1
|
Forst T, De Block C, Del Prato S, Frias J, Lautenbach A, Ludvik B, Marinez M, Mathieu C, Müller TD, Schnell O. Novel pharmacotherapies for weight loss: Understanding the role of incretins to enable weight loss and improved health outcomes. Diabetes Obes Metab 2025; 27 Suppl 2:48-65. [PMID: 39931897 DOI: 10.1111/dom.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 04/17/2025]
Abstract
Obesity and type 2 diabetes mellitus (T2D) are widespread diseases that significantly impact cardiovascular and renal morbidity and mortality. In the recent years, intensive research has been performed to assess the role of adipose tissue and body fat distribution in the development of metabolic and non-metabolic complications in individuals with obesity. In addition to lifestyle modifications, glucagon-like peptide-1 receptor agonists (GLP-1-RA) have become a meaningful treatment expansion for the management of both disorders. In addition to improving metabolic control and reducing body weight, treatment with GLP-1-RAs reduces cardiovascular and renal events in individuals with obesity with and without diabetes. These important benefits of GLP-1-RAs have triggered new interest in other enteroendocrine and enteropancreatic peptides for treating obesity and its metabolic and non-metabolic consequences. The first peptide dual-agonist targeting glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 receptors has been approved for the treatment of T2D and obesity. GIP/GLP-1 dual-agonism appear to provide better metabolic control and greater weight reduction compared with GLP-1-R mono-agonism. Other peptide and non-peptide co-agonists are in clinical development for obesity, T2D, metabolic dysfunction-associated steatotic liver disease (MASLD) and other metabolic disorders. This narrative review aims to summarize the available data on approved and emerging enteroendocrine and enteropancreatic based treatment approaches for obesity and metabolic disorders. In addition to available clinical efficacy measures, side effects, limitations and open challenges will also be addressed.
Collapse
Affiliation(s)
- Thomas Forst
- CRS Clinical Research Services GmbH, Mannheim, Germany
| | - Christophe De Block
- Department of Endocrinology-Diabetology, Antwerp University Hospital and University of Antwerp, Belgium
| | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science," Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Juan Frias
- Biomea Fusion, Redwood City, California, USA
| | - Anne Lautenbach
- University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Ludvik
- Landstrasse Clinic and Karl Landsteiner Institute for Obesity and Metabolic Disorders, Vienna, Austria
| | | | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Oliver Schnell
- Forschergruppe Diabetes E.V. at the Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
2
|
Poelman R, Le May MV, Schéle E, Stoltenborg I, Dickson SL. Intranasal Delivery of a Ghrelin Mimetic Engages the Brain Ghrelin Signaling System in Mice. Endocrinology 2025; 166:bqae166. [PMID: 39813130 PMCID: PMC11795113 DOI: 10.1210/endocr/bqae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake and other feeding behaviors, and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic neuropeptide Y neurons that coexpress agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats. Thus, GHS and ghrelin have therapeutic relevance in patients who could benefit from its orexigenic and/or GH-releasing effects. This study examined whether intranasal delivery of ghrelin, GHRP-6, or MK-0677 engages the brain ghrelin signaling system. Effective compounds and doses were selected based on increased food intake after intranasal application in mice. Only GHRP-6 (5 mg/kg) increased food intake without adverse effects, prompting detailed analysis of meal patterns, neuronal activation in the arcuate nucleus (via Fos mapping) and neurochemical identification of c-fos messenger RNA (mRNA)-expressing neurons using RNAscope. We also assessed the effect of intranasal GHRP-6 on serum GH levels. Intranasal GHRP-6 increased food intake by increasing meal frequency and size. Fos expression in the arcuate nucleus was higher in GHRP-6-treated mice than in saline controls. When examining the neurochemical identity of c-fos-mRNA-expressing neurons, we found coexpression with 63.5 ± 1.9% Ghsr mRNA, 79 ± 6.8% Agrp mRNA, and 11.4 ± 2.5% Ghrh mRNA, demonstrating GHRP-6's ability to engage arcuate nucleus neurons involved in food intake and GH release. Additionally, intranasal GHRP-6 elevated GH serum levels. These findings suggest that intranasal GHRP-6, but not ghrelin or MK-0677, can engage the brain ghrelin signaling system.
Collapse
Affiliation(s)
- Renée Poelman
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| |
Collapse
|
3
|
de Sousa ME, Gusmao DO, Dos Santos WO, Moriya HT, de Lima FF, List EO, Kopchick JJ, Donato J. Fasting and prolonged food restriction differentially affect GH secretion independently of GH receptor signaling in AgRP neurons. J Neuroendocrinol 2024; 36:e13254. [PMID: 36964750 DOI: 10.1111/jne.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Growth hormone (GH) receptor (GHR) is abundantly expressed in neurons that co-release the agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). Since ARHAgRP/NPY neurons regulate several hypothalamic-pituitary-endocrine axes, this neuronal population possibly modulates GH secretion via a negative feedback loop, particularly during food restriction, when ARHAgRP/NPY neurons are highly active. The present study aims to determine the importance of GHR signaling in ARHAgRP/NPY neurons on the pattern of GH secretion in fed and food-deprived male mice. Additionally, we compared the effect of two distinct situations of food deprivation: 16 h of fasting or four days of food restriction (40% of usual food intake). Overnight fasting strongly suppressed both basal and pulsatile GH secretion. Animals lacking GHR in ARHAgRP/NPY neurons (AgRP∆GHR mice) did not exhibit differences in GH secretion either in the fed or fasted state, compared to control mice. In contrast, four days of food restriction increased GH pulse frequency, basal GH secretion, and pulse irregularity/complexity (measured by sample entropy), whereas pulsatile GH secretion was not affected in both control and AgRP∆GHR mice. Hypothalamic Ghrh mRNA levels were unaffected by fasting or food restriction, but Sst expression increased in acutely fasted mice, but decreased after prolonged food restriction in both control and AgRP∆GHR mice. Our findings indicate that short-term fasting and prolonged food restriction differentially affect the pattern of GH secretion, independently of GHR signaling in ARHAgRP/NPY neurons.
Collapse
Affiliation(s)
- Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Willian O Dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Felipe F de Lima
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
4
|
Singh O, Ogden SB, Varshney S, Shankar K, Gupta D, Paul S, Osborne-Lawrence S, Richard CP, Metzger NP, Lawrence C, Leon Mercado L, Zigman JM. Ghrelin-responsive mediobasal hypothalamic neurons mediate exercise-associated food intake and exercise endurance. JCI Insight 2023; 8:e172549. [PMID: 37962950 PMCID: PMC10807726 DOI: 10.1172/jci.insight.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Previous studies have implicated the orexigenic hormone ghrelin as a mediator of exercise endurance and the feeding response postexercise. Specifically, plasma ghrelin levels nearly double in mice when they are subjected to an hour-long bout of high-intensity interval exercise (HIIE) using treadmills. Also, growth hormone secretagogue receptor-null (GHSR-null) mice exhibit decreased food intake following HIIE and diminished running distance (time until exhaustion) during a longer, stepwise exercise endurance protocol. To investigate whether ghrelin-responsive mediobasal hypothalamus (MBH) neurons mediate these effects, we stereotaxically delivered the inhibitory designer receptor exclusively activated by designer drugs virus AAV2-hSyn-DIO-hM4(Gi)-mCherry to the MBH of Ghsr-IRES-Cre mice, which express Cre recombinase directed by the Ghsr promoter. We found that chemogenetic inhibition of GHSR-expressing MBH neurons (upon delivery of clozapine-N-oxide) 1) suppressed food intake following HIIE, 2) reduced maximum running distance and raised blood glucose and blood lactate levels during an exercise endurance protocol, 3) reduced food intake following ghrelin administration, and 4) did not affect glucose tolerance. Further, HIIE increased MBH Ghsr expression. These results indicate that activation of ghrelin-responsive MBH neurons is required for the normal feeding response to HIIE and the usual amount of running exhibited during an exercise endurance protocol.
Collapse
Affiliation(s)
- Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Sean B. Ogden
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine
| | - Subhojit Paul
- Center for Hypothalamic Research, Department of Internal Medicine
| | | | | | | | - Connor Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine
| | | | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine
- Division of Endocrinology & Metabolism, Department of Internal Medicine; and
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Vergani E, Bruno C, Gavotti C, Oliva A, Currò D, Mancini A. Increased levels of plasma neudesin in adult growth hormone deficiency and their relationship with plasma liver-expressed antimicrobial peptide-2 levels: a cross-sectional study. J Endocrinol Invest 2022; 46:1187-1195. [PMID: 36495439 DOI: 10.1007/s40618-022-01974-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Adult growth hormone deficiency (aGHD) is characterized by an altered metabolic profile and increased cardiovascular risk. Neudesin is a newly discovered protein mainly secreted from adipose tissue and brain, under evaluation for its possible activity as a negative regulator of energy expenditure. Liver-expressed antimicrobial peptide (LEAP)-2 is a competitive antagonist of ghrelin on its receptor. An observational cross-sectional study was performed to test the hypothesis that plasma neudesin levels may be modified in aGHD. Given the role played in the energy balance, any possible relationships between neudesin, LEAP-2 and metabolic and anthropometric parameters were evaluated. SUBJECTS AND METHODS Thirty-eight patients were included: 18 aGHD patients (7 females and 11 males, aged 59.7 ± 2.6 years, BMI 30.2 ± 2.2 kg/m2); 20 healthy controls (12 females and 8 males, aged 47.1 ± 2.5 years, BMI 24.1 ± 0.9 kg/m2). All patients were evaluated for glucose, insulin, HOMA and QUICKI index, total/LDL/HDL cholesterol, triglycerides, uric acid, and IGF-1. Plasma neudesin, LEAP-2, and ghrelin were measured by ELISA. Fat mass was evaluated by DEXA. RESULTS Neudesin levels were significantly higher in aGHD versus controls. We confirmed the finding of significantly lower ghrelin levels and significantly higher LEAP-2/ghrelin ratio in aGHD patients and found a significant direct correlation between neudesin and LEAP-2 levels. A significant direct correlation between neudesin and fat mass percentage was found in the whole population. CONCLUSION These results suggest the onset of adaptive responses to an altered metabolic picture in aGHD. The changes in two distinct pathways that modulate food intake and the still limited knowledge about neudesin suggest future developments in this field.
