1
|
Vedovato N, Salguero MV, Greeley SAW, Yu CH, Philipson LH, Ashcroft FM. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life. Diabetologia 2024; 67:940-951. [PMID: 38366195 PMCID: PMC10954967 DOI: 10.1007/s00125-024-06103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
AIMS/HYPOTHESIS The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Maria V Salguero
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Siri Atma W Greeley
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Christine H Yu
- Division of Endocrinology, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
2
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
3
|
Ikle JM, Tryon RC, Singareddy SS, York NW, Remedi MS, Nichols CG. Genome-edited zebrafish model of ABCC8 loss-of-function disease. Islets 2022; 14:200-209. [PMID: 36458573 PMCID: PMC9721409 DOI: 10.1080/19382014.2022.2149206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
ATP-sensitive potassium channel (KATP)gain- (GOF) and loss-of-function (LOF) mutations underlie human neonatal diabetes mellitus (NDM) and hyperinsulinism (HI), respectively. While transgenic mice expressing incomplete KATP LOF do reiterate mild hyperinsulinism, KATP knockout animals do not exhibit persistent hyperinsulinism. We have shown that islet excitability and glucose homeostasis are regulated by identical KATP channels in zebrafish. SUR1 truncation mutation (K499X) was introduced into the abcc8 gene to explore the possibility of using zebrafish for modeling human HI. Patch-clamp analysis confirmed the complete absence of channel activity in β-cells from K499X (SUR1-/-) fish. No difference in random blood glucose was detected in heterozygous SUR1+/- fish nor in homozygous SUR1-/- fish, mimicking findings in SUR1 knockout mice. Mutant fish did, however, demonstrate impaired glucose tolerance, similar to partial LOF mouse models. In paralleling features of mammalian diabetes and hyperinsulinism resulting from equivalent LOF mutations, these gene-edited animals provide valid zebrafish models of KATP -dependent pancreatic diseases.
Collapse
Affiliation(s)
- Jennifer M. Ikle
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Robert C. Tryon
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Soma S. Singareddy
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nathaniel W. York
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Nichols CG, York NW, Remedi MS. ATP-Sensitive Potassium Channels in Hyperinsulinism and Type 2 Diabetes: Inconvenient Paradox or New Paradigm? Diabetes 2022; 71:367-375. [PMID: 35196393 PMCID: PMC8893938 DOI: 10.2337/db21-0755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 11/13/2022]
Abstract
Secretion of insulin from pancreatic β-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of β-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Nathaniel W York
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
6
|
Chen Q, Chen Y, Wang X, Yang H, Zhang Y, Liu X, Yan Y, Wei H. Sirolimus Therapy and Follow-up in a Patient with Severe Congenital Hyperinsulinism Following Subtotal Pancreatectomy. J Clin Res Pediatr Endocrinol 2021; 13:119-123. [PMID: 32482020 PMCID: PMC7947726 DOI: 10.4274/jcrpe.galenos.2020.2020.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of severe, persistent hypoglycemia in neonates and infants. If the patient does not respond to medical treatment the currently available treatment is subtotal pancreatectomy, but some patients still experience severe hypoglycemia after surgery. Sirolimus, a mammalian target of rapamycin inhibitor has recently been reported to be effective in the treatment of insulinoma and CHI patients. Here we report a patient with CHI who had prolonged hypoglycemia after subtotal pancreatectomy. The patient had a heterozygous mutation in ABCC8 but was unresponsive to an optimal dose of diazoxide (15 mg/ kg/day) and octreotide (30 μg/kg/day). The patient subsequently had subtotal pancreatectomy but severe and persistent hypoglycemia continued post-operatively. Sirolimus was commenced. There was a remarkable improvement in glycemic control without major adverse events, although he required a small dose of octreotide to maintain euglycemia. Sirolimus therapy was discontinued when the patient was 15 months old. At the time of this report, at an age of three years and eight months, the patient continues to maintain good glycemic control. This report suggests that sirolimus may be an effective treatment option in patients with CHI resistant to established medical therapy or failure of ubtotal pancreatectomy. However, the long-term safety requires study in larger groups of very young patients.
Collapse
Affiliation(s)
- Qiong Chen
- Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China
| | - Yongxing Chen
- Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China
| | - Xiaohong Wang
- Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China
| | - Haihua Yang
- Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China
| | - Yingxian Zhang
- Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China
| | - Xiaojing Liu
- Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China
| | - Yun Yan
- University of Missouri-Kansas City, Children’s Mercy Hospital, Department of Endocrinology and Diabetes, Missouri, USA
| | - Haiyan Wei
- Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China,* Address for Correspondence: Henan Children’s Hospital (Children’s hospital affiliated to Zhengzhou University), Department of Endocrinology and Metabolism, Genetics, Zhengzhou, China Phone: +8613838521183 E-mail:
| |
Collapse
|
7
|
Nichols CG, York NW, Remedi MS. Preferential Gq signaling in diabetes: an electrical switch in incretin action and in diabetes progression? J Clin Invest 2021; 130:6235-6237. [PMID: 33196460 DOI: 10.1172/jci143199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Patients with type 2 diabetes (T2D) fail to secrete insulin in response to increased glucose levels that occur with eating. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two incretins secreted from gastrointestinal cells that amplify insulin secretion when glucose is high. In this issue of the JCI, Oduori et al. explore the role of ATP-sensitive K+ (KATP) channels in maintaining glucose homeostasis. In persistently depolarized β cells from KATP channel knockout (KO) mice, the researchers revealed a shift in G protein signaling from the Gs family to the Gq family. This shift explains why GLP-1, which signals via Gq, but not GIP, which signals preferentially via Gs, can effectively potentiate secretion in islets from the KATP channel-deficient mice and in other models of KATP deficiency, including diabetic KK-Ay mice. Their results provide one explanation for differential insulinotropic potential of incretins in human T2D and point to a potentially unifying model for T2D progression itself.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Nathaniel W York
- Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases.,Division of Endocrinology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
McClenaghan C, Woo KV, Nichols CG. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019; 74:14-22. [PMID: 31132951 DOI: 10.1161/hypertensionaha.119.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor McClenaghan
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| | - Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis, MO (K.V.W.)
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| |
Collapse
|
9
|
Sousa-Santos F, Simões H, Castro-Feijóo L, Rodríguez PC, Fernández-Marmiesse A, Fiaño RS, Rego T, Carracedo Á, Conde JB. Congenital hyperinsulinism in two siblings with ABCC8 mutation: same genotype, different phenotypes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:560-565. [PMID: 30462810 PMCID: PMC10118649 DOI: 10.20945/2359-3997000000077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
Abstract
Congenital hyperinsulinism (CHI) is a heterogenous disease caused by insulin secretion regulatory defects, being ABCC8/KCNJ11 the most commonly affected genes. Therapeutic options include diazoxide, somatostatin analogues and surgery, which is curative in focal CHI. We report the case of two siblings (born two years apart) that presented themselves with hypoketotic hyperinsulinemic persistent hypoglycemias during neonatal period. The diagnosis of diffuse CHI due to an ABCC8 compound mutation (c.3576delG and c.742C>T) was concluded. They did not benefit from diazoxide therapy (or pancreatectomy performed in patient number 1) yet responded to somatostatin analogues. Patient number 1 developed various neurological deficits (including epilepsy), however patient number 2 experienced an entirely normal neurodevelopment. We believe this case shows how previous knowledge of the firstborn sibling's disease contributed to a better and timelier medical care in patient number 2, which could potentially explain her better neurological outcome despite their same genotype.
