) studies. The mechanisms of action therein involve the testosterone pathway for stimulation of spermatogenesis, reduction of oxidative stress, inhibition of inflammation, activation of signaling pathways in the testes [extracellular-regulated kinase (ERK)/protein kinase B(PKB)/transformation of growth factor-beta 1(TGF-β1)/nuclear factor kappa-light-chain-enhancer of activated B cells NF-kB signaling pathways] and mediation of sexual behavior. This review critically focuses on the medicinal plants and their potent actives, along with the biochemical and molecular mechanisms that modulate vital pathways associated with the successful management of male infertility. Such intrinsic knowledge will significantly further studies on medicinal plants that improve male reproductive health.
Collapse
|
8
|
Apoptosis of germ cells in the normal testis of the Japanese quail (Coturnix coturnix japonica). Tissue Cell 2020; 67:101450. [PMID: 33091765 DOI: 10.1016/j.tice.2020.101450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
It has been established that excess germ cells in normal and in pathological conditions are removed from testicular tissue by the mechanism of apoptosis. Studies on germ cell apoptosis in avian species are grossly lacking, and there are only a few reports on induced germ cell degenerations in the testis tissue of birds. This study was designed to investigate the process of apoptosis of germ cells in the Japanese quail (Coturnix coturnix japonica). Germ cell degenerations were investigated in birds of all age groups, namely pre-pubertal, pubertal, adult, and aged. Apoptosis of germ cells in the quails, as shown by hematoxylin & eosin (H&E), TdT dUTP Nick End Labeling (TUNEL) assay and electron microscopy, was similar to that observed in previous studies of germ cells and somatic cells of mammalian species. The observed morphological features of these apoptotic cells ranged from irregular plasma and nuclear membranes in the early stage of apoptosis to rupture of the nuclear membrane, condensation of nuclear material, as well as fragments of apoptotic bodies, in later stages of apoptosis. In the TUNEL-positive cell counts, there was a significant difference between the mean cell counts for the four age groups (P < 0.05). Post hoc analysis revealed a highly significant difference in the aged group relative to the pubertal and adult age groups, while the cell counts of the pre-pubertal group were significantly higher than those of the pubertal group. However, there was no significant difference between cell counts of the pre-pubertal and the adult, and between the pre-pubertal and the aged groups.
Collapse
|
9
|
Lozeie M, Bagheri M, Rad IA, Hossein-Zadeh N, Nasir-Zadeh M. Zinc attenuates ecstasy-induced apoptosis through downregulation of caspase-3 in cultured TM3 cells: An experimental study. Int J Reprod Biomed 2020; 18:777-784. [PMID: 33062923 PMCID: PMC7521166 DOI: 10.18502/ijrm.v13i9.7672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/29/2019] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
Background 3, 4-Methylenedioxymethamphetamine (MDMA) is commonly known as the most famous amphetamine derivative. Objective To evaluate the influence of zinc on MDMA-induced apoptosis and caspase- 3 gene expression in Leydig cell line (TM3). Materials and Methods Leydig cells were studied in differenet treatment groups regarding MDMA (0, 0.5, 1, 3, 5 mM) and zinc (0, 4, 8, 16, 32 μM). By the way, the effective concentration was determined to be 5 mM for MDMA and 8 μM for zinc. Then, TM3 cells were cultured in free medium as control (group I), medium containing MDMA (5 mM) (group II), zinc (8 µM) (group III), and zinc (8 µM) prior to MDMA (5 mM) (group IV) as well as in an untreated group (control). Cell viability was assessed at different times after cell culture by MTT assay. The mRNA expression level of caspase-3 was analyzed using real-time quantitative polymerase chain reaction. Results The cellular viability was significantly reduced in TM3 cells after 24 hr and 48 hr exposure time regarding different concentrations of MDMA as well as high concentration of zinc (16 and 32 μM). Cell viability was increased in the group that received zinc (8 µM) before addition of MDMA (5 mM) compared to the control and MDMA groups. The mean ± SE of fold was 22.40 ± 7.5, 0.06 ± 0.02, and 0.009 ± 0.003 in MDMA, zinc, and zinc + MDMA groups, respectively. The mean of caspase-3 mRNA level was significantly increased in the MDMA-treated group (5 mM), while the relative expression of caspase-3 gene was significantly decreased in the zinc (8 µM) + MDMA (5 mM) group compared with the MDMA (5 mM) group (p = 0.001). Conclusion Dietary intake of zinc has a protective effect against MDMA consumption in mouse.
Collapse
Affiliation(s)
| | - Morteza Bagheri
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Isa Abdi Rad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mahdyieh Nasir-Zadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Cheng L, Yi X, Shi Y, Yu S, Zhang L, Wang J, Su P. Abnormal lipid metabolism induced apoptosis of spermatogenic cells by increasing testicular HSP60 protein expression. Andrologia 2020; 52:e13781. [PMID: 32892424 DOI: 10.1111/and.13781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Long-term consumption of high-fat and high-calorie foods not only causes obesity, but also may cause a decline in sperm quality in men. Rats with abnormal lipid metabolism (high-fat rats) were established by high-fat diet for 24 weeks. HE staining was used to observe the morphological changes of testis in rats, TUNEL and flow cytometer was used to detect the cell apoptosis in rat testis and in vitro. Immunohistochemistry and Western blotting were used to detect the expression of protein. After 24 weeks of high-fat food feeding, the body weight, serum lipids and number of apoptotic spermatogenic cells in the high-fat group rat were significantly higher than those in the control group. In vivo, the expression of HSP60 protein in testis of high-fat rats was positive related to apoptosis of spermatogenic cells, cleaved caspase 3/caspase 3 protein expression and Bax/Bcl2 protein expression in testis of high-fat rats. Proportion of apoptotic spermatogenic cells was increased by up-regulation of HSP60 protein expression in vitro. Long-term consumption of high-fat diets can cause high expression of HSP60 and spermatogenic cells apoptosis in rats, while HSP60 over-expression promotes spermatogenic cell apoptosis and MAPK signal pathway in vitro.
Collapse
Affiliation(s)
- Lixian Cheng
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Xue Yi
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Ying Shi
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Shuwei Yu
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Liyuan Zhang
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Jie Wang
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| | - Ping Su
- Key laboratory of functional and clinical translational medicine of Fujian University, Xiamen, China.,Xiamen Medical College, Xiamen, China.,Xiamen key laboratory of respiratory diseases, Xiamen, China
| |
Collapse
|
11
|
Matta APLF, Leite JPV, Gomes MLM, Morais DB, Carvalho FAR, Otoni WC, Matta SLP. Deleterious effects of Pfaffia glomerata (Spreng.) Pedersen hydroalcoholic extract on the seminiferous epithelium of adult Balb/c mice. Int J Exp Pathol 2020; 101:183-191. [PMID: 32869402 DOI: 10.1111/iep.12363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 10/23/2022] Open
Abstract
Several plant species such as Pfaffia glomerata are widely used in traditional Brazilian medicine as stimulants and aphrodisiacs. In this regard, the aim of our study was to explore the effects of the long-term intake of the hydro-alcoholic root extract of P glomerata on the germ and somatic cells within the seminiferous tubules in adult Balb/c mice. The experimental groups were placed as: controls (water and DMSO), and treated with 300 and 400 mg/kg of the root extract. The number of germ and somatic cells, the proportion of pathological seminiferous tubules, and the germ cell apoptotic levels were evaluated. The volume and proportion of the seminiferous epithelium was decreased after the extract intake due to the increased germ cell apoptotic levels. Vacuolization of Sertoli cell cytoplasm was observed widely in pathological tubules, along with fully disorganized epithelia, showing multinucleated cells, which lead to decreased daily sperm production. Taken together, our results indicate that long-term intake of the P glomerata caused deleterious effects on spermatogenesis by inducing apoptosis and altering the seminiferous tubule's epithelial dynamics.
