1
|
Ramser A, Hawken R, Greene E, Okimoto R, Flack B, Christopher CJ, Campagna SR, Dridi S. Bone Metabolite Profile Differs between Normal and Femur Head Necrosis (FHN/BCO)-Affected Broilers: Implications for Dysregulated Metabolic Cascades in FHN Pathophysiology. Metabolites 2023; 13:metabo13050662. [PMID: 37233703 DOI: 10.3390/metabo13050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of -1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, AR 72761, USA
| | | | | | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Izumiya M, Haniu M, Ueda K, Ishida H, Ma C, Ideta H, Sobajima A, Ueshiba K, Uemura T, Saito N, Haniu H. Evaluation of MC3T3-E1 Cell Osteogenesis in Different Cell Culture Media. Int J Mol Sci 2021; 22:ijms22147752. [PMID: 34299372 PMCID: PMC8304275 DOI: 10.3390/ijms22147752] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many biomaterials have been evaluated using cultured cells. In particular, osteoblast-like cells are often used to evaluate the osteocompatibility, hard-tissue-regeneration, osteoconductive, and osteoinductive characteristics of biomaterials. However, the evaluation of biomaterial osteogenesis-inducing capacity using osteoblast-like cells is not standardized; instead, it is performed under laboratory-specific culture conditions with different culture media. However, the effect of different media conditions on bone formation has not been investigated. Here, we aimed to evaluate the osteogenesis of MC3T3-E1 cells, one of the most commonly used osteoblast-like cell lines for osteogenesis evaluation, and assayed cell proliferation, alkaline phosphatase activity, expression of osteoblast markers, and calcification under varying culture media conditions. Furthermore, the various media conditions were tested in uncoated plates and plates coated with collagen type I and poly-L-lysine, highly biocompatible molecules commonly used as pseudobiomaterials. We found that the type of base medium, the presence or absence of vitamin C, and the freshness of the medium may affect biomaterial regeneration. We posit that an in vitro model that recapitulates in vivo bone formation should be established before evaluating biomaterials.
Collapse
Affiliation(s)
- Makoto Izumiya
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Miyu Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Chuang Ma
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Hirokazu Ideta
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Atsushi Sobajima
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Department of Orthopedics (Lower Limbs), Social Medical Care Corporation Hosei-kai Marunouchi Hospital, 1-7-45 Nagisa, Matsumoto, Nagano 390-8601, Japan
| | - Koki Ueshiba
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Correspondence: ; Tel.: +81-263-37-3555
| |
Collapse
|
3
|
Hasenzahl M, Müsken M, Mertsch S, Schrader S, Reichl S. Cell sheet technology: Influence of culture conditions on in vitro-cultivated corneal stromal tissue for regenerative therapies of the ocular surface. J Biomed Mater Res B Appl Biomater 2021; 109:1488-1504. [PMID: 33538123 DOI: 10.1002/jbm.b.34808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/11/2022]
Abstract
The in vitro reconstruction of stromal tissue by long-term cultivation of corneal fibroblasts is a smart approach for regenerative therapies of ocular surface diseases. However, systematic investigations evaluating optimized cultivation protocols for the realization of a biomaterial are lacking. This study investigated the influence of supplements to the culture media of human corneal fibroblasts on the formation of a cell sheet consisting of cells and extracellular matrix. Among the supplements studied are vitamin C, fetal bovine serum, L-glutamine, components of collagen such as L-proline, L-4-hydroxyproline and glycine, and TGF-β1, bFGF, IGF-2, PDGF-BB and insulin. After long-term cultivation, the proliferation, collagen and glycosaminoglycan content and light transmission of the cell sheets were examined. Biomechanical properties were investigated by tensile tests and the ultrastructure was characterized by electron microscopy, small-angle X-ray scattering, antibody staining and ELISA. The synthesis of extracellular matrix was significantly increased by cultivation with insulin or TGF-β1, each with vitamin C. The sheets exhibited a high transparency and suitable material properties. The production of a transparent, scaffold-free, potentially autologous, in vitro-generated construct by culturing fibroblasts with extracellular matrix synthesis-stimulating supplements represents a promising approach for a biomaterial that can be used for ocular surface reconstruction in slowly progressing diseases.