Collapse
Affiliation(s)
- Francisco Sousa-Santos
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital Egas Moniz, Lisbon, Portugal. Unidad de Endocrinología Pediátrica y Crecimiento. IDIS. Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Helder Simões
- Serviço de Endocrinologia, Instituto Portugues de Oncologia de Lisboa, Portugal
| | - Lidia Castro-Feijóo
- Unidad de Endocrinología Pediátrica y Crecimiento. Pediatría, Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Paloma Cabanas Rodríguez
- Unidad de Endocrinología Pediátrica y Crecimiento. Pediatría Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | - Ana Fernández-Marmiesse
- Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca Saborido Fiaño
- Pediatría, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Teresa Rego
- Unidad de Endocrinología Pediátrica y Crecimiento, IDIS. Hospital Clínico Universitario de Santiago de Compostela Spain. Endocrinología. Hospital Curry Cabral. Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Ángel Carracedo
- Fundación Publica Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús Barreiro Conde
- Unidad de Endocrinología Pediátrica y Crecimiento, Pediatría, Hospital Clínico Universitario y Universidad de Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Yang YY, Long RK, Ferrara CT, Gitelman SE, German MS, Yang SB. A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in KCNJ11. Channels (Austin) 2017; 11:636-647. [PMID: 29087246 PMCID: PMC5786184 DOI: 10.1080/19336950.2017.1393131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The ATP-sensitive potassium channel (KATP) functions as a metabo-electric transducer in regulating insulin secretion from pancreatic β-cells. The pancreatic KATP channel is composed of a pore-forming inwardly-rectifying potassium channel, Kir6.2, and a regulatory subunit, sulphonylurea receptor 1 (SUR1). Loss-of-function mutations in either subunit often lead to the development of persistent hyperinsulinemic hypoglycemia of infancy (PHHI). PHHI is a rare genetic disease and most patients present with immediate onset within the first few days after birth. In this study, we report an unusual form of PHHI, in which the index patient developed hyperinsulinemic hypoglycemia after 1 year of age. The patient failed to respond to routine medication for PHHI and underwent a complete pancreatectomy. Genotyping of the index patient and his immediate family members showed that the patient and other family members with hypoglycemic episodes carried a heterozygous novel mutation in KCNJ11 (C83T), which encodes Kir6.2 (A28V). Electrophysiological and cell biological experiments revealed that A28V hKir6.2 is a dominant-negative, loss-of-function mutation and that KATP channels carrying this mutation failed to reach the cell surface. De novo protein structure prediction indicated that this A28V mutation reoriented the ER retention motif located at the C-terminal of the hKir6.2, and this result may explain the trafficking defect caused by this point mutation. Our study is the first report of a novel form of late-onset PHHI that is caused by a dominant mutation in KCNJ11 and exhibits a defect in proper surface expression of Kir6.2.
Collapse
Affiliation(s)
- Yen-Yu Yang
- a Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Roger K Long
- b Department of Pediatrics , University of California San Francisco , USA
| | | | - Stephen E Gitelman
- b Department of Pediatrics , University of California San Francisco , USA.,c Diabetes Center , University of California San Francisco , USA
| | - Michael S German
- c Diabetes Center , University of California San Francisco , USA.,d Department of Medicine and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research , University of California San Francisco , USA
| | - Shi-Bing Yang
- a Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| |
Collapse
|
11
|
Screening for Mutations in ABCC8 and KCNJ11 Genes in Saudi Persistent Hyperinsulinemic Hypoglycemia of Infancy (PHHI) Patients. Genes (Basel) 2015; 6:206-15. [PMID: 25871929 PMCID: PMC4488661 DOI: 10.3390/genes6020206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 11/17/2022] Open
Abstract
The autosomal recessive form of persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is associated with mutations in either ABCC8 or KCNJ11 genes. In the present study, we describe the clinical features and results of genetic analysis of 13 Saudi Arabian patients with PHHI. Clinically, most patients presented with infantile seizures and/or developmental delay, with a subset of patients who were also found to have abnormal brain imaging and electrophysiological studies. Interestingly no coding pathogenic mutations were identified in these two genes by direct sequencing. However, two splice variants were identified in ABCC8 gene in two patients, and a large deletion of exons 1-22 of the ABCC8 gene was identified in three patients. Our data shows that large deletions in ABCC8 gene are the common genetic mechanism in the Saudi population.
Collapse
|
12
|
Corbin JA, Bhaskar V, Goldfine ID, Issafras H, Bedinger DH, Lau A, Michelson K, Gross LM, Maddux BA, Kuan HF, Tran C, Lao L, Handa M, Watson SR, Narasimha AJ, Zhu S, Levy R, Webster L, Wijesuriya SD, Liu N, Wu X, Chemla-Vogel D, Lee SR, Wong S, Wilcock D, Rubin P, White ML. Inhibition of insulin receptor function by a human, allosteric monoclonal antibody: a potential new approach for the treatment of hyperinsulinemic hypoglycemia. MAbs 2014; 6:262-72. [PMID: 24423625 PMCID: PMC3929448 DOI: 10.4161/mabs.26871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Novel therapies are needed for the treatment of hypoglycemia resulting from both endogenous and exogenous hyperinsulinema. To provide a potential new treatment option, we identified XMetD, an allosteric monoclonal antibody to the insulin receptor (INSR) that was isolated from a human antibody phage display library. To selectively obtain antibodies directed at allosteric sites, panning of the phage display library was conducted using the insulin-INSR complex. Studies indicated that XMetD bound to the INSR with nanomolar affinity. Addition of insulin reduced the affinity of XMetD to the INSR by 3-fold, and XMetD reduced the affinity of the INSR for insulin 3-fold. In addition to inhibiting INSR binding, XMetD also inhibited insulin-induced INSR signaling by 20- to 100-fold. These signaling functions included INSR autophosphorylation, Akt activation and glucose transport. These data indicated that XMetD was an allosteric antagonist of the INSR because, in addition to inhibiting the INSR via modulation of binding affinity, it also inhibited the INSR via modulation of signaling efficacy. Intraperitoneal injection of XMetD at 10 mg/kg twice weekly into normal mice induced insulin resistance. When sustained-release insulin implants were placed into normal mice, they developed fasting hypoglycemia in the range of 50 mg/dl. This hypoglycemia was reversed by XMetD treatment. These studies demonstrate that allosteric monoclonal antibodies, such as XMetD, can antagonize INSR signaling both in vitro and in vivo. They also suggest that this class of allosteric monoclonal antibodies has the potential to treat hyperinsulinemic hypoglycemia resulting from conditions such as insulinoma, congenital hyperinsulinism and insulin overdose.
Collapse
Affiliation(s)
- John A Corbin
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Vinay Bhaskar
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Ira D Goldfine
- Department of Medicine; University of California; San Francisco, CA USA
| | | | | | - Angela Lau
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Lisa M Gross
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Betty A Maddux
- Department of Medicine; University of California; San Francisco, CA USA
| | - Hua F Kuan
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Catarina Tran
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Llewelyn Lao
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Masahisa Handa
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Susan R Watson
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Shirley Zhu
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Raphael Levy
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Lynn Webster
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Naichi Liu
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Xiaorong Wu
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Steve R Lee
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Steve Wong
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Diane Wilcock
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Paul Rubin
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Mark L White
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| |
Collapse
|
13
|
Issafras H, Bedinger DH, Corbin JA, Goldfine ID, Bhaskar V, White ML, Rubin P, Scannon PJ. Selective allosteric antibodies to the insulin receptor for the treatment of hyperglycemic and hypoglycemic disorders. J Diabetes Sci Technol 2014; 8:865-73. [PMID: 24876415 PMCID: PMC4764207 DOI: 10.1177/1932296814529886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many therapeutic monoclonal antibodies act as antagonists to receptors by targeting and blocking the natural ligand binding site (orthosteric site). In contrast, the use of antibodies to target receptors at allosteric sites (distinct from the orthosteric site) has not been extensively studied. This approach is especially important in metabolic diseases in which endogenous ligand levels are dysregulated. Herein, we review our investigations of 3 categories of human monoclonal antibodies that bind allosterically to the insulin receptor (INSR) and affect its activity: XMetA, XMetS and XMetD. XMetA directly activates the INSR either alone or in combination with insulin. XMetS, in contrast, does not directly activate the INSR but markedly enhances the receptor's ability to bind insulin and potentiate insulin signaling. Both XMetA and XMetS are effective in controlling hyperglycemia in mouse models of diabetes. A third allosteric antibody, XMetD, is an inhibitor of INSR signaling. This antibody reverses insulin-induced hypoglycemia in a mouse model of hyperinsulinemia. These studies indicate, therefore, that allosteric antibodies to INSR can modulate its signaling and correct conditions of glucose dysregulation. These studies also raise the possibility that the use of allosteric antibodies can be expanded to other receptors for the treatment of metabolic disorders.