Collapse
Affiliation(s)
- E Vergani
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
| | - C Bruno
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
| | - C Gavotti
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
| | - A Oliva
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
| | - D Currò
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica del Sacro Cuore - Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - A Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
6
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
7
|
TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. Int J Mol Sci 2022; 23:ijms23010559. [PMID: 35008985 PMCID: PMC8745172 DOI: 10.3390/ijms23010559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
Collapse
|
8
|
Targeting the Ghrelin Receptor as a Novel Therapeutic Option for Epilepsy. Biomedicines 2021; 10:biomedicines10010053. [PMID: 35052733 PMCID: PMC8773216 DOI: 10.3390/biomedicines10010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a neurological disease affecting more than 50 million individuals worldwide. Notwithstanding the availability of a broad array of antiseizure drugs (ASDs), 30% of patients suffer from pharmacoresistant epilepsy. This highlights the urgent need for novel therapeutic options, preferably with an emphasis on new targets, since “me too” drugs have been shown to be of no avail. One of the appealing novel targets for ASDs is the ghrelin receptor (ghrelin-R). In epilepsy patients, alterations in the plasma levels of its endogenous ligand, ghrelin, have been described, and various ghrelin-R ligands are anticonvulsant in preclinical seizure and epilepsy models. Up until now, the exact mechanism-of-action of ghrelin-R-mediated anticonvulsant effects has remained poorly understood and is further complicated by multiple downstream signaling pathways and the heteromerization properties of the receptor. This review compiles current knowledge, and discusses the potential mechanisms-of-action of the anticonvulsant effects mediated by the ghrelin-R.
Collapse
|
9
|
Shankar K, Metzger NP, Singh O, Mani BK, Osborne-Lawrence S, Varshney S, Gupta D, Ogden SB, Takemi S, Richard CP, Nandy K, Liu C, Zigman JM. LEAP2 deletion in mice enhances ghrelin's actions as an orexigen and growth hormone secretagogue. Mol Metab 2021; 53:101327. [PMID: 34428557 PMCID: PMC8452786 DOI: 10.1016/j.molmet.2021.101327] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023] Open
Abstract
Objective The hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a recently identified antagonist and an inverse agonist of the growth hormone secretagogue receptor (GHSR). GHSR's other well-known endogenous ligand, acyl-ghrelin, increases food intake, body weight, and GH secretion and is lowered in obesity but elevated upon fasting. In contrast, LEAP2 reduces acyl-ghrelin-induced food intake and GH secretion and is found elevated in obesity but lowered upon fasting. Thus, the plasma LEAP2/acyl-ghrelin molar ratio could be a key determinant modulating GHSR signaling in response to changes in body mass and feeding status. In particular, LEAP2 may serve to dampen acyl-ghrelin action in the setting of obesity, which is associated with ghrelin resistance. Here, we sought to determine the metabolic effects of genetic LEAP2 deletion. Methods We generated the first known LEAP2-KO mouse line. Food intake, GH secretion, and cellular activation (c-fos induction) in different brain regions following s.c. acyl-ghrelin administration in LEAP2-KO mice and wild-type littermates were determined. LEAP2-KO mice and wild-type littermates were submitted to a battery of tests (such as measurements of body weight, food intake, and body composition; indirect calorimetry, determination of locomotor activity, and meal patterning while housed in metabolic cages) over the course of 16 weeks of high-fat diet and/or standard chow feeding. Fat accumulation was assessed in hematoxylin & eosin-stained and oil red O-stained liver sections from these mice. Results LEAP2-KO mice were more sensitive to s.c. ghrelin. In particular, acyl-ghrelin acutely stimulated food intake at a dose of 0.5 mg/kg BW in standard chow-fed LEAP2-KO mice while a 2× higher dose was required by wild-type littermates. Also, acyl-ghrelin stimulated food intake at a dose of 1 mg/kg BW in high-fat diet-fed LEAP2-KO mice while not even a 10× higher dose was effective in wild-type littermates. Acyl-ghrelin induced a 90.9% higher plasma GH level and 77.2–119.7% higher numbers of c-fos-immunoreactive cells in the arcuate nucleus and olfactory bulb, respectively, in LEAP2-KO mice than in wild-type littermates. LEAP2 deletion raised body weight (by 15.0%), food intake (by 18.4%), lean mass (by 6.1%), hepatic fat (by 42.1%), and body length (by 1.7%) in females on long-term high-fat diet as compared to wild-type littermates. After only 4 weeks on the high-fat diet, female LEAP2-KO mice exhibited lower O2 consumption (by 13%), heat production (by 9.5%), and locomotor activity (by 49%) than by wild-type littermates during the first part of the dark period. These genotype-dependent differences were not observed in high-fat diet-exposed males or female and male mice exposed for long term to standard chow diet. Conclusions LEAP2 deletion sensitizes lean and obese mice to the acute effects of administered acyl-ghrelin on food intake and GH secretion. LEAP2 deletion increases body weight in females chronically fed a high-fat diet as a result of lowered energy expenditure, reduced locomotor activity, and increased food intake. Furthermore, in female mice, LEAP2 deletion increases body length and exaggerates the hepatic fat accumulation normally associated with chronic high-fat diet feeding. A novel line of LEAP2-knockout mice was generated. LEAP2 deletion sensitizes mice to the GH secretory effects of administered ghrelin. LEAP2 deletion reduces ghrelin resistance in diet-induced obese mice. HFD-fed female LEAP2-KO mice eat more and gain more body weight and hepatic fat. HFD-fed female LEAP2-KO mice exhibit lowered energy expenditure and activity.
Collapse
Affiliation(s)
- Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sean B Ogden
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shota Takemi
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karabi Nandy
- Division of Biostatistics, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chen Liu
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Wasinski F, Barrile F, Pedroso JAB, Quaresma PGF, dos Santos WO, List EO, Kopchick JJ, Perelló M, Donato J. Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice. Endocrinology 2021; 162:6273366. [PMID: 33972988 PMCID: PMC8197284 DOI: 10.1210/endocr/bqab097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (~16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (~61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Franco Barrile
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA, 1900, Argentina
| | - João A B Pedroso
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Paula G F Quaresma
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Willian O dos Santos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Mario Perelló
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA, 1900, Argentina
- Correspondence: Mario Perelló, PhD, Multidisciplinary Institute of Cell Biology, Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900. Argentina.
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
- Correspondence: Jose Donato Jr., PhD, Instituto de Ciencias Biomedicas. Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil;
| |
Collapse
|
11
|
Vergani E, Bruno C, Gavotti C, Aversa LS, Martire M, Mancini A, Currò D. LEAP-2/ghrelin interplay in adult growth hormone deficiency: Cause or consequence? A pilot study. IUBMB Life 2021; 73:978-984. [PMID: 33991145 PMCID: PMC8362053 DOI: 10.1002/iub.2504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Ghrelin and its endogenous antagonist liver-expressed antimicrobial peptide-2 (LEAP-2) are involved in GH secretion and glucose/lipids metabolism. LEAP-2 expression in conditions of metabolic impairment may be upregulated, usually pairing with a concomitant reduction in ghrelin secretion. Adult growth hormone deficiency (aGHD) is characterized by insulin resistance, weight gain, and increased fat mass. Therefore, the primary endpoint of this cross-sectional observational pilot study was to compare circulating LEAP-2 and ghrelin levels in aGHD and healthy controls. Thirty patients were included in the study. Group A included adult GHD: 15 patients, 8 females, and 7 males. Median and interquartile range age of the group was 53 (41-57) years, while BMI was 27.1 (25-35) kg/m2 . Group B was formed by 15 healthy controls (10 females and 5 males). Median and interquartile range age was 47 (36-57) years, while BMI 22.9 (20.8-33.1) kg/m2 . They were evaluated for serum glucose and insulin, HOMA-index, QUICKI-index, total/LDL/HDL cholesterol, triglycerides, IGF-1, ghrelin, and LEAP-2. Ghrelin levels in the aGHD group were significantly lower than in healthy controls. In contrast, LEAP-2 showed a trend toward higher levels, although the differences were not significant. However, the LEAP-2/Ghrelin ratio was significantly higher in aGHD. No significant correlations between ghrelin and LEAP-2 with BMI and HOMA index were found in aGHD population. However, a significant inverse correlation (r2 = 0.15, p = .047) between BMI and ghrelin was evidenced when considering the whole population. Taken together, these results may suggest a body adaptation to a metabolic scenario typical of aGHD. The decrease in ghrelin production could prevent further weight gain and fat mass increase, although losing its secretagogue effect.
