1
|
Efstathiou N, Koliakos G, Kantziou K, Kyriazis G, Slavakis A, Drossou V, Soubasi V. Kinetics of Circulating Progenitor Cells and Chemotactic Factors in Full-Term Neonates with Encephalopathy: Indications of Participation in the Endogenous Regenerative Process. Biomolecules 2025; 15:427. [PMID: 40149963 PMCID: PMC11940357 DOI: 10.3390/biom15030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Preclinical studies have shown that progenitor cells (PCs) are mobilized toward injured tissues to ameliorate damage and contribute to regeneration. The exogenous therapeutic administration of PCs in children affected by neonatal encephalopathy (NE) is a promising, yet underreported, topic. In this prospective study, we investigated whether endogenous circulating progenitor cells (CPCs) are involved in intrinsic regeneration mechanisms following neonatal brain injury. Thirteen full-term infants with moderate/severe NE, eleven with perinatal stress, and twelve controls were enrolled. Blood samples were collected on days 1, 3, 9, 18, and 45, as well as at 8 and 24 months of life, and were analyzed with a focus on Endothelial Progenitor Cells, Haematopoietic Stem Cells, and Very Small Embryonic-Like Stem Cells, in addition to chemotactic factors (erythropoietin, IGF-1, and SDF-1). Correlations between CPCs, chemotactic factors, and brain injury were assessed using serum levels of brain injury biomarkers (S100B and neuron-specific enolase), brain MRIs, and Bayley III developmental scores. Increased brain injury biomarkers were followed by the upregulation of SDF-1 receptor and erythropoietin and, finally, by elevated CPCs. These findings suggest a potential endogenous regenerative effort, primarily observed in the moderate encephalopathy group, but this is suppressed in cases of severe brain injury. Mimicking and enhancing endogenous regeneration pathways in cases of failure-regarding cell type and timeframe-could provide a novel therapeutic model.
Collapse
Affiliation(s)
- Nikolaos Efstathiou
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Koliakos
- Biochemistry Department, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katerina Kantziou
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Kyriazis
- Immunology Department, Pulmonary Clinic, Papanikolaou General Hospital, Aristotle University of Thessaloniki, Exohi, 57010 Thessaloniki, Greece
| | - Aristeidis Slavakis
- Biochemistry Department, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Vasiliki Drossou
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Vasiliki Soubasi
- 1st Neonatal Clinic and NICU, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Naseh N, Vaz TF, Ferreira H, Moreira NC, Hellström-Westas L, Ahlsson F, Ågren J. Impact of early nutrition on brain development and neurocognitive outcomes in very preterm infants. Pediatr Res 2025:10.1038/s41390-025-03964-8. [PMID: 40038458 DOI: 10.1038/s41390-025-03964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Malnutrition of preterm infants may negatively affect brain growth and later neurocognitive function. We aimed to investigate the association between very preterm infants' macronutrient intakes, and brain MRI at term and neurodevelopment at 2 years. METHODS Single-center, retrospective cohort including extremely (22-27w) and very (28-31w) preterm infants born 2011-2014. The intakes of fluid, protein, carbohydrate, fat, and total calories during days 0-28 together with body weights were assessed in relation to brain MRI (morphology, volumetry, diffusion-weighted imaging) at term, and cognition (BSID-III) at 2 years, using adjusted multivariable regression analyses. RESULTS Seventy-two infants were included. A lower (p < 0.001) caloric intake in extremely preterm (n = 26) than in very preterm (n = 46) infants did not translate to any differences in brain volumes. While bivariate correlations (p < 0.01) were found between the enteral intakes of all macronutrients, and white matter volume and apparent diffusion coefficients, none of the correlations remained significant after adjusting for covariates in the multivariable analysis. Similarly, no associations between nutrient intakes and cognitive development remained after covariate adjustment. CONCLUSION In a cohort of preterm infants receiving macronutrient intakes meeting current recommendations, individual variations in nutrition did not influence brain growth or neurodevelopment. IMPACT Early postnatal macronutrient intake was not associated with brain volumes at term or neurocognitive outcomes at 2 years in very preterm infants All infants received nutritional intakes meeting current recommendations Adequate macronutrient intake based on a standardized protocol may eliminate the need for further minor adjustments in the pursuit of supporting brain growth and neurodevelopment in preterm infants.
Collapse
Affiliation(s)
- Nima Naseh
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Tânia F Vaz
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Hugo Ferreira
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nuno Canto Moreira
- Departments of Neuroradiology, Uppsala University Hospital and Karolinska University Hospital, Uppsala, Sweden
| | | | - Fredrik Ahlsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Johan Ågren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Hayes CA, Wilson D, De Leon MA, Mustapha MJ, Morales S, Odden MC, Ashpole NM. Insulin-like growth factor-1 and cognitive health: Exploring cellular, preclinical, and clinical dimensions. Front Neuroendocrinol 2025; 76:101161. [PMID: 39536910 DOI: 10.1016/j.yfrne.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Age and insulin-like growth factor-1 (IGF-1) have an inverse association with cognitive decline and dementia. IGF-1 is known to have important pleiotropic functions beginning in neurodevelopment and extending into adulthood such as neurogenesis. At the cellular level, IGF-1 has pleiotropic signaling mechanisms through the IGF-1 receptor on neurons and neuroglia to attenuate inflammation, promote myelination, maintain astrocytic functions for homeostatic balances, and neuronal synaptogenesis. In preclinical rodent models of aging and transgenic models of IGF-1, increased IGF-1 improves cognition in a variety of behavioral paradigms along with reducing IGF-1 via knockout models being able to induce cognitive impairment. At the clinical levels, most studies highlight that increased levels of IGF-1 are associated with better cognition. This review provides a comprehensive and up-to-date evaluation of the association between IGF-1 and cognition at the cellular signaling levels, preclinical, and clinical levels.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Destiny Wilson
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Miguel A De Leon
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | - Sharon Morales
- Department of Biomedical Science, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
4
|
Ottolini KM, Ngwa J, Basu SK, Kapse K, Liggett M, Murnick J, Limperopoulos C, Andescavage N. Brain development using a multicomponent intravenous lipid emulsion in preterm infants. BMC Pediatr 2024; 24:847. [PMID: 39736580 DOI: 10.1186/s12887-024-05330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Intravenous lipid emulsions are an essential component of nutritional support for very preterm infants. Many neonatal intensive care units have transitioned from traditional soybean oil-only to fish oil-containing multicomponent lipid emulsions, but the neurodevelopmental implications have not been well-explored. The primary aim of this study was to assess extrauterine third trimester brain growth in very preterm infants supported with soybean oil-only compared to fish-oil containing multicomponent lipid emulsions; white matter development and neurobehavioral regulation at term were also investigated. METHODS Human milk-fed very preterm infants (born less than or equal to 32 weeks' gestation) receiving either soybean oil-only (before 2019) or multicomponent (after 2019) lipid emulsions underwent quantitative brain MRI (volumetric growth and white matter development) and neurodevelopmental assessment (Neonatal Intensive Care Unit Network Neurobehavioral Scale) at term-equivalent age. Analyses were adjusted for age at birth and term assessments, as well as clinically significant covariates. RESULTS 92 infants (61 soybean, 31 multicomponent) were included (mean [SD] birth gestational age: 27.3 [2.3] weeks). Soybean oil-only infants demonstrated smaller brainstem volumes (β [95% CI] = -0.5 [-0.8,-0.1], p = .007); additionally less mature white matter development (mean diffusivity [MD, mm2/second x10- 3] and fractional anisotropy [FA]) in the corpus callosum (MD genu: β = 0.10 [0.01, 0.20], p = .04; splenium: β = 0.14 [0.04, 0.24], p = .006), posterior limbs of internal capsule (MD right (R): β = 0.05 [0.02, 0.08], p = .004, left (L): β = 0.04 [0.01, 0.08], p = .01; FA R: β = -0.03 [-0.06, -0.00], p = .03), and brainstem (FA R: β = 0.07 [0.04, 0.10], p < .001, L: β = 0.05 [0.02, 0.09], p = .002); and lower quality of movement (β = -0.54 [-0.97, -0.11], p = .02) and higher state-related stress (β = 1.41 [0.14, 2.83], p = .04). CONCLUSIONS Very preterm infants supported with a fish-oil containing multicomponent compared to soybean oil-only lipid emulsion demonstrated improved regional brain growth, as well as evidence of enhanced white matter microstructural organization and neurobehavioral regulation, at term corrected age. TRIAL REGISTRATION Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Katherine M Ottolini
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Division of Neonatology, Children's National Hospital, Washington, DC, 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Julius Ngwa
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sudeepta K Basu
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Division of Neonatology, Children's National Hospital, Washington, DC, 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
| | - Melissa Liggett
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
| | - Jonathan Murnick
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National Hospital, 111 Michigan Avenue, NW, Washington, DC, USA.