Collapse
Affiliation(s)
- Meike Hasenzahl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz-Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Falchetti A, Cosso R. The interaction between vitamin C and bone health: a narrative review. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1482211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alberto Falchetti
- Hercolani Center, Bologna, Italy
- EndOsmet, Villa Donatello Private Hospital, Firenze, Italy
- Villa Alba Clinic, Villa Maria Group, Bologna, Italy
| | - Roberta Cosso
- Hercolani Center, Bologna, Italy
- EndOsmet, Villa Donatello Private Hospital, Firenze, Italy
| |
Collapse
|
5
|
Asnaghi MA, Duhr R, Quasnichka H, Hollander AP, Kafienah W, Martin I, Wendt D. Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid. J Tissue Eng Regen Med 2018; 12:1402-1411. [PMID: 29726103 DOI: 10.1002/term.2671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023]
Abstract
Bioreactor systems will likely play a key role in establishing regulatory compliant and cost-effective production systems for manufacturing engineered tissue grafts for clinical applications. However, the automation of bioreactor systems could become considerably more complex and costly due to the requirements for additional storage and liquid handling technologies if unstable supplements are added to the culture medium. Ascorbic acid (AA) is a bioactive supplement that is commonly presumed to be essential for the generation of engineered cartilage tissues. However, AA can be rapidly oxidized and degraded. In this work, we addressed whether human nasal chondrocytes can redifferentiate, undergo chondrogenesis, and generate a cartilaginous extracellular matrix when cultured in the absence of AA. We found that when chondrocytes were cultured in 3D micromass pellets either with or without AA, there were no significant differences in their chondrogenic capacity in terms of gene expression or the amount of glycosaminoglycans. Moreover, 3D pellets cultured without AA contained abundant collagen Types II and I extracellular matrix. Although the amounts of Collagens II and I were significantly lower (34% and 50% lower) than in pellets cultured with AA, collagen fibers had similar thicknesses and distributions for both groups, as shown by scanning electron microscopy imaging. Despite the reduced amounts of collagen, if engineered cartilage grafts can be generated with sufficient properties that meet defined quality criteria without the use of unstable supplements such as AA, bioreactor automation requirements can be greatly simplified, thereby facilitating the development of more compact, user-friendly, and cost-effective bioreactor-based manufacturing systems.
Collapse
Affiliation(s)
- M Adelaide Asnaghi
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph Duhr
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Helen Quasnichka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Wael Kafienah
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Wendt
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Abstract
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.
Collapse
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
7
|
Shaghaghi MA, Kloss O, Eck P. Genetic Variation in Human Vitamin C Transporter Genes in Common Complex Diseases. Adv Nutr 2016; 7:287-98. [PMID: 26980812 PMCID: PMC4785466 DOI: 10.3945/an.115.009225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adequate plasma, cellular, and tissue vitamin C concentrations are required for maintaining optimal health through suppression of oxidative stress and optimizing functions of certain enzymes that require vitamin C as a cofactor. Polymorphisms in the vitamin C transporter genes, compromising genes encoding sodium-dependent ascorbate transport proteins, and also genes encoding facilitative transporters of dehydroascorbic acid, are associated with plasma and tissue cellular ascorbate status and hence cellular redox balance. This review summarizes our current knowledge of the links between variations in vitamin C transporter genes and common chronic diseases. We conclude that emerging genetic knowledge has a good likelihood of defining future personalized dietary recommendations and interventions; however, further validations through biological studies as well as controlled dietary trials are required to identify predictive and actionable genetic biomarkers. We further advocate the need to consider genetic variation of vitamin C transporters in future clinical and epidemiologic studies on common complex diseases.