Collapse
Affiliation(s)
- Ana Paula L F Matta
- Instituto Federal de Educação, Ciência e Tecnologia Sudeste de Minas Gerais, Barbacena, Brasil
| | - João Paulo V Leite
- Departamento de Bioquímica e de Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Marcos L M Gomes
- Departamento de Biologia Estrutural, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Danielle B Morais
- Departamento de Morfologia, Universidade Federal do Rio Grande do Norte, Natal, Brasil
| | - Fabíola A R Carvalho
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Wagner C Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Sérgio L P Matta
- Departmento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brasil
| |
Collapse
|
12
|
The protective role of l-carnitine on spermatogenesis after cisplatin treatment during prepubertal period in rats: A pathophysiological study. Life Sci 2020; 258:118242. [PMID: 32784056 DOI: 10.1016/j.lfs.2020.118242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022]
Abstract
AIMS As the spermatogenesis process is targeted by cisplatin (Cis) that changes testicular morphology, alters sperm quality, and hence causes male infertility. This study investigated the possible therapeutic effects of l-carnitine (LC) on Cis impaired spermatogenesis's establishment during the prepubertal phase. MATERIALS AND METHODS Ninety-six prepubertal Sprague Dawley male rats were divided into four groups. CONTROL GROUP rats were injected with 0.9% saline solution intraperitoneally (i.p.). LC group: animals were injected for eight weeks, with 250 mg/kg/wk. LC (i.p.). Cis group: animals were injected with a single dose of 5 mg/kg Cis (i.p.). LC + Cis group: animals were pre-injected with LC 250 mg/kg 2 h before Cis injection. The rats were sacrificed at 37, 60, and 90 days old, and their testes were taken for biochemical, molecular, and histopathological studies. The motility, viability, morphology, and DNA fragmentation of sperm in adult rats were also measured. KEY FINDINGS Group treated with LC and Cis showed an increase in antioxidant and hormonal activity compared to the Cis treated group in the pre and post-pubertal period. Moreover, there was an increase in sperm survival, motility, and DNA integrity. Furthermore, LC showed an increase in the anti-apoptotic and chromatin remodeling genes and a decrease in the pro-inflammatory genes. SIGNIFICANCE LC could enhance the spermatogenesis process after exposure to Cis during the prepubertal phase by restoring the balance between reactive oxygen species and antioxidant activity, improving hormonal activity, sperm quality and DNA integrity, promoting protamination and blood-testis barrier integrity, and maintaining the testicular architecture.
Collapse
|
13
|
van Son M, Tremoen NH, Gaustad AH, Våge DI, Zeremichael TT, Myromslien FD, Grindflek E. Transcriptome profiling of porcine testis tissue reveals genes related to sperm hyperactive motility. BMC Vet Res 2020; 16:161. [PMID: 32456687 PMCID: PMC7249385 DOI: 10.1186/s12917-020-02373-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ann Helen Gaustad
- Norsvin SA, 2317 Hamar, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | |
Collapse
|
14
|
Allan ERO, Dores CB, Nelson ER, Habibi HR. Acute exposure to physiological doses of triiodothyronine does not induce gonadal caspase 3 activity in goldfish in vitro. Gen Comp Endocrinol 2020; 289:113382. [PMID: 31917150 DOI: 10.1016/j.ygcen.2019.113382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Seasonally spawning fish rely on a dynamic and complex hormonal interplay to regulate cycles of gonadal development and the regression. Thyroid hormones have been shown to be a key player during gonadal development, and can regulate the activity of a number of essential reproductive hormones. Apoptosis is a vital cellular process that contributes to the hormonal control of gonadal development and regression, but the roles of thyroid hormones on gonadal apoptosis in goldfish have not been explored. The present study examines the role of acute T3 exposure on caspase 3-dependent apoptosis in dispersed goldfish gonadal tissue in vitro. We examined the levels of caspase 3 activity in early, mid, and late recrudescent gonadal tissue after exposure to physiological doses of T3 for up to 24 h. Acute treatment with T3 did not alter basal caspase 3 activity in goldfish gonads in vitro in these reproductive stages. This initial study suggests that transient increases in T3 levels are unlikely to directly contribute to basal caspase 3-dependent apoptosis in the gonadal tissue of goldfish, although we cannot rule out an interaction of T3 with other hormones involved in the control of apoptosis in the testis and ovary.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, West Indies, Grenada.
| | - Camila B Dores
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, West Indies, Grenada
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Carl R. Woese Institute for Genomic Biology - Anticancer Discovery from Pets to People Theme, and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, IL, USA
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
ROCHA LF, RIBEIRO MDO, SANTANA ALA, JESUS RDLD, SOUZA RS, BAGALDO AR, ARAÚJO FLD, BARBOSA LP. Spermatogenesis in sheep supplemented with detoxified castor bean (Ricinus communis L.) as a replacement for soybean meal. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2020. [DOI: 10.1590/s1519-99402121262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective was to evaluate the effect of replacing soybean meal with the detoxified castor bean cake on testicular morphometry and spermatogenesis of sheep. Were used 24 uncastrated, 9-month old sheep weighing 29±0.8 kg they were randomly distributed among three treatments: T1 = 0%, T2 = 50%, and T3 = 100% substitution of soybean meal with detoxified castor bean cake. The animals were fed with Aruana grass pastage (Panicum maximum ‘Aruana’) and a ration for 90 days. After slaughtering, the testicles were collected and histological slides were prepared with tissue fragments. The data were evaluated for normality using the Shapiro-Wilk test, and analysis of variance was carried out at 5% level of significance. Substitution of soybean meal with detoxified castor bean cake had no effect on any of the assessed variables at the tested levels (P >0.05). The mean yield of spermatogenesis was 72.91 rounded spermatids per spermatogonium; the mean of total number of germ cells held by a Sertoli cell was 12.09; the mean of the testicular spermatic reserve was 31.82×109 and that per testicular gram was 238.28×106; the mean of daily spermatic production was 3.03×109 and that per testicular gram was 22.69×106; and the total number of Sertoli cells was 4.15×109 and that per testicular gram was 34.51×106. The results show that it is possible to replace 100% of the soybean meal with detoxified castor bean cake in sheep diet without any effects on spermatogenesis; however, it is important to perform seminal evaluations in future studies.
Collapse
|
16
|
Meta-Analysis Reveals the Association Between Male Occupational Exposure to Solvents and Impairment of Semen Parameters. J Occup Environ Med 2019; 60:e533-e542. [PMID: 30095585 DOI: 10.1097/jom.0000000000001422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Solvent exposure is among the most common occupational exposures to chemical toxicants; data about the impact of such exposure on semen parameters are contradictory. We conducted the first meta-analysis to evaluate the risk of alteration in semen parameters related to occupational exposure to solvents. METHODS From the PubMed database, we selected studies analyzing the semen of subjects occupationally exposed to solvents, compared with unexposed controls. The meta-analysis was performed on the various semen parameters analyzed in both populations. RESULTS Seven studies were included in the study. The meta-analysis revealed a significant decrease in ejaculate volume [standardized mean difference (SMD) = -0.35 (-0.63 to -0.07)] and sperm concentration [SMD = -0.36 (-0.64 to -0.08)] in workers exposed to solvents compared with unexposed controls. CONCLUSION Our results highlight the importance of preventing reprotoxic risks to male fertility in the workplace.