Collapse
Affiliation(s)
- Edoardo Vergani
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmine Bruno
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cesare Gavotti
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luigi Simone Aversa
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Martire
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Diego Currò
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
12
|
Gupta D, Patterson AM, Osborne-Lawrence S, Bookout AL, Varshney S, Shankar K, Singh O, Metzger NP, Richard CP, Wyler SC, Elmquist JK, Zigman JM. Disrupting the ghrelin-growth hormone axis limits ghrelin's orexigenic but not glucoregulatory actions. Mol Metab 2021; 53:101258. [PMID: 34023483 PMCID: PMC8203846 DOI: 10.1016/j.molmet.2021.101258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Acyl-ghrelin regulates eating, body weight, blood glucose, and GH secretion upon binding to its receptor GHSR (growth hormone secretagogue receptor; ghrelin receptor). GHSR is distributed in several brain regions and some peripheral cell-types including pituitary somatotrophs. The objective of the current study was to determine the functional significance of acyl-ghrelin's action on GHSR-expressing somatotrophs in mediating GH secretion and several of acyl-ghrelin's metabolic actions. Methods GH-IRES-Cre mice and loxP-flanked (floxed) GHSR mice were newly developed and then crossed to one another to generate mice that lacked GHSR selectively from somatotrophs. Following validation of mice with somatotroph-selective GHSR deletion, metabolic responses of these mice and control littermates were assessed following both acute and chronic acyl-ghrelin administration, a 24-h fast, and a prolonged 60% chronic caloric restriction protocol modeling starvation. Results In mice with somatotroph-selective GHSR deletion, a single peripheral injection of acyl-ghrelin failed to induce GH secretion or increase food intake, unlike wild-type and other littermate control groups. However, the usual acute blood glucose increase in response to the acyl-ghrelin bolus was preserved. Similarly, chronic s.c. acyl-ghrelin administration to mice with somatotroph-selective GHSR deletion failed to increase plasma GH, food intake, or body weight. Physiologically elevating plasma acyl-ghrelin via a 24-h fast also failed to raise plasma GH and resulted in a limited hyperphagic response upon food reintroduction in mice with somatotroph-selective GHSR deletion, although those mice nonetheless did not exhibit an exaggerated reduction in blood glucose. Physiologically elevating plasma acyl-ghrelin via a 15-day caloric restriction protocol which provided only 40% of usual daily calories failed to raise plasma GH in mice with somatotroph-selective GHSR deletion, although those mice did not exhibit life-threatening hypoglycemia. Conclusions These results reveal that direct engagement of GHSR-expressing somatotrophs is required for a peripheral ghrelin bolus to acutely stimulate GH secretion and the actions of chronic acyl-ghrelin delivery and physiological plasma acyl-ghrelin elevations to increase plasma GH. These results also suggest that actions of acyl-ghrelin to increase food intake and body weight are reliant on direct activation of GHSRs expressed on somatotrophs. Furthermore, these results suggest that the glucoregulatory actions of acyl-ghrelin – in particular, its actions to raise blood glucose when acutely administered, prevent small blood glucose drops following a 24-h fast, and avert life-threatening hypoglycemia during an acute-on-chronic caloric restriction protocol – do not depend on GHSR expression by somatotrophs. Mice with pituitary somatotroph-selective GHSR deletion were generated. Somatotroph-expressed GHSRs mediate GH secretion and food intake after acute ghrelin. Body weight effects of chronic ghrelin infusion require somatotroph-expressed GHSRs. Somatotroph-expressed GHSRs enable GH to increase upon chronic caloric restriction. Mice lacking somatotroph GHSRs maintain euglycemia upon chronic caloric restriction.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Patterson
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angie L Bookout
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven C Wyler
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Yamada C. Relationship between Orexigenic Peptide Ghrelin Signal, Gender Difference and Disease. Int J Mol Sci 2021; 22:ijms22073763. [PMID: 33916403 PMCID: PMC8038632 DOI: 10.3390/ijms22073763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a), which is one of the G protein-coupled receptors (GPCRs), is involved in various physiological actions such as energy consumption, growth hormone secretion promoting action, and cardiovascular protective action. The ligand was searched for as an orphan receptor for a while, but the ligand was found to be acylated ghrelin (ghrelin) discovered by Kangawa and Kojima et al. in 1999. Recently, it has also been reported that dysregulation of GHS-R1a mediates reduced feeding in various diseases. On the other hand, since the physiological effects of ghrelin have been studied exclusively in male mice, few studies have been conducted on gender differences in ghrelin reactivity. In this review, we describe (1) the characteristics of GHS-R1a, (2) the role of ghrelin in hypophagia due to stress or anticancer drugs, and (3) the gender differences in the physiological effects of GHS-R1a and the influence of stress on it.
Collapse
Affiliation(s)
- Chihiro Yamada
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki 300-1192, Japan
| |
Collapse
|
14
|
Bake T, Le May MV, Edvardsson CE, Vogel H, Bergström U, Albers MN, Skibicka KP, Farkas I, Liposits Z, Dickson SL. Ghrelin Receptor Stimulation of the Lateral Parabrachial Nucleus in Rats Increases Food Intake but not Food Motivation. Obesity (Silver Spring) 2020; 28:1503-1511. [PMID: 32627950 DOI: 10.1002/oby.22875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The lateral parabrachial nucleus (lPBN) in the brainstem has emerged as a key area involved in feeding control that is targeted by several circulating anorexigenic hormones. Here, the objective was to determine whether the lPBN is also a relevant site for the orexigenic hormone ghrelin, inspired by studies in mice and rats showing that there is an abundance of ghrelin receptors in this area. METHODS This study first explored whether iPBN cells respond to ghrelin involving Fos mapping and electrophysiological studies in rats. Next, rats were injected acutely with ghrelin, a ghrelin receptor antagonist, or vehicle into the lPBN to investigate feeding-linked behaviors. RESULTS Curiously, ghrelin injection (intracerebroventricular or intravenous) increased Fos protein expression in the lPBN yet the predominant electrophysiological response was inhibitory. Intra-lPBN ghrelin injection increased chow or high-fat diet intake, whereas the antagonist decreased chow intake only. In a choice paradigm, intra-lPBN ghrelin increased intake of chow but not lard or sucrose. Intra-lPBN ghrelin did not alter progressive ratio lever pressing for sucrose or conditioned place preference for chocolate. CONCLUSIONS The lPBN is a novel locus from which ghrelin can alter consummatory behaviors (food intake and choice) but not appetitive behaviors (food reward and motivation).
Collapse
Affiliation(s)
- Tina Bake
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Heike Vogel
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Bergström
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marjorie Nicholson Albers
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Imre Farkas
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Liposits
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Cabral A, Fernandez G, Tolosa MJ, Rey Moggia Á, Calfa G, De Francesco PN, Perello M. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor-dependent manner. Mol Metab 2019; 32:69-84. [PMID: 32029231 PMCID: PMC7005150 DOI: 10.1016/j.molmet.2019.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Arcuate nucleus (ARC) neurons producing Agouti-related peptide (AgRP) and neuropeptide Y (NPY; ARCAgRP/NPY neurons) are activated under energy-deficit states. ARCAgRP/NPY neurons innervate the hypothalamic paraventricular nucleus (PVH), and ARC→PVH projections are recognized as key regulators of food intake. Plasma ghrelin levels increase under energy-deficit states and activate ARCAgRP/NPY neurons by acting on the growth hormone secretagogue receptor (GHSR). Here, we hypothesized that activation of ARCAgRP/NPY neurons in fasted mice would promote morphological remodeling of the ARCAgRP/NPY→PVH projections in a GHSR-dependent manner. Methods We performed 1) fluorescent immunohistochemistry, 2) imaging of green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI axonal labeling in brains of ad libitum fed or fasted mice with pharmacological or genetic blockage of the GHSR signaling and then estimated the density and strength of ARCAgRP/NPY→PVH fibers by assessing the mean fluorescence intensity, the absolute area with fluorescent signal, and the intensity of the fluorescent signal in the fluorescent area of the PVH. Results We found that 1) the density and strength of ARCAgRP/NPY fibers increase in the PVH of fasted mice, 2) the morphological remodeling of the ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons, and 3) PVH neurons are not activated in ARC-ablated mice. We also found that fasting-induced remodeling of ARCAgRP/NPY→PVH fibers and PVH activation are impaired in mice with pharmacological or genetic blockage of GHSR signaling. Conclusion This evidence shows that the connectivity between hypothalamic circuits controlling food intake can be remodeled in the adult brain, depending on the energy balance conditions, and that GHSR activity is a key regulator of this phenomenon. The density and strength of ARCAgRP/NPY→PVH fibers increase in fasted mice. Remodeling of ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons. GHSR signaling is required for fasting-induced ARCAgRP/NPY→PVH projection remodeling.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - María J Tolosa
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Ángeles Rey Moggia
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gastón Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Jones ES, Nunn N, Chambers AP, Østergaard S, Wulff BS, Luckman SM. Modified Peptide YY Molecule Attenuates the Activity of NPY/AgRP Neurons and Reduces Food Intake in Male Mice. Endocrinology 2019; 160:2737-2747. [PMID: 31074796 PMCID: PMC6806261 DOI: 10.1210/en.2019-00100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/06/2019] [Indexed: 01/15/2023]
Abstract
To study the effects of an analog of the gut-produced hormone peptide YY (PYY3-36), which has increased selectivity for the Y2 receptor; specifically, to record its effects on food intake and on hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neuron activity. NNC0165-1273, a modified form of the peptide hormone PYY3-36 with potent selectivity at Y2 receptor (>5000-fold over Y1, 1250-fold over Y4, and 650-fold over Y5 receptor), was tested in vivo and in vitro in mouse models. NNC0165-1273 has fivefold lower relative affinity for Y2 compared with PYY3-36, but >250-, 192-, and 400-fold higher selectivity, respectively, for the Y1, Y4, and Y5 receptors. NNC0165-1273 produced a reduction in nighttime feeding at a dose at which PYY3-36 loses efficacy. The normal behavioral satiety sequence observed suggests that NNC0165-1273 is not nauseating and, instead, reduces food intake by producing early satiety. Additionally, NNC0165-1273 blocked ghrelin-induced cFos expression in NPY/AgRP neurons. In vitro electrophysiological recordings showed that, opposite to ghrelin, NNC0165-1273 hyperpolarized NPY/AgRP neurons and reduced action potential frequency. Administration of NNC0165-1273 via subcutaneous osmotic minipump caused a dose-dependent decrease in body weight and fat mass in an obese mouse model. Finally, NNC0165-1273 attenuated the feeding response when NPY/AgRP neurons were activated using ghrelin or more selectively with designer receptors. NNC0165-1273 is nonnauseating and stimulates a satiety response through, at least in part, a direct action on hypothalamic NPY/AgRP neurons. Modification of PYY3-36 to produce compounds with increased affinity to Y2 receptors may be useful as antiobesity therapies in humans.