Collapse
Affiliation(s)
| | | | - Peter Eck
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Keshari KR, Wilson DM, Sai V, Bok R, Jen KY, Larson P, Van Criekinge M, Kurhanewicz J, Wang ZJ. Noninvasive in vivo imaging of diabetes-induced renal oxidative stress and response to therapy using hyperpolarized 13C dehydroascorbate magnetic resonance. Diabetes 2015; 64:344-52. [PMID: 25187363 PMCID: PMC4303960 DOI: 10.2337/db13-1829] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress has been proposed to be a unifying cause for diabetic nephropathy and a target for novel therapies. Here we apply a new endogenous reduction-oxidation (redox) sensor, hyperpolarized (HP) (13)C dehydroascorbate (DHA), in conjunction with MRI to noninvasively interrogate the renal redox capacity in a mouse diabetes model. The diabetic mice demonstrate an early decrease in renal redox capacity, as shown by the lower in vivo HP (13)C DHA reduction to the antioxidant vitamin C (VitC), prior to histological evidence of nephropathy. This correlates with lower tissue reduced glutathione (GSH) concentration and higher NADPH oxidase 4 (Nox4) expression, consistent with increased superoxide generation and oxidative stress. ACE inhibition restores the HP (13)C DHA reduction to VitC with concomitant normalization of GSH concentration and Nox4 expression in diabetic mice. HP (13)C DHA enables rapid in vivo assessment of altered redox capacity in diabetic renal injury and after successful treatment.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David M Wilson
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Victor Sai
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Robert Bok
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Kuang-Yu Jen
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Peder Larson
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Mark Van Criekinge
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - John Kurhanewicz
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Zhen J Wang
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
9
|
Corti A, Casini AF, Pompella A. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys 2010; 500:107-15. [PMID: 20494648 DOI: 10.1016/j.abb.2010.05.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 11/17/2022]
Abstract
The mechanisms allowing the cellular transport of ascorbic acid represent a primary aspect for the understanding of the roles played by this vitamin in pathophysiology. Considerable research effort has been spent in the field, on several animal models and different cell types. Several mechanisms have been described to date, mediating the movements of different redox forms of ascorbic acid across cell membranes. Vitamin C can enter cells both in its reduced and oxidized form, ascorbic acid (AA) and dehydroascorbate (DHA), utilizing respectively sodium-dependent transporters (SVCT) or glucose transporters (GLUT). Modulation of SVCT expression and function has been described by cytokines, steroids and post-translational protein modification. Cellular uptake of DHA is followed by its intracellular reduction to AA by several enzymatic and non-enzymatic systems. Efflux of vitamin C has been also described in a number of cell types and different pathophysiological functions were proposed for this phenomenon, in dependence of the cell model studied. Cellular efflux of AA is mediated through volume-sensitive (VSOAC) and Ca(2+)-dependent anion channels, gap-junction hemichannels, exocytosis of secretory vesicles and possibly through homo- and hetero-exchange systems at the plasma membrane level. Altogether, available data suggest that cellular efflux of ascorbic acid - besides its uptake - should be taken into account when evaluating the cellular homeostasis and functions of this important vitamin.
Collapse
Affiliation(s)
- Alessandro Corti
- Dipartimento di Patologia Sperimentale, Università di Pisa, Italy.
| | | | | |
Collapse
|
10
|
Tran GT, Pagkalos J, Tsiridis E, Narvani AA, Heliotis M, Mantalaris A, Tsiridis E. Growth hormone: does it have a therapeutic role in fracture healing? Expert Opin Investig Drugs 2010; 18:887-911. [PMID: 19480608 DOI: 10.1517/13543780902893069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The role of growth hormone (GH) in augmenting fracture healing has been postulated for over half a century. GH has been shown to play a role in bone metabolism and this can be mediated directly or indirectly through IGF-I. OBJECTIVES The use of GH was evaluated as a possible therapeutic agent in augmenting fracture healing. METHOD A literature search was undertaken on GH and its effect on bone fracture healing primarily using MEDLINE/OVID (1950 to January 2009). Key words and phrases including 'growth hormone', 'insulin like growth factor', 'insulin like growth factor binding protein', 'insulin like growth factor receptor', 'fracture repair', 'bone healing', 'bone fracture', 'bone metabolism', 'osteoblast' and 'osteoclast' were used in different combinations. Manual searches of the bibliography of key papers were also undertaken. RESULTS Current evidence suggests a positive role of GH on fracture healing as demonstrated by in vitro studies on osteoblasts, osteoclasts and the crosstalk between the two. Animal studies have demonstrated a number of factors influencing the effect of GH in vivo such as dose, timing and method of administration. Application of this knowledge in humans is limited but clearly demonstrates a positive effect on fracture healing. Concern has been raised in the past regarding the safety profile of the pharmacological use of GH when used in critically ill patients. CONCLUSION The optimal dose and method of administration is still to be determined, and the safety profile of this novel use of GH needs to be investigated prior to establishing its widespread use as a fracture-healing agent.