- Division of Neonatology, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
5
|
Öhrneman H, Lindström F, Hagman C, Petersson Sjögren M, Rissler J, Wollmer P, Tufvesson E, Löndahl J. Enlarged airspaces in the distal lung in adolescents born very preterm as measured by aerosol. BMJ Open Respir Res 2024; 11:e002666. [PMID: 39797676 PMCID: PMC11667324 DOI: 10.1136/bmjresp-2024-002666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
RATIONALE Preterm infants diagnosed with bronchopulmonary dysplasia (BPD) are thought to have fewer and larger alveoli than their term peers, but it is unclear to what degree this persists later in life. OBJECTIVES To investigate to what degree the distal airspaces are enlarged in adolescents born preterm and to evaluate the new Airspace Dimension Assessment (AiDA) method in investigating this group. METHODS We investigated 41 adolescents between 15 and 17 years of age, of whom 25 were born very preterm (a gestational age <31 weeks, with a mean of 26 weeks) and 16 were term-born controls. Of the preterms, 17 were diagnosed with BPD. The AiDA method was used to measure the average distal airspace radius (rAiDA) in the lungs. In addition, lung function was evaluated by spirometry, impulse oscillometry and diffusing capacity of carbon monoxide (DLCO). MEASUREMENTS AND MAIN RESULTS We observed a mean rAiDA of 295±53 µm for the preterm group compared with 231±12 µm for the control group (p<0.0001). The adolescents diagnosed with BPD had a mean rAiDA of 313±54 µm. There was a strong negative correlation between gestational age and distal airspace radius (p<0.0001). The BPD group had a decreased FEV1 (forced expiratory volume in 1 s, z-score: -1.28±1.37, p=0.012) and DLCO (z-score: -0.92±1.01, p=0.013) compared with the controls, but all other lung function variables showed normal values. CONCLUSIONS Our results suggest that the enlarged airspaces seen in preterm infants likely remain in adolescence. Distal airspace radius as measured by AiDA was the lung function variable that showed the most significant difference between preterm and term-born adolescents.
Collapse
Affiliation(s)
- Hugo Öhrneman
- Department of Design Sciences, Lund University, Lund, Sweden
| | - Frida Lindström
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Cecilia Hagman
- Department of Clinical Sciences Lund Paediatrics, Skåne University Hospital Lund, Lund, Sweden
| | | | - Jenny Rissler
- Department of Design Sciences, Lund University, Lund, Sweden
| | - Per Wollmer
- Clinical Physiology, Skånes universitetssjukhus Malmö, Malmo, Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jakob Löndahl
- Department of Design Sciences, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
7
|
Ortenlöf N, Vallius S, Karlsson H, Ekström C, Kristiansson A, Holmqvist B, Pankratova S, Barton N, Ley D, Gram M. Choroid plexus extracellular vesicle transport of blood-borne insulin-like growth factor 1 to the hippocampus of the immature brain. PNAS NEXUS 2024; 3:pgae496. [PMID: 39660059 PMCID: PMC11630522 DOI: 10.1093/pnasnexus/pgae496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 10/01/2024] [Indexed: 12/12/2024]
Abstract
Reduced serum level of insulin-like growth factor 1 (IGF-1), a major regulator of perinatal development, in extremely preterm infants has been shown to be associated with neurodevelopmental impairment. To clarify the mechanism of IGF-1 transport at the blood-cerebrospinal fluid (CSF) barrier of the immature brain, we combined studies of in vivo preterm piglet and rabbit models with an in vitro transwell cell culture model of neonatal primary murine choroid plexus epithelial (ChPE) cells. We identified IGF-1-positive intracellular vesicles in ChPE cells and provided data indicating a directional transport of IGF-1 from the basolateral to the apical media in extracellular vesicles (EVs). Exposure of the ChPE cells to human IGF-1 on the basolateral side increased the secretion of IGF-1-positive EVs in the apical media. Mass spectrometry analysis displayed similarities in protein content between EVs derived from preterm piglet CSF-derived and ChPE cell-derived EVs. Furthermore, exposure of ChPE cells to human IGF-1 caused an enrichment of human IGF-1 and transmembrane p24 trafficking protein 2, proteins important for perinatal development, in apical media-derived EVs. Moreover, intraventricular injections of ChPE cell-derived EVs in preterm rabbit pups resulted in an uptake of EVs in the brain, displaying penetration through the ependymal lining and deep into the hippocampus. Finally, exposure of rat hippocampus neurons to ChPE cell-derived EVs resulted in internalization of the EVs in hippocampal soma and neurites. In summary, we describe a transport pathway for blood-borne IGF-1 in EVs through the blood-CSF barrier to the hippocampus in the immature brain.
Collapse
Affiliation(s)
- Niklas Ortenlöf
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden
| | - Suvi Vallius
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden
| | - Helena Karlsson
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden
- Department of Neonatology, Skåne University Hospital, 22184 Lund, Sweden
| | - Claes Ekström
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden
- Department of Neonatology, Skåne University Hospital, 22184 Lund, Sweden
| | - Amanda Kristiansson
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden
- Department of Neonatology, Skåne University Hospital, 22184 Lund, Sweden
| | | | - Stanislava Pankratova
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Norman Barton
- Scientific Advisory Board, Oak Hill Bio Ltd, Altrincham WA14 2DT, United Kingdom
| | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 22184 Lund, Sweden
- Department of Neonatology, Skåne University Hospital, 22184 Lund, Sweden
- Department of Biomedical Science, Faculty of Health and Society, Biofilms—Research Center for Biointerfaces, Malmö University, 21432 Malmö, Sweden
| |
Collapse
|
8
|
Paulsen ME, Marka N, Lunos S, Nagel EM, Gonzalez Villamizar JD, Nathan B, Ramel S. Insulin-like growth factor-1 and insulin-like growth factor binding protein-3 as early predictors of growth, body composition, and neurodevelopment in preterm infants. J Perinatol 2024; 44:1617-1623. [PMID: 38561392 PMCID: PMC11442679 DOI: 10.1038/s41372-024-01933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To investigate the relationship between insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3) and long-term growth, body composition, and neurodevelopment in preterm infants. STUDY DESIGN Prospective data were collected from ≤32 weeks gestational age infant cohort (N = 50). IGF-1 and IGFBP-3 concentrations were measured at 1 week (early) and 35 weeks (late) post-menstrual age (PMA). Growth, body composition, and neurodevelopment outcomes were measured at 4 and 12 months PMA. Relationships were measured by linear regression analysis. RESULTS Early IGFBP-3 concentration was positively associated with neurodevelopment at 12 months PMA. Early IGF-1 concentration was positively associated with weight at 4 months PMA, head circumference at 12 months PMA, and body mass index at 12 months PMA. Late IGFBP-3 concentration was positively associated with weight at 4 months PMA. CONCLUSION Further investigation of these associations may lead to novel biomarkers and/or treatments to optimize health outcomes in preterm infants.
Collapse
Affiliation(s)
- Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.
- Children's Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Nicholas Marka
- Biostatistical Design and Analysis Center, Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Scott Lunos
- Biostatistical Design and Analysis Center, Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Emily M Nagel
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Juan David Gonzalez Villamizar
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Children's Minnesota, Minneapolis, MN, USA
| | - Brandon Nathan
- Division of Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sara Ramel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Laccetta G, De Nardo MC, Cellitti R, Di Chiara M, Tagliabracci M, Parisi P, Gloria F, Rizzo G, Spalice A, Terrin G. Quantitative Evaluation of White Matter Injury by Cranial Ultrasound to Detect the Effects of Parenteral Nutrition in Preterm Babies: An Observational Study. J Imaging 2024; 10:224. [PMID: 39330444 PMCID: PMC11433113 DOI: 10.3390/jimaging10090224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Nutrition in early life has an impact on white matter (WM) development in preterm-born babies. Quantitative analysis of pixel brightness intensity (PBI) on cranial ultrasound (CUS) scans has shown a great potential in the evaluation of periventricular WM echogenicity in preterm newborns. We aimed to investigate the employment of this technique to objectively verify the effects of parenteral nutrition (PN) on periventricular WM damage in preterm infants. Prospective observational study including newborns with gestational age at birth ≤32 weeks and/or birth weight ≤1500 g who underwent CUS examination at term-equivalent age. The echogenicity of parieto-occipital periventricular WM relative to that of homolateral choroid plexus (RECP) was calculated on parasagittal scans by means of quantitative analysis of PBI. Its relationship with nutrient intake through enteral and parenteral routes in the first postnatal week was evaluated. The study included 42 neonates for analysis. We demonstrated that energy and protein intake administered through the parenteral route positively correlated with both right and left RECP values (parenteral energy intake vs. right RECP: r = 0.413, p = 0.007; parenteral energy intake vs. left RECP: r = 0.422, p = 0.005; parenteral amino acid intake vs. right RECP: r = 0.438, p = 0.004; parenteral amino acid intake vs. left RECP: r = 0.446, p = 0.003). Multivariate linear regression analysis confirmed these findings. Quantitative assessment of PBI could be considered a simple, risk-free, and repeatable method to investigate the effects of PN on WM development in preterm neonates.
Collapse
Affiliation(s)
- Gianluigi Laccetta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Chiara De Nardo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Raffaella Cellitti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Tagliabracci
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Pasquale Parisi
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine and Psychology, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Flavia Gloria
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Rizzo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Spalice
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Paulsen ME, Marka N, Nagel EM, Gonzalez Villamizar JD, Nathan BM, Ramel SE. An exploratory study of clinical factors associated with IGF-1 and IGFBP-3 in preterm infants. Pediatr Res 2024; 96:402-408. [PMID: 38191823 PMCID: PMC11228126 DOI: 10.1038/s41390-023-02970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/17/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Despite advances in parenteral nutrition, postnatal growth failure in very low birthweight (VLBW) preterm infants is common and associated with chronic health problems. Insulin-like growth factor 1 (IGF-1) is positively associated with improved infant growth, but factors which promote IGF-1 levels in this population have not been clearly identified. The objective of this study was to explore early factors that influence IGF-1 in VLBW preterm infants. METHODS VLBW infants were enrolled into a prospective, randomized controlled nutrition trial (N = 87). Outcome measures included IGF-1 and IGFBP-3 levels measured at 35 weeks PMA. Linear regression analyses tested the relationships between candidate clinical predictors and levels of IGF-1 and IGFBP-3. RESULTS Higher protein intake, longer duration of parenteral nutrition, and lower IGFBP-3 levels at 1 week of life were associated with lower IGF-1 levels at 35 weeks PMA. Neither early markers of insulin resistance nor degree of illness were associated with IGF-1 levels at 35 weeks PMA. CONCLUSION Optimization of early nutrient intake, and attention to route of delivery, may have a lasting influence on IGF-1/IGFBP-3, and in turn, long-term health outcomes. IMPACT In very low birthweight preterm infants, early protein intake, duration of parenteral nutrition, and insulin-like growth factor binding protein 3 (IGFBP-3) levels at 1 week of life are positively associated with insulin-like growth factor 1 (IGF-1) levels at 35 weeks postmenstrual age. Data from this study highlight the influence of early nutrition on components of the endocrine axis in preterm infants. Strategies aimed at early initiation of enteral nutrition, as well as optimizing composition of parenteral nutrition, may bolster hormones involved in promoting preterm infant growth.