Collapse
Affiliation(s)
| | | | - John A Corbin
- Preclinical Research, XOMA Corporation, Berkeley, CA, USA
| | - Ira D Goldfine
- Preclinical Research, XOMA Corporation, Berkeley, CA, USA Department of Medicine, University of California, San Francisco, USA
| | - Vinay Bhaskar
- Preclinical Research, XOMA Corporation, Berkeley, CA, USA
| | - Mark L White
- Preclinical Research, XOMA Corporation, Berkeley, CA, USA
| | - Paul Rubin
- Preclinical Research, XOMA Corporation, Berkeley, CA, USA
| | | |
Collapse
|
14
|
Sang Y, Xu Z, Liu M, Yan J, Wu Y, Zhu C, Ni G. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism. Endocr J 2014; 61:901-10. [PMID: 25008049 DOI: 10.1507/endocrj.ej13-0398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We conducted a cohort study to elucidate the molecular spectrum of congenital hyperinsulinism (CHI) in Chinese pediatric patients. Thirty Chinese children with CHI were chosen as research subjects, 16 of whom were responsive to diazoxide and 13 of whom were not (1 patient was not given the drug for medical reasons). All exons of the adenosine triphosphate (ATP)-sensitive potassium channel (KATP channel) genes KCNJ11 and ABCC8, the hepatocyte nuclear factor 4 α (HNF4A) gene, and the Glucokinase (GCK) gene as well as exons 6 and 7 and 10-12 of the glutamate dehydrogenase 1 (GLUD1) gene were amplified from genomic DNA and directly sequenced. Mutations were identified in 14 of 30 patients (47%): 3 in GLUD1 (10%) and 11 in the KATP channel genes (37%). Six patients had paternally derived monoallelic KATP channel mutations predictive of the focal CHI form. We found a novel de novo ABCC8 mutation, p. C1000*, a novel paternally inherited ABCC8 mutation, D1505H, and a dominantly inherited ABCC8 mutation, R1217K. The GLUD1 activating mutation R269H was found in 2 patients: 1 de novo and the other paternally inherited. A de novo S445L mutation was found in 1 patient. No significant HNF4A or GCK mutations were found. CHI has complex genetic onset mechanisms. Paternally inherited monoallelic mutations of ABCC8 and KCNJ11 are likely the main causes of KATP-CHI in Chinese patients. Glutamate dehydrogenase-CHI is the second most common cause of CHI, while HNF4A and GCK are rare types of CHI in Chinese patients.
Collapse
Affiliation(s)
- Yanmei Sang
- National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education; Department of Endocrinology, genetics and metabolism, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hyperglycaemia has multiple effects on β-cells, some clearly prosecretory, including hyperplasia and elevated insulin content, but eventually, a 'glucotoxic' effect which leads to pancreatic β-cell dysfunction, reduced β-cell mass and insulin deficiency, is an important part of diabetes pathophysiology. Myriad underlying cellular and molecular processes could lead to such dysfunction. High glucose will stimulate glycolysis and oxidative phosphorylation, which will in turn increase β-cell membrane excitability through K(ATP) channel closure. Chronic hyperexcitability will then lead to persistently elevated [Ca(2+)](i), a key trigger to insulin secretion. Thus, at least a part of the consequence of 'hyperstimulation' by glucose has been suggested to be a result of 'hyperexcitability' and chronically elevated [Ca(2+)](i). This link is lost when the [glucose], K(ATP) -channel activity link is broken, either pharmacologically or genetically. In isolated islets, such studies reveal that hyperexcitability causes a largely reversible chronic loss of insulin content, but in vivo chronic hyperexcitability per se does not lead to β-cell death or loss of insulin content. On the other hand, chronic inexcitability in vivo leads to systemic diabetes and consequential β-cell death, even while [Ca(2+)](i) remains low.
Collapse
Affiliation(s)
- C G Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
16
|
Henquin JC, Nenquin M, Sempoux C, Guiot Y, Bellanné-Chantelot C, Otonkoski T, de Lonlay P, Nihoul-Fékété C, Rahier J. In vitro insulin secretion by pancreatic tissue from infants with diazoxide-resistant congenital hyperinsulinism deviates from model predictions. J Clin Invest 2011; 121:3932-42. [PMID: 21968111 DOI: 10.1172/jci58400] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/13/2011] [Indexed: 01/25/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is the major cause of persistent neonatal hypoglycemia. CHI most often occurs due to mutations in the ABCC8 (which encodes sulfonylurea receptor 1) or KCNJ11 (which encodes the potassium channel Kir6.2) gene, which result in a lack of functional KATP channels in pancreatic β cells. Diffuse forms of CHI (DiCHI), in which all β cells are abnormal, often require subtotal pancreatectomy, whereas focal forms (FoCHI), which are characterized by localized hyperplasia of abnormal β cells, can be cured by resection of the lesion. Here, we characterized the in vitro kinetics of insulin secretion by pancreatic fragments from 6 DiCHI patients and by focal lesion and normal adjacent pancreas from 18 FoCHI patients. Responses of normal pancreas were similar to those reported for islets from adult organ donors. Compared with normal pancreas, basal insulin secretion was elevated in both FoCHI and DiCHI tissue. Affected tissues were heterogeneous in their secretory responses, with increased glucose levels often producing a rapid increase in insulin secretion that could be followed by a paradoxical decrease below prestimulatory levels. The KATP channel blocker tolbutamide was consistently ineffective in stimulating insulin secretion; conversely, the KATP channel activator diazoxide often caused an unanticipated increase in insulin secretion. These observed alterations in secretory behavior were similar in focal lesion and DiCHI tissue, and independent of the specific mutation in ABCC8 or KCNJ11. They cannot be explained by classic models of β cell function. Our results provide insight into the excessive and sometimes paradoxical changes in insulin secretion observed in CHI patients with inactivating mutations of KATP channels.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
First successful application of preimplantation genetic diagnosis and haplotyping for congenital hyperinsulinism. Reprod Biomed Online 2011; 22:72-9. [DOI: 10.1016/j.rbmo.2010.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022]
|
18
|
Flanagan SE, Kapoor RR, Mali G, Cody D, Murphy N, Schwahn B, Siahanidou T, Banerjee I, Akcay T, Rubio-Cabezas O, Shield JPH, Hussain K, Ellard S. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol 2010; 162:987-92. [PMID: 20164212 PMCID: PMC2857991 DOI: 10.1530/eje-09-0861] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/17/2010] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The phenotype associated with heterozygous HNF4A gene mutations has recently been extended to include diazoxide responsive neonatal hypoglycemia in addition to maturity-onset diabetes of the young (MODY). To date, mutation screening has been limited to patients with a family history consistent with MODY. In this study, we investigated the prevalence of HNF4A mutations in a large cohort of patients with diazoxide responsive hyperinsulinemic hypoglycemia (HH). SUBJECTS AND METHODS We sequenced the ABCC8, KCNJ11, GCK, GLUD1, and/or HNF4A genes in 220 patients with HH responsive to diazoxide. The order of genetic testing was dependent upon the clinical phenotype. RESULTS A genetic diagnosis was possible for 59/220 (27%) patients. K(ATP) channel mutations were most common (15%) followed by GLUD1 mutations causing hyperinsulinism with hyperammonemia (5.9%), and HNF4A mutations (5%). Seven of the 11 probands with a heterozygous HNF4A mutation did not have a parent affected with diabetes, and four de novo mutations were confirmed. These patients were diagnosed with HI within the first week of life (median age 1 day), and they had increased birth weight (median +2.4 SDS). The duration of diazoxide treatment ranged from 3 months to ongoing at 8 years. CONCLUSIONS In this large series, HNF4A mutations are the third most common cause of diazoxide responsive HH. We recommend that HNF4A sequencing is considered in all patients with diazoxide responsive HH diagnosed in the first week of life irrespective of a family history of diabetes, once K(ATP) channel mutations have been excluded.