Collapse
Affiliation(s)
- Gui Tong Tran
- University of Leeds School of Medicine, Academic Department of Trauma and Orthopaedics, Leeds General Infirmary, Great George Street, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Bueno EM, Saeidi N, Melotti S, Ruberti JW. Effect of serum and insulin modulation on the organization and morphology of matrix synthesized by bovine corneal stromal cells. Tissue Eng Part A 2010; 15:3559-73. [PMID: 19480568 DOI: 10.1089/ten.tea.2008.0404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The in vitro production of highly organized collagen fibrils by corneal keratocytes in a three-dimensional scaffold-free culture system presents a unique opportunity for the direct observation of organized matrix formation. The objective of this investigation was to develop such a culture system in a glass substrate (for optical accessibility) and to directly examine the effect of reducing serum and/or increasing insulin on the stratification and secretion of aligned matrix by fourth- to fifth-passage bovine corneal stromal keratocytes. Medium concentrations of 0%, 1%, or 10% fetal bovine serum and 0% or 1% insulin-transferrin-selenium were investigated. High-resolution differential interference contrast microscopy, quick-freeze/deep-etch, and conventional transmission electron microscopy were used to monitor the evolution, morphology, and ultrastructure of the cell-matrix constructs. In a medium containing 1% each of serum and insulin-transferrin-selenium, stromal cells stratified and secreted abundant and locally aligned matrix, generating the thickest cell-matrix constructs (allowing handling with forceps). The results of this study have the potential to significantly advance the field of developmental functional engineering of load-bearing tissues by (i) elucidating cues that modulate in vitro cell secretion of organized matrix and (ii) establishing an optically accessible cell culture system for investigating the mechanism of cell secretion of aligned collagen fibrils.
Collapse
Affiliation(s)
- Ericka M Bueno
- Skeletal Biology Laboratory, Department of Orthopedics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
12
|
Michels AJ, Hagen TM. Hepatocyte nuclear factor 1 is essential for transcription of sodium-dependent vitamin C transporter protein 1. Am J Physiol Cell Physiol 2009; 297:C1220-7. [PMID: 19741195 DOI: 10.1152/ajpcell.00348.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transport and distribution of vitamin C is primarily regulated by the function of sodium-dependent vitamin C transporters (SVCTs). SVCT1 is expressed in the small intestine, liver, and kidney, organs that play a vital role in whole body vitamin C homeostasis. Despite the importance of this protein, little is known about regulation of the gene encoding SVCT1, Slc23a1. In this study, we present the first investigation of the transcriptional regulation of human Slc23a1, identifying transcription factors that may influence its expression. A 1,239-bp genomic DNA fragment corresponding to the 5'-flanking region of Slc23a1 was isolated from a human hepatocarcinoma cell line (HepG2) and sequenced. When cloned into a reporter gene construct, robust transcriptional activity was seen in this sequence, nearly 25-fold above the control vector. Deletion analysis of the SVCT1 reporter gene vector defined the minimal active promoter as a small 135-bp region upstream of the transcriptional start site. While several transcription factor binding sites were identified within this sequence, reporter constructs showed that basal transcription required the binding of hepatic nuclear factor 1 (HNF-1) to its cognate sequence. Furthermore, mutation of this HNF-1 binding site resulted in complete loss of luciferase expression, even in the context of the whole promoter. Additionally, small interfering RNA knockdown of both members of the HNF-1 family, HNF-1alpha and HNF-1beta, resulted in a significant decline in SVCT1 transcription. Together, these data suggest that HNF-1alpha and/or HNF-1beta binding is required for SVCT1 expression and may be involved in the coordinate regulation of whole body vitamin C status.