Collapse
Affiliation(s)
- Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Nicholas Marka
- Biostatistical Design and Analysis Center, Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Emily M Nagel
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | | | - Brandon M Nathan
- Division of Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sara E Ramel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Rasmussen MB, Holgersen K, Pankratova S, Bæk O, Burrin DG, Thymann T, Sangild PT. Gut development following insulin-like growth factor-1 supplementation to preterm pigs. Pediatr Res 2024; 95:1528-1535. [PMID: 38086951 PMCID: PMC11126387 DOI: 10.1038/s41390-023-02949-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/31/2023] [Accepted: 11/18/2023] [Indexed: 05/26/2024]
Abstract
BACKGROUND Reduced insulin-like growth factor-1 (IGF-1) levels may contribute to impaired organ development in preterm infants. Using preterm pigs as a model, we hypothesized that IGF-1 supplementation improves health and gut development during the first three weeks of life. METHODS First, clinical and organ endpoints were compared between artificially-reared, cesarean-delivered preterm pigs and vaginally-delivered, sow-reared term pigs at 5, 9 and 19 days. Next, preterm pigs were treated with recombinant human IGF-1 for 19 days (2.25 mg/kg/day, systemically). RESULTS Relative to term pigs, preterm pigs had lower body weight, fat, bone contents, relative weights of liver and spleen and a longer and thinner intestine at 19 days. Preterm birth reduced intestinal villi heights and peptidase activities, but only at 5 and 9 days. In preterm pigs, IGF-1 reduced mortality primarily occurring from gastrointestinal complications and with a tendency towards salvaging smaller pigs. IGF-1 supplementation also increased spleen and kidney weights, small intestine length and maltase to lactase activity, reflecting gut maturation. CONCLUSION Preterm birth affects body composition and gut maturation in the first 1-2 weeks, but differences are marginal thereafter. Supplemental IGF-1 may improve gut health in pigs and infants in the first few weeks after preterm birth. IMPACT Insulin-like growth factor 1 (IGF-1) supplementation may improve gut health and development in prematurity, but whether the effects are sustained beyond the immediate postnatal period is unclear. In preterm pigs, the prematurity effects on IGF-1 and gut health deficiencies are most pronounced during the first week of life and diminishes thereafter. In preterm pigs, IGF-1 supplementation beyond the first week of life reduced mortality. The present study provides evidence of a sustained effect of IGF-1 supplementation on the gastrointestinal tract after the immediate postnatal period.
Collapse
Affiliation(s)
- Martin Bo Rasmussen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kristine Holgersen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ole Bæk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Douglas G Burrin
- US Department of Agriculture/Agricultural Research Service and Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Children's Nutrition Research Center, Houston, TX, USA
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.
- Faculty of Theology, University of Copenhagen, Copenhagen, Denmark.
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
12
|
Kramer BW, Abman S, Daly M, Jobe AH, Niklas V. Insulin-like growth factor-1 replacement therapy after extremely premature birth: An opportunity to optimize lifelong lung health by preserving the natural sequence of lung development. Paediatr Respir Rev 2023; 48:24-29. [PMID: 37268507 DOI: 10.1016/j.prrv.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
The past decades have seen markedly improved survival of increasingly immature preterm infants, yet major health complications persist. This is particularly true for bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, which has become the most common sequelae of prematurity and a significant predictor of respiratory morbidity throughout childhood as well as adult life, neurodevelopmental disability, cardiovascular disease, and even death. The need for novel approaches to reduce BPD and related complications of prematurity has never been more critical. Thus, despite major advances in the use of antenatal steroids, surfactant therapy, and improvements in respiratory support, there is a persistent need for developing therapeutic strategies that more specifically reflect our growing understanding of BPD in the post-surfactant age, or the "new BPD." In contrast with the severe lung injury leading to marked fibroproliferative disease from the past, the "new BPD" is primarily characterized by an arrest of lung development as related to more extreme prematurity. This distinction and the continued high incidence of BPD and related sequelae suggest the need to identify therapies that target critical mechanisms that support lung growth and maturation in conjunction with treatments to improve respiratory outcomes across the lifespan. As the prevention of BPD and its severity remains a primary goal, we highlight the concept from preclinical and early clinical observations that insulin-like growth factor 1 (IGF-1) can potentially support the natural sequence of lung growth as a replacement therapy after preterm birth. Data supporting this hypothesis are robust and include observations that low IGF-1 levels persist after extremely preterm birth in human infants and strong preclinical data from experimental models of BPD highlight the therapeutic benefit of IGF-1 in reducing disease. Importantly, phase 2a clinical data in extremely premature infants where replacement of IGF-1 with a human recombinant human IGF-1 complexed with its main IGF-1 binding protein 3, significantly reduced the most severe form of BPD, which is strongly associated with multiple morbidities that have lifelong consequences. As physiologic replacement therapy of surfactant heralded the success of reducing acute respiratory distress syndrome in preterm infants, the paradigm has the potential to become the platform for discovering the next generation of therapies like IGF-1, which becomes deficient after extremely premature birth where endogenous production by the infant is not sufficient to maintain the physiologic levels adequate to support normal organ development and maturation.
Collapse
Affiliation(s)
- Boris W Kramer
- University of Western Australia, Subiaco, Western Australia, Australia; Neuroplast BV, Maastricht, NL, The Netherlands.
| | - Steven Abman
- University of Colorado Anschutz Medical Center, Department of Pediatrics and Division of Pulmonology, Aurora, CO 80045, USA
| | - Mandy Daly
- Irish Neonatal Health Alliance, Wicklow, Ireland
| | - Alan H Jobe
- Emeritus Professor of Pediatrics, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Victoria Niklas
- Oak Hill Bio Ltd, 1 Ashley Road, Altrincham, Cheshire WA14 2DT, UK
| |
Collapse
|
13
|
Hagman C, Björklund LJ, Bjermer L, Hansen-Pupp I, Tufvesson E. Lung function deficits and bronchodilator responsiveness at 12 years of age in children born very preterm compared with controls born at term. Pediatr Pulmonol 2023; 58:3156-3170. [PMID: 37594159 DOI: 10.1002/ppul.26636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Very preterm birth is associated with lung function impairment later in life, but several aspects have not been studied. We aimed to comprehensively assess lung function at school age in very preterm infants and term controls, with special emphasis on bronchopulmonary dysplasia (BPD), sex, and bronchodilator response. METHODS At 12 years of age, 136 children born very preterm (85 with and 51 without BPD) and 56 children born at term performed spirometry, body plethysmography, impulse oscillometry, measurement of diffusion capacity, and multiple breath washout, before and after bronchodilator inhalation. RESULTS Airway symptoms and a diagnosis of asthma were more common in children born very preterm. These children had more airflow limitation, seen as lower forced expiratory volume in 1 s (FEV1 ) (p < .001), FEV1 /forced vital capacity (FVC) (p = .011), and mean forced expiratory flow between 25% and 75% of FVC (p < .001), and a higher total and peripheral airway resistance compared with term-born controls. There was no difference in total lung capacity but air trapping and lung clearance index were higher in children born very preterm. Diffusion capacity was lower in children born very preterm, especially in those with a diagnosis of BPD. In most other tests, the differences between preterm-born children with or without BPD were smaller than between children born preterm versus at term. Boys born preterm had more lung function deficits than preterm-born girls. In children born very preterm, airway obstruction was to a large extent reversible. CONCLUSION At 12 years of age, children born very preterm had lower lung function than children born at term in most aspects and there was only little difference between children with or without BPD. Airway obstruction improved markedly after bronchodilator inhalation.
Collapse
Affiliation(s)
- Cecilia Hagman
- Department of Clinical Sciences, Lund, Pediatrics, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lars J Björklund
- Department of Clinical Sciences, Lund, Pediatrics, Lund University and Skåne University Hospital, Lund, Sweden
| | - Leif Bjermer
- Department of Clinical Sciences, Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Ingrid Hansen-Pupp
- Department of Clinical Sciences, Lund, Pediatrics, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences, Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Christiansen LI, Ventura GC, Holmqvist B, Aasmul-Olsen K, Lindholm SEH, Lycas MD, Mori Y, Secher JBM, Burrin DG, Thymann T, Sangild PT, Pankratova S. Insulin-like growth factor 1 supplementation supports motor coordination and affects myelination in preterm pigs. Front Neurosci 2023; 17:1205819. [PMID: 37404461 PMCID: PMC10315495 DOI: 10.3389/fnins.2023.1205819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Methods Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. Results The IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus. Conclusion Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.