Collapse
|
17
|
Escobar ML, Echeverría OM, Valenzuela YM, Ortiz R, Torres-Ramírez N, Vázquez-Nin GH. Histochemical Study of the Emergence of Apoptosis and Altered SYCP3 Protein Distribution During the First Spermatogenic Wave in Wistar Rats. Anat Rec (Hoboken) 2019; 302:2082-2092. [PMID: 31168949 DOI: 10.1002/ar.24187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Apoptosis is a type of cell death responsible for maintaining tissue homeostasis that can occur in male gonads. The morphological and biochemical characteristics of apoptosis include cellular contraction, caspase activation, and DNA fragmentation. Dynamic processes of cell renewal and differentiation occur inside the seminiferous tubules, which are regulated by mitosis and meiosis, respectively. During meiosis, recombination is caused by assembly of the synaptonemal complex, which involves the participation of constitutive proteins, such as synaptonemal complex protein-3 (SYCP3). The present study evaluated germinal cell death in immature male rats and the distribution of the SYCP3 protein. Our results indicate that as germinal cells progress to the second meiotic stage, significant numbers of them are eliminated by apoptosis. We determined that the SYCP3 protein is not always incorporated into the structure of the synaptonemal complex but rather forms a nuclear cumulus near the inner nuclear membrane, causing many of these cells to undergo apoptosis. We propose that both the excess of the SYCP3 protein and its accumulation during the first meiotic division could contribute to the cell death of primary spermatocytes during the first spermatogenic wave in prepubertal Wistar rats. Anat Rec, 302:2082-2092, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- María L Escobar
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Olga M Echeverría
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Yunuen M Valenzuela
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Rosario Ortiz
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Nayeli Torres-Ramírez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Gerardo H Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
18
|
Diethylstilbestrol induces morphological changes in the spermatogonia, Sertoli cells and Leydig cells of adult rat. Res Vet Sci 2019; 124:433-438. [PMID: 31082573 DOI: 10.1016/j.rvsc.2019.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/28/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
It is now established that diethylstilbestrol (DES) has damaging effects on the male reproductive system. However, to date there have been no studies morphological analysis of adult rat testes upon treatment with DES. Here, we examined whether DES has any significant morphological effect on steroidogenesis and spermatogenesis. DES was injected subcutaneously at 3 μg/day and 30 μg/day in adult male Sprague-Dawley (SD) rats for two different treatment lengths (1 or 3 weeks), after which rats were necropsied. TUNEL labeling, cell counting, and morphological analysis were used to evaluate the effects of DES. A high dose of DES and longer exposure severely affected the cellular development of the testis. Specifically, DES treatment disrupted both steroidogenesis and spermatogenesis by decreasing the number of spermatogonia, Sertoli cells, and Leydig cells in a dose- and time-dependent manner. Thus, DES may account for decreases in the number of spermatogenic cells, Sertoli cells and Leydig cells, which in turn may lead to reduced fertility in males.
Collapse
|
19
|
HENRIKSÉN K, HAKOVIRTA H, PARVINEN M. In-situ
quantification of stage-specific apoptosis in the rat seminiferous epithelium: effects of short-term experimental cryptorchidism. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ijan.1995.18.5.256] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Yang Q, Sui X, Cao J, Liu C, Zheng S, Bao M, Huang Y, Wu K. Effects of Exposure to Bisphenol A during Pregnancy on the Pup Testis Function. Int J Endocrinol 2019; 2019:6785289. [PMID: 31263496 PMCID: PMC6556354 DOI: 10.1155/2019/6785289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023] Open
Abstract
Testosterone plays an important prenatal role in male testis development. Bisphenol A (BPA) exposure during pregnancy affects testosterone levels and germ cell apoptosis of male pups, but little information is available for the mechanism. The aim of the present study was to investigate the mechanism by which BPA alters testosterone levels and germ cell apoptosis. Pregnant female C57BL/6J mice, throughout gestation, had access to drinking water containing BPA at 5 and 50 μg/mL. Male pups were euthanized on postnatal days (PNDs) 1, 14, and 35. Relative to control, BPA exposure at 5 and 50 μg/ml decreased testosterone level, as measured by chemiluminescent immunoassay, on PND14. Real-time PCR indicated mRNA levels for steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1), and 3-β-hydroxysteroid dehydrogenase/△-5-4 isomerase (3β-HSD) were significantly lower in the BPA pups compared to control. Additionally, BPA increased the percentage of TUNEL-positive seminiferous tubules, decreased the mRNA level of Bcl-2, and increased Bax expression, indicative of increased apoptosis. These results suggest that BPA exposure in utero decreases the testosterone concentration by decreasing steroidogenic enzymes (StAR, CYP11A1, and 3β-HSD). Furthermore, BPA exposure increases the apoptosis of germ cells, which is associated with proapoptotic changes in the levels of Bcl-2 and Bax.
Collapse
Affiliation(s)
- Qingtao Yang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Urology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xuxia Sui
- Department of Pathogenic Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Junjun Cao
- Department of Pathogenic Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Mian Bao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuanni Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
21
|
Catalano-Iniesta L, Sánchez-Robledo V, Iglesias-Osma MC, García-Barrado MJ, Carretero-Hernández M, Blanco EJ, Vicente-García T, Burks DJ, Carretero J. Sequential testicular atrophy involves changes in cellular proliferation and apoptosis associated with variations in aromatase P450 expression levels in Irs-2-deficient mice. J Anat 2018; 234:227-243. [PMID: 30474117 DOI: 10.1111/joa.12917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 01/26/2023] Open
Abstract
Insulin receptor substrate 2 (Irs-2) is an intracellular protein susceptible to phosphorylation after activation of the insulin receptor. Its suppression affects testis development and its absence induces peripheral resistance to insulin. The aim of this study was to identify changes induced by the deletion of Irs-2 in the testicular structure and by the altered expression of cytochrome P450 aromatase, a protein necessary for the development and maturation of germ cells. Adult knockout (KO) mice (Irs-2-/- , 6 and 12 weeks old) and age-matched wild-type (WT) mice were used in this study. Immunohistochemistry and Western blot analyses were performed to study proliferation (PCNA), apoptosis (active caspase-3) and P450 aromatase expression in testicular histological sections. Deletion of Irs-2 decreased the number of epithelial cells in the seminiferous tubule and rete testis. Aberrant cells were frequently detected in the epithelia of Irs-2-/- mice, accompanied by variations in spermatogonia, which were shown to exhibit small hyperchromatic nuclei as well as polynuclear and anuclear structures. The amount of cell proliferation was significantly lower in Irs-2-/- mice than in WT mice, whereas apoptotic processes were more common in Irs-2-/- mice. Aromatase P450 reactivity was higher in 6-week-old KO mice than in WT mice of the same age and was even higher at 12 weeks. Our results suggest that Irs-2 is a key element in spermatogenesis because silencing Irs-2 induces the sequential development of testicular atrophy. The effects are observed mainly in germ cells present in the seminiferous tubule, which may be due to changes in cytochrome P450 aromatase expression.