Collapse
Affiliation(s)
- Edward S Jones
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicolas Nunn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam P Chambers
- GLP-1 & T2D Pharmacology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Søren Østergaard
- Research Chemistry 2, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Birgitte S Wulff
- Obesity Research, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Mustafá ER, Cordisco Gonzalez S, Raingo J. Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels. Mol Neurobiol 2019; 57:722-735. [DOI: 10.1007/s12035-019-01738-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
|
18
|
Löfgren M, Holmberg E, Bäckström T, Egecioglu E, Dickson SL. The additive effect of allopregnanolone on ghrelin's orexigenic effect in rats. Neuropeptides 2019; 76:101937. [PMID: 31253440 DOI: 10.1016/j.npep.2019.101937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022]
Abstract
The progesterone metabolite, allopregnanolone (AlloP), is a GABAA receptor modulating steroid and is known to have orexigenic and pro-obesity effects. The neurobiological mechanisms underpinning these effects are most likely due to enhanced GABAergic signaling in the lateral arcuate nucleus (ARC) and medial paraventricular nucleus (PVN) of the hypothalamus. Inspired by the finding that GABAergic signaling is also important for the orexigenic effects of the circulating hormone, ghrelin, we sought to determine the extent to which AlloP (one of the most potent endogenous GABAA-receptor modulators) operates alongside ghrelin to enhance food intake. Male rats with ad libitum access to standard chow were injected intravenously with AlloP and/or ghrelin, alone or in combination. The intake of the standard chow was greater after AlloP 1 mg/kg together with ghrelin 30 μg/kg than with 30 μg/kg ghrelin alone. Food intake was also increased for the combined treatment of AlloP 0.5 mg/kg + ghrelin 10 μg/kg, AlloP 1 mg/kg + ghrelin 10 μg/kg, and AlloP 0.5 mg/kg + ghrelin 30 μg/kg. There was no significant difference in food intake between the two ghrelin doses or between the two doses of AlloP and the vehicle. In electrophysiological studies, physiologically relevant concentrations of AlloP prolonged the current decay time of spontaneous inhibitory post-synaptic current of dissociated cells of the ARC and PVN. We conclude that AlloP enhances the hyperphagic effect of ghrelin, findings of potential relevance for the hyperphagia associated with the luteal phase of the reproductive cycle.
Collapse
Affiliation(s)
- Magnus Löfgren
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå University Hospital, SE-Building QA, 3rd floor, 901 85 Umeå, Sweden.
| | - Ellinor Holmberg
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå University Hospital, SE-Building QA, 3rd floor, 901 85 Umeå, Sweden
| | - Torbjörn Bäckström
- Department of Clinical Sciences, Obstetrics and Gynaecology, Umeå University Hospital, SE-Building QA, 3rd floor, 901 85 Umeå, Sweden
| | - Emil Egecioglu
- Department of Experimental Medical Science, Appetite Regulation Unit, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Suzanne L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, P.O. Box 434, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
19
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Affiliation(s)
- Zane B Andrews
- Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Zhang X, Yang JK, Chen C. Enhanced Pulsatile Growth Hormone Secretion and Altered Metabolic Hormones by in Vivo Hexarelin Treatment in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2018; 19:ijms19103067. [PMID: 30297647 PMCID: PMC6213236 DOI: 10.3390/ijms19103067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Significant growth hormone (GH) reductions have been reported in diabetic animal models with disturbed metabolic balance coinciding with GH deficiency. Therefore, enhanced GH secretion may have beneficial effects in controlling diabetes. Thus, we aim to investigate the effect of hexarelin, a synthetic GH secretagogue (GHS), on GH secretion in streptozotocin (STZ, 65 mg/kg)-induced diabetic rats. Daily hexarelin (100 μg/kg) treatment was performed for two weeks in four-week-long STZ-diabetic and vehicle control rats. Pulsatile GH secretion in STZ-rats was significantly reduced in total, pulsatile, basal, and mass of GH secretion per burst. In addition, impaired GH secretion was followed by an increase in fasting-level free fatty acids (FFAs) and a decrease in insulin-like growth factor 1 (IGF-1) compared to control rats. After hexarelin treatment, pulsatile GH secretion in STZ-rats was significantly increased in total, pulsatile, and basal, but not in the mass GH secretion per burst, compared to STZ-rats without hexarelin treatment. However, there was no significant elevation in GH secretion in the hexarelin-treated control group. In addition, hexarelin-treated STZ-rats showed a significant decrease in fasting level FFAs, whereas suppression of fasting level for IGF-1 was maintained. These results suggest that STZ-induced diabetic rats have impaired pulsatile GH secretion, causing increased FFAs and decreased IGF-1 levels in circulation. Hexarelin injections for two weeks is able to normalize impaired pulsatile GH secretion with normal fasting levels of FFAs, but fails to recover IGF-1 levels.
Collapse
Affiliation(s)
- Xinli Zhang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Jin-Kui Yang
- School of Medicine, Faculty of Medicine, Capital Medical University, Beijing 100730, China.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
22
|
SAĞKAN ÖZTÜRK A, ARPACI A. Obezite ve Ghrelin/Leptin İlişkisi. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2018. [DOI: 10.17944/mkutfd.328412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Rhodes L, Zollers B, Wofford JA, Heinen E. Capromorelin: a ghrelin receptor agonist and novel therapy for stimulation of appetite in dogs. Vet Med Sci 2018; 4:3-16. [PMID: 29468076 PMCID: PMC5813110 DOI: 10.1002/vms3.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is a hormone, secreted from cells in the stomach, which is important in the regulation of appetite and food intake in mammals. It exerts its action by binding to a specific G-protein-coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1a) which is found in areas of the brain associated with the regulation of food intake. Ghrelin causes a release of growth hormone (GH) through binding to GHS-R1a in the hypothalamus and pituitary gland. A class of compounds known as growth hormone secretagogues, or ghrelin receptor agonists, were developed for therapeutic use in humans for the stimulation of GH in the frail elderly, and have subsequently been studied for their effects on increasing appetite and food intake, increasing body weight, building lean muscle mass, and treating cachexia. Subsequent research has shown that ghrelin has anti-inflammatory and immunomodulatory effects. This article reviews the basic physiology of ghrelin and the ghrelin receptor agonists, including the available evidence of these effects in vitro and in vivo in rodent models, humans, dogs and cats. One of these compounds, capromorelin, has been FDA-approved for the stimulation of appetite in dogs (ENTYCE ®). The data available on the safety and effectiveness of capromorelin is reviewed, along with a discussion of the potential clinical applications for ghrelin receptor agonists in both human and veterinary medicine.
Collapse
|
24
|
Obestatin stimulates the somatotrophic axis activity in sheep. Brain Res 2018; 1678:278-287. [DOI: 10.1016/j.brainres.2017.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023]
|
25
|
Tarasiuk A, Segev Y. Abnormal Growth and Feeding Behavior in Upper Airway Obstruction in Rats. Front Endocrinol (Lausanne) 2018; 9:298. [PMID: 29915561 PMCID: PMC5994397 DOI: 10.3389/fendo.2018.00298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a syndrome manifesting with snoring and increased respiratory effort due to increased upper airway resistance. In addition to cause the abnormal sleep, this syndrome has been shown to elicit either growth retardation or metabolic syndrome and obesity. Treating OSA by adenotonsillectomy is usually associated with increased risk for obesity, despite near complete restoration of breathing and sleep. However, the underlying mechanism linking upper airways obstruction (AO) to persistent change in food intake, metabolism, and growth remains unclear. Rodent models have examined the impact of intermittent hypoxia on metabolism. However, an additional defining feature of OSA that is not related to intermittent hypoxia is enhanced respiratory loading leading to increased respiratory effort and abnormal sleep. The focus of this mini review is on recent evidence indicating the persistent abnormalities in endocrine regulation of feeding and growth that are not fully restored by the chronic upper AO removal in rats. Here, we highlight important aspects related to abnormal regulation of metabolism that are not related to intermittent hypoxia per se, in an animal model that mimics many of the clinical features of pediatric OSA. Our evidence from the AO model indicates that obstruction removal may not be sufficient to prevent the post-removal tendency for abnormal growth.