Collapse
Affiliation(s)
- Line I. Christiansen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gemma C. Ventura
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Karoline Aasmul-Olsen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sandy E. H. Lindholm
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Matthew D. Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Bojsen-Møller Secher
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Douglas G. Burrin
- United States Department of Agriculture, Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, Odense, Denmark
- Faculty of Theology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animals Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Patidar N, Rath CP, Rao S, Patole S. Outcomes of very preterm infants with hyperglycaemia treated with insulin: A systematic review and meta-analysis. Acta Paediatr 2023; 112:1157-1164. [PMID: 36895111 DOI: 10.1111/apa.16748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
AIM To study the outcomes of very preterm infants with hyperglycaemia treated with Insulin. METHODS This is a systematic review of randomised controlled trials (RCTs) and observational studies. PubMed, Medline, EMBASE, Cochrane Library, EMCARE and MedNar databases were searched in May 2022. Data were pooled separately for adjusted and unadjusted odds ratios (ORs) using random-effects model. MAIN OUTCOME MEASURES Mortality and morbidities (e.g. Necrotising enterocolitis [NEC], retinopathy of prematurity [ROP]) in very preterm (<32 weeks) or very low birth weight infants (<1500 g) after treatment of hyperglycaemia with insulin. RESULTS Sixteen studies with data from 5482 infants were included. Meta-analysis of unadjusted ORs from cohort studies showed that insulin treatment was significantly associated with increased mortality [OR 2.98 CI (1.03 to 8.58)], severe ROP [OR 2.23 CI (1.34 to 3.72)] and NEC [OR 2.19 CI (1.11 to 4)]. However, pooling of adjusted ORs did not show significant associations for any outcomes. The only included RCT found better weight gain in the insulin group, but no effect on mortality or morbidities. Certainty of evidence was 'Low' or 'Very low'. CONCLUSION Very low certainty evidence suggests that Insulin therapy may not improve outcomes of very preterm infants with hyperglycaemia.
Collapse
Affiliation(s)
- Nital Patidar
- Paediatrics, Armadale General Hospital, Armadale, Western Australia, 6112, Australia
| | - Chandra Prakash Rath
- Neonatalogy, King Edward Memorial Hospital, Subiaco, Western Australia, 6008, Australia
- Neonatal, Perth Children's Hospital, Nedland, Western Australia, 6009, Australia
| | - Shripada Rao
- Neonatal, Perth Children's Hospital, Nedland, Western Australia, 6009, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Sanjay Patole
- Neonatalogy, King Edward Memorial Hospital, Subiaco, Western Australia, 6008, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Janson E, Willemsen MF, Van Beek PE, Dudink J, Van Elburg RM, Hortensius LM, Tam EWY, de Pipaon MS, Lapillonne A, de Theije CGM, Benders MJNL, van der Aa NE. The influence of nutrition on white matter development in preterm infants: a scoping review. Pediatr Res 2023:10.1038/s41390-023-02622-1. [PMID: 37147439 DOI: 10.1038/s41390-023-02622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 03/22/2023] [Indexed: 05/07/2023]
Abstract
White matter (WM) injury is the most common type of brain injury in preterm infants and is associated with impaired neurodevelopmental outcome (NDO). Currently, there are no treatments for WM injury, but optimal nutrition during early preterm life may support WM development. The main aim of this scoping review was to assess the influence of early postnatal nutrition on WM development in preterm infants. Searches were performed in PubMed, EMBASE, and COCHRANE on September 2022. Inclusion criteria were assessment of preterm infants, nutritional intake before 1 month corrected age, and WM outcome. Methods were congruent with the PRISMA-ScR checklist. Thirty-two articles were included. Negative associations were found between longer parenteral feeding duration and WM development, although likely confounded by illness. Positive associations between macronutrient, energy, and human milk intake and WM development were common, especially when fed enterally. Results on fatty acid and glutamine supplementation remained inconclusive. Significant associations were most often detected at the microstructural level using diffusion magnetic resonance imaging. Optimizing postnatal nutrition can positively influence WM development and subsequent NDO in preterm infants, but more controlled intervention studies using quantitative neuroimaging are needed. IMPACT: White matter brain injury is common in preterm infants and associated with impaired neurodevelopmental outcome. Optimizing postnatal nutrition can positively influence white matter development and subsequent neurodevelopmental outcome in preterm infants. More studies are needed, using quantitative neuroimaging techniques and interventional designs controlling for confounders, to define optimal nutritional intakes in preterm infants.
Collapse
Affiliation(s)
- Els Janson
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marle F Willemsen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pauline E Van Beek
- Department of Neonatology, Máxima Medical Center, Veldhoven, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ruurd M Van Elburg
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lisa M Hortensius
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Emily W Y Tam
- Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Miguel Saenz de Pipaon
- Neonatology, Instituto de Investigación Sanitaria, La Paz University Hospital-IdiPAZ (Universidad Autonoma), Madrid, Spain
| | - Alexandre Lapillonne
- Department of Neonatology, Necker-Enfants Malades Hospital, University of Paris, Paris, France
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, 3508 AB, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Niek E van der Aa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
- University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Toppe F, Rasche T, Weiss C, Schock A, Felderhoff-Müser U, Müller H. Relationship between early nutrition and deep gray matter and lateral ventricular volumes of preterm infants at term-equivalent age. World J Pediatr 2023; 19:460-468. [PMID: 36598742 PMCID: PMC10149468 DOI: 10.1007/s12519-022-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND The survival of preterm infants has improved over the last decade, but impaired brain development leading to poor neurological outcomes is still a major comorbidity associated with prematurity. The aim of this study was to evaluate the effect of nutrition on neurodevelopment in preterm infants and identify markers for improved outcomes. METHODS Totally 67 premature infants with a gestational age of 24-34 weeks and a birth weight of 450-2085 g were included. Clinical parameters and documented diet were collected from medical records. The nutritional analysis comprised the protein, fat, carbohydrate, and energy intake during different time spans. Brain development was assessed by determining deep gray matter (DGM; basal ganglia and thalamus) and lateral ventricular (LV) volumes as measured on cerebral magnetic resonance imaging scans obtained at term-equivalent age (TEA), and potential associations between nutrition and brain volumetrics were detected by regression analysis. RESULTS We observed a negative correlation between mean daily protein intake in the third postnatal week and MRI-measured DGM volume at TEA (P = 0.007). In contrast, head circumference at a corrected age of 35 weeks gestation (P < 0.001) and mean daily fat intake in the fourth postnatal week (P = 0.004) were positively correlated with DGM volume. Moreover, mean daily carbohydrate intake in the first postnatal week (P = 0.010) and intraventricular hemorrhage (P = 0.003) were revealed as independent predictors of LV volume. CONCLUSION The study emphasizes the importance of nutrition for brain development following preterm birth.
Collapse
Affiliation(s)
- Felicia Toppe
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tobias Rasche
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics, and Information Processing, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Alexandra Schock
- Pediatric Surgery, University Hospital Marburg, University of Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Hanna Müller
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Department of Pediatrics, Neonatology and Pediatric Intensive Care, University Hospital Marburg, University of Marburg, Baldingerstraße, 35043 Marburg, Germany
| |
Collapse
|
18
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
19
|
Postnatal serum IGF-1 levels associate with brain volumes at term in extremely preterm infants. Pediatr Res 2023; 93:666-674. [PMID: 35681088 PMCID: PMC9988684 DOI: 10.1038/s41390-022-02134-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Growth factors important for normal brain development are low in preterm infants. This study investigated the link between growth factors and preterm brain volumes at term. MATERIAL/METHODS Infants born <28 weeks gestational age (GA) were included. Endogenous levels of insulin-like growth factor (IGF)-1, brain-derived growth factor, vascular endothelial growth factor, and platelet-derived growth factor (expressed as area under the curve [AUC] for serum samples from postnatal days 1, 7, 14, and 28) were utilized in a multivariable linear regression model. Brain volumes were determined by magnetic resonance imaging (MRI) at term equivalent age. RESULTS In total, 49 infants (median [range] GA 25.4 [22.9-27.9] weeks) were included following MRI segmentation quality assessment and AUC calculation. IGF-1 levels were independently positively associated with the total brain (p < 0.001, β = 0.90), white matter (p = 0.007, β = 0.33), cortical gray matter (p = 0.002, β = 0.43), deep gray matter (p = 0.008, β = 0.05), and cerebellar (p = 0.006, β = 0.08) volume adjusted for GA at birth and postmenstrual age at MRI. No associations were seen for other growth factors. CONCLUSIONS Endogenous exposure to IGF-1 during the first 4 weeks of life was associated with total and regional brain volumes at term. Optimizing levels of IGF-1 might improve brain growth in extremely preterm infants. IMPACT High serum levels of insulin-like growth factor (IGF)-1 during the first month of life were independently associated with increased total brain volume, white matter, gray matter, and cerebellar volume at term equivalent age in extremely preterm infants. IGF-1 is a critical regulator of neurodevelopment and postnatal levels are low in preterm infants. The effects of IGF-1 levels on brain development in extremely preterm infants are not fully understood. Optimizing levels of IGF-1 may benefit early brain growth in extremely preterm infants. The effects of systemically administered IGF-1/IGFBP3 in extremely preterm infants are now being investigated in a randomized controlled trial (Clinicaltrials.gov: NCT03253263).
Collapse
|
20
|
Kosik K, Szpecht D, Karbowski Ł, Al-Saad SR, Chmielarz-Czarnocińska A, Minta M, Sowińska A, Strauss E. Hemangioma-related gene polymorphisms in the pathogenesis of intraventricular hemorrhage in preterm infants. Childs Nerv Syst 2023; 39:1589-1594. [PMID: 36656337 DOI: 10.1007/s00381-023-05824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/01/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE The aim of this study was to evaluate the possible relationship between four single nucleotide polymorphisms of hemangioma-linked genes encoding for anthrax toxin receptor 1 (ANTXR1 G976A), R kinase insert domain receptor (KDR T1444C), adrenoceptor beta 2 (ADRB C79CG), and insulin-like growth factor 1 receptor (IGF-1R G3174A) and the occurrence of IVH in a population of preterm infants. METHODS The study includes a population of 105 infants born from 24 + 0 to 32 + 0 weeks of gestation and hospitalized at the Department of Neonatology (III level hospital) of Poznan University of Medical Science. Intraventricular hemorrhage was diagnosed with the use of cranial ultrasound. The classification of intraventricular bleeding was based on the Papile IVH classification. RESULTS The incidence of IVH was higher in infants with lower birth weight, lower APGAR scores, and low birth weight. The study revealed that IVH was approximately two times less likely to occur in infants with the allele G of IGF-1R 3174G > A. CONCLUSION Identifying susceptible premature infants through genetic analysis could be a potential way to alleviate severe IVH and its subsequent consequences. Further research examining a wider range of relevant gene polymorphisms could help highlight any genetic patterns in this deleterious bleeding complication.