Collapse
Affiliation(s)
- Leonardo Catalano-Iniesta
- Faculty of Medicine, Department of Human Anatomy and Histology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Virginia Sánchez-Robledo
- Faculty of Medicine, Department of Physiology and Pharmacology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Maria Carmen Iglesias-Osma
- Faculty of Medicine, Department of Physiology and Pharmacology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Maria José García-Barrado
- Faculty of Medicine, Department of Physiology and Pharmacology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Marta Carretero-Hernández
- Faculty of Medicine, Department of Human Anatomy and Histology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Enrique J Blanco
- Faculty of Medicine, Department of Human Anatomy and Histology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Teresa Vicente-García
- Faculty of Medicine, Department of Human Anatomy and Histology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Deborah Jane Burks
- Laboratory of Molecular Neuroendocrinology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - José Carretero
- Faculty of Medicine, Department of Human Anatomy and Histology, Laboratory of Neuroendocrinology of the Institute of Neurosciences of Castilla y León (INCyL), Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Kheirollahi A, Abbaszadeh A, Anbari K, Rostami B, Ahangari A, Hasanvand A, Gholami M. Troxerutin protect sperm, seminiferous epithelium and pituitary-gonadal axis from torsion-detorsion injury: An experimental study. Int J Reprod Biomed 2018. [DOI: 10.29252/ijrm.16.5.315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Cytotoxic and biological effects of bulk fill composites on rat cortical neuron cells. Odontology 2018; 106:377-388. [PMID: 29594827 PMCID: PMC6153994 DOI: 10.1007/s10266-018-0354-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/11/2018] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate potential cellular responses and biological effects of new generation dental composites on cortical neuron cells in two different exposure times. The study group included five different bulk-fill flow able composites; Surefil SDR Flow, X-tra Base Flow, Venus Bulk Flow, Filtek Bulk Flow and Tetric-Evo Flow. They were filled in Teflon molds (Height: 4 mm, Width: 6 mm) and irradiated for 20 s. Cortical neuron cells were inoculated into 24-well plates. After 80% of the wells were coated, the 3 µm membrane was inserted and dental filling materials were added. The experiment was continued for 24 and 72 h. Cell viability measured by MTT assay test, total antioxidant and total oxidant status were examined using real assay diagnostic kits. The patterns of cell death (apoptosis) were analyzed using annexin V-FITC staining with flow cytometry. Β-defensins were quantitatively assessed by RT-PCR. IL-6, IL-8 and IL-10 cytokines were measured from the supernatants. All composites significantly affected analyses parameters during the exposure durations. Our data provide evidence that all dental materials tested are cytotoxic in acute phase and these effects are induced cellular death after different exposure periods. Significant cytotoxicity was detected in TE, XB, SS, FBF and VBF groups at 24 and 72 h, respectively.
Collapse
|
24
|
Yaman O, Topcu-Tarladacalisir Y. L-carnitine counteracts prepubertal exposure to cisplatin induced impaired sperm in adult rats by preventing germ cell apoptosis. Biotech Histochem 2018; 93:157-167. [DOI: 10.1080/10520295.2017.1401661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- O Yaman
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Y Topcu-Tarladacalisir
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
25
|
Zhao L, Zhu Z, Yao C, Huang Y, Zhi E, Chen H, Tian R, Li P, Yuan Q, Xue Y, Wan Z, Yang C, Gong Y, He Z, Li Z. VEGFC/VEGFR3 Signaling Regulates Mouse Spermatogonial Cell Proliferation via the Activation of AKT/MAPK and Cyclin D1 Pathway and Mediates the Apoptosis by affecting Caspase 3/9 and Bcl-2. Cell Cycle 2018; 17:225-239. [PMID: 29169284 DOI: 10.1080/15384101.2017.1407891] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that the transcript levels of Vegfc and its receptor Vegfr3 were high in spermatogonia and extremely low in spermatocytes and spermatids. However, it remains unknown about the functions and the mechanisms of VEGFC/VEGFR3 signaling in regulating the fate determinations of spermatogonia. To this end, here we explored the role and signaling pathways of VEGFC/VEGFR3 by using a cell line derived from immortalized mouse spermatogonia retaining markers of mitotic germ cells, namely GC-1 cells. VEGFR3 was expressed in mouse primary spermatogonia and GC-1 cells. VEGFC stimulated the proliferation and DNA synthesis of GC-1 cells and enhanced the phosphorylation of PI3K-AKT and MAPK, whereas LY294002 (an inhibitor for AKT) and CI-1040 (an inhibitor for MAPK) blocked the effect of VEGFC on GC-1 cell proliferation. Furthermore, VEGFC increased the transcripts of c-fos and Egr1 and protein levels of cyclin D1, PCNA and Bcl-2. Conversely, the blocking of VEGFC/VEGFR3 signaling by VEGFR3 knockdown reduced the phosphorylation of AKT/MAPK and decreased the levels of cyclin D1 and PCNA. Additionally, VEGFR3 knockdown not only resulted in more apoptosis of GC-1 cells but also led to a decrease of Bcl-2 and promoted the cleavage of Caspase-3/9 and PARP. Collectively, these data suggested that VEGFC/VEGFR3 signaling promotes the proliferation of GC-1 cells via the AKT /MAPK and cyclin D1 pathway and it inhibits the cell apoptosis through Caspase-3/9, PARP and Bcl-2. Thus, this study sheds a novel insight to the molecular mechanisms underlying the fate decisions of mammalian spermatogonia.
Collapse
Affiliation(s)
- Liangyu Zhao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zijue Zhu
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chencheng Yao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuhua Huang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Erlei Zhi
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Huixing Chen
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Ruhui Tian
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Peng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Qingqing Yuan
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yunjing Xue
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zhong Wan
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chao Yang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuehua Gong
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zuping He
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Zheng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| |
Collapse
|
26
|
Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of Follicle-Stimulating Hormone in Spermatogenesis. Front Endocrinol (Lausanne) 2018; 9:763. [PMID: 30619093 PMCID: PMC6302021 DOI: 10.3389/fendo.2018.00763] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is a concerted sequence of events during maturation of spermatogonia into spermatozoa. The process involves differential gene-expression and cell-cell interplay regulated by the key endocrine stimuli, i.e., follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-stimulated testosterone. FSH affects independently and in concert with testosterone, the proliferation, maturation and function of the supporting Sertoli cells that produce regulatory signals and nutrients for the maintenance of developing germ cells. Rodents are able to complete spermatogenesis without FSH stimulus, but its deficiency significantly decreases sperm quantity. Men carrying loss-of-function mutation in the gene encoding the ligand (FSHB) or its receptor (FSHR) present, respectively, with azoospermia or suppressed spermatogenesis. Recently, the importance of high intratesticular testosterone concentration for spermatogenesis has been questioned. It was established that it can be completed at minimal intratesticular concentration of the hormone. Furthermore, we recently demonstrated that very robust constitutive FSHR action can rescue spermatogenesis and fertility of mice even when the testosterone stimulus is completely blocked. The clinical relevance of these findings concerns a new strategy of high-dose FSH in treatment of spermatogenic failure.