Collapse
Affiliation(s)
- S E Flanagan
- Peninsula Medical School, Institute of Biomedical and Clinical Science, University of ExeterBarrack Road, Exeter, EX2 5DWUK
| | - R R Kapoor
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS TrustLondon, WC1N 3JHUK
- Institute of Child Health, University CollegeLondon, WC1N 1EHUK
| | - G Mali
- Peninsula Medical School, Institute of Biomedical and Clinical Science, University of ExeterBarrack Road, Exeter, EX2 5DWUK
| | - D Cody
- Department of EndocrinologyOur Lady's Childrens HospitalDublin, 12Ireland
| | - N Murphy
- Children's University HospitalDublin, 1Ireland
| | - B Schwahn
- Department of Metabolic MedicineRoyal Hospital for Sick Children, NHS Greater Glasgow and ClydeGlasgowUK
| | - T Siahanidou
- Department of PediatricsAghia Sophia Children's Hospital, University of AthensAthens, 115Greece
| | - I Banerjee
- Department of EndocrinologyRoyal Manchester Children's Hospital, Central Manchester and Manchester Children's University Hospitals NHS TrustManchester, M13 9WLUK
| | - T Akcay
- Department of EndocrinologyBakirkoy Maternity and Child HospitalIstanbul, 34142Turkey
| | - O Rubio-Cabezas
- Peninsula Medical School, Institute of Biomedical and Clinical Science, University of ExeterBarrack Road, Exeter, EX2 5DWUK
- Department of EndocrinologyHospital Infantil Universitario Niño JesusMadrid, 28009Spain
| | - J P H Shield
- Department of Child HealthBristol Royal Hospital for ChildrenBristol, BS2 8BJUK
| | - K Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS TrustLondon, WC1N 3JHUK
- Institute of Child Health, University CollegeLondon, WC1N 1EHUK
| | - S Ellard
- Peninsula Medical School, Institute of Biomedical and Clinical Science, University of ExeterBarrack Road, Exeter, EX2 5DWUK
| |
Collapse
|
19
|
Narayanaswamy V, Rettig KR, Bhowmick SK. A lethargic neonate and an infant with seizure. Clin Pediatr (Phila) 2010; 49:396-9. [PMID: 19380884 DOI: 10.1177/0009922809333100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1140] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Clark R, Proks P. ATP-sensitive potassium channels in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:165-92. [PMID: 20217498 DOI: 10.1007/978-90-481-3271-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel plays a crucial role in insulin secretion and thus glucose homeostasis. K(ATP) channel activity in the pancreatic beta-cell is finely balanced; increased activity prevents insulin secretion, whereas reduced activity stimulates insulin release. The beta-cell metabolism tightly regulates K(ATP) channel gating, and if this coupling is perturbed, two distinct disease states can result. Diabetes occurs when the K(ATP) channel fails to close in response to increased metabolism, whereas congenital hyperinsulinism results when K(ATP) channels remain closed even at very low blood glucose levels. In general there is a good correlation between the magnitude of K(ATP) current and disease severity. Mutations that cause a complete loss of K(ATP) channels in the beta-cell plasma membrane produce a severe form of congenital hyperinsulinism, whereas mutations that partially impair channel function produce a milder phenotype. Similarly mutations that greatly reduce the ATP sensitivity of the K(ATP) channel lead to a severe form of neonatal diabetes with associated neurological complications, whilst mutations that cause smaller shifts in ATP sensitivity cause neonatal diabetes alone. This chapter reviews our current understanding of the pancreatic beta-cell K(ATP) channel and highlights recent structural, functional and clinical advances.
Collapse
Affiliation(s)
- Rebecca Clark
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | |
Collapse
|
22
|
Hyperinsulinism and diabetes: genetic dissection of beta cell metabolism-excitation coupling in mice. Cell Metab 2009; 10:442-53. [PMID: 19945402 PMCID: PMC3245718 DOI: 10.1016/j.cmet.2009.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/27/2009] [Indexed: 12/24/2022]
Abstract
The role of metabolism-excitation coupling in insulin secretion has long been apparent, but in recent years, in parallel with studies of human hyperinsulinism and diabetes, genetic manipulation of proteins involved in glucose transport, metabolism, and excitability in mice has brought the central importance of this pathway into sharp relief. We focus on these animal studies and how they provide important insights into not only metabolic and electrical regulation of insulin secretion, but also downstream consequences of alterations in this pathway and the etiology and treatment of insulin-secretion diseases in humans.
Collapse
|
23
|
Flanagan SE, Clauin S, Bellanné-Chantelot C, de Lonlay P, Harries LW, Gloyn AL, Ellard S. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30:170-80. [PMID: 18767144 DOI: 10.1002/humu.20838] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel is a key component of stimulus-secretion coupling in the pancreatic beta-cell. The channel couples metabolism to membrane electrical events bringing about insulin secretion. Given the critical role of this channel in glucose homeostasis it is therefore not surprising that mutations in the genes encoding for the two essential subunits of the channel can result in both hypo- and hyperglycemia. The channel consists of four subunits of the inwardly rectifying potassium channel Kir6.2 and four subunits of the sulfonylurea receptor 1 (SUR1). It has been known for some time that loss of function mutations in KCNJ11, which encodes for Kir6.2, and ABCC8, which encodes for SUR1, can cause oversecretion of insulin and result in hyperinsulinism of infancy, while activating mutations in KCNJ11 and ABCC8 have recently been described that result in the opposite phenotype of diabetes. This review focuses on reported mutations in both genes, the spectrum of phenotypes, and the implications for treatment on diagnosing patients with mutations in these genes.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Pratt EB, Yan FF, Gay JW, Stanley CA, Shyng SL. Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure. J Biol Chem 2009; 284:7951-9. [PMID: 19151370 DOI: 10.1074/jbc.m807012200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-cell ATP-sensitive potassium (K(ATP)) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for K(ATP) channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants.
