1
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Misch M, Puthanveetil P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int J Mol Sci 2022; 23:ijms23105439. [PMID: 35628271 PMCID: PMC9141226 DOI: 10.3390/ijms23105439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Leptin is a well-known hunger-sensing peptide hormone. The role of leptin in weight gain and metabolic homeostasis has been explored for the past two decades. In this review, we have tried to shed light upon the impact of leptin signaling on health and diseases. At low or moderate levels, this peptide hormone supports physiological roles, but at chronically higher doses exhibits detrimental effects on various systems. The untoward effects we observe with chronically higher levels of leptin are due to their receptor-mediated effect or due to leptin resistance and are not well studied. This review will help us in understanding the non-anorexic roles of leptin, including their contribution to the metabolism of various systems and inflammation. We will be able to get an alternative perspective regarding the physiological and pathological roles of this mysterious peptide hormone.
Collapse
Affiliation(s)
- Monica Misch
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Prasanth Puthanveetil
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence: ; Tel.: +1-630-960-3935
| |
Collapse
|
3
|
LaBranche TP, Kopec AK, Mantena SR, Hollingshead BD, Harrington AW, Stewart ZS, Zhan Y, Hayes KD, Whiteley LO, Burdick AD, Davis JW. Zucker Lean Rats With Hepatic Steatosis Recapitulate Asymptomatic Metabolic Syndrome and Exhibit Greater Sensitivity to Drug-Induced Liver Injury Compared With Standard Nonclinical Sprague-Dawley Rat Model. Toxicol Pathol 2020; 48:994-1007. [PMID: 33252024 DOI: 10.1177/0192623320968716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty liver disease is a potential risk factor for drug-induced liver injury (DILI). Despite advances in nonclinical in vitro and in vivo models to assess liver injury during drug development, the pharmaceutical industry is still plagued by idiosyncratic DILI. Here, we tested the hypothesis that certain features of asymptomatic metabolic syndrome (namely hepatic steatosis) increase the risk for DILI in certain phenotypes of the human population. Comparison of the Zucker Lean (ZL) and Zucker Fatty rats fed a high fat diet (HFD) revealed that HFD-fed ZL rats developed mild hepatic steatosis with compensatory hyperinsulinemia without increases in liver enzymes. We then challenged steatotic HFD-fed ZL rats and Sprague-Dawley (SD) rats fed normal chow, a nonclinical model widely used in the pharmaceutical industry, with acetaminophen overdose to induce liver injury. Observations in HFD-fed ZL rats included increased liver injury enzymes and greater incidence and severity of hepatic necrosis compared with similarly treated SD rats. The HFD-fed ZL rats also had disproportionately higher hepatic drug accumulation, which was linked with abnormal hepatocellular efflux transporter distribution. Here, we identify ZL rats with HFD-induced hepatic steatosis as a more sensitive nonclinical in vivo test system for modeling DILI compared with SD rats fed normal chow.
Collapse
Affiliation(s)
- Timothy P LaBranche
- 376392Pfizer Inc, Cambridge, MA, USA.,Blueprint Medicines, Cambridge, MA, USA.,*Timothy P. LaBranche and Anna K. Kopec contributed equally
| | - Anna K Kopec
- 2253Pfizer Inc, Groton, CT, USA.,*Timothy P. LaBranche and Anna K. Kopec contributed equally
| | | | | | - Andrew W Harrington
- 2253Pfizer Inc, Chesterfield, MO, USA.,Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Zachary S Stewart
- 2253Pfizer Inc, Andover, MA, USA.,Hooke Laboratories, Lawrence, MA, USA
| | | | - Kyle D Hayes
- 2253Pfizer Inc, Andover, MA, USA.,Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA
| | | | | | - John W Davis
- 376392Pfizer Inc, Cambridge, MA, USA.,Dyne Therapeutics, Waltham, MA, USA
| |
Collapse
|
4
|
Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020; 10:811-837. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene-related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G-protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811-837, 2020.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Abstract
Many animal models that are currently used in appetite and obesity research share at least some main features of human obesity and its comorbidities. Hence, even though no animal model replicates all aspects of "common" human obesity, animal models are imperative in studying the control of energy balance and reasons for its imbalance that may eventually lead to overt obesity. The most frequently used animal models are small rodents that may be based on mutations or manipulations of individual or several genes and on the exposure to obesogenic diets or other manipulations that predispose the animals to gaining or maintaining excessive weight. Characteristics include hyperphagia or changes in energy metabolism and at least in some models the frequent comorbidities of obesity, like hyperglycemia, insulin resistance, or diabetes-like syndromes. Some of the most frequently used animal models of obesity research involve animals with monogenic mutations of the leptin pathway which in fact are useful to study specific mechanistic aspects of eating controls, but typically do not recapitulate "common" obesity in the human population. Hence, this review will mention advantages and disadvantages of respective animal models in order to build a basis for the most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
7
|
Zhou W, Xu H, Zhan L, Lu X, Zhang L. Dynamic Development of Fecal Microbiome During the Progression of Diabetes Mellitus in Zucker Diabetic Fatty Rats. Front Microbiol 2019; 10:232. [PMID: 30837966 PMCID: PMC6382700 DOI: 10.3389/fmicb.2019.00232] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Although substantial efforts have been made to link the gut microbiota to type 2 diabetes, dynamic changes in the fecal microbiome under the pathological conditions of diabetes have not been investigated. Methods: Four male Zucker diabetic fatty (ZDF) rats received Purina 5008 chow [protein = 23.6%, Nitrogen-Free Extract (by difference) = 50.3%, fiber (crude) = 3.3%, ash = 6.1%, fat (ether extract) = 6.7%, and fat (acid hydrolysis) = 8.1%] for 8 weeks. A total of 32 stool samples were collected from weeks 8 to 15 in four rats. To decipher the microbial populations in these samples, we used a 16S rRNA gene sequencing approach. Results: Microbiome analysis showed that the changes in the fecal microbiome were associated with age and disease progression. In all the stages from 8 to 15 weeks, phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria primarily dominated the fecal microbiome of the rats. Although Lactobacillus and Turicibacter were the predominant genera in 8- to 10-week-old rats, Bifidobacterium, Lactobacillus, Ruminococcus, and Allobaculum were the most abundant genera in 15-week-old rats. Of interest, compared to the earlier weeks, relatively greater diversity (at the genus level) was observed at 10 weeks of age. Although the microbiome of 12-week-old rats had the highest diversity, the diversity in 13–15-week-old rats was reduced. Spearman’s correlation analysis showed that F/B was negatively correlated with age. Random blood glucose was negatively correlated with Lactobacillus and Turicibacter but positively correlated with Ruminococcus and Allobaculum and Simpson’s diversity index. Conclusion: We demonstrated the time-dependent alterations of the abundance and diversity of the fecal microbiome during the progression of diabetes in ZDF rats. At the genus level, dynamic changes were observed. We believe that this work will enhance our understanding of fecal microbiome development in ZDF rats and help to further analyze the role of the microbiome in metabolic diseases. Furthermore, our work may also provide an effective strategy for the clinical treatment of diabetes through microbial intervention.