Collapse
Affiliation(s)
- Alexander J Michels
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
13
|
Portugal CC, Miya VS, Calaza KDC, Santos RAM, Paes-de-Carvalho R. Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells. J Neurochem 2009; 108:507-20. [DOI: 10.1111/j.1471-4159.2008.05786.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Abstract
Vitamin C is required for collagen synthesis and biosynthesis of certain hormones and recommended dietary intake levels are largely based these requirements. However, to function effectively as an antioxidant (or a pro-oxidant), relatively high levels of this vitamin must be maintained in the body. The instability of vitamin C combined with its relatively poor intestinal absorption and ready excretion from the body reduce physiological availability of this vitamin. This inability to maintain high serum levels of vitamin C may have serious health implications and is particularly relevant in the onset and progression of degenerative disease, such as cancer and cardiovascular disease (CVD), which have a strong contributing oxidative damage factor. In this review, we examine recent studies on the regulation of transport mechanisms for vitamin C, related clinical ramifications, and potential implications in high-dose vitamin C therapy. We also evaluate recent clinical and scientific evidence on the effects of this vitamin on cancer and CVD, with focus on the key mechanisms of action that may contribute to the therapeutic potential of this vitamin in these diseases. Several animal models that could be utilized to address unresolved questions regarding the feasibility of vitamin C therapy are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
15
|
Xie H, Tang SY, Luo XH, Huang J, Cui RR, Yuan LQ, Zhou HD, Wu XP, Liao EY. Insulin-like effects of visfatin on human osteoblasts. Calcif Tissue Int 2007; 80:201-10. [PMID: 17340225 DOI: 10.1007/s00223-006-0155-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 11/24/2006] [Indexed: 12/13/2022]
Abstract
Visfatin (also known as pre-B cell colony-enhancing factor or PBEF) is a novel adipocytokine that is highly expressed in visceral fat and upregulated in obesity and type 2 diabetes mellitus. Visfatin binds to and activates the insulin receptor (IR), thereby exerting insulin-mimetic effects in various cell lines. IR has been detected in osteoblasts, which is consistent with the role of insulin as an important osteotropic hormone. This study investigated the actions of visfatin on human primary osteoblasts. The expression and tyrosine phosphorylation of IR, IR substrate-1 (IRS-1), and IRS-2 were determined by immunoprecipitation and immunoblotting. Cell proliferation was determined by measuring [(3)H]thymidine incorporation and cell number. Glucose uptake was determined by measuring 2-[(3)H]deoxyglucose incorporation. Real-time quantitative reverse-transcription polymerase chain reaction (PCR) was used for determining alkaline phosphatase (ALP), osteocalcin, and type I collagen mRNA expression. Enzyme-linked immunosorbent assay and radioimmunoassay were used for measuring ALP activity, osteocalcin secretion, and type I collagen production. We found that visfatin induced tyrosine phosphorylation of IR, IRS-1, and IRS-2. Moreover, the effects of visfatin - glucose uptake, proliferation, and type I collagen enhancement of cultured human osteoblast-like cells - bore a close resemblance to those of insulin and were inhibited by hydroxy-2-naphthalenylmethylphosphonic acid tris-acetoxymethyl ester, a specific inhibitor of IR tyrosine kinase activity. We also unexpectedly found that visfatin downregulated osteocalcin secretion from human osteoblast-like cells. These data indicate that the regulation of glucose uptake, proliferation, and type I collagen production by visfatin in human osteoblasts involves IR phosphorylation, the same signal-transduction pathway used by insulin.
Collapse
Affiliation(s)
- H Xie
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
García MDLA, Salazar K, Millán C, Rodríguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Vera JC, Aguayo LG, Olate J, Molina B, Nualart F. Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 2004; 50:32-47. [PMID: 15625716 DOI: 10.1002/glia.20133] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Kinetic analysis of vitamin C uptake demonstrated that different specialized cells take up ascorbic acid through sodium-vitamin C cotransporters. Recently, two different isoforms of sodium-vitamin C cotransporters (SVCT1/SLC23A1 and SVCT2/SLC23A2) have been cloned. SVCT2 was detected mainly in choroidal plexus cells and neurons; however, there is no evidence of SVCT2 expression in glial and endothelial cells of the brain. Certain brain locations, including the hippocampus and hypothalamus, consistently show higher ascorbic acid values compared with other structures within the central nervous system. However, molecular and kinetic analysis addressing the expression of SVCT transporters in cells isolated from these specific areas of the brain had not been done. The hypothalamic glial cells, or tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid with different neurons of the region. Our hypothesis postulates that SVCT2 is expressed selectively in tanycytes, where it is involved in the uptake of the reduced form of vitamin C (ascorbic acid), thereby concentrating this vitamin in the hypothalamic area. In situ hybridization and optic and ultrastructural immunocytochemistry showed that the transporter SVCT2 is highly expressed in the apical membranes of mouse hypothalamic tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of the SVCT2 isoform in these cells. The results demonstrate that tanycytes express a high-affinity transporter for vitamin C. Thus, the vitamin C uptake mechanisms present in the hypothalamic glial cells may perform a neuroprotective role concentrating vitamin C in this specific area of the brain.