Collapse
Affiliation(s)
- Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center, Beer-Sheva, Israel
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Ariel Tarasiuk,
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
26
|
Foradori CD, Whitlock BK, Daniel JA, Zimmerman AD, Jones MA, Read CC, Steele BP, Smith JT, Clarke IJ, Elsasser TH, Keisler DH, Sartin JL. Kisspeptin Stimulates Growth Hormone Release by Utilizing Neuropeptide Y Pathways and Is Dependent on the Presence of Ghrelin in the Ewe. Endocrinology 2017; 158:3526-3539. [PMID: 28977590 DOI: 10.1210/en.2017-00303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
Although kisspeptin is the primary stimulator of gonadotropin-releasing hormone secretion and therefore the hypothalamic-pituitary-gonadal axis, recent findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Here we show that central delivery of kisspeptin causes a robust rise in plasma GH in fasted but not fed sheep. Kisspeptin-induced GH secretion was similar in animals fasted for 24 hours and those fasted for 72 hours, suggesting that the factors involved in kisspeptin-induced GH secretion are responsive to loss of food availability and not the result of severe negative energy balance. Pretreatment with the neuropeptide Y (NPY) Y1 receptor antagonist, BIBO 3304, blocked the effects of kisspeptin-induced GH release, implicating NPY as an intermediary. Kisspeptin treatment induced c-Fos in NPY and GH-releasing hormone (GHRH) cells of the arcuate nucleus. The same kisspeptin treatment resulted in a reduction in c-Fos in somatostatin (SS) cells in the periventricular nucleus. Finally, blockade of systemic ghrelin release or antagonism of the ghrelin receptor eliminated or reduced the ability of kisspeptin to induce GH release, suggesting the presence of ghrelin is required for kisspeptin-induced GH release in fasted animals. Our findings support the hypothesis that during short-term fasting, systemic ghrelin concentrations and NPY expression in the arcuate nucleus rise. This permits kisspeptin activation of NPY cells. In turn, NPY stimulates GHRH cells and inhibits SS cells, resulting in GH release. We propose a mechanism by which kisspeptin conveys reproductive and hormone status onto the somatotropic axis, resulting in alterations in GH release.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Brian K Whitlock
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Jay A Daniel
- Department of Animal Science, Berry College, Mt. Berry, Georgia 30149
| | - Arthur D Zimmerman
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Melaney A Jones
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Casey C Read
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Barbara P Steele
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| | - Jeremy T Smith
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Crawley, Washington 6009, Australia
| | - Iain J Clarke
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Theodore H Elsasser
- Animal Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Duane H Keisler
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211
| | - James L Sartin
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
27
|
Schéle E, Cook C, Le May M, Bake T, Luckman SM, Dickson SL. Central administration of ghrelin induces conditioned avoidance in rodents. Eur Neuropsychopharmacol 2017. [PMID: 28647450 PMCID: PMC5529287 DOI: 10.1016/j.euroneuro.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Feelings of hunger carry a negative-valence (emotion) signal that appears to be conveyed through agouti-related peptide (AgRP) neurons in the hypothalamic arcuate nucleus. The circulating hunger hormone, ghrelin, activates these neurons although it remains unclear whether it also carries a negative-valence signal. Given that ghrelin also activates pathways in the midbrain that are important for reward, it remains possible that ghrelin could act as a positive reinforcer and hence, carry a positive-valence signal. Here we used condition preference/avoidance tests to explore the reinforcing/aversive properties of ghrelin, delivered by intracerebroventricular (ICV) injection (2µg/injection once a day for 4 days). We found that ICV ghrelin produces conditioned avoidance, both in a conditioned place preference/avoidance test (CPP/CPA, in which the animals avoid a chamber previously paired to ghrelin injection) and in a conditioned flavor preference/avoidance test (CFP/CFA, in which the animals consume/avoid a taste previously paired to ghrelin injection). These effects of ghrelin to induce a CPA were observed when conditioning to ghrelin occurred in the absence or presence of food. We did not find evidence, however, that brain ghrelin delivery to rats induces malaise (in the pica test). Our data indicate that ICV ghrelin carries a negative-valence signal consistent with its role as a circulating hunger hormone and with its effects to activate AgRP neurones.
Collapse
Affiliation(s)
- Erik Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christopher Cook
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marie Le May
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Tina Bake
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Simon M Luckman
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Suzanne L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
28
|
The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Mol Metab 2017; 6:882-896. [PMID: 28752052 PMCID: PMC5518774 DOI: 10.1016/j.molmet.2017.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Objective Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter. Methods A Ghsr-IRES-Cre mouse line that expresses Cre directed by the Ghsr promoter was generated. The line was validated by comparing Cre activity in reporter mice to the known brain distribution pattern of GHSR. Next, the requirement of MBH GHSR-expressing neuronal activity in mediating food intake in response to administered ghrelin and in response to fasting was assessed after stereotaxic delivery of inhibitory designer receptor exclusively activated by designer drugs (DREADD) virus to the MBH. In a separate cohort of Ghsr-IRES-Cre mice, stereotaxic delivery of stimulatory DREADD virus to the MBH was performed to assess the sufficiency of MBH GHSR-expressing neuronal activity on food intake. Finally, the distribution of MBH GHSR-expressing neuronal axonal projections was assessed in the DREADD virus-injected animals. Results The pattern of Cre activity in the Ghsr-IRES-Cre mouse line mostly faithfully reproduced the known GHSR expression pattern. DREADD-assisted inhibition of MBH GHSR neuronal activity robustly suppressed the normal orexigenic response to ghrelin and fasting-associated rebound food intake. DREADD-assisted stimulation of MBH GHSR neuronal activity was sufficient to induce food intake. Axonal projections of GHSR-expressing MBH neurons were observed in a subset of hypothalamic and extra-hypothalamic regions. Conclusions These results suggest that 1) activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2) activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3) axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act. We generated a novel Ghsr-IRES-Cre knock-in mouse line. Cre activity in the line mirrors the known GHSR expression pattern. Chemogenetic modulation of neuronal activity reveals a required role of MBH GHSR neurons in rebound food intake after a fast. Neuronal projections of mediobasal hypothalamic GHSR neurons are reminiscent of AgRP neuronal projections.
Collapse
|
29
|
Abnormal Growth and Feeding Behavior Persist After Removal of Upper Airway Obstruction in Juvenile Rats. Sci Rep 2017; 7:2730. [PMID: 28577340 PMCID: PMC5457418 DOI: 10.1038/s41598-017-02843-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Pediatric obstructive sleep-disordered breathing is associated with growth retardation, but also with obesity that has a tendency to persist following treatment. We investigated the effect of upper airways obstruction (AO) and of obstruction removal (OR) in juvenile rats on gut-derived ghrelin and related hypothalamic factors, feeding, and growth hormone (GH) homeostasis. Here, we show that after seven weeks of AO, animals gained less weight compared to controls, despite an increase in food intake due to elevated ghrelin and hypothalamic feeding factors. OR rats who had complete restoration of tracheal diameter, consumed more food due to increased ghrelin and exhibited growth retardation due to deregulation of GH homeostasis. This study is the first to show dysregulation of the hormonal axes controlling feeding behavior and growth that are not fully restored following OR. Thus, surgical treatment by itself may not be sufficient to prevent post-surgical increased food intake and growth retardation.
Collapse
|
30
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
31
|
Moldovan RP, Els-Heindl S, Worm DJ, Kniess T, Kluge M, Beck-Sickinger AG, Deuther-Conrad W, Krügel U, Brust P. Development of Fluorinated Non-Peptidic Ghrelin Receptor Ligands for Potential Use in Molecular Imaging. Int J Mol Sci 2017; 18:ijms18040768. [PMID: 28379199 PMCID: PMC5412352 DOI: 10.3390/ijms18040768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The ghrelin receptor (GhrR) is a widely investigated target in several diseases. However, the current knowledge of its role and distribution in the brain is limited. Recently, the small and non-peptidic compound (S)-6-(4-bromo-2-fluorophenoxy)-3-((1-isopropylpiperidin-3-yl)methyl)-2-methylpyrido[3,2-d]pyrimidin-4(3H)-one ((S)-9) has been described as a GhrR ligand with high binding affinity. Here, we describe the synthesis of fluorinated derivatives, the in vitro evaluation of their potency as partial agonists and selectivity at GhrRs, and their physicochemical properties. These results identified compounds (S)-9, (R)-9, and (S)-16 as suitable parent molecules for 18F-labeled positron emission tomography (PET) radiotracers to enable future investigation of GhrR in the brain.
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Universität Leipzig, 04103 Leipzig, Germany.
| | - Dennis J Worm
- Institute of Biochemistry, Universität Leipzig, 04103 Leipzig, Germany.
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Michael Kluge
- Department of Psychiatry, Universität Leipzig, 04103 Leipzig, Germany.
| | | | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, 04107 Leipzig, Germany.