Collapse
Affiliation(s)
- Wen Zhou
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiying Xu
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
| | - Lijing Zhang
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Duffy S, Lutz TA, Boyle CN. Rodent models of leptin receptor deficiency are less sensitive to amylin. Am J Physiol Regul Integr Comp Physiol 2018; 315:R856-R865. [DOI: 10.1152/ajpregu.00179.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic hormone amylin is released from beta cells following nutrient ingestion and contributes to the control of body weight and glucose homeostasis. Amylin reduces food intake by activating neurons in the area postrema (AP). Amylin was also shown to synergize with the adipokine leptin, with combination therapy producing greater weight loss and food intake reduction than either hormone alone. Although amylin and leptin were initially thought to interact downstream of the AP in the hypothalamus, recent findings show that the two hormones can act on the same AP neurons, suggesting a more direct relationship. The objective of this study was to determine whether amylin action depends on functional leptin signaling. We tested the ability of amylin to induce satiation and to activate its primary target neurons in the AP in two rodent models of LepR deficiency, the db/db mouse and the Zucker diabetic fatty (ZDF) rat. When compared with wild-type (WT) mice, db/db mice exhibited reduced amylin-induced satiation, reduced amylin-induced Fos in the AP, and a lower expression of calcitonin receptor (CTR) protein, the core component of all amylin receptors. ZDF rats also showed no reduction in food intake following amylin treatment; however, unlike the db/db mice, levels of amylin-induced Fos and CTR in the AP were no different than WT rats. Our results suggest that LepR expression is required for the full anorexic effect of amylin; however, the neuronal activation in the AP seems to depend on the type of LepR mutation.
Collapse
Affiliation(s)
- Sonya Duffy
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christina N. Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Gu C, Yang Y, Xiang H, Li S, Liang L, Sui H, Zhan L, Lu X. Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget 2018; 7:48941-48952. [PMID: 27418144 PMCID: PMC5226482 DOI: 10.18632/oncotarget.10597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
The aim of the present pilot study was deciphering bacterial community changes in Zucker diabetic fatty rats (ZDF rats), a model of type 2 diabetes. Recent studies unmasked that the status of gastrointestinal tract microbiota has a marked impact on nutrition-related syndromes such as obesity and type-2 diabetes (T2D). In this study, samples taken from the gastrointestinal tracts (GI tracts) of ZDF and their lean littermates (ZL rats) were subjected to 16S rRNA gene sequence-based analysis to examine the characteristic bacterial communities, including those located in the stomach, duodenum, jejunum, ileum, cecum and feces. Results revealed that the Firmicutes/Bacteroidetes ratio was increased and greater numbers of Lactobacillus were detected along GI tracts in ZDF rats compared to ZL rats. In conclusion, this work is the first study to systematically characterize bacterial communities along ZDF rat GI tract and provides substantial evidence supporting a prospective strategy to alter the GI microbial communities improving obesity and T2D.
Collapse
Affiliation(s)
- Chunyan Gu
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ye Yang
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Xiang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shu Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lina Liang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hua Sui
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Libin Zhan
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Abstract
Obesity is a major global epidemic that sets the stage for diverse multiple pathologies, including cardiovascular disease. The obesity-related low-grade chronic inflamed milieu is more pronounced in aging and responsive to cardiac dysfunction in heart failure pathology. Metabolic dysregulation of obesity integrates with immune reservoir in spleen and kidney network. Therefore, an integrative systems biology approach is necessary to delay progressive cardiac alternations. The purpose of this comprehensive review is to largely discuss the impact of obesity on the cardiovascular pathobiology in the context of problems and challenges, with major emphasis on the diversified models, and to study cardiac remodeling in obesity. The information in this article is immensely helpful in teaching advanced undergraduate, graduate, and medical students about the advancement and impact of obesity on cardiovascular health. © 2017 American Physiological Society. Compr Physiol 7:1463-1477, 2017.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, USA
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
11
|
Abstract
Leptin is an adipose-derived cytokine that has an important role in bodyweight homeostasis and energy balance. There are a number of studies which have suggested that leptin and its receptors dysregulation play a critical role in the development of malignancies including hematological malignancies, mainly via activation of the JAK/STAT pathway which regulates downstream signaling pathways such as PI3K/AKT signaling and ERK1/2. In this review, current understandings of leptin/leptin receptors mediated pathogenesis in various lymphoid malignancies are described. Blocking of the leptin receptor might be a unique therapeutic approach for many hematological malignancies.
Collapse
Affiliation(s)
- Shahab Uddin
- a Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- a Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
12
|
Kitamura E, Kanazawa N, Hamada J. Hyperleptinemia increases the susceptibility of the cortex to generate cortical spreading depression. Cephalalgia 2014; 35:327-34. [PMID: 25053746 DOI: 10.1177/0333102414540813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Obesity is a risk factor for episodic migraine to develop into chronic migraine; hence, it is speculated that obesity and hyperleptinemia are associated with migraine. We hypothesized that leptin is involved in the mechanisms of cortical spreading depression (CSD). Therefore, we examined whether leptin affected a rat model of CSD to clarify the relationship between leptin and migraine. METHODS We evaluated the effect of intracerebroventricular (ICV) administration of leptin on a rat CSD model. We then examined whether once-a-day intraperitoneal administration of leptin for seven days (as a chronic hyperleptinemia model) affected rat CSD models. Finally, we induced CSD in Zucker fatty (ZF) rats, which is a well-known model of obesity. RESULTS In the parietal cortex, the percent change in cerebral blood flow and direct current (DC) potential decreased after ICV administration of leptin. A similar decrease in DC potential was observed in rats treated with intraperitoneal leptin. The number of CSDs increased significantly in rats given intraperitoneal leptin and in ZF rats. CONCLUSIONS The present study suggests that leptin is involved in the mechanisms of CSD.