Collapse
Affiliation(s)
- Emily B Pratt
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
25
|
Remedi MS, Nichols CG. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells. PLoS Med 2008; 5:e206. [PMID: 18959471 PMCID: PMC2573909 DOI: 10.1371/journal.pmed.0050206] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pancreatic beta-cell ATP-sensitive potassium (K ATP) channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice) show an unexpected insulin undersecretory phenotype. Therefore we have proposed an "inverse U" hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives beta-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit K ATP activity and thereby enhance insulin secretion) show long-term insulin secretory failure, which we further suggest might reflect a similar progression. METHODS AND FINDINGS To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide) pellets, to chronically inhibit beta-cell K ATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05) reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult K ATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05) as those from K ATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and alpha-/beta-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis. CONCLUSIONS These results demonstrate that chronic glibenclamide treatment in vivo causes loss of insulin secretory capacity due to beta-cell hyperexcitability, but also reveal rapid reversibility of this secretory failure, arguing against beta-cell apoptosis or other cell death induced by sulfonylureas. These in vivo studies may help to explain why patients with type 2 diabetes can show long-term secondary failure to secrete insulin in response to sulfonylureas, but experience restoration of insulin secretion after a drug resting period, without permanent damage to beta-cells. This finding suggests that novel treatment regimens may succeed in prolonging pharmacological therapies in susceptible individuals.
Collapse
|
26
|
Pinney SE, MacMullen C, Becker S, Lin YW, Hanna C, Thornton P, Ganguly A, Shyng SL, Stanley CA. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest 2008; 118:2877-86. [PMID: 18596924 DOI: 10.1172/jci35414] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/19/2008] [Indexed: 11/17/2022] Open
Abstract
Congenital hyperinsulinism is a condition of dysregulated insulin secretion often caused by inactivating mutations of the ATP-sensitive K+ (KATP) channel in the pancreatic beta cell. Though most disease-causing mutations of the 2 genes encoding KATP subunits, ABCC8 (SUR1) and KCNJ11 (Kir6.2), are recessively inherited, some cases of dominantly inherited inactivating mutations have been reported. To better understand the differences between dominantly and recessively inherited inactivating KATP mutations, we have identified and characterized 16 families with 14 different dominantly inherited KATP mutations, including a total of 33 affected individuals. The 16 probands presented with hypoglycemia at ages from birth to 3.3 years, and 15 of 16 were well controlled on diazoxide, a KATP channel agonist. Of 29 adults with mutations, 14 were asymptomatic. In contrast to a previous report of increased diabetes risk in dominant KATP hyperinsulinism, only 4 of 29 adults had diabetes. Unlike recessive mutations, dominantly inherited KATP mutant subunits trafficked normally to the plasma membrane when expressed in COSm6 cells. Dominant mutations also resulted in different channel-gating defects, as dominant ABCC8 mutations diminished channel responses to magnesium adenosine diphosphate or diazoxide, while dominant KCNJ11 mutations impaired channel opening, even in the absence of nucleotides. These data highlight distinctive features of dominant KATP hyperinsulinism relative to the more common and more severe recessive form, including retention of normal subunit trafficking, impaired channel activity, and a milder hypoglycemia phenotype that may escape detection in infancy and is often responsive to diazoxide medical therapy, without the need for surgical pancreatectomy.
Collapse
Affiliation(s)
- Sara E Pinney
- Division of Endocrinology/Diabetes, The Children's Hospital of Philadelphia, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin YW, Bushman JD, Yan FF, Haidar S, MacMullen C, Ganguly A, Stanley CA, Shyng SL. Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J Biol Chem 2008; 283:9146-56. [PMID: 18250167 DOI: 10.1074/jbc.m708798200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inwardly rectifying potassium channel Kir6.2 is the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, which controls insulin secretion by coupling glucose metabolism to membrane potential in beta-cells. Loss of channel function because of mutations in Kir6.2 or its associated regulatory subunit, sulfonylurea receptor 1, causes congenital hyperinsulinism (CHI), a neonatal disease characterized by persistent insulin secretion despite severe hypoglycemia. Here, we report a novel K(ATP) channel gating defect caused by CHI-associated Kir6.2 mutations at arginine 301 (to cysteine, glycine, histidine, or proline). These mutations in addition to reducing channel expression at the cell surface also cause rapid, spontaneous current decay, a gating defect we refer to as inactivation. Based on the crystal structures of Kir3.1 and KirBac1.1, Arg-301 interacts with several residues in the neighboring Kir6.2 subunit. Mutation of a subset of these residues also induces channel inactivation, suggesting that the disease mutations may cause inactivation by disrupting subunit-subunit interactions. To evaluate the effect of channel inactivation on beta-cell function, we expressed an alternative inactivation mutant R301A, which has equivalent surface expression efficiency as wild type channels, in the insulin-secreting cell line INS-1. Mutant expression resulted in more depolarized membrane potential and elevated insulin secretion at basal glucose concentration (3 mm) compared with cells expressing wild type channels, demonstrating that the inactivation gating defect itself is sufficient to cause loss of channel function and hyperinsulinism. Our studies suggest the importance of Kir6.2 subunit-subunit interactions in K(ATP) channel gating and function and reveal a novel gating defect underlying CHI.
Collapse
Affiliation(s)
- Yu-Wen Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hardy OT, Hernandez-Pampaloni M, Saffer JR, Scheuermann JS, Ernst LM, Freifelder R, Zhuang H, MacMullen C, Becker S, Adzick NS, Divgi C, Alavi A, Stanley CA. Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 2007; 92:4706-11. [PMID: 17895314 DOI: 10.1210/jc.2007-1637] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Focal lesions in infants with congenital hyperinsulinism (HI) represent areas of adenomatosis that express a paternally derived ATP-sensitive potassium channel mutation due to embryonic loss of heterozygosity for the maternal 11p region. This study evaluated the accuracy of 18F-fluoro-l-dihydroxyphenylalanine ([18F]DOPA) positron emission tomography (PET) scans in diagnosing focal vs. diffuse disease and identifying the location of focal lesions. DESIGN A total of 50 infants with HI unresponsive to medical therapy were studied. Patients were injected iv with [18F]DOPA, and PET scans were obtained for 50-60 min. Images were coregistered with abdominal computed tomography scans. PET scan interpretations were compared with histological diagnoses. RESULTS The diagnosis of focal or diffuse HI was correct in 44 of the 50 cases (88%). [18F]DOPA PET identified focal areas of high uptake of radiopharmaceutical in 18 of 24 patients with focal disease. The locations of these lesions matched the areas of increased [18F]DOPA uptake on the PET scans in all of the cases. PET scan correctly located five lesions that could not be visualized at surgery. The positive predictive value of [18F]DOPA in diagnosing focal adenomatosis was 100%, and the negative predictive value was 81%. CONCLUSIONS [18F]DOPA PET scans correctly diagnosed 75% of focal cases and were 100% accurate in identifying the location of the lesion. These results suggest that [18F]DOPA PET imaging provides a useful guide to surgical resection of focal adenomatosis and should be considered as a guide to surgery in all infants with congenital HI who have medically uncontrollable disease.
Collapse
Affiliation(s)
- Olga T Hardy
- Division of Endocrinology, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Nutrient oxidation in beta cells generates a rise in [ATP]:[ADP] ratio. This reduces K(ATP) channel activity, leading to depolarization, activation of voltage-dependent Ca(2+) channels, Ca(2+) entry and insulin secretion. Consistent with this paradigm, loss-of-function mutations in the genes (KCNJ11 and ABCC8) that encode the two subunits (Kir6.2 and SUR1, respectively) of the ATP-sensitive K(+) (K(ATP)) channel underlie hyperinsulinism in humans, a genetic disorder characterized by dysregulated insulin secretion. In mice with genetic suppression of K(ATP) channel subunit expression, partial loss of K(ATP) channel conductance also causes hypersecretion, but unexpectedly, complete loss results in an undersecreting, mildly glucose-intolerant phenotype. When challenged by a high-fat diet, normal mice and mice with reduced K(ATP) channel density respond with hypersecretion, but mice with more significant or complete loss of K(ATP) channels cross over, or progress further, to an undersecreting, diabetic phenotype. It is our contention that in mice, and perhaps in humans, there is an inverse U-shaped response to hyperexcitabilty, leading first to hypersecretion but with further exacerbation to undersecretion and diabetes. The causes of the overcompensation and diabetic susceptibility are poorly understood but may have broader implications for the progression of hyperinsulinism and type 2 diabetes in humans.