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf e. V., Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany.
| |
Collapse
|
32
|
Frago LM, Chowen JA. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin. Int J Mol Sci 2017; 18:ijms18030536. [PMID: 28257088 PMCID: PMC5372552 DOI: 10.3390/ijms18030536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 12/31/2022] Open
Abstract
Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin's actions within the brain.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28009 Madrid, Spain.
| |
Collapse
|
33
|
Murphy CF, le Roux CW. The Neurobiological Impact of Ghrelin Suppression after Oesophagectomy. Int J Mol Sci 2016; 18:ijms18010035. [PMID: 28035969 PMCID: PMC5297670 DOI: 10.3390/ijms18010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
Ghrelin, discovered in 1999, is a 28-amino-acid hormone, best recognized as a stimulator of growth hormone secretion, but with pleiotropic functions in the area of energy homeostasis, such as appetite stimulation and energy expenditure regulation. As the intrinsic ligand of the growth hormone secretagogue receptor (GHS-R), ghrelin appears to have a broad array of effects, but its primary role is still an area of debate. Produced mainly from oxyntic glands in the stomach, but with a multitude of extra-metabolic roles, ghrelin is implicated in complex neurobiological processes. Comprehensive studies within the areas of obesity and metabolic surgery have clarified the mechanism of these operations. As a stimulator of growth hormone (GH), and an apparent inducer of positive energy balance, other areas of interest include its impact on carcinogenesis and tumour proliferation and its role in the cancer cachexia syndrome. This has led several authors to study the hormone in the cancer setting. Ghrelin levels are acutely reduced following an oesophagectomy, a primary treatment modality for oesophageal cancer. We sought to investigate the nature of this postoperative ghrelin suppression, and its neurobiological implications.
Collapse
Affiliation(s)
- Conor F Murphy
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin 4, Ireland.
- Gastrosurgical Laboratory, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
34
|
Hassouna R, Labarthe A, Tolle V. Hypothalamic regulation of body growth and appetite by ghrelin-derived peptides during balanced nutrition or undernutrition. Mol Cell Endocrinol 2016; 438:42-51. [PMID: 27693419 DOI: 10.1016/j.mce.2016.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
Among the gastrointestinal hormones that regulate food intake and energy homeostasis, ghrelin plays a unique role as the first one identified to increases appetite and stimulate GH secretion. This review highlights the latest mechanism by which ghrelin modulates body growth, appetite and energy metabolism by exploring pharmacological actions of the hormone and consequences of genetic or pharmacological blockade of the ghrelin/GHS-R (Growth Hormone Secretagogue Receptor) system on physiological responses in specific nutritional situations. Within the hypothalamus, novel mechanisms of action of this hormone involve its interaction with other ghrelin-derived peptides, such as desacyl ghrelin and obestatin, which are thought to act as functional ghrelin antagonists, and possible modulation of the GHS-R with other G-protein coupled receptors. During chronic undernutrition such as anorexia nervosa, variations of ghrelin-derived peptides may be an adaptative metabolic response to maintain normal glycemic control. Interestingly, some of ghrelin's metabolic actions are thought to be relayed through modulation of GH, an anabolic and hyperglycemic agent.
Collapse
Affiliation(s)
- Rim Hassouna
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France; Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexandra Labarthe
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France
| | - Virginie Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France.
| |
Collapse
|
35
|
Anderson LL, Jeftinija S, Scanes CG. Growth Hormone Secretion: Molecular and Cellular Mechanisms and In Vivo Approaches. Exp Biol Med (Maywood) 2016; 229:291-302. [PMID: 15044712 DOI: 10.1177/153537020422900403] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Growth hormone (GH) release is under the direct control of hypothalamic releasing hormones, some being also produced peripherally. The role of these hypothalamic factors has been understood by in vitro studies together with such in vivo approaches as stalk sectioning. Secretion of GH is stimulated by GH-releasing hormone (GHRH) and ghrelin (acting via the GH secretagogue [GHS] receptor [GHSR]), and inhibited by somatostatin (SRIF). Other peptides/proteins influence GH secretion, at least in some species. The cellular mechanism by which the releasing hormones affect GH secretion from the somatotrope requires specific signal transduction systems (cAMP and/or calcium influx and/or mobilization of intracellular calcium) and/or tyrosine kinase(s) and/or nitric oxide (NO)/cGMP. At the subcellular level, GH release (at least in response to GHS) is accomplished by the following. The GH-containing secretory granules are moved close to the cell surface. There is then transient fusion of the secretory granules with the fusion pores in the multiple secretory pits in the somatotrope cell surface.
Collapse
Affiliation(s)
- Lloyd L Anderson
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
36
|
Singh D, Trivedi N, Malik S, Rani S, Kumar V. Timed food availability affects circadian behavior but not the neuropeptide Y expression in Indian weaverbirds exposed to atypical light environment. Physiol Behav 2016; 161:81-89. [DOI: 10.1016/j.physbeh.2016.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/27/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
|
37
|
Shen KZ, Wu YN, Munhall AC, Johnson SW. AMP kinase regulates ligand-gated K-ATP channels in substantia nigra dopamine neurons. Neuroscience 2016; 330:219-28. [PMID: 27267246 DOI: 10.1016/j.neuroscience.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022]
Abstract
AMP-activated protein kinase (AMPK) is a master enzyme that regulates ATP-sensitive K(+) (K-ATP) channels in pancreatic beta-cells and cardiac myocytes. We used patch pipettes to record currents and potentials to investigate effects of AMPK on K-ATP currents in substantia nigra compacta (SNC) dopamine neurons in slices of rat midbrain. When slices were superfused repeatedly with the K-ATP channel opener diazoxide, we were surprised to find that diazoxide currents gradually increased in magnitude, reaching 300% of the control value 60min after starting whole-cell recording. However, diazoxide current increased significantly more, to 472% of control, when recorded in the presence of the AMPK activator A769662. Moreover, superfusing the slice with the AMPK blocking agent dorsomorphin significantly reduced diazoxide current to 38% of control. Control experiments showed that outward currents evoked by the K-ATP channel opener NN-414 also increased over time, but not currents evoked by the GABAB agonist baclofen. Delaying the application of diazoxide after starting whole-cell recording correlated with augmentation of current. Loose-patch recording showed that diazoxide produced a 34% slowing of spontaneous firing rate that did not intensify with repeated applications of diazoxide. However, superfusion with A769662 significantly augmented the inhibitory effect of diazoxide on firing rate. We conclude that K-ATP channel function is augmented by AMPK, which is activated during the process of making whole-cell recordings. Our results suggest that AMPK and K-ATP interactions may play an important role in regulating dopamine neuronal excitability.
Collapse
Affiliation(s)
- Ke-Zhong Shen
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yan-Na Wu
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adam C Munhall
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Steven W Johnson
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
38
|
Thomas MA, Ryu V, Bartness TJ. Central ghrelin increases food foraging/hoarding that is blocked by GHSR antagonism and attenuates hypothalamic paraventricular nucleus neuronal activation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R275-85. [PMID: 26561646 DOI: 10.1152/ajpregu.00216.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/07/2015] [Indexed: 12/31/2022]
Abstract
The stomach-derived "hunger hormone" ghrelin increases in the circulation in direct response to time since the last meal, increasing preprandially and falling immediately following food consumption. We found previously that peripheral injection of ghrelin potently stimulates food foraging (FF), food hoarding (FH), and food intake (FI) in Siberian hamsters. It remains, however, largely unknown if central ghrelin stimulation is necessary/sufficient to increase these behaviors regardless of peripheral stimulation of the ghrelin receptor [growth hormone secretagogue receptor (GHSR)]. We injected three doses (0.01, 0.1, and 1.0 μg) of ghrelin into the third ventricle (3V) of Siberian hamsters and measured changes in FF, FH, and FI. To test the effects of 3V ghrelin receptor blockade, we used the potent GHSR antagonist JMV2959 to block these behaviors in response to food deprivation or a peripheral ghrelin challenge. Finally, we examined neuronal activation in the arcuate nucleus and paraventricular hypothalamic nucleus in response to peripheral ghrelin administration and 3V GHSR antagonism. Third ventricular ghrelin injection significantly increased FI through 24 h and FH through day 4. Pretreatment with 3V JMV2959 successfully blocked peripheral ghrelin-induced increases in FF, FH, and FI at all time points and food deprivation-induced increases in FF, FH, and FI up to 4 h. c-Fos immunoreactivity was significantly reduced in the paraventricular hypothalamic nucleus, but not in the arcuate nucleus, following pretreatment with intraperitoneal JMV2959 and ghrelin. Collectively, these data suggest that central GHSR activation is both necessary and sufficient to increase appetitive and consummatory behaviors in Siberian hamsters.