Collapse
Affiliation(s)
- Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Japan
| | - Naomi Kanazawa
- Department of Neurology, Kitasato University School of Medicine, Japan
| | - Junichi Hamada
- Department of Neurology, Kitasato University School of Medicine, Japan
| |
Collapse
|
13
|
Peralta-Ramírez A, Montes de Oca A, Raya AI, Pineda C, López I, Guerrero F, Diez E, Muñoz-Castañeda JR, Martinez J, Almaden Y, Rodríguez M, Aguilera-Tejero E. Vitamin E protection of obesity-enhanced vascular calcification in uremic rats. Am J Physiol Renal Physiol 2014; 306:F422-9. [DOI: 10.1152/ajprenal.00355.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study aimed to determine the extent of extraskeletal calcification in uremic Zucker rats, by comparing obese and lean phenotypes, and to evaluate the influence of vitamin E (VitE) on the development of calcifications in both uremic rats and human vascular smooth muscle cells (HVSMCs) cultured in vitro. Zucker rats of lean and obese phenotypes with normal renal function [control (C); C-lean and C-obese groups] and with uremia [5/6 nephrectomy (Nx); Nx-lean and Nx-obese groups] and uremic rats treated with VitE (Nx-lean + VitE and Nx-obese + VitE groups) were studied. Uremic groups were subjected to Nx, fed a 0.9% phosphorus diet, and treated with calcitriol (80 ng/kg ip). The aortic calcium concentration was significantly higher ( P < 0.05) in Nx-obese rats (10.0 ± 2.1 mg/g tissue) than in Nx-lean rats (3.6 ± 1.3 mg/g tissue). A decrease in plasma glutathione peroxidase activity was observed in Nx-obese rats compared with Nx-lean rats (217.2 ± 18.2 vs. 382.3 ± 15.5 nmol·min−1·ml−1, P < 0.05). Treatment with VitE restored glutathione peroxidase activity and reduced the aortic calcium concentration to 4.6 ± 1.3 mg/g tissue. The differences in mineral deposition between Nx-lean, Nx-obese, Nx-lean + VitE, and Nx-obese + VitE rats were also evidenced in other soft tissues. In HVSMCs incubated with high phosphate, VitE also prevented oxidative stress and reduced calcium content, bone alkaline phosphatase, and gene expression of core-binding factor-α1. In conclusion, uremic obese rats develop more severe calcifications than uremic lean rats and VitE reduces oxidative stress and vascular calcifications in both rats and cultures of HVSMCs.
Collapse
Affiliation(s)
- A. Peralta-Ramírez
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
- Escuela de Medicina Veterinaria, Universidad Nacional Autónoma de Nicaragua, Leon, Nicaragua
| | - A. Montes de Oca
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - A. I. Raya
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - C. Pineda
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - I. López
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - F. Guerrero
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - E. Diez
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | - J. R. Muñoz-Castañeda
- Unidad de Investigacion y Servicio de Nefrología (Red in Ren), Instituto Sanitario de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - J. Martinez
- Unidad de Investigacion y Servicio de Nefrología (Red in Ren), Instituto Sanitario de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Y. Almaden
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and Centros de Investigación Biomédica en Red Fisiopatologia Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain; and
| | - M. Rodríguez
- Unidad de Investigacion y Servicio de Nefrología (Red in Ren), Instituto Sanitario de Investigación Biomédica de Córdoba (IMIBIC)/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - E. Aguilera-Tejero
- Departmento Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| |
Collapse
|
14
|
Abstract
The focus of this overview is on the animal models of obesity most commonly utilized in research. The models include monogenic models in the leptin pathway, polygenic diet-dependent models, and, in particular for their historical perspective, surgical and chemical models of obesity. However, there are far too many models to consider all of them comprehensively, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, the generation and use of inducible transgenic animals (induced knock-out or knock-in) is not covered, even though they often carry significant advantages compared to traditional transgenic animals, e.g., influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this unit.
Collapse
Affiliation(s)
- Thomas A Lutz
- University of Zurich, Institute of Veterinary Physiology, Zurich Center of Integrative Human Physiology, Zurich, Switzerland
| | | |
Collapse
|
15
|
Ribeiro RJT, Monteiro CPD, Azevedo ASM, Cunha VFM, Ramanakumar AV, Fraga AM, Pina FM, Lopes CMS, Medeiros RM, Franco EL. Performance of an adipokine pathway-based multilocus genetic risk score for prostate cancer risk prediction. PLoS One 2012; 7:e39236. [PMID: 22792137 PMCID: PMC3387135 DOI: 10.1371/journal.pone.0039236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/17/2012] [Indexed: 12/25/2022] Open
Abstract
Few biomarkers are available to predict prostate cancer risk. Single nucleotide polymorphisms (SNPs) tend to have weak individual effects but, in combination, they have stronger predictive value. Adipokine pathways have been implicated in the pathogenesis. We used a candidate pathway approach to investigate 29 functional SNPs in key genes from relevant adipokine pathways in a sample of 1006 men eligible for prostate biopsy. We used stepwise multivariate logistic regression and bootstrapping to develop a multilocus genetic risk score by weighting each risk SNP empirically based on its association with disease. Seven common functional polymorphisms were associated with overall and high-grade prostate cancer (Gleason≥7), whereas three variants were associated with high metastatic-risk prostate cancer (PSA≥20 ng/mL and/or Gleason≥8). The addition of genetic variants to age and PSA improved the predictive accuracy for overall and high-grade prostate cancer, using either the area under the receiver-operating characteristics curves (P<0.02), the net reclassification improvement (P<0.001) and integrated discrimination improvement (P<0.001) measures. These results suggest that functional polymorphisms in adipokine pathways may act individually and cumulatively to affect risk and severity of prostate cancer, supporting the influence of adipokine pathways in the pathogenesis of prostate cancer. Use of such adipokine multilocus genetic risk score can enhance the predictive value of PSA and age in estimating absolute risk, which supports further evaluation of its clinical significance.
Collapse
Affiliation(s)
- Ricardo J T Ribeiro
- Molecular Oncology Group-CI, Portuguese Institute of Oncology, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gálvez-Prieto B, Somoza B, Gil-Ortega M, García-Prieto CF, de Las Heras AI, González MC, Arribas S, Aranguez I, Bolbrinker J, Kreutz R, Ruiz-Gayo M, Fernández-Alfonso MS. Anticontractile Effect of Perivascular Adipose Tissue and Leptin are Reduced in Hypertension. Front Pharmacol 2012; 3:103. [PMID: 22679436 PMCID: PMC3367267 DOI: 10.3389/fphar.2012.00103] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022] Open
Abstract
Leptin causes vasodilatation both by endothelium-dependent and -independent mechanisms. Leptin is synthesized by perivascular adipose tissue (PVAT). The hypothesis of this study is that a decrease of leptin production in PVAT of spontaneously hypertensive rats (SHR) might contribute to a diminished paracrine anticontractile effect of the hormone. We have determined in aorta from Wistar-Kyoto (WKY) and SHR (i) leptin mRNA and protein levels in PVAT, (ii) the effect of leptin and PVAT on contractile responses, and (iii) leptin-induced relaxation and nitric oxide (NO) production. Leptin mRNA and protein expression were significantly lower in PVAT from SHR. Concentration-response curves to angiotensin II were significantly blunted in presence of PVAT as well as by exogenous leptin (10−9 M) only in WKY. This anticontractile effect was endothelium-dependent. Vasodilatation induced by leptin was smaller in SHR than in WKY, and was also endothelium-dependent. Moreover, release of endothelial NO in response to acute leptin was higher in WKY compared to SHR, but completely abolished in the absence of endothelium. In conclusion, the reduced anticontractile effect of PVAT in SHR might be attributed to a reduced PVAT-derived leptin and to an abrogated effect of leptin on endothelial NO release probably due to an impaired activation of endothelial NO synthase.