Collapse
Affiliation(s)
- Katarzyna Kosik
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33 Street 60-535, Poznan, Poland.
| | - Dawid Szpecht
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33 Street 60-535, Poznan, Poland
| | | | | | | | - Marcin Minta
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33 Street 60-535, Poznan, Poland
| | - Anna Sowińska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
21
|
Salamat-Miller N, Turner MA, Bandekar A, Dixit N, Jochim E, Mangum B, McPherson C, Tenjarla S, Singh S, Hwang YS, Barton N. Assessment of compatibility of rhIGF-1/rhIGFBP-3 with neonatal intravenous medications. World J Pediatr 2023; 19:58-67. [PMID: 36344872 PMCID: PMC9832074 DOI: 10.1007/s12519-022-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recombinant human (rh)IGF-1/IGFBP-3 protein complex, administered as a continuous intravenous infusion in preterm infants, is being studied for the prevention of complications of prematurity. METHODS We conducted in vitro studies to evaluate the physical and chemical compatibility of rhIGF-1/IGFBP-3 with medications routinely administered to preterm neonates. In vitro mixing of rhIGF-1/IGFBP-3 drug product with small-molecule test medications plus corresponding controls was performed. Physical compatibility was defined as no color change, precipitation, turbidity, gas evolution, no clinically relevant change in pH/osmolality or loss in medication content. Chemical compatibility of small molecules was assessed using liquid chromatography (e.g., reverse-phase HPLC and ion chromatography), with incompatibility defined as loss of concentration of ≥ 10%. A risk evaluation was conducted for each medication based on in vitro compatibility data and potential for chemical modification. RESULTS In vitro physical compatibility was established for 11/19 medications: caffeine citrate, fentanyl, fluconazole, gentamicin, insulin, intravenous fat emulsion, midazolam, morphine sulfate, custom-mixed parenteral nutrition solution (with/without electrolytes), parenteral nutrition solution + intravenous fat emulsion, and vancomycin (dosed from a 5 mg/mL solution), but not for 8/19 medications: amikacin, ampicillin, dopamine, dobutamine, furosemide, meropenem, norepinephrine, and penicillin G, largely owing to changes in pH after mixing. Small-molecule compatibility was unaffected post-mixing, with no loss of small-molecule content. For physically compatible medications, risk analyses confirmed low probability and severity of a risk event. CONCLUSION Co-administration of rhIGF-1/rhIGFBP-3 drug product with various medications was assessed by in vitro studies using case-by-case risk analyses to determine the suitability of the products for co-administration.
Collapse
Affiliation(s)
| | - Mark A. Turner
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Nitin Dixit
- Takeda, 200 Shire Way, Lexington, MA 02421 USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Han G, Lim DH, Kang D, Cho J, Guallar E, Chang YS, Chung TY, Kim SJ, Park WS. Association Between Retinopathy of Prematurity in Very-Low-Birth-Weight Infants and Neurodevelopmental Impairment. Am J Ophthalmol 2022; 244:205-215. [PMID: 35998681 DOI: 10.1016/j.ajo.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE To evaluate the impact of retinopathy of prematurity (ROP) severity and the treatment of very-low-birth-weight infants (VLBWIs) on neurodevelopmental impairment in early childhood. DESIGN Prospective cohort study. METHOD This was a prospective cohort study. The data were obtained from the Korean Neonatal Network (KNN), a nationwide registry for VLBWIs. Infants who were born from 2013 to 2015 and underwent ROP evaluation at birth and neurodevelopmental examinations at corrected ages of 18 to 24 months were included in the study. Infants with a history of meningitis or severe congenital anomalies were excluded. The VLBWI patients were grouped into no ROP, no treatment-requiring ROP (non-TR-ROP), and treatment-requiring ROP (TR-ROP) groups. Neurodevelopmental impairment was defined as participants who had at least 1 developmental problem according to the Bayley Scales of Infant and Toddler Development-2nd Edition (Bayley-II; <70), Bayley Scales of Infant and Toddler Development-3rd Edition (Bayley-III; <70), and Korean Developmental Screening Test (K-DST) tests (below -1 SD), and the Korean Ages and Stages Questionnaire (K-ASQ) (below the threshold) and Gross Motor Function Classification System (GMFCS; at level 2 or above). Multivariable logistic regression analysis was performed to evaluate the association between ROP and neurodevelopmental impairment. RESULT Among 3132 infants, 1093 (34.9%) had ROP. Among the ROP infants, 644 were not treated for ROP (non-TR-ROP group) and 449 received ROP treatments (TR-ROP group). The patients in the TR-ROP group had an increased risk of developing neurodevelopmental problems compared to those in the no ROP group (odds ratio [OR] = 1.72, 95% CI = 1.33-2.21). The TR-ROP group had a higher risk of all 3 types of neurodevelopmental problems: mental (OR = 1.62, 95% CI = 1.25-2.09), social (OR = 1.62, 95% CI = 1.12-2.09), and motor (OR = 1.69, 95% CI = 1.31-2.18). The risk of neurodevelopmental problems in patients treated with laser therapy did not differ from that in patients treated with anti-vascular endothelial growth factor (anti-VEGF) therapy (OR = 1.17, 95% CI = 0.73-1.88). CONCLUSION ROP was independently associated with neurodevelopmental impairment in early childhood. The type of ROP treatment (anti-VEGF or laser treatment) did not affect neurodevelopmental impairment in patients in the TR-ROP group.
Collapse
Affiliation(s)
- Gyule Han
- From the Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Hui Lim
- From the Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Danbee Kang
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea; Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Juhee Cho
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea; Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eliseo Guallar
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea; Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Epidemiology, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Tae-Young Chung
- From the Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Jin Kim
- From the Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Nagano N, Katayama D, Hara K, Akimoto T, Imaizumi T, Seimiya A, Aoki R, Hijikata M, Fuwa K, Okahashi A, Morioka I. Association of umbilical cord insulin-like growth factor 1 levels with severe retinopathy in extremely preterm infants. Pediatr Neonatol 2022; 64:126-132. [PMID: 36175353 DOI: 10.1016/j.pedneo.2022.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/30/2022] [Accepted: 05/15/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND The association between umbilical cord blood insulin-like growth factor 1 (IGF-1) levels and retinopathy of prematurity (ROP) remains unclear. This study aimed to investigate whether umbilical cord blood IGF-1 levels can predict the development of severe ROP in extremely preterm infants. METHODS This hospital-based retrospective cohort study included infants born at <37 weeks gestational age (GA) between 2019 and 2021 and then classified them into the two GA groups: extremely preterm, <28 weeks and preterm infants, 28-36 weeks. Extremely preterm infants were further subclassified into two groups according to the laser treatment as follows: the severe ROP (ROP-Tx) and ROP (No ROP-Tx) groups. Median umbilical cord blood IGF-1 values were compared between the groups. Perinatal risk factors were identified by univariate and multivariate analyses. Finally, umbilical cord IGF-1 cut-off values requiring ROP treatment with laser were determined by receiver operating characteristic (ROC) curve analyses. RESULTS A total of 205 infants were enrolled, with 32 being extremely preterm (ROP-Tx: n = 11; No ROP-Tx: n = 21) and 173 being preterm. IGF-1 levels were significantly lower in extremely preterm (13.5 ng/mL) than preterm infants (36 ng/mL, p < 0.001). In extremely preterm infants, IGF-1 levels were significantly lower in the ROP-Tx group than the No ROP-Tx group (10 vs. 19 ng/mL, respectively, p = 0.024). Only GA, umbilical cord blood IGF-1 levels, birth head circumference, and birth chest circumference were identified as risk factors by univariate analysis (p < 0.05). Multivariate analysis showed that only umbilical cord blood IGF-1 was an independent risk factor (odds ratio: 1.26, p = 0.021). ROC curves revealed an IGF-1 cut-off value of 14 ng/mL. CONCLUSION The need of laser treatment for ROP was found to be associated with low umbilical cord blood IGF-1 levels in extremely preterm infants. Umbilical cord blood IGF-1 can be used as a biomarker for the risk of developing severe ROP.
Collapse
Affiliation(s)
- Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.
| | - Daichi Katayama
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Hara
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Akimoto
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Takayuki Imaizumi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ayako Seimiya
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ryoji Aoki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Midori Hijikata
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Kazumasa Fuwa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Aya Okahashi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Romberg J, Wilke M, Allgaier C, Nägele T, Engel C, Poets CF, Franz A. MRI-based brain volumes of preterm infants at term: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2022; 107:520-526. [PMID: 35078779 PMCID: PMC9411894 DOI: 10.1136/archdischild-2021-322846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND MRI allows a detailed assessment of brain structures in preterm infants, outperforming cranial ultrasound. Neonatal MR-based brain volumes of preterm infants could serve as objective, quantitative and reproducible surrogate parameters of early brain development. To date, there are no reference values for preterm infants' brain volumes at term-equivalent age. OBJECTIVE Systematic review of the literature to determine reference ranges for MRI-based brain volumes of very preterm infants at term-equivalent age. METHODS PubMed Database was searched on 6 April 2020 for studies reporting MR-based brain volumes on representative unselected populations of very preterm and/or very low birthweight infants examined at term equivalent age (defined as 37-42 weeks mean postmenstrual age at MRI). Analyses were limited to volumetric parameters reported in >3 studies. Weighted mean volumes and SD were both calculated and simulated for each parameter. RESULTS An initial 367 publications were identified. Following application of exclusion criteria, 13 studies from eight countries were included for analysis, yielding four parameters. Weighted mean total brain volume was 379 mL (SD 72 mL; based on n=756). Cerebellar volume was 21 mL (6 mL; n=791), cortical grey matter volume 140 mL (47 mL; n=572) and weighted mean volume of unmyelinated white matter was 195 mL (38 mL; n=499). CONCLUSION This meta-analysis reports pooled data on several brain and cerebellar volumes which can serve as reference for future studies assessing MR-based volumetric parameters as a surrogate outcome for neurodevelopment and for the interpretation of individual or cohort MRI-based volumetric findings.