Collapse
Affiliation(s)
- Michael A Thomas
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
39
|
Huang S, Lee SA, Oswald KE, Fry M. Ghrelin alters neurite outgrowth and electrophysiological properties of mouse ventrolateral arcuate tyrosine hydroxylase neurons in culture. Biochem Biophys Res Commun 2015; 466:682-8. [PMID: 26385180 DOI: 10.1016/j.bbrc.2015.09.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
While the appetite-stimulating hormone ghrelin can act to acutely modulate electrical activity of neurons in the appetite regulating network, it also has a role in regulating neuronal outgrowth, synaptic connectivity and intrinsic electrophysiological properties. In this study, we investigated whether ghrelin may cause alteration in neurite outgrowth and electrophysiological properties of tyrosine hydroxylase (TH) neurons from the ventrolateral arcuate nucleus (VL-ARC), which are thought to contribute to regulation of energy balance. We prepared dissociated neuronal cultures from the VL-ARC of transgenic mice expressing EGFP under control of the tyrosine hydroxylase (TH) promoter, thus allowing visual identification of putative catecholaminergic (TH-EGFP) neurons. After five days of treatment with 100 nM ghrelin, TH-EGFP neurons exhibited significantly more and longer neurites than control treated neurons, and the effects of ghrelin were abolished by 100 μM ghrelin antagonist, D-Lys-GHRP-6. To investigate whether ghrelin altered electrophysiological properties of TH-EGFP neurons, we carried out patch clamp experiments measuring electrophysiological properties. No significant differences were identified for resting membrane potential or spontaneous action potential frequency, however we observed a hyperpolarization of threshold for action potentials and increased input resistance, indicating increased excitability. This increased excitability is consistent with an observed hyperpolarizing shift in the activation of voltage-gated Na(+) currents. These data indicate that the hunger signal ghrelin induces plastic changes in TH-neurons from VL-ARC.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Samantha A Lee
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Karen E Oswald
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
40
|
Grabauskas G, Wu X, Lu Y, Heldsinger A, Song I, Zhou SY, Owyang C. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol 2015; 593:3973-89. [PMID: 26174421 PMCID: PMC4575581 DOI: 10.1113/jp270788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological techniques, we show that ghrelin hyperpolarizes neurons and inhibits currents evoked by leptin and CCK-8. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition. The inhibitory actions of ghrelin were also abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K(+) conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Yuanxu Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Andrea Heldsinger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Il Song
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Shi-Yi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
- Corresponding author C. Owyang: 3912 Taubman Center, SPC 5362, 1500 East Medical Center Drive, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Perello M, Dickson SL. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J Neuroendocrinol 2015; 27:424-34. [PMID: 25377898 PMCID: PMC5033008 DOI: 10.1111/jne.12236] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022]
Abstract
'Hunger is the best spice' is an old and wise saying that acknowledges the fact that almost any food tastes better when we are hungry. The neurobiological underpinnings of this lore include activation of the brain's reward system and the stimulation of this system by the hunger-promoting hormone ghrelin. Ghrelin is produced largely from the stomach and levels are higher preprandially. The ghrelin receptor is expressed in many brain areas important for feeding control, including not only the hypothalamic nuclei involved in energy balance regulation, but also reward-linked areas such as the ventral tegmental area. By targeting the mesoaccumbal dopamine neurones of the ventral tegmental area, ghrelin recruits pathways important for food reward-related behaviours that show overlap with but are also distinct from those important for food intake. We review a variety of studies that support the notion that ghrelin signalling at the level of the mesolimbic system is one of the key molecular substrates that provides a physiological signal connecting gut and reward pathways.
Collapse
Affiliation(s)
- M. Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research CommissionProvince of Buenos Aires (CIC‐PBA)]La PlataBuenos AiresArgentina
| | - S. L. Dickson
- Department of Physiology/EndocrinologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
42
|
Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, Casanueva FF, D'Alessio D, Depoortere I, Geliebter A, Ghigo E, Cole PA, Cowley M, Cummings DE, Dagher A, Diano S, Dickson SL, Diéguez C, Granata R, Grill HJ, Grove K, Habegger KM, Heppner K, Heiman ML, Holsen L, Holst B, Inui A, Jansson JO, Kirchner H, Korbonits M, Laferrère B, LeRoux CW, Lopez M, Morin S, Nakazato M, Nass R, Perez-Tilve D, Pfluger PT, Schwartz TW, Seeley RJ, Sleeman M, Sun Y, Sussel L, Tong J, Thorner MO, van der Lely AJ, van der Ploeg LHT, Zigman JM, Kojima M, Kangawa K, Smith RG, Horvath T, Tschöp MH. Ghrelin. Mol Metab 2015; 4:437-60. [PMID: 26042199 PMCID: PMC4443295 DOI: 10.1016/j.molmet.2015.03.005] [Citation(s) in RCA: 768] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - R Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - M L Andermann
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z B Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S D Anker
- Applied Cachexia Research, Department of Cardiology, Charité Universitätsmedizin Berlin, Germany
| | - J Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain ; Department of Pediatrics, Universidad Autónoma de Madrid and CIBER Fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - R L Batterham
- Centre for Obesity Research, University College London, London, United Kingdom
| | - S C Benoit
- Metabolic Disease Institute, Division of Endocrinology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C Y Bowers
- Tulane University Health Sciences Center, Endocrinology and Metabolism Section, Peptide Research Section, New Orleans, LA, USA
| | - F Broglio
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - F F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (CHUS), CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - D D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - A Geliebter
- New York Obesity Nutrition Research Center, Department of Medicine, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Ghigo
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P A Cole
- Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - M Cowley
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia ; Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - D E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - A Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Diano
- Dept of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - S L Dickson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain
| | - R Granata
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - H J Grill
- Department of Psychology, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - K Grove
- Department of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K M Habegger
- Comprehensive Diabetes Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - K Heppner
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - M L Heiman
- NuMe Health, 1441 Canal Street, New Orleans, LA 70112, USA
| | - L Holsen
- Departments of Psychiatry and Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Holst
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - A Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J O Jansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Kirchner
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - B Laferrère
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - C W LeRoux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Ireland
| | - M Lopez
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - S Morin
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - M Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - R Nass
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - D Perez-Tilve
- Department of Internal Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - P T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - T W Schwartz
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - M Sleeman
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Y Sun
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - L Sussel
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - J Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - M O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - A J van der Lely
- Department of Medicine, Erasmus University MC, Rotterdam, The Netherlands
| | | | - J M Zigman
- Departments of Internal Medicine and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - K Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - R G Smith
- The Scripps Research Institute, Florida Department of Metabolism & Aging, Jupiter, FL, USA
| | - T Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany ; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
43
|
Karasawa H, Pietra C, Giuliano C, Garcia-Rubio S, Xu X, Yakabi S, Taché Y, Wang L. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson's disease. Neurogastroenterol Motil 2014; 26:1771-82. [PMID: 25327342 PMCID: PMC4457321 DOI: 10.1111/nmo.12459] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Constipation and L-dopa-induced gastric dysmotility are common gastrointestinal (GI) symptoms in Parkinson's disease (PD). We investigated the novel ghrelin agonist, HM01 influence on GI motor dysfunctions in 6-hydroxydopamine (6-OHDA) rats. METHODS HM01 pharmacological profiles were determined in vitro and in vivo in rats. We assessed changes in fecal output and water content, and gastric emptying (GE) in 6-OHDA rats treated with orogastric (og) HM01 and L-dopa/carbidopa (LD/CD, 20/2 mg/kg). Fos immunoreactivity (ir) cells in specific brain and lumbosacral spinal cord were quantified. KEY RESULTS HM01 displayed a high binding affinity to ghrelin receptor (Ki: 1.42 ± 0.36 nM), 4.3 ± 1.0 h half-life and high brain/plasma ratio. 6-OHDA rats had reduced daily fecal output (22%) and water intake (23%) compared to controls. HM01 (3 and 10 mg/kg) similarly reversed the decreased 4-h fecal weight and water content in 6-OHDA rats. Basal GE was not modified in 6-OHDA rats, however, LD/CD (once or daily for 8 days) delayed GE in 6-OHDA and control rats that was prevented by HM01 (3 mg/kg acute or daily before LD/CD). HM01 increased Fos-ir cell number in the area postrema, arcuate nucleus, nucleus tractus solitarius, and lumbosacral intermediolateral column of 6-OHDA rats where 6-OHDA had a lowering effect compared to controls. CONCLUSIONS & INFERENCES 6-OHDA rats display constipation- and adipsia-like features of PD and L-dopa-inhibited GE. The new orally active ghrelin agonist, HM01 crosses the blood-brain barrier and alleviates these alterations suggesting a potential benefit for PD with GI disorders.
Collapse
Affiliation(s)
- H Karasawa
- Department of Medicine, CURE/Digestive Diseases Center, Digestive Diseases Division, University of California at Los Angeles, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The ability of an organism to convert organic molecules from the environment into energy is essential for the development of cellular structures, cell differentiation and growth. Mitochondria have a fundamental role in regulating metabolic pathways, and tight control of mitochondrial functions and dynamics is critical to maintaining adequate energy balance. In complex organisms, such as mammals, it is also essential that the metabolic demands of various tissues are coordinated to ensure that the energy needs of the whole body are effectively met. Within the arcuate nucleus of the hypothalamus, the NPY-AgRP and POMC neurons have a crucial role in orchestrating the regulation of hunger and satiety. Emerging findings from animal studies have revealed an important function for mitochondrial dynamics within these two neuronal populations, which facilitates the correct adaptive responses of the whole body to changes in the metabolic milieu. The main proteins implicated in these studies are the mitofusins, Mfn1 and Mfn2, which are regulators of mitochondrial dynamics. In this Review, we provide an overview of the mechanisms by which mitochondria are involved in the central regulation of energy balance and discuss the implications of mitochondrial dysfunction for metabolic disorders.