Collapse
Affiliation(s)
- Beatriz Gálvez-Prieto
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gálvez-Prieto B, Somoza B, Gil-Ortega M, García-Prieto CF, de Las Heras AI, González MC, Arribas S, Aranguez I, Bolbrinker J, Kreutz R, Ruiz-Gayo M, Fernández-Alfonso MS. Anticontractile Effect of Perivascular Adipose Tissue and Leptin are Reduced in Hypertension. Front Pharmacol 2012. [PMID: 22679436 DOI: 10.3389/fphar] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Leptin causes vasodilatation both by endothelium-dependent and -independent mechanisms. Leptin is synthesized by perivascular adipose tissue (PVAT). The hypothesis of this study is that a decrease of leptin production in PVAT of spontaneously hypertensive rats (SHR) might contribute to a diminished paracrine anticontractile effect of the hormone. We have determined in aorta from Wistar-Kyoto (WKY) and SHR (i) leptin mRNA and protein levels in PVAT, (ii) the effect of leptin and PVAT on contractile responses, and (iii) leptin-induced relaxation and nitric oxide (NO) production. Leptin mRNA and protein expression were significantly lower in PVAT from SHR. Concentration-response curves to angiotensin II were significantly blunted in presence of PVAT as well as by exogenous leptin (10(-9) M) only in WKY. This anticontractile effect was endothelium-dependent. Vasodilatation induced by leptin was smaller in SHR than in WKY, and was also endothelium-dependent. Moreover, release of endothelial NO in response to acute leptin was higher in WKY compared to SHR, but completely abolished in the absence of endothelium. In conclusion, the reduced anticontractile effect of PVAT in SHR might be attributed to a reduced PVAT-derived leptin and to an abrogated effect of leptin on endothelial NO release probably due to an impaired activation of endothelial NO synthase.
Collapse
Affiliation(s)
- Beatriz Gálvez-Prieto
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li AJ, Wiater MF, Oostrom MT, Smith BR, Wang Q, Dinh TT, Roberts BL, Jansen HT, Ritter S. Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1313-26. [PMID: 22492818 DOI: 10.1152/ajpregu.00086.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural sites that interact with the suprachiasmatic nuclei (SCN) to generate rhythms of unrestricted feeding remain unknown. We used the targeted toxin, leptin conjugated to saporin (Lep-SAP), to examine the importance of leptin receptor-B (LepR-B)-expressing neurons in the arcuate nucleus (Arc) for generation of circadian feeding rhythms. Rats given Arc Lep-SAP injections were initially hyperphagic and rapidly became obese (the "dynamic phase" of weight gain). During this phase, Lep-SAP rats were arrhythmic under 12:12-h light-dark (LD) conditions, consuming 59% of their total daily intake during the daytime, compared with 36% in blank-SAP (B-SAP) controls. Lep-SAP rats were also arrhythmic in continuous dark (DD), while significant circadian feeding rhythms were detected in all B-SAP controls. Approximately 8 wk after injection, Lep-SAP rats remained obese but transitioned into a "static phase" of weight gain marked by attenuation of their hyperphagia and rate of weight gain. In this phase, Arc Lep-SAP rats exhibited circadian feeding rhythms under LD conditions, but were arrhythmic in continuous light (LL) and DD. Lep-SAP injections into the ventromedial hypothalamic nucleus did not cause hyperphagia, obesity, or arrhythmic feeding in either LD or DD. Electrolytic lesion of the SCN produced feeding arrhythmia in DD but not hyperphagia or obesity. Results suggest that both Arc Lep-SAP neurons and SCN are required for generation of feeding rhythms entrained to photic cues, while also revealing an essential role for the Arc in maintaining circadian rhythms of ad libitum feeding independent of light entrainment.
Collapse
Affiliation(s)
- Ai-Jun Li
- Dept. of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State Univ., Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matheny M, Shapiro A, Tümer N, Scarpace PJ. Region-specific diet-induced and leptin-induced cellular leptin resistance includes the ventral tegmental area in rats. Neuropharmacology 2010; 60:480-7. [PMID: 21059361 DOI: 10.1016/j.neuropharm.2010.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 01/26/2023]
Abstract
Diet-induced obesity (DIO) results in region-specific cellular leptin resistance in the arcuate nucleus (ARC) of the hypothalamus in one strain of mice and in several medial basal hypothalamic regions in another. We hypothesized that the ventral tegmental area (VTA) is also likely susceptible to diet-induced and leptin-induced leptin resistance in parallel to that in hypothalamic areas. We examined two forms of leptin resistance in F344xBN rats, that induced by 6-months of high fat (HF) feeding and that induced by 15-months of central leptin overexpression by use of recombinant adeno-associated viral (rAAV)-mediated gene delivery of rat leptin. Cellular leptin resistance was assessed by leptin-stimulated phosphorylation of signal transducers and activators of transcription 3 (STAT3) in medial basal hypothalamic areas and the VTA. The regional pattern and degree of leptin resistance with HF was distinctly different than that with leptin overexpression. Chronic HF feeding induced a cellular leptin resistance that was identified in the ARC and VTA, but absent in the lateral hypothalamus (LH), ventromedial hypothalamus (VMH), and dorsomedial hypothalamus (DMH). In contrast, chronic central leptin overexpression induced cellular leptin resistance in all areas examined. The identification of leptin resistance in the VTA, in addition to the leptin resistance in the hypothalamus, provides one potential mechanism, underlying the increased susceptibility of leptin resistant rats to HF-induced obesity.
Collapse
Affiliation(s)
- M Matheny
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
20
|
Leptin inhibits the proliferation of vascular smooth muscle cells induced by angiotensin II through nitric oxide-dependent mechanisms. Mediators Inflamm 2010; 2010:105489. [PMID: 20592755 PMCID: PMC2879542 DOI: 10.1155/2010/105489] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 11/27/2022] Open
Abstract
Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang) II-induced proliferation of aortic vascular smooth muscle cells (VSMCs) from 10-week-old male Wistar and spontaneously hypertensive rats (SHR), and the possible role of nitric oxide (NO). Methods. NO and NO synthase (NOS) activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS) and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.
Collapse
|
21
|
Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab 2009; 10:355-65. [PMID: 19883614 DOI: 10.1016/j.cmet.2009.09.002] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 07/07/2009] [Accepted: 09/15/2009] [Indexed: 12/18/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.