Collapse
Affiliation(s)
- Julia Romberg
- Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Marko Wilke
- Pediatric Neurology & Developmental Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Allgaier
- Department of Pediatrics, Center for Pediatric Clinical Studies, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Nägele
- Department of Neuroradiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Corinna Engel
- Department of Pediatrics, Center for Pediatric Clinical Studies, University Hospital Tuebingen, Tuebingen, Germany
| | - Christian F Poets
- Department of Neonatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Axel Franz
- Department of Neonatology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
25
|
Tissink E, de Lange SC, Savage JE, Wightman DP, de Leeuw CA, Kelly KM, Nagel M, van den Heuvel MP, Posthuma D. Genome-wide association study of cerebellar volume provides insights into heritable mechanisms underlying brain development and mental health. Commun Biol 2022; 5:710. [PMID: 35842455 PMCID: PMC9288439 DOI: 10.1038/s42003-022-03672-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebellar volume is highly heritable and associated with neurodevelopmental and neurodegenerative disorders. Understanding the genetic architecture of cerebellar volume may improve our insight into these disorders. This study aims to investigate the convergence of cerebellar volume genetic associations in close detail. A genome-wide associations study for cerebellar volume was performed in a discovery sample of 27,486 individuals from UK Biobank, resulting in 30 genome-wide significant loci and a SNP heritability of 39.82%. We pinpoint the likely causal variants and those that have effects on amino acid sequence or cerebellar gene-expression. Additionally, 85 genome-wide significant genes were detected and tested for convergence onto biological pathways, cerebellar cell types, human evolutionary genes or developmental stages. Local genetic correlations between cerebellar volume and neurodevelopmental and neurodegenerative disorders reveal shared loci with Parkinson's disease, Alzheimer's disease and schizophrenia. These results provide insights into the heritable mechanisms that contribute to developing a brain structure important for cognitive functioning and mental health.
Collapse
Affiliation(s)
- Elleke Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Siemon C de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Mats Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Seliniotaki AK, Haidich AB, Moutzouri S, Lithoxopoulou M, Ziakas N, Lundgren P, Hellstrom A, Mataftsi A. Association of platelet deficiency with severe retinopathy of prematurity: a review. Acta Paediatr 2022; 111:2056-2070. [PMID: 35778901 DOI: 10.1111/apa.16472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
AIM The aim of this review was to compile existing evidence on the role of platelets in the development of severe retinopathy of prematurity (ROP), highlight the strengths and weaknesses of the available studies and critically discuss the reported data. METHODS A comprehensive literature search was conducted on PubMed from January 2000 to January 2022, and the reference lists of the included studies were screened manually. RESULTS There were 19 primary studies that fulfilled the eligibility criteria. Experimental research indicated lower platelet count in mice oxygen-induced retinopathy model compared with normoxia controls, while platelet transfusions suppressed neovascularisation. The latter finding was not consistently confirmed in clinical research, where a low platelet count, an increased number of thrombopenic episodes and of platelet transfusions have all been implicated in the development of ROP requiring treatment, either type I or aggressive posterior or both. However, existing studies exhibit significant clinical heterogeneity and present methodological limitations that imperil their reliability and validity. CONCLUSION Platelet deficiency has been associated with severe ROP. However, critical thresholds of platelet parameters are still unrecognised. Future research is required to determine whether platelet parameters can be predictive biomarkers for ROP requiring treatment and at what thresholds.
Collapse
Affiliation(s)
- Aikaterini K Seliniotaki
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna-Bettina Haidich
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Moutzouri
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Lithoxopoulou
- 2nd Department of Neonatology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Ziakas
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asimina Mataftsi
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Percentile-Based Reference Values of Umbilical Cord Blood Insulin-like Growth Factor 1 in Japanese Newborns. J Clin Med 2022; 11:jcm11071889. [PMID: 35407507 PMCID: PMC8999158 DOI: 10.3390/jcm11071889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to create percentile-based reference values of the umbilical cord blood insulin-like growth factor-1 (IGF-1) levels in Japanese newborns, as these values have not yet been established. A total of 259 newborns were classified into four gestational-age-at-birth (GA) groups: extremely preterm (<28 weeks); early preterm (28−33 weeks); late preterm (34−36 weeks); and term (≥37 weeks). They were further subclassified as small-for-gestational-age (SGA) or non-SGA. The 10th, 25th, 50th, 75th, and 90th percentiles of the umbilical cord blood IGF-1 levels were calculated and compared between the groups by using reference values of 9, 18, 33, 52, and 71 ng/mL, respectively. In the extremely preterm group, the IGF-1 levels were significantly lower than those in the early preterm, late preterm, and term groups (13.5, 24.0, 44.5, and 47.5 ng/mL, respectively; p < 0.001). The umbilical cord blood IGF-1 levels in the SGA newborns were significantly lower than those in the non-SGA newborns in all subgroups. In multivariate analyses, the GA and birth weight standard deviation scores were independent determinant factors for the umbilical cord blood IGF-1 levels. Thus, we established percentile-based reference values of umbilical cord blood IGF-1 in Japanese newborns; these reference values can be applied on the basis of the extent of prematurity and the SGA status.
Collapse
|
28
|
Holgersen K, Rasmussen MB, Carey G, Burrin DG, Thymann T, Sangild PT. Clinical outcome and gut development after insulin-like growth factor-1 supplementation to preterm pigs. Front Pediatr 2022; 10:868911. [PMID: 35989990 PMCID: PMC9389362 DOI: 10.3389/fped.2022.868911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Elevation of circulating insulin-like growth factor-1 (IGF-1) within normal physiological levels may alleviate several morbidities in preterm infants but safety and efficacy remain unclear. We hypothesized that IGF-1 supplementation during the first 1-2 weeks after preterm birth improves clinical outcomes and gut development, using preterm pigs as a model for infants. METHODS Preterm pigs were given vehicle or recombinant human IGF-1/binding protein-3 (rhIGF-1, 2.25 mg/kg/d) by subcutaneous injections for 8 days (Experiment 1, n = 34), or by systemic infusion for 4 days (Experiment 2, n = 19), before collection of blood and organs for analyses. RESULTS In both experiments, rhIGF-1 treatment increased plasma IGF-1 levels 3-4 fold, reaching the values reported for term suckling piglets. In Experiment 1, rhIGF-1 treatment increased spleen and intestinal weights without affecting clinical outcomes like growth, blood biochemistry (except increased sodium and gamma-glutamyltransferase levels), hematology (e.g., red and white blood cell populations), glucose homeostasis (e.g., basal and glucose-stimulated insulin and glucose levels) or systemic immunity variables (e.g., T cell subsets, neutrophil phagocytosis, LPS stimulation, bacterial translocation to bone marrow). The rhIGF-1 treatment increased gut protein synthesis (+11%, p < 0.05) and reduced the combined incidence of all-cause mortality and severe necrotizing enterocolitis (NEC, p < 0.05), but had limited effects on intestinal morphology, cell proliferation, cell apoptosis, brush-border enzyme activities, permeability and levels of cytokines (IL-1β, IL-6, IL-8). In Experiment 2, rhIGF-1 treated pigs had reduced blood creatine kinase, creatinine, potassium and aspartate aminotransferase levels, with no effects on organ weights (except increased spleen weight), blood chemistry values, clinical variables or NEC. CONCLUSION Physiological elevation of systemic IGF-1 levels for 8 days after preterm birth increased intestinal weight and protein synthesis, spleen weight and potential overall viability of pigs, without any apparent negative effects on recorded clinical parameters. The results add further preclinical support for safety and efficacy of supplemental IGF-1 to hospitalized very preterm infants.