Collapse
Affiliation(s)
- Olayiwola O. Oduwole
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Hellevi Peltoketo
- Cancer and Translational Medicine Research Unit, Laboratory of Cancer Genetics and Tumor Biology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilpo T. Huhtaniemi
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Physiology, University of Turku, Turku, Finland
- *Correspondence: Ilpo T. Huhtaniemi
| |
Collapse
|
27
|
Muratori M, Baldi E. Effects of FSH on Sperm DNA Fragmentation: Review of Clinical Studies and Possible Mechanisms of Action. Front Endocrinol (Lausanne) 2018; 9:734. [PMID: 30619081 PMCID: PMC6297197 DOI: 10.3389/fendo.2018.00734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Sperm DNA fragmentation (sDF) is an important reproductive problem, associated to an increased time-to-pregnancy and a reduced success rate in natural and in vitro fertilization. sDF may virtually originate at any time of sperm's life: in the testis, in the epididymis, during transit in the ejaculatory ducts and even following ejaculation. Studies demonstrate that an apoptotic pathway, mainly occurring in the testis, and oxidative stress, likely acting in the male genital tract, are responsible for provoking the DNA strand breaks present in ejaculated spermatozoa. Although several pharmacological anti-oxidants tools have been used to reduce sDF, the efficacy of this type of therapies is questioned. Clearly, anti-apoptotic agents cannot be used because of the ubiquitous role of the apoptotic process in the body. A notable exception is represented by Follicle-stimulating hormone (FSH), which regulates testis development and function and has been demonstrated to exert anti-apoptotic actions on germ cells. Here, we review the existing clinical studies evaluating the effect of FSH administration on sDF and discuss the possible mechanisms through which the hormone may reduce sDF levels in infertile subjects. Although there is evidence for a beneficial effect of the hormone on sDF, further studies with clear and univocal patient inclusion criteria, including sDF cut-off levels and considering the use of a pharmacogenetic approach for patients selection are warranted to draw firm conclusions.
Collapse
Affiliation(s)
- Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- *Correspondence: Monica Muratori
| | - Elisabetta Baldi
- Department Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Elisabetta Baldi
| |
Collapse
|
28
|
Soffientini U, Rebourcet D, Abel MH, Lee S, Hamilton G, Fowler PA, Smith LB, O'Shaughnessy PJ. Identification of Sertoli cell-specific transcripts in the mouse testis and the role of FSH and androgen in the control of Sertoli cell activity. BMC Genomics 2017; 18:972. [PMID: 29246116 PMCID: PMC5731206 DOI: 10.1186/s12864-017-4357-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Sertoli cells act to induce testis differentiation and subsequent development in fetal and post-natal life which makes them key to an understanding of testis biology. As a major step towards characterisation of factors involved in Sertoli cell function we have identified Sertoli cell-specific transcripts in the mouse testis and have used the data to identify Sertoli cell-specific transcripts altered in mice lacking follicle-stimulating hormone receptors (FSHRKO) and/or androgen receptors (AR) in the Sertoli cells (SCARKO). Results Adult iDTR mice were injected with busulfan to ablate the germ cells and 50 days later they were treated with diphtheria toxin (DTX) to ablate the Sertoli cells. RNAseq carried out on testes from control, busulfan-treated and busulfan + DTX-treated mice identified 701 Sertoli-specific transcripts and 4302 germ cell-specific transcripts. This data was mapped against results from microarrays using testicular mRNA from 20 day-old FSHRKO, SCARKO and FSHRKO.SCARKO mice. Results show that of the 534 Sertoli cell-specific transcripts present on the gene chips, 85% were altered in the FSHRKO mice and 94% in the SCARKO mice (mostly reduced in both cases). In the FSHRKO.SCARKO mice additive or synergistic effects were seen for most transcripts. Age-dependent studies on a selected number of Sertoli cell-specific transcripts, showed that the marked effects in the FSHRKO at 20 days had largely disappeared by adulthood although synergistic effects of FSHR and AR knockout were seen. Conclusions These studies have identified the Sertoli cell-specific transcriptome in the mouse testis and have shown that most genes in the transcriptome are FSH- and androgen-dependent at puberty although the importance of FSH diminishes towards adulthood. Electronic supplementary material The online version of this article (10.1186/s12864-017-4357-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- U Soffientini
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - D Rebourcet
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.,MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - M H Abel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - S Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clarke Building, Oxford, OX1 3QX, UK
| | - G Hamilton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK
| | - P A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - L B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Newcastle, 2308, Australia
| | - P J O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, Glasgow, UK.
| |
Collapse
|
29
|
Mobaraki F, Seghatoleslam M, Fazel A, Ebrahimzadeh-Bideskan A. Effects of MDMA (ecstasy) on apoptosis and heat shock protein (HSP70) expression in adult rat testis. Toxicol Mech Methods 2017; 28:219-229. [DOI: 10.1080/15376516.2017.1388461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fahimeh Mobaraki
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Fazel
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Hallak J. A call for more responsible use of Assisted Reproductive Technologies (ARTs) in male infertility: the hidden consequences of abuse, lack of andrological investigation and inaction. Transl Androl Urol 2017; 6:997-1004. [PMID: 29184804 PMCID: PMC5673814 DOI: 10.21037/tau.2017.08.03] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Laboratory, São Paulo, Brazil.,Department of Pathology, Reproductive Toxicology Unit, University of São Paulo Medical School, São Paulo, Brazil.,Division of Urology, Department of Surgery, Hospital das Clinicas, University of Sao Paulo Medical School, São Paulo, Brazil.,Institute for Advanced Studies, University of Sao Paulo (IEA-USP), São Paulo, Brazil
| |
Collapse
|
31
|
Lech T, Styrna J, Kotarska K. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis. Reprod Fertil Dev 2017; 30:469-476. [PMID: 28763629 DOI: 10.1071/rd17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/15/2017] [Indexed: 11/23/2022] Open
Abstract
Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.
Collapse
Affiliation(s)
- Tomasz Lech
- Department of Microbiology, Faculty of Commodity Science, Cracow University of Economics, Rakowicka 27, PL 31-510, Krakow, Poland
| | - Józefa Styrna
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL 30-387, Krakow, Poland
| | - Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL 30-387, Krakow, Poland
| |
Collapse
|
32
|
Chandra AK, Chakraborty A. Influence of iodine in excess on seminiferous tubular structure and epididymal sperm character in male rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:1823-1835. [PMID: 28205391 DOI: 10.1002/tox.22405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Excess iodine induced public health problems are now emerging in many iodine sufficient regions for indiscriminate intake of iodine through various iodized products. It has been reported that excess iodine can disrupt overall male reproductive physiology by generating oxidative stress in the testis. However, information on the possible effect of iodine in excess on spermatozoa found less. In the present investigation flow cytometric techniques and scanning electron microscopy (SEM) have been used to study the spermatozoal functional as well as structural status under the influence of excess iodine; generation of ROS in the spermatozoa as evident by DCFDA, altered acrosomal integrity as observed by fluorescence lectin staining method and depolarized mitochondrial membrane potential (ΔΨm ) noticed by JC-1 staining. Ultrastructure of seminiferous tubule after excess iodine exposure indicated severe deterioration of seminiferous tubular surface architecture. Significant increase in spermatozoal DNA fragmentation and apoptotic sperms were found by acridine orange and Annexin V, respectively, however the plasma membrane integrity/viability was decreased as evident by propidium iodide staining in various incremental doses and durations under iodine excess. The study reveals that excess iodine could cause apoptosis of spermatozoal cells by inducing ROS that ultimately affects male fertility potential.