Collapse
|
22
|
Matheny M, Zhang Y, Shapiro A, Tümer N, Scarpace PJ. Central overexpression of leptin antagonist reduces wheel running and underscores importance of endogenous leptin receptor activity in energy homeostasis. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1254-61. [PMID: 19726711 DOI: 10.1152/ajpregu.90449.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We used recombinant adeno-associated virus (rAAV)-mediated gene delivery to overexpress a mutant of rat leptin yielding a protein that acts as a neutral leptin receptor antagonist. The long-term consequences of this overexpression on body weight homeostasis and physical activity, as assessed by voluntary wheel running (WR), were determined in F344 x Brown Norway (BN) rats. Leptin antagonist overexpression was confirmed by examination of mRNA levels in the hypothalamus. Food consumption and body weight gain were exacerbated in the antagonist group during both chow and high-fat feeding periods over the 192-day experiment. In a second experiment, a lower dose of antagonist vector was used that resulted in no change in food consumption but still increased body weight. The degree of antagonist overexpression was sufficient to partially block signal transducer and activator of transcription 3 (STAT3) phosphorylation due to administration of an acute submaximal dose of leptin. Rats were provided free access to running wheels for 4 days during both the chow and high-fat feeding periods. With both antagonist doses and during both chow and high-fat feeding, WR was substantially less with antagonist overexpression. In contrast, when leptin was overexpressed in the hypothalamus, WR activity was increased by greater than twofold. At death, adiposity and serum leptin levels were greater in the antagonist group. These data indicate that submaximal central leptin receptor blockade promotes obesity and diminishes WR activity. These findings underscore the critical role of unrestrained leptin receptor activity in long-term energy homeostasis and suggest that even minor disruption of leptin receptor function can promote obesity.
Collapse
Affiliation(s)
- Michael Matheny
- Department of Pharmacology and Therapeutic, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
23
|
Livingstone DEW, Grassick SL, Currie GL, Walker BR, Andrew R. Dysregulation of glucocorticoid metabolism in murine obesity: comparable effects of leptin resistance and deficiency. J Endocrinol 2009; 201:211-8. [PMID: 19223399 PMCID: PMC2674682 DOI: 10.1677/joe-09-0003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In obese humans, metabolism of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) and A-ring reduction (by 5 alpha- and 5 beta-reductases) is dysregulated in a tissue specific manner. These changes have been recapitulated in leptin resistant obese Zucker rats but were not observed in high-fat fed Wistar rats. Recent data from mouse models suggest that such discrepancies may reflect differences in leptin signalling. We therefore compared glucocorticoid metabolism in murine models of leptin deficiency and resistance. Male ob/ob and db/db mice and their respective littermate controls (n=10-12/group) were studied at the age of 12 weeks. Enzyme activities and mRNA expression were quantified in snap-frozen tissues. The patterns of altered pathways of steroid metabolism in obesity were similar in ob/ob and db/db mice. In liver, 5 beta-reductase activity and mRNA were increased and 11 beta-HSD1 decreased in obese mice, whereas 5 alpha-reductase 1 (5 alpha R1) mRNA was not altered. In visceral adipose depots, 5 beta-reductase was not expressed, 11 beta-HSD1 activity was increased and 5 alpha R1 mRNA was not altered in obesity. By contrast, in subcutaneous adipose tissue 11 beta-HSD1 and 5 alpha R1 mRNA were decreased. Systematic differences were not found between ob/ob and db/db murine models of obesity, suggesting that variations in leptin signalling through the short splice variant of the Ob receptor do not contribute to dysregulation of glucocorticoid metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Ruth Andrew
- (Correspondence should be addressed to R Andrew; )
| |
Collapse
|
24
|
Abstract
Animal obesity models differ widely in type and extent of obesity. They are either based on environmental factors (e.g., high-fat diet-induced obesity), spontaneous mutants (i.e., ob/ob mice), genetically engineered animals (e.g., mice with melanocortin receptor subtype-4 gene disruption (knock-out), or mechanical intervention (e.g., chemical lesion of the ventromedial hypothalamus). This unit reviews available rodent models to study obesity and attempts to highlight the greatest utility for each model.
Collapse
|
25
|
Increase in Ghrelin Levels After Weight Loss in Obese Zucker Rats is Prevented by Gastric Banding. Obes Surg 2007; 17:1599-607. [DOI: 10.1007/s11695-007-9324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/13/2007] [Indexed: 01/11/2023]
|
26
|
Williams KW, Zsombok A, Smith BN. Rapid inhibition of neurons in the dorsal motor nucleus of the vagus by leptin. Endocrinology 2007; 148:1868-81. [PMID: 17194747 PMCID: PMC3761087 DOI: 10.1210/en.2006-1098] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The peptide leptin conveys the availability of adipose energy stores to the brain. Increasing evidence implicates a significant role for extrahypothalamic sites of leptin action, including the dorsal vagal complex, a region critical for regulating visceral parasympathetic function. The hypothesis that leptin suppresses cellular activity in the dorsal motor nucleus of the vagus nerve (DMV) was tested using whole-cell patch-clamp recordings in brainstem slices. Leptin caused a rapid membrane hyperpolarization in 50% of rat DMV neurons. Leptin also hyperpolarized a subset of gastric-related neurons (62%), identified after gastric inoculation with a transneuronal retrograde viral tracer. The hyperpolarization was associated with a decrease in input resistance and cellular responsiveness and displayed characteristics consistent with an increased K+ conductance. Perfusion of tolbutamide (200 microM) reversed the leptin-induced hyperpolarization, and tolbutamide or wortmannin (10-100 nM) prevented the hyperpolarization, indicating that leptin activated an ATP-sensitive K+ channel via a phosphoinositide-3-kinase-dependent mechanism. Leptin reduced the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs), whereas inhibitory postsynaptic currents (IPSCs) were largely unaffected. Electrical stimulation of the nucleus tractus solitarii (NTS) resulted in constant-latency EPSCs, which were decreased in amplitude by leptin. The paired-pulse ratio was increased, suggesting leptin effects involved activation of receptors presynaptic to the recorded neuron. A leptin-induced suppression of EPSCs, but not IPSCs, evoked by focal photolytic uncaging of glutamate within the NTS was also observed, supportive of leptin effects on the glutamatergic NTS projection to the DMV. Therefore, leptin directly hyperpolarized and indirectly suppressed excitatory synaptic activity to DMV neurons involved in visceral regulation, including gastric-related neurons.