Collapse
Affiliation(s)
- María De Los Angeles García
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
SASAKI K, YOSHIDA T, KOGA K, HARAGUCHI T, OHASHI K, AOYAGI Y. Contribution of insulin to the ascorbate recycling system in the chicken liver. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00227.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Lutsenko EA, Carcamo JM, Golde DW. A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport. Mol Cell Biol 2004; 24:3150-6. [PMID: 15060139 PMCID: PMC381605 DOI: 10.1128/mcb.24.8.3150-3156.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vitamin C is transported as ascorbic acid (AA) through the sodium-ascorbate cotransporters (SVCT1 and -2) and as dehydroascorbic acid (DHA) through the facilitative glucose transporters. All cells have glucose transporters and take up DHA that is trapped intracellularly by reduction and accumulated as AA. SVCT2 is widely expressed in cells and tissues at the mRNA level; however, only specialized cells directly transport AA. We undertook a molecular analysis of SVCT2 expression and discovered a transcript encoding a short form of human SVCT2 (hSVCT2-short) in which 345 bp is deleted without a frame shift. The deletion involves domains 5 and 6 and part of domain 4. cDNA encoding this isoform was isolated and expressed in 293T cells, where the protein was detected on the plasma membrane. Transport studies, however, revealed that hSVCT2-short gave rise to a nonfunctional transporter protein. hSVCT2-short arises by alternative splicing and encodes a protein that strongly inhibited the function of SVCT2 and, to a lesser extent, SVCT1 in a dominant-negative manner, probably by protein-protein interaction. The expression of hSVCT2-short varies among cells. PCR analysis of cDNA isolated from melanocytes capable of transporting AA revealed a predominance of the full-length isoform, while HL-60 cells, which express SVCT2 at the mRNA level and were incapable of transporting AA, showed a predominance of the short isoform. These findings suggest a mechanism of AA uptake regulation whereby an alternative SVCT2 gene product inhibits transport through the two known AA transporters.
Collapse
Affiliation(s)
- Eugene A Lutsenko
- Program in Molecular Pharmacology and Chemistry, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
19
|
Korcok J, Dixon SJ, Lo TCY, Wilson JX. Differential effects of glucose on dehydroascorbic acid transport and intracellular ascorbate accumulation in astrocytes and skeletal myocytes. Brain Res 2003; 993:201-7. [PMID: 14642847 DOI: 10.1016/j.brainres.2003.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Skeletal muscle and brain are major sites of glucose transport and ascorbate (vitamin C) storage. Ascorbate is oxidized to dehydroascorbic acid (DHAA) when used as an enzyme cofactor or free radical scavenger. We evaluated the hypothesis that glucose regulates DHAA uptake and reduction to ascorbate (i.e., recycling) by skeletal muscle cells and cerebral astrocytes. DHAA uptake was inhibited partially by glucose added simultaneously with DHAA. Comparison of wild type L6 skeletal muscle cells with an L6-derived cell line (D23) deficient in facilitative hexose transporter isoform 3 (GLUT3), indicated that both GLUT3 and facilitative hexose transporter isoform 1 (GLUT1) mediate DHAA uptake. Preincubation of muscle cells with glucose inhibited the rates of glucose and DHAA uptake, and decreased the intracellular concentration of ascorbate derived from recycling of DHAA. In contrast, glucose preincubation did not depress GLUT1 protein and activity levels or DHAA recycling in astrocytes. These results establish that glucose downregulates subsequent recycling of DHAA by skeletal muscle cells but not astrocytes.
Collapse
Affiliation(s)
- Jasminka Korcok
- Department of Physiology and Pharmacology, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
20
|
Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW, Vera JC. Recycling of vitamin C by a bystander effect. J Biol Chem 2003; 278:10128-33. [PMID: 12435736 DOI: 10.1074/jbc.m210686200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cells transport dehydroascorbic acid through facilitative glucose transporters, in apparent contradiction with evidence indicating that vitamin C is present in human blood only as ascorbic acid. On the other hand, activated host defense cells undergoing the oxidative burst show increased vitamin C accumulation. We analyzed the role of the oxidative burst and the glucose transporters on vitamin C recycling in an in vitro system consisting of activated host-defense cells co-cultured with human cell lines and primary cells. We asked whether human cells can acquire vitamin C by a "bystander effect" by taking up dehydroascorbic acid generated from extracellular ascorbic acid by neighboring cells undergoing the oxidative burst. As activated cells, we used HL-60 neutrophils and normal human neutrophils activated with phorbol 12 myristate 13-acetate. As bystander cells, we used immortalized cell lines and primary cultures of human epithelial and endothelial cells. Activated cells produced superoxide anions that oxidized extracellular ascorbic acid to dehydroascorbic acid. At the same time, there was a marked increase in vitamin C uptake by the bystander cells that was blocked by superoxide dismutase but not by catalase and was inhibited by the glucose transporter inhibitor cytochalasin B. Only ascorbic acid was accumulated intracellularly by the bystander cells. Glucose partially blocked vitamin C uptake by the bystander cells, although it increased superoxide production by the activated cells. We conclude that the local production of superoxide anions by activated cells causes the oxidation of extracellular ascorbic acid to dehydroascorbic acid, which is then transported by neighboring cells through the glucose transporters and immediately reduced to ascorbic acid intracellularly. In addition to causing increased intracellular concentrations of ascorbic acid with likely associated enhanced antioxidant defense mechanisms, the bystander effect may allow the recycling of vitamin C in vivo, which may contribute to the low daily requirements of the vitamin in humans.