Collapse
Affiliation(s)
- Amar K Chandra
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700 009, India
| | - Arijit Chakraborty
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal, 700 009, India
| |
Collapse
|
33
|
Bianchi E, Boekelheide K, Sigman M, Hall SJ, Hwang K. Ghrelin modulates testicular damage in a cryptorchid mouse model. PLoS One 2017; 12:e0177995. [PMID: 28542403 PMCID: PMC5436858 DOI: 10.1371/journal.pone.0177995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/05/2017] [Indexed: 12/30/2022] Open
Abstract
Cryptorchidism or undescended testis (UDT) is a common congenital abnormality associated with increased risk for developing male infertility and testicular cancer. This study elucidated the effects of endogenous ghrelin or growth hormone secretagogue receptor (GHSR) deletion on mouse reproductive performance and evaluated the ability of ghrelin to prevent testicular damage in a surgical cryptorchid mouse model. Reciprocal matings with heterozygous/homozygous ghrelin and GHSR knockout mice were performed. Litter size and germ cell apoptosis were recorded and testicular histological evaluations were performed. Wild type and GHSR knockout adult mice were subjected to creation of unilateral surgical cryptorchidism that is a model of heat-induced germ cell death. All mice were randomly separated into two groups: treatment with ghrelin or with saline. To assess testicular damage, the following endpoints were evaluated: testis weight, seminiferous tubule diameter, percentage of seminiferous tubules with spermatids and with multinucleated giant cells. Our findings indicated that endogenous ghrelin deletion altered male fertility. Moreover, ghrelin treatment ameliorated the testicular weight changes caused by surgically induced cryptorchidism. Testicular histopathology revealed a significant preservation of spermatogenesis and seminiferous tubule diameter in the ghrelin-treated cryptorchid testes of GHSR KO mice, suggesting that this protective effect of ghrelin was mediated by an unknown mechanism. In conclusion, ghrelin therapy could be useful to suppress testicular damage induced by hyperthermia, and future investigations will focus on the underlying mechanisms by which ghrelin mitigates testicular damage.
Collapse
Affiliation(s)
- Enrica Bianchi
- Division of Urology, Rhode Island Hospital, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
| | - Mark Sigman
- Division of Urology, Rhode Island Hospital, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
| | - Kathleen Hwang
- Division of Urology, Rhode Island Hospital, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sönmez MF, Ozdemir Ş, Guzel M, Kaymak E. The ameliorative effects of vinpocetine on apoptosis and HSP-70 expression in testicular torsion in rats. Biotech Histochem 2017; 92:92-99. [DOI: 10.1080/10520295.2016.1259499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- MF Sönmez
- Departments of Histology and Embryology
| | - Ş Ozdemir
- Departments of Histology and Embryology
| | - M Guzel
- Pediatric Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - E Kaymak
- Departments of Histology and Embryology
| |
Collapse
|
35
|
Abstract
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - Michelle W M Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
36
|
Mu Y, Yan WJ, Yin TL, Yang J. Curcumin ameliorates high‑fat diet‑induced spermatogenesis dysfunction. Mol Med Rep 2016; 14:3588-94. [PMID: 27600729 PMCID: PMC5042768 DOI: 10.3892/mmr.2016.5712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
Curcumin, a type of natural active ingredient, is derived from rhizoma of Curcuma, which possesses antioxidant, antitumorigenic and anti-inflammatory activities. The present study aimed to investigate whether treatment with curcumin reduced high-fat diet (HFD)-induced spermatogenesis dysfunction. Sprague-Dawley rats fed a HFD were treated with or without curcumin for 8 weeks. The testis/body weight, histological analysis and serum hormone levels were used to evaluate the effects of curcumin treatment on spermatogenesis dysfunction induced by the HFD. In addition, the expression levels of apoptosis associated proteins, Fas, B-cell lymphoma (Bcl)-xl, Bcl-associated X protein (Bax) and cleaved-caspase 3, were determined in the testis. The results of the present study suggested that curcumin treatment attenuated decreased testis/body weight and abnormal hormone levels. Morphological changes induced by a HFD were characterized as atrophied seminiferous tubules, decreased spermatogenetic cells and interstitial cells were improved by curcumin treatment. In addition, curcumin treatment reduced apoptosis in the testis, and decreased expression of Fas, Bax and cleaved-caspase 3, as well as increased expression of Bcl-xl. In conclusion, the present study revealed that curcumin treatment reduced HFD-induced spermatogenesis dysfunction in male rats.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wen-Jie Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
37
|
Breikaa RM, Mosli HA, Abdel-Naim AB. Influence of Onabotulinumtoxin A on testes of the growing rat. J Biochem Mol Toxicol 2016; 30:608-613. [PMID: 27492265 DOI: 10.1002/jbt.21828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 11/09/2022]
Abstract
Onabotulinumtoxin A (onabotA) is gaining wide medical use in children. The present study was planned to investigate the influence of its injection on the maturing testicular structures in rats. Immature rats were injected in the bilateral cremaster muscles by onabotA with three doses of (10, 20, and 40 U/kg) three times in a 2-week interval. The effect of these injections on fertility indices was examined. Levels of antisperm antibodies and several apoptosis parameters were also investigated. DNA content in form of ploidy and histopathological alterations were assessed. OnabotA-injected groups showed decreased sperm count and semen quality, while sperm vitality, morphology, and testosterone levels were not significantly affected. Furthermore, DNA flow cytometric analysis confirmed delayed sperm maturation. Apoptosis markers were significantly increased by the injections. In conclusion, onabotA injection in growing rats adversely affected sperm count and maturation. OnabotA testicular effects are mediated, at least partly, by apoptosis.
Collapse
Affiliation(s)
- Randa M Breikaa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hisham A Mosli
- Department of Urology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Dere E, Wilson SK, Anderson LM, Boekelheide K. From the Cover: Sperm Molecular Biomarkers Are Sensitive Indicators of Testicular Injury following Subchronic Model Toxicant Exposure. Toxicol Sci 2016; 153:327-40. [PMID: 27466211 DOI: 10.1093/toxsci/kfw137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional testis histopathology endpoints remain the gold standard for evaluating testicular insult and injury in a non-clinical setting, but are invasive and unfeasible for monitoring these effects clinically in humans. Assessing testicular injury in humans relies on semen and serum hormone analyses, both of which are insensitive and poor indicators of effect. Therefore, we hypothesized that sperm messenger RNA (mRNA) transcripts and DNA methylation marks can be used as translatable and sensitive indicators or testicular injury. Dose-response studies using adult male Fischer 344 rats subchronically exposed to model Sertoli cell toxicants (0.14, 0.21, and 0.33% 2,5-hexanedione, and 30, 50, and 70 mg/kg/day carbendazim), and a model germ cell toxicant (1.4, 3.4, and 5.1 mg/kg/day cyclophosphamide) for 3 months were evaluated for testicular injury by traditional histopathological endpoints, changes in sperm mRNA transcript levels using custom PCR arrays, and alterations in sperm DNA methylation via reduced representation bisulfite sequencing. Testis histopathological evaluation and PCR array analysis of the sperm transcriptome identified dose-dependent changes elicited by toxicant exposure (P < 0.05). Global sperm DNA methylation analysis of subchronic 0.33% 2,5-hexandione and 5.1 mg/kg/day cyclophosphamide exposure using a Monte Carlo approach did not identify differentially methylated regions (methylation difference > 10% and q < 0.05) with robust signatures. Overall, these results suggest that sperm mRNA transcripts are sensitive indicators of low dose toxicant-induced testicular injury in the rat, while sperm DNA methylation changes are not. Additionally, the Monte Carlo analysis is a powerful approach that can be used to assess the robustness of signals resulting from -omic studies.