Collapse
Affiliation(s)
- K W Williams
- Department of Physiology, University of Kentucky College of Medicine, MS-508 Chandler Medical Center, 800 Rose Street, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
27
|
de Assis S, Wang M, Goel S, Foxworth A, Helferich W, Hilakivi-Clarke L. Excessive weight gain during pregnancy increases carcinogen-induced mammary tumorigenesis in Sprague-Dawley and lean and obese Zucker rats. J Nutr 2006; 136:998-1004. [PMID: 16549464 DOI: 10.1093/jn/136.4.998] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive weight gain during pregnancy increases breast cancer risk in women. To determine whether this may be caused by increased pregnancy leptin levels, leptin receptor (Ob-Rb) mutant (fa/fa) and wild-type (FA/FA) female Zucker rats and Sprague-Dawley rats were fed during pregnancy an obesity-inducing high-fat diet (OID) that increased pregnancy weight gain, or a control diet. Because mutant Zucker rats do not readily become pregnant, their pregnancy was mimicked by exposing the rats to subcutaneous silastic capsules containing 150 microg of estradiol and 30 mg of progesterone for 3 wk. Sprague-Dawley rats underwent normal pregnancy. An assessment of hormone levels on gestation d 17 indicated that an exposure to the OID significantly elevated serum leptin concentration but did not affect those of estradiol or insulin-like growth factor 1 (IGF-1). Insulin and adiponectin levels were higher in the obese than lean Zucker rats, but were not related to pregnancy weight gain. Exposure to the OID during pregnancy increased 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis in all genetic backgrounds, including leptin receptor mutant Zucker rats. The results also indicated that obese Zucker rats that underwent mimicked pregnancy developed more palpable tumors and hyperplastic alveolar nodules that lean Zucker rats. Further, mammary epithelial cell proliferation assessed using PCNA staining was elevated in obese Zucker rats as was activation of mitogen-activated protein kinase (MAPK); however, neither of these 2 changes occurred in the context of excessive weight gain during pregnancy. It remains to be determined whether an increase in leptin levels was causally associated with an increase in the dams' mammary tumorigenesis, including in obese Zucker rats with dramatically reduced leptin signaling.
Collapse
Affiliation(s)
- Sonia de Assis
- Lombardi Cancer Center, Department of Oncology, Georgetown University, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
28
|
Williams KW, Smith BN. Rapid inhibition of neural excitability in the nucleus tractus solitarii by leptin: implications for ingestive behaviour. J Physiol 2006; 573:395-412. [PMID: 16581866 PMCID: PMC1779713 DOI: 10.1113/jphysiol.2006.106336] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The fat-derived peptide leptin regulates cellular activity in areas of the CNS related to feeding, and application of leptin to the fourth ventricle or the nucleus tractus solitarii (NTS) inhibits food intake and weight gain. The hypothesis that leptin modulates cellular activity in the NTS was tested using whole-cell patch-clamp recordings in brainstem slices. Leptin caused a rapid membrane hyperpolarization in 58% of rat NTS neurones, including neurones receiving tractus solitarius input (i.e. viscerosensory) and those involved in regulating output to the stomach, identified after gastric inoculation with a transneuronal retrograde viral label. The hyperpolarization was accompanied by a decrease in input resistance and cellular responsiveness, reversed near the K(+) equilibrium potential, and was prevented by intracellular Cs(+). Perfusion of tolbutamide (200 microm) or wortmannin (100-200 nm) prevented the hyperpolarization, indicating activation of an ATP-sensitive K(+) channel via a PI3 kinase-dependent mechanism. Constant latency tractus solitarius-evoked EPSCs were decreased in amplitude by leptin, and the paired-pulse ratio was increased, suggesting effects on evoked EPSCs involved activation of receptors on vagal afferent terminals. Leptin reduced the frequency of spontaneous and miniature EPSCs, whereas IPSCs were largely unaffected. Leptin's effects were observed in neurones from lean, but not obese, Zucker rats. Neurones that expressed enhanced green fluorescent protein (EGFP) in a subpopulation of putative GABAergic neurones in transgenic mice did not respond to leptin, whereas unlabelled murine neurones responded similarly to rat neurones. Leptin therefore directly and rapidly suppresses activity of excitatory NTS neurones likely to be involved in viscerosensory integration and/or premotor control of the stomach.
Collapse
Affiliation(s)
- K W Williams
- Department of Cell and Molecular Biology, Tulane University, 6400 Freret Street, New Orleans, LA 70118, USA
| | | |
Collapse
|
29
|
Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 2006; 116:1071-80. [PMID: 16528409 PMCID: PMC1395482 DOI: 10.1172/jci23354] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 01/05/2006] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models--insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet-induced insulin-resistant mice--inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance.
Collapse
Affiliation(s)
- Xueliang Du
- Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
Division of Endocrinology and Diabetes, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Diane Edelstein
- Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
Division of Endocrinology and Diabetes, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Silvana Obici
- Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
Division of Endocrinology and Diabetes, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ninon Higham
- Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
Division of Endocrinology and Diabetes, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ming-Hui Zou
- Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
Division of Endocrinology and Diabetes, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Michael Brownlee
- Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
Division of Endocrinology and Diabetes, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
30
|
Abstract
The discovery of leptin was a major breakthrough in our understanding of the role of adipose tissue as a storage and secretory organ. Leptin was initially thought to act mainly to prevent obesity; however, studies have demonstrated profound effects of leptin in the response to fasting, regulation of neuroendocrine and immune systems, hematopoiesis, bone and brain development. This review will focus on the signaling pathways which mediate these diverse effects of leptin in the brain and other physiologic systems.
Collapse
Affiliation(s)
- Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Pennsylvania School of Medicine, 415 Curie Boulevard, 764 Clinical Research Building, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
31
|
Harvey J. Leptin: a multifaceted hormone in the central nervous system. Mol Neurobiol 2004; 28:245-58. [PMID: 14709788 DOI: 10.1385/mn:28:3:245] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 05/12/2003] [Indexed: 11/11/2022]
Abstract
It is well established that the adipocyte-derived hormone leptin is an important circulating satiety factor that regulates body weight and food intake via its actions on specific hypothalamic nuclei. However, there is growing evidence that leptin and its receptors are widely expressed throughout the brain, in regions not generally associated with energy homeostasis, such as cortex, cerebellum, brainstem, basal ganglia, and hippocampus. In this review the author discusses recent advances made in leptin neurobiology, with particular emphasis on the role of this endocrine peptide in normal and pathophysiological hippocampal function.