Collapse
Affiliation(s)
- Francisco J Nualart
- Departamento de Histologia y Embriologia, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/H, Chile
| | | | | | | | | | | | | |
Collapse
|
21
|
Jung CR, Schepetkin IA, Woo SB, Khlebnikov AI, Kwon BS. Osteoblastic differentiation of mesenchymal stem cells by mumie extract. Drug Dev Res 2002. [DOI: 10.1002/ddr.10120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Abstract
Dehydroascorbic acid (DHA) is abundant in the human diet and also is generated from vitamin C (ascorbic acid, AA) in the lumen of the gastrointestinal tract. DHA is absorbed from the lumen of the small intestine and reduced to AA, which subsequently circulates in the blood. Utilization of AA as an antioxidant and enzyme cofactor causes its oxidation to DHA in extracellular fluid and cells. DHA has an important role in many cell types because it can be used to regenerate AA. Both physiological (e.g. insulin, insulin-like growth factor I, cyclic AMP) and pathological (e.g. oxidative stress, diabetes, sepsis) factors alter the transport and metabolic mechanisms responsible for this DHA recycling.
Collapse
Affiliation(s)
- John X Wilson
- Department of Physiology, Faculty of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1.
| |
Collapse
|
23
|
Castro M, Caprile T, Astuya A, Millán C, Reinicke K, Vera JC, Vásquez O, Aguayo LG, Nualart F. High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem 2001; 78:815-23. [PMID: 11520902 DOI: 10.1046/j.1471-4159.2001.00461.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sodium-vitamin C co-transporters SVCT1 and SVCT2 transport the reduced form of vitamin C, ascorbic acid. High expression of the SVCT2 has been demonstrated in adult neurons and choroid plexus cells by in situ hybridization. Additionally, embryonic mesencephalic dopaminergic neurons express the SVCT2 transporter. However, there have not been molecular and kinetic analyses addressing the expression of SVCTs in cortical embryonic neurons. In this work, we confirmed the expression of a SVCT2-like transporter in different regions of the fetal mouse brain and in primary cultures of neurons by RT-PCR. Kinetic analysis of the ascorbic acid uptake demonstrated the presence of two affinity constants, 103 microM and 8 microM. A K(m) of 103 microM corresponds to a similar affinity constant reported for SVCT2, while the K(m) of 8 microM might suggest the expression of a very high affinity transporter for ascorbic acid. Our uptake analyses also suggest that neurons take up dehydroascorbic acid, the oxidized form of vitamin C, through the glucose transporters. We consider that the early expression of SVCTs transporters in neurons is important in the uptake of vitamin C, an essential molecule for the fetal brain physiology. Vitamin C that is found at high concentration in fetal brain may function in preventing oxidative free radical damage, because antioxidant radical enzymes mature only late in the developing brain.
Collapse
Affiliation(s)
- M Castro
- Department of Embryology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Santhanagopal A, Dixon SJ. Insulin-like growth factor I rapidly enhances acid efflux from osteoblastic cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E423-32. [PMID: 10484353 DOI: 10.1152/ajpendo.1999.277.3.e423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor I (IGF-I) is thought to stimulate bone resorption indirectly through a primary effect on osteoblasts, which in turn activate osteoclasts by as-yet-unidentified mechanisms. Small decreases in extracellular pH (pHo) dramatically increase the resorptive activity of osteoclasts. Our purpose was to characterize the effect of IGF-I on acid production by osteoblastic cells. When confluent, UMR-106 osteoblast-like cells and rat calvarial cells acidified the compartment beneath them. Superfusion with IGF-I caused a further decrease in pHo. To investigate the mechanism, we monitored acid efflux from subconfluent cultures. IGF-I rapidly increased net efflux of H+ equivalents in a concentration-dependent manner. IGF-II (10 nM) evoked a smaller response than IGF-I (10 nM). The response to IGF-I was partially dependent on extracellular Na+, but not glucose, and exhibited little if any desensitization. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, abolished the response to IGF-I but not to parathyroid hormone. Thus IGF-I enhances acid efflux from osteoblastic cells, via a signaling pathway dependent on activation of phosphatidylinositol 3-kinase. In vivo, acidification of the compartment between the osteogenic cell layer and the bone matrix may affect diverse processes, including mineralization and osteoclastic bone resorption.