Collapse
Affiliation(s)
- Edward Dere
- *Division of Urology, Rhode Island Hospital, Providence, Rhode Island 02903 Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Shelby K Wilson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Linnea M Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
39
|
Alam MS, Kurohmaru M. Butylbenzyl phthalate induces spermatogenic cell apoptosis in prepubertal rats. Tissue Cell 2016; 48:35-42. [DOI: 10.1016/j.tice.2015.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023]
|
40
|
Méndez Palacios N, Escobar MEA, Mendoza MM, Crispín RH, Andrade OG, Melández JH, Martínez AA. Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion. Reprod Fertil Dev 2016; 28:806-14. [DOI: 10.1071/rd13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 10/07/2014] [Indexed: 11/23/2022] Open
Abstract
Male germ-cell apoptosis occurs naturally and can be increased by exposure to drugs and toxic chemicals. Individuals may have different rates of apoptosis and are likely to also exhibit differential sensitivity to outside influences. Previously, we reported that p-chloroamphetamine (pCA), a substance that inhibits serotonin synthesis, induced germ-cell apoptosis in prepubertal male rats. Here, we identified prepubertal rats with naturally high or low rates of germ-cell apoptosis and evaluated gene expression in both groups. Bax and Shbg mRNA levels were higher in rats with high rates of germ-cell apoptosis. Rats were then treated with pCA and the neuro-hormonal response and gene expression were evaluated. Treatment with pCA induced a reduction in serotonin concentrations but levels of sex hormones and gonadotrophins were not changed. Rats with initially high rates of germ-cell apoptosis had even higher rates of germ-cell apoptosis after treatment with pCA. In rats with high rates of germ-cell apoptosis Bax mRNA expression remained high after treatment with pCA. On the basis of category, an inverse relationship between mRNA expression of Bax and Bcl2, Bax and AR and Bax and Hsd3b2 was found. Here we provide evidence that innate levels of germ-cell apoptosis could be explained by the level of mRNA expression of genes involved with apoptosis and spermatogenesis.
Collapse
|
41
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in pediatric pathology, chapter 4. Pubertal and adult testis. Pediatr Dev Pathol 2015; 18:187-202. [PMID: 25993606 DOI: 10.2350/12-11-1271-pb.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Ricardo Paniagua
- Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- Department of Pathology, Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
42
|
Hassan AI, Alam SS. Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Res Ther 2014; 5:131. [PMID: 25422144 PMCID: PMC4528845 DOI: 10.1186/scrt521] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The present study aimed to elucidate the therapeutic effects of mesenchymal stem cells (MSCs) derived from the bone marrow of rats (BM) against toxic effects of lead (Pb) on the male gonads of experimental rats. METHODS The experimental animals were exposed to lead in the form of lead nitrate (LN) one quarter of the LD50. The efficacy of MSCs to reduce gonado-totoxicity induced by lead nitrate at 21, 30 and 60 days, was evaluated experimentally in male rats. RESULTS The results showed that testosterone levels and semen quality ameliorated following treatment with MSCs. Also, superoxide dismutase, glutathione peroxidase and catalase levels were increased 21, 30 and 60 days post treatment of MSCs. Moreover, a decrease in genomic DNA alteration and percentage of fragmented DNA was recorded after MSCs treatment. Lead nitrate caused degeneration, necrosis, interstitial edema, and reduction in spermatogenic activity in some seminiferous tubules. The LN-induced changes in histopathologic findings of testis were partially reversed by treatment with MSCs. Histological examination of testis showed deformities in morphology of testis in test animals with gross damage within the seminiferous tubules in Lead nitrate group. The LN-induced changes in histopathologic findings of testis were partially reversed by treatment of MSCs. CONCLUSIONS It was concluded that lead is a gonadotoxic with a tendency of suppressing semen characteristics and testosterone levels of animals, the presence of MSCs was found to alleviate the toxic effects of lead. We conclude that MSCs derived from the bone marrow of rats can be an effective therapy of LN induced gonado toxicity, thus can contribute to the treatment of infertility.
Collapse
Affiliation(s)
- Amal I Hassan
- />Radioisotopes Department, Atomic Energy Authority, Giza, 12311 Egypt
| | - Sally S Alam
- />Cell Biology Department, National Research Center, El Tahrir Street, 12622 Dokki Giza, Egypt
| |
Collapse
|
43
|
Zhang DY, Xu XL, Shen XY, Ruan Q, Hu WL. Analysis of apoptosis induced by perfluorooctane sulfonates (PFOS) in mouse Leydig cells in vitro. Toxicol Mech Methods 2014; 25:21-5. [PMID: 25264132 DOI: 10.3109/15376516.2014.971140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To explore the possible mechanism of perfluorooctane sulfonates (PFOS's) reproductive toxicity, mouse Leydig cells cultured in vitro were exposed to a serial concentration of PFOS for four more days of culture. Apoptosis during the process was checked. After 24 h, apoptosis occurred to all of the groups ≥ 50 μg/mL PFOS. After 72 h, 37.5 μg/mL dose also showed apoptosis, and the most apoptosis signals, averagely 18 per well, were observed in 62.5 μg/mL dose group. An increase in ROS (p < 0.05) and a decrease of mitochondrial membrane potential (p < 0.01) was confirmed in those groups with ≥ 12.5 μg/mL dose. ROS levels peaked in 50 μg/mL and 62.5 μg/mL groups, nearly two-folds higher than control. PFOS was also observed to down-regulate the protein expression of Bcl-2 and to up-regulate that of Bax. The apoptosis induced by PFOS in mouse Leydig cells was shown to be related to mitochondrially mediated pathways and to involve oxidative stress.
Collapse
Affiliation(s)
- De-Yong Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University , Hangzhou , China
| | | | | | | | | |
Collapse
|
44
|
Seasonal variations cause morphological changes and altered spermatogenesis in the testes of viscacha (Lagostomus maximus). Anim Reprod Sci 2014; 149:316-24. [DOI: 10.1016/j.anireprosci.2014.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 01/09/2023]
|
45
|
Grzegorzewska AK, Hrabia A, Paczoska-Eliasiewicz HE. Localization of apoptotic and proliferating cells and mRNA expression of caspases and Bcl-2 in gonads of chicken embryos. Acta Histochem 2014; 116:795-802. [PMID: 24565327 DOI: 10.1016/j.acthis.2014.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 12/23/2022]
Abstract
The aim of the present study was to analyze participation of apoptosis and proliferation in gonadal development in the chicken embryo by: (1) localization of apoptotic (TUNEL) and proliferating (PCNA immunoassay) cells in male and female gonads and (2) examination of mRNA expression (RT-PCR) of caspase-3, caspase-6 and Bcl-2 in the ovary and testis during the second half of embryogenesis and in newly hatched chickens. Apoptotic cells were found in gonads of both sexes. At E18 the percentage of apoptotic cells (the apoptotic index, AI) in the ovarian medulla and the testis was lower (p<0.05) than in the ovarian cortex. In the ovarian medulla, the AI at E18 was lower (p<0.05) than on E12. In the testis, the AI was significantly lower (p<0.05) at E18 than at E15 and 1D. The percentage of proliferating cells (the proliferation index: PI) within the ovary significantly increased from E15 to 1D in the cortex, while proliferating cells in the medulla were detected only at E15. In the testis, the PI gradually increased from E12 to 1D. The mRNA expression of caspase-3 and -6 as well as Bcl-2 was detected in male and female gonads at days 12 (E12), 15 (E15) and 18 (E18) of embryogenesis and the day after hatching (1D). The expression of all analyzed genes on E12 was significantly higher (p<0.05) in female than in male gonads. This difference was also observed at E15 and E18, but only for the caspase-6. The results obtained showed tissue- and sex-dependent differences in the number of apoptotic and proliferating cells as well as mRNA expression of caspase-3, -6 and Bcl-2 genes in the gonads of chicken embryos. Significant increase in the number of proliferating cells in the ovarian cortex and lack of these cells in the ovarian medulla (stages E12, E18, 1D) simultaneous with decrease in the intensity of apoptosis only in the medulla indicates that proliferation is the dominant process involved in the cortical development, which constitutes the majority of the functional structure of the fully developed ovary. No pronounced changes in the expression of apoptosis-related genes found during embryogenesis suggest that they cannot be considered as important indicators of gonad development. The molecular mechanisms of the regulation of balance between apoptosis and proliferation in developing avian gonads need to be further investigated.