Collapse
Affiliation(s)
- Jenni Harvey
- Department of Pharmacology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
32
|
Dobbins RL, Szczepaniak LS, Zhang W, McGarry JD. Chemical sympathectomy alters regulation of body weight during prolonged ICV leptin infusion. Am J Physiol Endocrinol Metab 2003; 284:E778-87. [PMID: 12626326 DOI: 10.1152/ajpendo.00128.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the importance of the sympathetic nervous system in regulating body weight during prolonged leptin infusion, we evaluated food intake, body weight, and physical activity in conscious, unrestrained rats. Initial studies illustrated that prolonged intracerebroventricular (ICV) infusion of leptin enhanced substrate oxidation so that adipose tissue lipid stores were completely ablated, and muscle triglyceride and liver glycogen stores were depleted. After neonatal chemical sympathectomy, changes in weight and food intake were compared in groups of sympathectomized (SYM) and control (CON) adult animals during ICV infusion of leptin. CON animals lost 60 +/- 9 g over 10 days vs. 25 +/- 3 g in the SYM animals when food intake was matched between the two groups. Greater weight loss despite similar energy intake points to an important role of the sympathetic nervous system in stimulating energy expenditure during ICV leptin infusion by increasing the resting metabolic rate, since no differences in physical activity were observed between CON and SYM groups. In conclusion, activation of the SNS by leptin increases energy expenditure by augmenting the resting metabolic rate.
Collapse
Affiliation(s)
- Robert L Dobbins
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9135, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
It is well established that the obese gene product, leptin is an important circulating satiety factor that signals nutritional status to specific hypothalamic nuclei involved in body weight regulation. However, evidence is accumulating that, in addition to its pivotal role as an adiposity signal, leptin is a multi-faceted hormone that plays an important role in a plethora of CNS functions. In this review we summarize the recent advances made in leptin biology, with particular focus on its potential role as a cognitive enhancer and antiepileptic agent in the hippocampus.
Collapse
Affiliation(s)
- Jenni Harvey
- Department of Pharmacology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
34
|
Yamamoto Y, Ueta Y, Yamashita H, Asayama K, Shirahata A. Expressions of the prepro-orexin and orexin type 2 receptor genes in obese rat. Peptides 2002; 23:1689-96. [PMID: 12217430 DOI: 10.1016/s0196-9781(02)00111-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the expressions of the prepro-orexin gene in the lateral hypothalamic area (LHA), the genes of the neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the arcuate nucleus (ARC), the orexin type 1 receptor (OX1R) gene in the ventromedial hypothalamic nucleus (VMH) and the orexin type 2 receptor (OX2R) gene in the paraventricular nucleus (PVN) in 6-, 12- and 18-week-old male lean (Fa/?) and obese (fa/fa) Zucker rats, using in situ hybridization histochemistry. The fa/fa rats showed hyperglycemia at 12- and 18-week-old. The prepro-orexin mRNA level in fa/fa rats at 18-week-old and the OX2R mRNA level in fa/fa rats at 12- and 18-week-old were significantly decreased compared to controls. The NPY mRNA levels in fa/fa rats at each time point were significantly increased compared to controls, but the POMC mRNA levels were decreased. Prepro-orexin and OX2R mRNA levels in fa/fa rats pretreated with insulin normalized to the levels found in Fa/? rats. These results suggest that the regulation of prepro-orexin gene expression might be independent of the regulation of the NPY and POMC genes in the ARC in fa/fa rats.
Collapse
Affiliation(s)
- Yukiyo Yamamoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
35
|
Hwa JJ, Ghibaudi L, Gao J, Parker EM. Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats. Am J Physiol Regul Integr Comp Physiol 2001; 281:R444-51. [PMID: 11448846 DOI: 10.1152/ajpregu.2001.281.2.r444] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanocortins play a critical role in appetite and body weight regulation, because manipulations of this pathway can lead to the development of obesity in several animal models. The purpose of this study was to use a melanocortin receptor agonist and antagonist to evaluate the involvement of melanocortins in feeding, energy metabolism, and body weight regulation in lean and obese Zucker rats. Central administration of a melanocortin receptor antagonist (SHU9119) elevated food intake and body weight of lean Zucker rats but had little effect in obese Zucker rats. In contrast, the melanocortin receptor agonist MTII reduced food intake in both lean and obese rats but was more potent in the obese Zucker rats. These data indicate the existence of functional melanocortin receptors in both lean and obese Zucker rats but suggest that obese Zucker rats have reduced endogenous melanocortin tone. In addition to its effects on food intake, MTII infusion elevated oxygen consumption and decreased respiratory quotient dose dependently during the light cycle. Our data suggest that a melanocortin receptor agonist can induce weight loss by increasing energy expenditure and promoting body fat utilization in addition to its inhibitory effects on food intake in both obese and lean Zucker rats.
Collapse
Affiliation(s)
- J J Hwa
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, USA.
| | | | | | | |
Collapse
|
36
|
Overton JM, Williams TD, Chambers JB, Rashotte ME. Cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1007-15. [PMID: 11247821 DOI: 10.1152/ajpregu.2001.280.4.r1007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.
Collapse
Affiliation(s)
- J M Overton
- Departments of Nutrition, Food and Exercise Sciences and Program in Neuroscience, 236 Biomedical Research Facility, Florida State University, Tallahassee, FL 32306-4340, USA.
| | | | | | | |
Collapse
|
37
|
Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford ML. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 2000; 3:757-8. [PMID: 10903566 DOI: 10.1038/77660] [Citation(s) in RCA: 363] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin and leptin receptors are present in hypothalamic regions that control energy homeostasis, and these hormones reduce food intake and body weight in lean, but not obese, Zucker rats. Here we demonstrate that insulin, like leptin, hyperpolarizes lean rat hypothalamic glucose-responsive (GR) neurons by opening KATP channels. These findings suggest hypothalamic K ATP channel function is crucial to physiological regulation of food intake and body weight.
Collapse
Affiliation(s)
- D Spanswick
- Department of Biomedical Sciences, University of Aberdeen, Aberdeen Centre for Energy Regulation and Obesity, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
38
|
Abstract
The discovery of leptin has enhanced understanding of the interrelationship between adipose energy stores and neuronal circuits in the brain involved in energy balance and regulation of the neuroendocrine axis. Leptin levels are dependent on the status of fat stores as well as changes in energy balance as a result of fasting and overfeeding. Although leptin was initially thought to serve mainly as an anti-satiety hormone, recent studies have shown that it mediates the adaptation to fasting. Furthermore, leptin has been implicated in the regulation of the reproductive, thyroid, growth hormone, and adrenal axes, independent of its role in energy balance. Although it is widely known that leptin acts on hypothalamic neuronal targets to regulate energy balance and neuroendocrine function, the specific neuronal populations mediating leptin action on feeding behavior and autonomic and neuroendocrine function are not well understood. In this review, we have discussed how leptin engages arcuate hypothalamic neurons expressing putative orexigenic peptides, e.g., neuropeptide Y and agouti-regulated peptide, and anorexigenic peptides, e.g., pro-opiomelanocortin (precursor of alpha-melanocyte-stimulating hormone) and cocaine- and amphetamine-regulated transcript. We show that leptin's effects on energy balance and the neuroendocrine axis are mediated by projections to other hypothalamic nuclei, e.g., paraventricular, lateral, and perifornical areas, as well as other sites in the brainstem, spinal cord, and cortical and subcortical regions.