Collapse
Affiliation(s)
- Kristine Holgersen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Martin Bo Rasmussen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Douglas G Burrin
- Department of Pediatrics, United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
29
|
Motavaf M, Piao X. Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Front Cell Neurosci 2021; 15:764486. [PMID: 34803612 PMCID: PMC8599582 DOI: 10.3389/fncel.2021.764486] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Perinatal white matter injury (WMI) is the most common brain injury in premature infants and can lead to life-long neurological deficits such as cerebral palsy. Preterm birth is typically accompanied by inflammation and hypoxic-ischemic events. Such perinatal insults negatively impact maturation of oligodendrocytes (OLs) and cause myelination failure. At present, no treatment options are clinically available to prevent or cure WMI. Given that arrested OL maturation plays a central role in the etiology of perinatal WMI, an increased interest has emerged regarding the functional restoration of these cells as potential therapeutic strategy. Cell transplantation and promoting endogenous oligodendrocyte function are two potential options to address this major unmet need. In this review, we highlight the underlying pathophysiology of WMI with a specific focus on OL biology and their implication for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Nutritional Intake, White Matter Integrity, and Neurodevelopment in Extremely Preterm Born Infants. Nutrients 2021; 13:nu13103409. [PMID: 34684410 PMCID: PMC8539908 DOI: 10.3390/nu13103409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Determining optimal nutritional regimens in extremely preterm infants remains challenging. This study aimed to evaluate the effect of a new nutritional regimen and individual macronutrient intake on white matter integrity and neurodevelopmental outcome. Methods: Two retrospective cohorts of extremely preterm infants (gestational age < 28 weeks) were included. Cohort B (n = 79) received a new nutritional regimen, with more rapidly increased, higher protein intake compared to cohort A (n = 99). Individual protein, lipid, and caloric intakes were calculated for the first 28 postnatal days. Diffusion tensor imaging was performed at term-equivalent age, and cognitive and motor development were evaluated at 2 years corrected age (CA) (Bayley-III-NL) and 5.9 years chronological age (WPPSI-III-NL, MABC-2-NL). Results: Compared to cohort A, infants in cohort B had significantly higher protein intake (3.4 g/kg/day vs. 2.7 g/kg/day) and higher fractional anisotropy (FA) in several white matter tracts but lower motor scores at 2 years CA (mean (SD) 103 (12) vs. 109 (12)). Higher protein intake was associated with higher FA and lower motor scores at 2 years CA (B = −6.7, p = 0.001). However, motor scores at 2 years CA were still within the normal range and differences were not sustained at 5.9 years. There were no significant associations with lipid or caloric intake. Conclusion: In extremely preterm born infants, postnatal protein intake seems important for white matter development but does not necessarily improve long-term cognitive and motor development.
Collapse
|
31
|
Gram M, Ekström C, Holmqvist B, Carey G, Wang X, Vallius S, Hellström W, Ortenlöf N, Agyemang AA, Smith LEH, Hellström A, Mangili A, Barton N, Ley D. Insulin-Like Growth Factor 1 in the Preterm Rabbit Pup: Characterization of Cerebrovascular Maturation following Administration of Recombinant Human Insulin-Like Growth Factor 1/Insulin-Like Growth Factor 1-Binding Protein 3. Dev Neurosci 2021; 43:281-295. [PMID: 34218224 PMCID: PMC8623584 DOI: 10.1159/000516665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/28/2021] [Indexed: 11/19/2022] Open
Abstract
Following preterm birth, serum levels of insulin-like growth factor 1 (IGF-1) decrease compared to corresponding in utero levels. A recent clinical trial indicated that supplementation with recombinant human (rh) IGF-1/rhIGF-binding protein 3 (rhIGF-1/rhIGFBP-3) prevents severe intraventricular hemorrhage (IVH) in extremely preterm infants. In a preterm rabbit pup model, we characterized endogenous serum and hepatic IGF-1, along with brain distribution of IGF-1 and IGF-1 receptor (IGF1R). We then evaluated the effects of rhIGF-1/rhIGFBP-3 on gene expression of regulators of cerebrovascular maturation and structure. Similar to preterm infants, serum IGF-1 concentrations decreased rapidly after preterm birth in the rabbit pup. Administration of rhIGF-1/rhIGFBP-3 restored in utero serum levels but was rapidly eliminated. Immunolabeled IGF1R was widely distributed in multiple brain regions, displaying an abundant density in the choroid plexus and sub-ependymal germinal zones. Increased IGF-1 immunoreactivity, distributed as IGF1R, was detected 4 h after rhIGF-1/rhIGFBP-3 administration. The rhIGF-1/rhIGFBP-3 treatment led to upregulation of choroid plexus genes involved in vascular maturation and structure, with corresponding protein translation for most of these genes. The preterm rabbit pup model is well suited for evaluation of IGF-1-based prevention of IVH. Administration of rhIGF-1/rhIGFBP-3 affects cerebrovascular maturation, suggesting a role for it in preventing preterm IVH.
Collapse
Affiliation(s)
- Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden,
| | - Claes Ekström
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| | | | - Galen Carey
- Takeda Pharmaceuticals, Boston, Massachusetts, USA
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suvi Vallius
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Ortenlöf
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| | | | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann Hellström
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Mangili
- Global Clinical Development, Rare Metabolic Diseases, Shire, a Takeda Company, Zurich, Switzerland
| | | | - David Ley
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Vaes JEG, Kosmeijer CM, Kaal M, van Vliet R, Brandt MJV, Benders MJNL, Nijboer CH. Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity. Int J Mol Sci 2020; 22:ijms22010211. [PMID: 33379239 PMCID: PMC7795049 DOI: 10.3390/ijms22010211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Encephalopathy of Prematurity (EoP) is a major cause of morbidity in (extreme) preterm neonates. Though the majority of EoP research has focused on failure of oligodendrocyte maturation as an underlying pathophysiological mechanism, recent pioneer work has identified developmental disturbances in inhibitory interneurons to contribute to EoP. Here we investigated interneuron abnormalities in two experimental models of EoP and explored the potential of two promising treatment strategies, namely intranasal mesenchymal stem cells (MSCs) or insulin-like growth factor I (IGF1), to restore interneuron development. In rats, fetal inflammation and postnatal hypoxia led to a transient increase in total cortical interneuron numbers, with a layer-specific deficit in parvalbumin (PV)+ interneurons. Additionally, a transient excess of total cortical cell density was observed, including excitatory neuron numbers. In the hippocampal cornu ammonis (CA) 1 region, long-term deficits in total interneuron numbers and PV+ subtype were observed. In mice subjected to postnatal hypoxia/ischemia and systemic inflammation, total numbers of cortical interneurons remained unaffected; however, subtype analysis revealed a global, transient reduction in PV+ cells and a long-lasting layer-specific increase in vasoactive intestinal polypeptide (VIP)+ cells. In the dentate gyrus, a long-lasting deficit of somatostatin (SST)+ cells was observed. Both intranasal MSC and IGF1 therapy restored the majority of interneuron abnormalities in EoP mice. In line with the histological findings, EoP mice displayed impaired social behavior, which was partly restored by the therapies. In conclusion, induction of experimental EoP is associated with model-specific disturbances in interneuron development. In addition, intranasal MSCs and IGF1 are promising therapeutic strategies to aid interneuron development after EoP.
Collapse
Affiliation(s)
- Josine E. G. Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands; (J.E.G.V.); (C.M.K.); (M.K.); (R.v.V.); (M.J.V.B.)
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Chantal M. Kosmeijer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands; (J.E.G.V.); (C.M.K.); (M.K.); (R.v.V.); (M.J.V.B.)
| | - Marthe Kaal
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands; (J.E.G.V.); (C.M.K.); (M.K.); (R.v.V.); (M.J.V.B.)
| | - Rik van Vliet
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands; (J.E.G.V.); (C.M.K.); (M.K.); (R.v.V.); (M.J.V.B.)
| | - Myrna J. V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands; (J.E.G.V.); (C.M.K.); (M.K.); (R.v.V.); (M.J.V.B.)
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Cora H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3584 Utrecht, The Netherlands; (J.E.G.V.); (C.M.K.); (M.K.); (R.v.V.); (M.J.V.B.)
- Correspondence: ; Tel.: +31-88-755-4360
| |
Collapse
|
33
|
Cakir B, Hellström W, Tomita Y, Fu Z, Liegl R, Winberg A, Hansen-Pupp I, Ley D, Hellström A, Löfqvist C, Smith LE. IGF1, serum glucose, and retinopathy of prematurity in extremely preterm infants. JCI Insight 2020; 5:140363. [PMID: 33004691 PMCID: PMC7566718 DOI: 10.1172/jci.insight.140363] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperglycemia, insulin insensitivity, and low IGF1 levels in extremely preterm infants are associated with an increased risk of retinopathy of prematurity (ROP), but the interactions are incompletely understood. METHODS In 117 extremely preterm infants, serum glucose levels and parenteral glucose intake were recoded daily in the first postnatal week. Serum IGF1 levels were measured weekly. Mice with oxygen-induced retinopathy alone versus oxygen-induced retinopathy plus streptozotocin-induced hyperglycemia/hypoinsulinemia were assessed for glucose, insulin, IGF1, IGFBP1, and IGFBP3 in blood and liver. Recombinant human IGF1 was injected to assess the effect on glucose and retinopathy. RESULTS The highest mean plasma glucose tertile of infants positively correlated with parenteral glucose intake [r(39) = 0.67, P < 0.0001]. IGF1 plasma levels were lower in the high tertile compared with those in low and intermediate tertiles at day 28 (P = 0.038 and P = 0.03). In high versus lower glucose tertiles, ROP was more prevalent (34 of 39 versus 19 of 39) and more severe (ROP stage 3 or higher; 71% versus 32%). In oxygen-induced retinopathy, hyperglycemia/hypoinsulinemia decreased liver IGF1 expression (P < 0.0001); rh-IGF1 treatment improved normal vascular regrowth (P = 0.027) and reduced neovascularization (P < 0.0001). CONCLUSION In extremely preterm infants, high early postnatal plasma glucose levels and signs of insulin insensitivity were associated with lower IGF1 levels and increased ROP severity. In a hyperglycemia retinopathy mouse model, decreased insulin signaling suppressed liver IGF1 production, lowered serum IGF1 levels, and increased neovascularization. IGF1 supplementation improved retinal revascularization and decreased pathological neovascularization. The data support IGF1 as a potential treatment for prevention of ROP. TRIAL REGISTRATION ClinicalTrials.gov NCT02760472 (Donna Mega). FUNDING This study has been supported by the Swedish Medical Research Council (14940, 4732, 20144-01-3, and 21144-01-3), a Swedish government grant (ALFGB2770), Lund medical faculty grants (ALFL, 11615 and 11601), the Skåne Council Foundation for Research and Development, the Linnéa and Josef Carlsson Foundation, the Knut and Alice Wallenberg Foundation, the NIH/National Eye Institute (EY022275, EY017017, EY017017-13S1, and P01 HD18655), European Commission FP7 project 305485 PREVENT-ROP, Deutsche Forschungsgemeinschaft (CA-1940/1-1), and Stiftelsen De Blindas Vänner. In extremely preterm infants, high early postnatal plasma glucose levels and signs of insulin insensitivity were associated with lower IGF1 levels and increased retinopathy of prematurity severity.