Collapse
Affiliation(s)
- C G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
30
|
Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 2007; 56:2339-48. [PMID: 17575084 PMCID: PMC2225993 DOI: 10.2337/db07-0150] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital hyperinsulinism (CHI) is a disease characterized by persistent insulin secretion despite severe hypoglycemia. Mutations in the pancreatic ATP-sensitive K(+) (K(ATP)) channel proteins sulfonylurea receptor 1 (SUR1) and Kir6.2, encoded by ABCC8 and KCNJ11, respectively, is the most common cause of the disease. Many mutations in SUR1 render the channel unable to traffic to the cell surface, thereby reducing channel function. Previous studies have shown that for some SUR1 trafficking mutants, the defects could be corrected by treating cells with sulfonylureas or diazoxide. The purpose of this study is to identify additional mutations that cause channel biogenesis/trafficking defects and those that are amenable to rescue by pharmacological chaperones. Fifteen previously uncharacterized CHI-associated missense SUR1 mutations were examined for their biogenesis/trafficking defects and responses to pharmacological chaperones, using a combination of immunological and functional assays. Twelve of the 15 mutations analyzed cause reduction in cell surface expression of K(ATP) channels by >50%. Sulfonylureas rescued a subset of the trafficking mutants. By contrast, diazoxide failed to rescue any of the mutants. Strikingly, the mutations rescued by sulfonylureas are all located in the first transmembrane domain of SUR1, designated as TMD0. All TMD0 mutants rescued to the cell surface by the sulfonylurea tolbutamide could be subsequently activated by metabolic inhibition on tolbutamide removal. Our study identifies a group of CHI-causing SUR1 mutations for which the resulting K(ATP) channel trafficking and expression defects may be corrected pharmacologically to restore channel function.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Yu-Wen Lin
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| | - Courtney MacMullen
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Show-Ling Shyng
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
31
|
Delonlay P, Simon A, Galmiche-Rolland L, Giurgea I, Verkarre V, Aigrain Y, Santiago-Ribeiro MJ, Polak M, Robert JJ, Bellanne-Chantelot C, Brunelle F, Nihoul-Fekete C, Jaubert F. Neonatal hyperinsulinism: clinicopathologic correlation. Hum Pathol 2007; 38:387-99. [PMID: 17303499 DOI: 10.1016/j.humpath.2006.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Neonatal hyperinsulinism is a life-threatening disease that, when treated by total pancreatectomy, leads to diabetes and pancreatic insufficiency. A more conservative approach is now possible since the separation of the disease into a nonrecurring focal form, which is cured by partial surgery, and a diffuse form, which necessitates total pancreas removal only in cases of medical treatment failure. The pathogenesis of the disease is now divided into K-channel disease (hyperinsulinemic hypoglycemia, familial [HHF] 1 and 2), which can mandate surgery, and other metabolic causes, HHF 3 to 6, which are treated medically in most patients. The diffuse form is inherited as a recessive gene on chromosome 11, whereas most cases of the focal form are caused by a sulfonylurea receptor 1 defect inherited from the father, which is associated with a loss of heterozygosity on the corresponding part of the mother's chromosome 11. The rare bifocal forms result from a maternal loss of heterozygosity specific to each focus. Paternal disomy of chromosome 11 is a rare cause of a condition similar to Beckwith-Wiedemann syndrome. A preoperative PET scan with fluorodihydroxyphenylalanine and perioperative frozen-section confirmation are the types of studies done before surgery when needed. Adult variants of the disease are less well defined at the present time.
Collapse
Affiliation(s)
- P Delonlay
- Department of Pediatrics, Hospital Necker-Enfants Malades, Paris 75743, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hardy OT, Hernandez-Pampaloni M, Saffer JR, Suchi M, Ruchelli E, Zhuang H, Ganguly A, Freifelder R, Adzick NS, Alavi A, Stanley CA. Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 2007; 150:140-5. [PMID: 17236890 DOI: 10.1016/j.jpeds.2006.08.028] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 07/05/2006] [Accepted: 08/12/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To assess the accuracy of 18F-fluoro-L-dihydroxyphenylalanine ([18F]-DOPA) PET scans to diagnose focal versus diffuse disease and to localize focal lesions in infants with congenital hyperinsulinism. STUDY DESIGN Twenty-four infants with hyperinsulinism unresponsive to medical therapy were studied. Patients were injected intravenously with [18F]-DOPA, and PET scans were obtained for 1 hour. Images were coregistered with abdominal CT scans. RESULTS The diagnosis of focal or diffuse hyperinsulinism was correct in 23 of the 24 cases (96%) and equivocal in 1 case. [18F]-DOPA PET identified focal areas of high uptake of radiopharmaceutical in 11 patients. Pathology results confirmed that all 11 had focal adenomatosis, and the locations of these lesions matched the areas of increased [18F]-DOPA uptake on the PET scans in all of the cases. CONCLUSIONS [18F]-DOPA PET scans were 96% accurate in diagnosing focal or diffuse disease and 100% accurate in localizing the focal lesion. These results suggest that [18F]-DOPA PET imaging should be considered in all infants with congenital hyperinsulinism who need to have pancreatectomy.
Collapse
Affiliation(s)
- Olga T Hardy
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Greer RM, Shah J, Jeske YW, Brown D, Walker RM, Cowley D, Bowling FG, Liaskou D, Harris M, Thomsett MJ, Choong C, Bell JR, Jack MM, Cotterill AM. Genotype-phenotype associations in patients with severe hyperinsulinism of infancy. Pediatr Dev Pathol 2007; 10:25-34. [PMID: 17378627 DOI: 10.2350/06-04-0083.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/01/2006] [Indexed: 11/20/2022]
Abstract
In hyperinsulinism of infancy (HI), unregulated insulin secretion causes hypoglycemia. Pancreatectomy may be required in severe cases, most of which result from a defect in the beta-cell KATP channel, encoded by ABCC8 and KCNJ11. Pancreatic histology may be classified as diffuse or focal disease (the latter associated with single paternal ABCC8 mutations), indicated by the presence of islet cell nuclear enlargement in areas of diffuse abnormality. We investigated genotype-phenotype associations in a heterogeneous Australian cohort. ABCC8 and KCNJ11 genes were sequenced and case histology was reviewed in 21 infants who had pancreatectomy. Ninety-eight control DNA samples were tested by single nucleotide polymorphism analysis. Eighteen ABCC8 mutations were identified, 10 novel. Eleven patients (4 compound heterozygote, 4 single mutation, 3 no mutation detected) had diffuse hyperinsulinism. Nine patients had focal hyperinsulinism (6 single paternal mutation, 2 single mutation of undetermined parental origin, 1 none found) with absence of islet cell nuclear enlargement outside the focal area, although centroacinar cell proliferation and/or nesidiodysplasia was present in 7 cases. Regeneration after near-total pancreatectomy was documented in 4 patients, with aggregates of endocrine tissue observed at subsequent operations in 3. Although the absence of enlarged islet cell nuclei is a useful discriminant of focal hyperinsulinism associated with a paternal ABCC8 mutation, further research is needed to understand the pathophysiology of other histological abnormalities in patients with HI, which may have implications for mechanisms of ductal and islet cell proliferation. Previous surgery should be taken into account when interpreting pancreatic histology.