Collapse
Affiliation(s)
- R S Ahima
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA.
| | | | | | | |
Collapse
|
39
|
Wildman HF, Chua S, Leibel RL, Smith GP. Effects of leptin and cholecystokinin in rats with a null mutation of the leptin receptor Lepr(fak). Am J Physiol Regul Integr Comp Physiol 2000; 278:R1518-23. [PMID: 10848519 DOI: 10.1152/ajpregu.2000.278.6.r1518] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Koletsky ("corpulent) obese rat is homozygous for an autosomal recessive mutation of the leptin receptor (Lepr) that results in hyperphagia, obesity, and hyperlipidemia. Unlike the Lepr mutation that characterizes the fatty Zucker rat (Lepr(fa)), the Koletsky mutation (Lepr(fak)) is null. Because the Lepr(fak) mutation is null, exogenous leptin should have no effect on body weight or food intake in fa(k)/fa(k) rats. We confirmed that prediction: murine leptin, administered into the third ventricle for 5 consecutive days, did not affect daily food intake or body weight in fa(k)/fa(k) rats but produced dose-related inhibitions of food intake and body weight in +/+ and +/fa(k) rats. Although fa(k)/fa(k) rats did not respond to leptin, their response to CCK-8 (4 microg/kg ip) injected before 30-min test meals of 10% sucrose was not different from that of +/+ or +/fa(k) rats. These results demonstrate that the fa(k)/fa(k) rat is a good model in which to analyze the controls of food intake, energy expenditure, and energy storage in the absence of leptin effects.
Collapse
Affiliation(s)
- H F Wildman
- E. W. Bourne Laboratory, Department of Psychiatry, Joan and Sanford I. Weill Medical College of Cornell University, and the New York-Presbyterian Hospital, Westchester Division, White Plains 10605, New York, USA
| | | | | | | |
Collapse
|
40
|
Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology 2000; 141:1434-41. [PMID: 10746647 DOI: 10.1210/endo.141.4.7435] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin is a circulating hormone that controls food intake and energy homeostasis. Little is known about leptin entry into the central nervous system (CNS). The blood-cerebrospinal fluid (CSF) barrier at the choroid plexus and the blood-brain barrier (BBB) at the cerebral endothelium are two major controlling sites for entry of circulating proteins into the brain. In the present study, we characterized leptin transport across the blood-CSF barrier and the BBB by using a brain perfusion model in lean rats. Rapid, high-affinity transport systems mediated leptin uptake by the hypothalamus (KM = 0.2 ng/ml) and across the blood-CSF barrier (KM = 1.1 ng/ml). High affinity in vivo binding of leptin was also detected in the choroid plexus (KD = 2.6 ng/ml). In contrast, low affinity carriers for leptin (KM = 88 to 345 ng/ml) were found at the BBB in the CNS regions outside the hypothalamus (e.g. cerebral cortex, caudate nucleus, hippocampus). Our findings suggest a key role of high affinity leptin transporters in the hypothalamus and choroid plexus in regulating leptin entry into the CNS and CSF under physiological conditions. Low affinity transporters at the BBB outside the hypothalamus could potentially contribute to overall neuropharmacological effects of exogenous leptin.
Collapse
Affiliation(s)
- B V Zlokovic
- Department of Neurological Surgery, University of Southern California School of Medicine, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Yamamoto Y, Ueta Y, Serino R, Nomura M, Shibuya I, Yamashita H. Effects of food restriction on the hypothalamic prepro-orexin gene expression in genetically obese mice. Brain Res Bull 2000; 51:515-21. [PMID: 10758342 DOI: 10.1016/s0361-9230(99)00271-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Orexins, which are identical to hypocretins, are novel hypothalamic orexigenic peptides. We examined the effects of food restriction on the expression of the prepro-orexin gene in control (C57Bl/6J) and genetically obese mice (ob/ob and db/db), using in situ hybridization histochemistry. Dry food was given 3 g/day to each obese mouse for 2 weeks. Food restriction caused a significant increase of the prepro-orexin gene expression in obese mice in comparison with ad libitum fed animals. Although the levels of the expression of the prepro-orexin gene in obese mice were significantly lower than those in C57Bl/6J mice during feeding ad libitum, food restriction caused an increase in the expression of the prepro-orexin gene in the hypothalamus of obese mice. The expression of the neuropeptide Y (NPY) gene was increased significantly in the arcuate nucleus of obese mice compared to that of control mice during feeding ad libitum. Food restriction for 2 weeks also caused a significant increase of the expression in the NPY gene in all groups. These results indicate that the hypothalamic prepro-orexin gene could be upregulated by food restriction without leptin signal in genetically obese mice.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Cittadini A, Mantzoros CS, Hampton TG, Travers KE, Katz SE, Morgan JP, Flier JS, Douglas PS. Cardiovascular abnormalities in transgenic mice with reduced brown fat: an animal model of human obesity. Circulation 1999; 100:2177-83. [PMID: 10571977 DOI: 10.1161/01.cir.100.21.2177] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A new model of murine obesity has recently been developed through transgenic ablation of brown adipose tissue that manifests typical metabolic complications of obesity, including insulin resistance and non-insulin-dependent diabetes mellitus. The cardiovascular phenotype has not been defined. METHODS AND RESULTS Transthoracic echocardiography, aortic catheterization, isolated whole-heart studies, and morphometric histology defined cardiac structure and function in 30 transgenic mice with reduced brown fat and 30 matched wild-type controls. Obesity was indicated by a 77% increase in body weight and was accompanied by elevated systemic pressures (mean aortic blood pressure 85+/-1 versus 66+/-2 mm Hg; P<0.01), left ventricular dilation and hypertrophy (mass/body weight 4.0+/-0.2 versus 2.7+/-0.3 mg/g; P<0.01), and high cardiac output (cardiac index 3.2+/-0.4 versus 2.4+/-0.1 mL x kg(-1) x min(-1); P<0.01). Baseline functional parameters assessed in vitro were not different, but after imposition of zero-flow ischemia, significant relaxation impairment developed in obese mice. Although morphometrically determined myocyte diameters were similar, the percentage of interstitial fibrosis was significantly increased in transgenic mice compared with wild-type controls (7.5+/-2% versus 4. 2+/-0.2%; P<0.01). CONCLUSIONS Transgenic ablation of brown adipose tissue is associated not only with obesity but also with systemic hypertension, left ventricular hypertrophy with eccentric remodeling and fibrosis, and high cardiac output, a unique constellation of findings strikingly similar to that seen in human obesity. Mice with reduced brown fat may serve as a new model for the cardiovascular morbid complications associated with obesity in humans.
Collapse
Affiliation(s)
- A Cittadini
- Charles A. Dana Research Institute and the Harvard-Thorndike Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
|