Collapse
Affiliation(s)
- A Santhanagopal
- Department of Physiology and Division of Oral Biology, School of Dentistry, Faculty of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
25
|
Kodaman PH, Behrman HR. Hormone-regulated and glucose-sensitive transport of dehydroascorbic acid in immature rat granulosa cells. Endocrinology 1999; 140:3659-65. [PMID: 10433224 DOI: 10.1210/endo.140.8.6938] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ascorbic acid is concentrated in granulosa cells of the follicle, and ascorbate deficiency causes follicular atresia. Dehydroascorbic acid (DHAA), the oxidized form of ascorbic acid, serves as an important source for the recycling of ascorbate. As we previously demonstrated endocrine up-regulation of ascorbic acid transport by granulosa cells, we investigated DHAA as an alternate source of ascorbate in the follicle. Granulosa cells were cultured for 24 h, and DHAA uptake was initiated by the addition of 14C-labeled ascorbic acid (300 microM) in the presence of ascorbic acid oxidase (2 U/ml), which catalyzes DHAA production. Almost 90% of accumulated DHAA was present as ascorbic acid within 2 h. Preculture of cells for 24 h with FSH (50 ng/ml) and IGF-I (30 ng/ml) significantly stimulated DHAA uptake compared with the control (158 +/- 16 vs. 43 +/- 8 pmol/10(6) cells, respectively). DHAA uptake by granulosa cells was inhibited by D-glucose (ID50, approximately 2.5 mM) and by the glucose transport inhibitors phloretin (200 microM) and cytochalasin B (10 microM), which reduced uptake to 13 +/- 2% and 8 +/- 3% of the control, respectively. Northern and Western analysis of GLUT1 in granulosa cells following 24 h coincubation with FSH and IGF-I revealed up-regulation of GLUT1 at both the messenger RNA and protein levels (1.6- and 1.3-fold of control, respectively), suggesting that the stimulatory effects of FSH and IGF-I on DHAA transport are mediated by the induction of GLUT1. GLUT4 protein was not detectable by Western analysis. Endocrine-regulated DHAA transport may represent an important mechanism for maintaining adequate antioxidant tone within the developing follicle.
Collapse
Affiliation(s)
- P H Kodaman
- Department of Obstetrics/Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA.
| | | |
Collapse
|
26
|
Laggner H, Besau V, Goldenberg H. Preferential uptake and accumulation of oxidized vitamin C by THP-1 monocytic cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:659-65. [PMID: 10411625 DOI: 10.1046/j.1432-1327.1999.00403.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
THP-1 cells preferentially accumulate vitamin C in its oxidized form. The uptake displays first-order kinetics and leads to a build-up of an outward concentration gradient which is stable in the absence of extracellular vitamin. The transport is faster than reduction by extracellular glutathione or by added cytosolic extract, and glutathione-depleted cells show the same uptake rates as control cells. In addition, energy depletion or oxidation of intracellular sulfhydryls does not inhibit accumulation of ascorbate. The accumulation, however, always occurs in the reduced form. The affinity for dehydroascorbate is lower (Km 450 microM vs 60 microM) than for reduced ascorbate, but the maximal rate is more than 30 times higher (581 compared to 19 pmol.min-1 per 106 cells), and it is independent of sodium, whereas the uptake of ascorbate is not. The sodium gradient also allows accumulation of reduced ascorbate. Inhibitors of glucose transport by the GLUT-1 transporter also inhibit uptake of dehydroascorbate (DHA), but there are some inconsistencies, because the Ki-values are higher than reported for the isolated transporter and one inhibitor (deoxyglucose) is noncompetitive. The preferential uptake of the dehydro-form of the vitamin may be useful for situations where this short-lived metabolite is formed by oxidation in the environment.
Collapse
Affiliation(s)
- H Laggner
- Institut für Medizinische Chemie, University of Vienna, Austria
| | | | | |
Collapse
|