Collapse
Affiliation(s)
- Ristan M Greer
- Department of Paediatrics and Child Health, University of Queensland, Brisbane, and Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Peranteau WH, Bathaii SM, Pawel B, Hardy O, Alavi A, Stanley CA, Adzick NS. Multiple ectopic lesions of focal islet adenomatosis identified by positron emission tomography scan in an infant with congenital hyperinsulinism. J Pediatr Surg 2007; 42:188-92. [PMID: 17208563 DOI: 10.1016/j.jpedsurg.2006.09.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Congenital hyperinsulinism (HI) exists in 2 histologic forms, focal and diffuse, and rarely has been attributed to lesions in ectopic pancreatic tissue. The ability to distinguish focal from diffuse HI and locate focal lesions has been difficult, thus limiting the optimal management of HI. We present a case of HI resulting from focal pancreatic and ectopic pancreatic lesions. After a near-total pancreatectomy failed to improve the patient's condition, a positron emission tomography (PET) scan performed with 18F-fluoro-L-dihydroxyphenylalanine demonstrated a focal lesion remaining in the head of the pancreas as well as 4 hot spots inferior to the remaining pancreas. Surgical exploration found pancreatic rests in the jejunum responsible for the hot spots seen on PET. Resection of the remainder of the pancreas as well as the small intestinal lesions resulted in correction of the patient's HI. Pathology confirmed the presence of focal HI lesions in the pancreatic head and small intestinal specimens. This case supports the ability of ectopic pancreatic tissue to contribute to the pathology of HI. It highlights the ability of PET to successfully identify focal lesions, including ectopic tissue, responsible for hyperinsulinemic hypoglycemia.
Collapse
Affiliation(s)
- William H Peranteau
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Peranteau WH, Ganguly A, Steinmuller L, Thornton P, Johnson MP, Howell LJ, Stanley CA, Adzick NS. Prenatal Diagnosis and Postnatal Management of Diffuse Congenital Hyperinsulinism: A Case Report. Fetal Diagn Ther 2006; 21:515-8. [PMID: 16969006 DOI: 10.1159/000095664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 12/14/2005] [Indexed: 11/19/2022]
Abstract
We present the first case of the prenatal diagnosis of congenital hyperinsulinism based on the genetic analysis of known family mutations in the SUR1 gene. An amniocentesis was performed at 16 weeks gestation at which time two mutations in the SUR1 gene were identified consistent with the diagnosis of diffuse hyperinsulinism. The mother was transported to our facility and underwent an elective caesarian section at 38 weeks gestation. The diagnosis was confirmed and treatment was initiated within the first minutes of life. After a short course of failed medical management, the patient underwent a 98% pancreatectomy with subsequent good glycemic control. This case highlights the benefits of the timely in utero diagnosis of hyperinsulinism by mutational analysis.
Collapse
Affiliation(s)
- William H Peranteau
- The Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Remedi MS, Rocheleau JV, Tong A, Patton BL, McDaniel ML, Piston DW, Koster JC, Nichols CG. Hyperinsulinism in mice with heterozygous loss of K(ATP) channels. Diabetologia 2006; 49:2368-78. [PMID: 16924481 DOI: 10.1007/s00125-006-0367-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS ATP-sensitive K(+) (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic beta cells. In humans, loss-of-function mutations of beta cell K(ATP) subunits (SUR1, encoded by the gene ABCC8, or Kir6.2, encoded by the gene KCNJ11) cause congenital hyperinsulinaemia. Mice with dominant-negative reduction of beta cell K(ATP) (Kir6.2[AAA]) exhibit hyperinsulinism, whereas mice with zero K(ATP) (Kir6.2(-/-)) show transient hyperinsulinaemia as neonates, but are glucose-intolerant as adults. Thus, we propose that partial loss of beta cell K(ATP) in vivo causes insulin hypersecretion, but complete absence may cause insulin secretory failure. MATERIALS AND METHODS Heterozygous Kir6.2(+/-) and SUR1(+/-) animals were generated by backcrossing from knockout animals. Glucose tolerance in intact animals was determined following i.p. loading. Glucose-stimulated insulin secretion (GSIS), islet K(ATP) conductance and glucose dependence of intracellular Ca(2+) were assessed in isolated islets. RESULTS In both of the mechanistically distinct models of reduced K(ATP) (Kir6.2(+/-) and SUR1(+/-)), K(ATP) density is reduced by approximately 60%. While both Kir6.2(-/-) and SUR1(-/-) mice are glucose-intolerant and have reduced glucose-stimulated insulin secretion, heterozygous Kir6.2(+/-) and SUR1(+/-) mice show enhanced glucose tolerance and increased GSIS, paralleled by a left-shift in glucose dependence of intracellular Ca(2+) oscillations. CONCLUSIONS/INTERPRETATION The results confirm that incomplete loss of beta cell K(ATP) in vivo underlies a hyperinsulinaemic phenotype, whereas complete loss of K(ATP) underlies eventual secretory failure.
Collapse
Affiliation(s)
- M S Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hussain K, Seppänen M, Näntö-Salonen K, Adzick NS, Stanley CA, Thornton P, Minn H. The diagnosis of ectopic focal hyperinsulinism of infancy with [18F]-dopa positron emission tomography. J Clin Endocrinol Metab 2006; 91:2839-42. [PMID: 16684819 DOI: 10.1210/jc.2006-0455] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Congenital hyperinsulinism (CHI) is a cause of severe hypoglycemia in the neonatal and infancy period. Histologically, there are two subtypes with diffuse and focal disease. The preoperative differentiation of these two forms is very important because the surgical management is radically different. The focal form of the disease can be cured if the focal lesion can be localized accurately and completely resected with surgery. AIM We report the case of a child who underwent three pancreatectomies with a choledochoduodenostomy and a cholecystectomy but continued to have severe hyperinsulinemic hypoglycemia. METHODS/RESULTS Radiological investigations including imaging with (18)fluoro-L-Dopa positron emission tomography scan showed a clear focus of increased (18)F-fluoro-L-Dopa uptake in the vicinity of the former head of the pancreas. On the magnetic resonance imaging scan, this focal uptake appeared to localize adjacent or next to duodenum (in the wall or cavity of the duodenum). CONCLUSIONS This unique case highlights the importance of correctly localizing and completely resecting the focal lesion in patients with CHI. (18)Fluoro-L-Dopa positron emission tomography scan can identify ectopic focal lesions in patients with CHI.
Collapse
Affiliation(s)
- Khalid Hussain
- London Center for Pediatric Endocrinology and Metabolism, Hospital for Children National Health Service Trust, London WC1N 3JH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
38
|
Fourtner SH, Stanley CA, Kelly A. Protein-sensitive hypoglycemia without leucine sensitivity in hyperinsulinism caused by K(ATP) channel mutations. J Pediatr 2006; 149:47-52. [PMID: 16860127 DOI: 10.1016/j.jpeds.2006.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/21/2005] [Accepted: 02/22/2006] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Because children with congenital hyperinsulinism (HI) caused by recessive loss of function mutations in the adenosine triphosphate (ATP)-dependent potassium channel (K(ATP)-HI) are not leucine sensitive, we evaluated for protein-induced hypoglycemia with oral protein tolerance tests. STUDY DESIGN Blood glucose and insulin concentrations were measured every 15 minutes for 3 hours after an oral protein load in children with K(ATP)-HI (n = 11) and compared with those of children with glutamate dehydrogenase HI (n = 12) and control subjects (n = 12). RESULTS Similar to children with glutamate dehydrogenase HI, patients with K(ATP)-HI displayed protein-induced hypoglycemia (10/11) with blood glucose concentrations declining by 17 to 69 mg/dL. In contrast, oral protein had little effect on blood glucose concentrations in control subjects. CONCLUSIONS Protein-induced hypoglycemia is a feature of K(ATP)-HI, despite the absence of leucine sensitivity. The results indicate that amino acids can stimulate insulin secretion via a glutamate dehydrogenase- and K(ATP) channel-independent pathway.