Collapse
Affiliation(s)
- Agnieszka K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Helena E Paczoska-Eliasiewicz
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
46
|
O'Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 2014; 29:55-65. [DOI: 10.1016/j.semcdb.2014.02.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023]
|
47
|
Khorrami A, Ghanbarzadeh S, Ziaee M, Arami S, Vajdi R, Garjani A. Dietary cholesterol and oxidised cholesterol: effects on sperm characteristics, antioxidant status and hormonal profile in rats. Andrologia 2014; 47:310-7. [PMID: 24620776 DOI: 10.1111/and.12262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2014] [Indexed: 11/26/2022] Open
Abstract
Present study was designed to compare the potential effects of high serum levels of LDL and oxidised LDL (OxLDL) on spermatogenesis parameters in male Wistar rats. Animals were allocated into three groups and were fed for 14 weeks with normal, cholesterol-rich and oxidised cholesterol-rich diets. Blood lipid profile, sex hormones level, as well as sex organs weight were evaluated. The sex organs weight in oxidised cholesterol-fed group was significantly reduced (P < 0.05). Spermatozoa count in the group with high serum concentration of OxLDL (64 ± 4.2 × 10(6) ) was markedly lower (P < 0.01) than that of normal rats (87 ± 4.1 × 10(6) ) and rats with high serum level of LDL (90 ± 6.3 × 10(6) ). Similarly, the percentage of viable spermatozoa was significantly (P < 0.001) decreased from 78% to 52% by high level of OxLDL in serum. While, nonoxidised LDL did not have suppressive effects on spermatogenesis and organs weight. Consistent with these effects, the serum concentration of sex hormones including FSH (P < 0.001), LH (P < 0.001) and testosterone (P < 0.01) was significantly decreased only in rats with high level of OxLDL but not in rats with high level of nonoxidised LDL. In conclusion, high OxLDL level showed higher destructive effect on reproductive system compared to the high LDL level.
Collapse
Affiliation(s)
- A Khorrami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Reda A, Hou M, Landreh L, Kjartansdóttir KR, Svechnikov K, Söder O, Stukenborg JB. In vitro Spermatogenesis - Optimal Culture Conditions for Testicular Cell Survival, Germ Cell Differentiation, and Steroidogenesis in Rats. Front Endocrinol (Lausanne) 2014; 5:21. [PMID: 24616715 PMCID: PMC3935156 DOI: 10.3389/fendo.2014.00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/13/2014] [Indexed: 11/16/2022] Open
Abstract
Although three-dimensional testicular cell cultures have been demonstrated to mimic the organization of the testis in vivo and support spermatogenesis, the optimal culture conditions and requirements remain unknown. Therefore, utilizing an established three-dimensional cell culture system that promotes differentiation of pre-meiotic murine male germ cells as far as elongated spermatids, the present study was designed to test the influence of different culture media on germ cell differentiation, Leydig cell functionality, and overall cell survival. Single-cell suspensions prepared from 7-day-old rat testes and containing all the different types of testicular cells were cultured for as long as 31 days, with or without stimulation by gonadotropins. Leydig cell functionality was assessed on the basis of testosterone production and the expression of steroidogenic genes. Gonadotropins promoted overall cell survival regardless of the culture medium employed. Of the various media examined, the most pronounced expression of Star and Tspo, genes related to steroidogenesis, as well as the greatest production of testosterone was attained with Dulbecco's modified eagle medium + glutamine. Although direct promotion of germ cell maturation by the cell culture medium could not be observed, morphological evaluation in combination with immunohistochemical staining revealed unfavorable organization of tubules formed de novo in the three-dimensional culture, allowing differentiation to the stage of pachytene spermatocytes. Further differentiation could not be observed, probably due to migration of germ cells out of the cell colonies and the consequent lack of support from Sertoli cells. In conclusion, the observations reported here show that in three-dimensional cultures, containing all types of rat testicular cells, the nature of the medium per se exerts a direct influence on the functionality of the rat Leydig cells, but not on germ cell differentiation, due to the lack of proper organization of the Sertoli cells.
Collapse
Affiliation(s)
- Ahmed Reda
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Mi Hou
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Luise Landreh
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Kristín Rós Kjartansdóttir
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Konstantin Svechnikov
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Olle Söder
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
- *Correspondence: Jan-Bernd Stukenborg, Pediatric Endocrinology Unit Q2:08, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Stockholm SE-17176, Sweden e-mail:
| |
Collapse
|
49
|
Mok KW, Mruk DD, Cheng CY. Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the "Yin" and "Yang" effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:291-358. [PMID: 23317821 DOI: 10.1016/b978-0-12-407704-1.00006-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ∼10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell-cell interface and/or the Sertoli-spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the "yin" and "yang" antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood-testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB.
Collapse
Affiliation(s)
- Ka Wai Mok
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | | | | |
Collapse
|
50
|
Prithiviraj E, Suresh S, Manivannan M, Prakash S. Impact of sperm retrieval [corrected] on testis and epididymis: an experimental study using Wistar albino rats. Syst Biol Reprod Med 2013; 59:261-9. [PMID: 23758531 DOI: 10.3109/19396368.2013.809173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to analyze pathophysiological changes after testicular sperm aspiration (TESA) and microsurgical epididymal sperm aspiration (MESA) procedures. Twenty four mature male Wistar albino rats with a proven breeding history, weighing approximately 200-250 gm were used for the study. Animals were randomly divided into four groups (n = 6), i.e., control, sham-control, unilateral TESA, and MESA. Using a 22G needle, the aspiration procedures were done in testis or caudal epididymis. At the end of 60 days of survival, blood samples were collected and processed for antisperm antibody detection by enzyme-linked immunosorbent assay (ELISA). After euthanasia, testes and epididymides were collected and processed for paraffin embedding. Sections were stained with hematoxylin and eosin, and TUNEL technique. Serum antisperm antibody titer significantly increased in TESA (P < 0.001) when compared to MESA. Histomorphometric analysis indicated testicular alterations in TESA and MESA, with significant damage in TESA in both testes (P < 0.001). Following the MESA procedure, ipsilateral caudal and carpus epididymis showed significant alterations (P < 0.001) and no such alterations were seen in the ipsilateral caput and intact contralateral epididymis. TUNEL staining revealed an up-regulation of apoptosis in both contra- and ipsilateral testes of TESA. Needle prick had produced drastic and irreversible alterations in testis of TESA. Ensuing processes of immunological and inflammatory reaction had the potential to disrupt spermatogenesis and increase germ cell apoptosis. However, extrapolating conclusions from the experimental model to the clinic needs to be done cautiously.
Collapse
Affiliation(s)
- Elumalai Prithiviraj
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences , University of Madras , Taramani Campus
| | | | | | | |
Collapse
|