Collapse
Affiliation(s)
- Carole M Nasrallah
- Program in Integrative Cell Signalling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, SHM L-200, PO Box 208074, New Haven, CT 06520-8074, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signalling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, SHM L-200, PO Box 208074, New Haven, CT 06520-8074, USA
| |
Collapse
|
45
|
Mani BK, Walker AK, Lopez Soto EJ, Raingo J, Lee CE, Perelló M, Andrews ZB, Zigman JM. Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. J Comp Neurol 2014; 522:3644-66. [PMID: 24825838 PMCID: PMC4142102 DOI: 10.1002/cne.23627] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
Growth hormone secretagogue receptor (GHSR) 1a is the only molecularly identified receptor for ghrelin, mediating ghrelin-related effects on eating, body weight, and blood glucose control, among others. The expression pattern of GHSR within the brain has been assessed previously by several neuroanatomical techniques. However, inherent limitations to these techniques and the lack of reliable anti-GHSR antibodies and reporter rodent models that identify GHSR-containing neurons have prevented a more comprehensive functional characterization of ghrelin-responsive neurons. Here we have systematically characterized the brain expression of an enhanced green fluorescence protein (eGFP) transgene controlled by the Ghsr promoter in a recently reported GHSR reporter mouse. Expression of eGFP in coronal brain sections was compared with GHSR mRNA expression detected in the same sections by in situ hybridization histochemistry. eGFP immunoreactivity was detected in several areas, including the prefrontal cortex, insular cortex, olfactory bulb, amygdala, and hippocampus, which showed no or low GHSR mRNA expression. In contrast, eGFP expression was low in several midbrain regions and in several hypothalamic nuclei, particularly the arcuate nucleus, where robust GHSR mRNA expression has been well-characterized. eGFP expression in several brainstem nuclei showed high to moderate degrees of colocalization with GHSR mRNA labeling. Further quantitative PCR and electrophysiological analyses of eGFP-labeled hippocampal cells confirmed faithful expression of eGFP within GHSR-containing, ghrelin-responsive neurons. In summary, the GHSR-eGFP reporter mouse model may be a useful tool for studying GHSR function, particularly within the brainstem and hippocampus; however, it underrepresents GHSR expression in nuclei within the hypothalamus and midbrain.
Collapse
Affiliation(s)
- Bharath K. Mani
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Angela K. Walker
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eduardo J. Lopez Soto
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Charlotte E. Lee
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mario Perelló
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Zane B. Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
46
|
AMP kinase regulates K-ATP currents evoked by NMDA receptor stimulation in rat subthalamic nucleus neurons. Neuroscience 2014; 274:138-52. [PMID: 24875176 DOI: 10.1016/j.neuroscience.2014.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/10/2014] [Accepted: 05/18/2014] [Indexed: 11/21/2022]
Abstract
Our lab recently showed that N-methyl-D-aspartate (NMDA) evokes ATP-sensitive K(+) (K-ATP) currents in subthalamic nucleus (STN) neurons in slices of the rat brain. Both K-ATP channels and 5'-adenosine monophosphate-activated protein kinase (AMPK) are considered cellular energy sensors because their activities are influenced by the phosphorylation state of adenosine nucleotides. Moreover, AMPK has been shown to regulate K-ATP function in a variety of tissues including pancreas, cardiac myocytes, and hypothalamus. We used whole-cell patch clamp recordings to study the effect of AMPK activation on K-ATP channel function in STN neurons in slices of the rat brain. We found that bath or intracellular application of the AMPK activators A769662 and PT1 augmented tolbutamide-sensitive K-ATP currents evoked by NMDA receptor stimulation. The effect of AMPK activators was blocked by the AMPK inhibitor dorsomorphin (compound C), and by STO609, an inhibitor of the upstream AMPK activator CaMKKβ. AMPK augmentation of NMDA-induced K-ATP current was also blocked by intracellular BAPTA and by inhibitors of nitric oxide synthase and guanylyl cyclase. However, A769662 did not augment currents evoked by the K-ATP channel opener diazoxide. In the presence of NMDA, A769662 inhibited depolarizing plateau potentials and burst firing, both of which could be antagonized by tolbutamide or dorsomorphin. These studies show that AMPK augments NMDA-induced K-ATP currents by a Ca(2+)-dependent process that involves nitric oxide and cGMP. By augmenting K-ATP currents, AMPK activation would be expected to dampen the excitatory effect of glutamate-mediated transmission in the STN.
Collapse
|
47
|
Wang Q, Liu C, Uchida A, Chuang JC, Walker A, Liu T, Osborne-Lawrence S, Mason BL, Mosher C, Berglund ED, Elmquist JK, Zigman JM. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol Metab 2013; 3:64-72. [PMID: 24567905 PMCID: PMC3929914 DOI: 10.1016/j.molmet.2013.10.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreERT2 transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelin's orexigenic effects but are sufficient to mediate ghrelin's effects on glycemia.
Collapse
Key Words
- ARC, arcuate nucleus
- AgRP
- AgRP, Agouti-related peptide
- BAC, bacterial artificial chromosome
- Blood glucose homeostasis
- CNS, central nervous system
- DG, dentate gyrus
- DVC, dorsal vagal complex
- Food intake
- Foxo1, Forkhead box protein O1
- G6p, glucose-6 phosphatase
- GABA, gamma-aminobutyric acid
- GHRH, Growth-hormone-releasing hormone
- GHSR, growth hormone secretagogue receptor, ghrelin receptor
- GOAT, ghrelin O-acyltransferase
- Ghrelin
- Ghrelin receptor
- Hnf4α, hepatocyte nuclear factor 4α
- NAc, nucleus accumbens
- NPY, neuropeptide Y
- POMC, pro-opiomelanocortin
- Pcx, pyruvate carboxylase
- Pepck, phosphoenolpyruvate carboxykinase
- Phox2b, paired-like homeobox 2b
- VGAT, vesicular GABA transporter
- VTA, ventral tegmental area
Collapse
Affiliation(s)
- Qian Wang
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aki Uchida
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jen-Chieh Chuang
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela Walker
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brittany L Mason
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Mosher
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric D Berglund
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
48
|
Mason BL, Wang Q, Zigman JM. The central nervous system sites mediating the orexigenic actions of ghrelin. Annu Rev Physiol 2013; 76:519-33. [PMID: 24111557 DOI: 10.1146/annurev-physiol-021113-170310] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight.
Collapse
Affiliation(s)
- B L Mason
- Departments of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology & Metabolism) and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077; , ,
| | | | | |
Collapse
|
49
|
Effects of intracerebroventricular ghrelin on food intake and Fos expression in the arcuate nucleus of the hypothalamus in female rats vary with estrous cycle phase. Neurosci Lett 2013; 541:204-8. [DOI: 10.1016/j.neulet.2013.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 11/22/2022]
|
50
|
Schaeffer M, Langlet F, Lafont C, Molino F, Hodson DJ, Roux T, Lamarque L, Verdié P, Bourrier E, Dehouck B, Banères JL, Martinez J, Méry PF, Marie J, Trinquet E, Fehrentz JA, Prévot V, Mollard P. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc Natl Acad Sci U S A 2013; 110:1512-7. [PMID: 23297228 PMCID: PMC3557016 DOI: 10.1073/pnas.1212137110] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To maintain homeostasis, hypothalamic neurons in the arcuate nucleus must dynamically sense and integrate a multitude of peripheral signals. Blood-borne molecules must therefore be able to circumvent the tightly sealed vasculature of the blood-brain barrier to rapidly access their target neurons. However, how information encoded by circulating appetite-modifying hormones is conveyed to central hypothalamic neurons remains largely unexplored. Using in vivo multiphoton microscopy together with fluorescently labeled ligands, we demonstrate that circulating ghrelin, a versatile regulator of energy expenditure and feeding behavior, rapidly binds neurons in the vicinity of fenestrated capillaries, and that the number of labeled cell bodies varies with feeding status. Thus, by virtue of its vascular connections, the hypothalamus is able to directly sense peripheral signals, modifying energy status accordingly.
Collapse
Affiliation(s)
- Marie Schaeffer
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | - Fanny Langlet
- Institut National de la Santé et de la Recherche Médicale, Jean-Pierre Aubert Research Center, Unité 837, F-59000 Lille, France
- Faculté de Médecine, Université Droit et Santé de Lille, F-59000 Lille, France
| | - Chrystel Lafont
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | - François Molino
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
- University Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5221, Laboratoire Charles Coulomb, F-34095 Montpellier, France
| | - David J. Hodson
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | | | | | - Pascal Verdié
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | | | - Bénédicte Dehouck
- Institut National de la Santé et de la Recherche Médicale, Jean-Pierre Aubert Research Center, Unité 837, F-59000 Lille, France
- Faculté de Médecine, Université Droit et Santé de Lille, F-59000 Lille, France
- Université d’Artois, F-62800 Liévin, France
| | - Jean-Louis Banères
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | - Jean Martinez
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | - Pierre-François Méry
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| | | | | | - Jean-Alain Fehrentz
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5247, Institut des Biomolécules Max Mousseron, Faculty of Pharmacy, Universities of Montpellier 1 and 2, F-34093 Montpellier Cedex 5, France; and
| | - Vincent Prévot
- Institut National de la Santé et de la Recherche Médicale, Jean-Pierre Aubert Research Center, Unité 837, F-59000 Lille, France
- Faculté de Médecine, Université Droit et Santé de Lille, F-59000 Lille, France
| | - Patrice Mollard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- Institut National de la Santé et de la Recherche Médicale, Unité 661, F-34000 Montpellier, France
- Universities of Montpellier 1 and 2, Unité Mixte de Recherche 5203, F-34000 Montpellier, France
| |
Collapse
|