Collapse
Affiliation(s)
- Shannon H Fourtner
- Division of Endocrinology/Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
39
|
Guerrero-Fernández J, González Casado I, Espinoza Colindres L, Gracia Bouthelier R. Hiperinsulinismo congénito. Revisión de 22 casos. An Pediatr (Barc) 2006; 65:22-31. [PMID: 16945287 DOI: 10.1157/13090894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) is the most common cause of recurrent episodes of hypoglycemia in early childhood and consists of a group of distinct genetic disorders causing dysregulation of insulin secretion. OBJECTIVE To review the presentation, management and outcome of patients with CHI attended at our hospital. MATERIAL AND METHODS A retrospective review of all patients diagnosed with CHI between 1982 and 2004 was performed. Data were collected on age, gender, clinical presentation, medical and surgical management, and complications. RESULTS Twenty-two patients were identified. Notable features were early symptom onset in 80 %, pancreatectomy in 72 %, and neurological sequels in 28 % (abnormal neurodevelopment in 22 % and epilepsy in 13 %). CONCLUSIONS The presentation, management and outcome in our patients were similar to those in other series, indicating the need for early diagnosis and treatment to avoid neurological sequels.
Collapse
|
40
|
Li C, Matter A, Kelly A, Petty TJ, Najafi H, MacMullen C, Daikhin Y, Nissim I, Lazarow A, Kwagh J, Collins HW, Hsu BYL, Nissim I, Yudkoff M, Matschinsky FM, Stanley CA. Effects of a GTP-insensitive mutation of glutamate dehydrogenase on insulin secretion in transgenic mice. J Biol Chem 2006; 281:15064-72. [PMID: 16574664 DOI: 10.1074/jbc.m600994200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition. The H454Y GDH transgenic mice had hypoglycemia with normal growth rates. H454Y GDH transgenic islets were more sensitive to leucine- and glutamine-stimulated insulin secretion but had decreased response to glucose stimulation. The fluxes via GDH and glutaminase were measured by tracing 15N flux from [2-15N]glutamine. The H454Y transgene in islets had higher insulin secretion in response to glutamine alone and had 2-fold greater GDH flux. High glucose inhibited both glutaminase and GDH flux, and leucine could not override this inhibition. 15NH4Cl tracing studies showed 15N was not incorporated into glutamate in either H454Y transgenic or normal islets. In conclusion, we generated a GDH-HI disease mouse model that has a hypoglycemia phenotype and confirmed that the mutation of H454Y is disease causing. Stimulation of insulin release by the H454Y GDH mutation or by leucine activation is associated with increased oxidative deamination of glutamate via GDH. This study suggests that GDH functions predominantly in the direction of glutamate oxidation rather than glutamate synthesis in mouse islets and that this flux is tightly controlled by glucose.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology, The Children's Hospital of Philadelphia and Diabetes Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J Biol Chem 2006; 281:3006-12. [PMID: 16332676 PMCID: PMC1479853 DOI: 10.1074/jbc.m511875200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-cell ATP-sensitive potassium (KATP) channel controls insulin secretion by linking glucose metabolism to membrane excitability. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes that encode the sulfonylurea receptor 1 or the inward rectifier Kir6.2 subunit of the channel, is a major cause of congenital hyperinsulinism. Here, we report identification of a novel KCNJ11 mutation associated with the disease that renders a missense mutation, F55L, in the Kir6.2 protein. Mutant channels reconstituted in COS cells exhibited a wild-type-like surface expression level and normal sensitivity to ATP, MgADP, and diazoxide. However, the intrinsic open probability of the mutant channel was greatly reduced, by approximately 10-fold. This low open probability defect could be reversed by application of phosphatidylinositol 4,5-bisphosphates or oleoyl-CoA to the cytoplasmic face of the channel, indicating that reduced channel response to membrane phospholipids and/or long chain acyl-CoAs underlies the low intrinsic open probability in the mutant. Our findings reveal a novel molecular mechanism for loss of KATP channel function and congenital hyperinsulinism and support the importance of phospholipids and/or long chain acyl-CoAs in setting the physiological activity of beta-cell KATP channels. The F55L mutation is located in the slide helix of Kir6.2. Several permanent neonatal diabetes-associated mutations found in the same structure have the opposite effect of increasing intrinsic channel open probability. Our results also highlight the critical role of the Kir6.2 slide helix in determining the intrinsic open probability of KATP channels.
Collapse
Affiliation(s)
- Yu-Wen Lin
- From the Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, and
| | - Courtney MacMullen
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Arupa Ganguly
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Charles A. Stanley
- Division of Endocrinology/Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Show-Ling Shyng
- From the Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, and
| |
Collapse
|
42
|
Hoe FM, Thornton PS, Wanner LA, Steinkrauss L, Simmons RA, Stanley CA. Clinical features and insulin regulation in infants with a syndrome of prolonged neonatal hyperinsulinism. J Pediatr 2006; 148:207-12. [PMID: 16492430 DOI: 10.1016/j.jpeds.2005.10.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/22/2005] [Accepted: 10/03/2005] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To characterize the clinical features and insulin regulation in infants with hypoglycemia due to prolonged neonatal hyperinsulinism. STUDY DESIGN Data were collected on 26 infants with hypoglycemia due to neonatal hyperinsulinism that later resolved. Acute insulin response (AIR) tests to calcium, leucine, glucose, and tolbutamide were performed in 11 neonates. Results were compared to children with genetic hyperinsulinism due to mutations of the adenosine triphosphate-dependent potassium (K(ATP)) channel and glutamate dehydrogenase (GDH). RESULTS Among the 26 neonates, there were significantly more males, small-for-gestational-age infants, and cesarean deliveries. Only 5 of the 26 had no identifiable risk factor. Hyperinsulinism was diagnosed at a median age of 13 days (range, 2 to 180 days) and resolved by a median age of 181 days (range, 18 to 403 days). Diazoxide was effective in 19 of the 21 neonates treated. In the 11 neonates tested, the AIRs to calcium, leucine, glucose, and tolbutamide resembled those in normal controls and differed from genetic hyperinsulinism due to K(ATP) channel and GDH mutations. CONCLUSIONS We define a syndrome of prolonged neonatal hyperinsulinism that is responsive to diazoxide, persists for several months, and resolves spontaneously. AIR tests suggest that both the K(ATP) channel and GDH have normal function.
Collapse
Affiliation(s)
- Francis M Hoe
- Divisions of Endocrinology and Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 2005; 115:2047-58. [PMID: 16075046 PMCID: PMC1180549 DOI: 10.1172/jci25495] [Citation(s) in RCA: 446] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels, so named because they are inhibited by intracellular (ATP), play key physiological roles in many tissues. In pancreatic beta cells, these channels regulate glucose-dependent insulin secretion and serve as the target for sulfonylurea drugs used to treat type 2 diabetes. This review focuses on insulin secretory disorders, such as congenital hyperinsulinemia and neonatal diabetes, that result from mutations in K(ATP) channel genes. It also considers the extent to which defective regulation of K(ATP) channel activity contributes to the etiology of type 2 diabetes.
Collapse
Affiliation(s)
- Frances M Ashcroft
- University Laboratory of Physiology, Oxford University, Oxford, United Kingdom.
| |
Collapse
|