Collapse
Affiliation(s)
- Bertan Cakir
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Winberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Örebro University Hospital, Örebro, Sweden
| | - Ingrid Hansen-Pupp
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University, Lund, Sweden.,Skane University Hospital, Lund, Sweden
| | - David Ley
- Department of Pediatrics, Institute of Clinical Sciences Lund, Lund University, Lund, Sweden.,Skane University Hospital, Lund, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Ottolini KM, Andescavage N, Keller S, Limperopoulos C. Nutrition and the developing brain: the road to optimizing early neurodevelopment: a systematic review. Pediatr Res 2020; 87:194-201. [PMID: 31349359 PMCID: PMC7374795 DOI: 10.1038/s41390-019-0508-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal intensive care practices have resulted in marked improvements in the survival of premature infants; however, they remain at significant risk for adverse neurodevelopmental outcomes. The impact of current nutritional practices on brain development following early extra-uterine exposure in premature infants is not well known. METHODS We performed a systematic review to investigate nutritional effects on postnatal brain development in healthy term and prematurely born infants utilizing advanced magnetic resonance imaging tools. RESULTS Systematic screen yielded 595 studies for appraisal. Of these, 22 total studies were selected for inclusion in the review, with findings summarized in a qualitative, descriptive fashion. CONCLUSION Fat and energy intake are associated with improved brain volume and development in premature infants. While breast milk intake and long-chain polyunsaturated fatty acid supplementation has been proven beneficial in term infants, the impact in preterm infants is less well understood.
Collapse
Affiliation(s)
- Katherine M. Ottolini
- Department of Neonatology, 18th Medical Operations Squadron, Kadena AB, Okinawa, Japan
| | - Nickie Andescavage
- Division of Neonatology, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA,Department of Pediatrics, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Susan Keller
- Department of Nursing Science Professional Practice and Quality, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Department of Pediatrics, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC, 20037, USA. .,Division of Diagnostic Imaging and Radiology, Children's National Health System, 111 Michigan Avenue NW, Washington, DC, 20010, USA. .,Department of Radiology, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC, 20037, USA.
| |
Collapse
|
35
|
LEVITON A, ALLRED EN, FICHOROVA RN, VANDERVEEN DK, O’SHEA TM, KUBAN K, DAMMANN O. Early Postnatal IGF-1 and IGFBP-1 Blood Levels in Extremely Preterm Infants: Relationships with Indicators of Placental Insufficiency and with Systemic Inflammation. Am J Perinatol 2019; 36:1442-1452. [PMID: 30685870 PMCID: PMC7252600 DOI: 10.1055/s-0038-1677472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate to what extent indicators of placenta insufficiency are associated with low concentrations of insulin-like growth factor 1 (IGF-1) and IGF-1-binding protein-1 (IGFBP-1) in neonatal blood, and to what extent the concentrations of these growth factors are associated with concentrations of proteins with inflammatory, neurotrophic, or angiogenic properties. STUDY DESIGN Using multiplex immunoassays, we measured the concentrations of IGF-1 and IGFBP-1, as well as 25 other proteins in blood spots collected weekly from ≥ 880 infants born before the 28th week of gestation, and sought correlates of concentrations in the top and bottom quartiles for gestational age and day the specimen was collected. RESULTS Medically indicated delivery and severe fetal growth restriction (sFGR) were associated with low concentrations of IGF-1 on the first postnatal day and with high concentrations of IGFBP-1 on almost all days. Elevated concentrations of IGF-1 and IGFBP-1 were accompanied by elevated concentrations of many other proteins with inflammatory, neurotrophic, or angiogenic properties. CONCLUSION Disorders associated with impaired placenta implantation and sFGR appear to account for a relative paucity of IGF-1 on the first postnatal day. Elevated concentrations of IGF-1 and especially IGFBP-1 were associated with same-day elevated concentrations of inflammatory, neurotrophic, and angiogenic proteins.
Collapse
Affiliation(s)
- Alan LEVITON
- Departments of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth N. ALLRED
- Departments of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Raina N. FICHOROVA
- Departments of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Deborah K. VANDERVEEN
- Departments of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - T. Michael O’SHEA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Karl KUBAN
- Division of Neurology, Department of Pediatrics, Boston Medical Center and Boston University, Boston, MA, USA
| | - Olaf DAMMANN
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA,Perinatal Neuropidemiology Unit, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
36
|
Morken TS, Dammann O, Skranes J, Austeng D. Retinopathy of prematurity, visual and neurodevelopmental outcome, and imaging of the central nervous system. Semin Perinatol 2019; 43:381-389. [PMID: 31174874 DOI: 10.1053/j.semperi.2019.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent findings indicate that retinopathy of prematurity (ROP), presently classified by clinical examinations of retinal vascular tissue, is associated with structural alterations of the central nervous system. Such alterations may be the correlate of the association between ROP and impaired long-term neurocognitive and visual development. The advent of imaging techniques such as structural and diffusion tensor magnetic resonance imaging of the brain, and optical coherence tomography of the retina, will allow the complete visual system to be characterized in greater detail. It has been suggested that ROP may be not only a vascular, but a neurovascular disease, being part of a spectrum that includes pathological development in both the retinal and cerebral neurovascular interphase. We review the present knowledge in the field and point to future directions for research to tackle these questions.
Collapse
Affiliation(s)
- Tora Sund Morken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norway and Department of Ophthalmology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Olaf Dammann
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Jon Skranes
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Department of Child Neurology and Rehabilitation and Regional Competence Center for children with prenatal alcohol/drug exposure, Sørlandet Hospital, Arendal, Norway
| | - Dordi Austeng
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norway and Department of Ophthalmology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
37
|
Cormack BE, Harding JE, Miller SP, Bloomfield FH. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019; 11:E2029. [PMID: 31480225 PMCID: PMC6770288 DOI: 10.3390/nu11092029] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022] Open
Abstract
Extremely preterm babies are at increased risk of less than optimal neurodevelopment compared with their term-born counterparts. Optimising nutrition is a promising avenue to mitigate the adverse neurodevelopmental consequences of preterm birth. In this narrative review, we summarize current knowledge on how nutrition, and in particular, protein intake, affects neurodevelopment in extremely preterm babies. Observational studies consistently report that higher intravenous and enteral protein intakes are associated with improved growth and possibly neurodevelopment, but differences in methodologies and combinations of intravenous and enteral nutrition strategies make it difficult to determine the effects of each intervention. Unfortunately, there are few randomized controlled trials of nutrition in this population conducted to determine neurodevelopmental outcomes. Substantial variation in reporting of trials, both of nutritional intakes and of outcomes, limits conclusions from meta-analyses. Future studies to determine the effects of nutritional intakes in extremely preterm babies need to be adequately powered to assess neurodevelopmental outcomes separately in boys and girls, and designed to address the many potential confounders which may have clouded research findings to date. The development of minimal reporting sets and core outcome sets for nutrition research will aid future meta-analyses.
Collapse
Affiliation(s)
- Barbara E Cormack
- Starship Child Health, Auckland City Hospital, Auckland 1023, New Zealand
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Steven P Miller
- Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5S, Canada
| | - Frank H Bloomfield
- Starship Child Health, Auckland City Hospital, Auckland 1023, New Zealand.
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
38
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
39
|
van Bel F, Vaes J, Groenendaal F. Prevention, Reduction and Repair of Brain Injury of the Preterm Infant. Front Physiol 2019; 10:181. [PMID: 30949060 PMCID: PMC6435588 DOI: 10.3389/fphys.2019.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Josine Vaes
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
40
|
Fu Z, Löfqvist CA, Liegl R, Wang Z, Sun Y, Gong Y, Liu CH, Meng SS, Burnim SB, Arellano I, Chouinard MT, Duran R, Poblete A, Cho SS, Akula JD, Kinter M, Ley D, Pupp IH, Talukdar S, Hellström A, Smith LE. Photoreceptor glucose metabolism determines normal retinal vascular growth. EMBO Mol Med 2019; 10:76-90. [PMID: 29180355 PMCID: PMC5760850 DOI: 10.15252/emmm.201707966] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neural cells and factors determining normal vascular growth are not well defined even though vision‐threatening neovessel growth, a major cause of blindness in retinopathy of prematurity (ROP) (and diabetic retinopathy), is driven by delayed normal vascular growth. We here examined whether hyperglycemia and low adiponectin (APN) levels delayed normal retinal vascularization, driven primarily by dysregulated photoreceptor metabolism. In premature infants, low APN levels correlated with hyperglycemia and delayed retinal vascular formation. Experimentally in a neonatal mouse model of postnatal hyperglycemia modeling early ROP, hyperglycemia caused photoreceptor dysfunction and delayed neurovascular maturation associated with changes in the APN pathway; recombinant mouse APN or APN receptor agonist AdipoRon treatment normalized vascular growth. APN deficiency decreased retinal mitochondrial metabolic enzyme levels particularly in photoreceptors, suppressed retinal vascular development, and decreased photoreceptor platelet‐derived growth factor (Pdgfb). APN pathway activation reversed these effects. Blockade of mitochondrial respiration abolished AdipoRon‐induced Pdgfb increase in photoreceptors. Photoreceptor knockdown of Pdgfb delayed retinal vascular formation. Stimulation of the APN pathway might prevent hyperglycemia‐associated retinal abnormalities and suppress phase I ROP in premature infants.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chatarina A Löfqvist
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven S Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel B Burnim
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivana Arellano
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rubi Duran
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Poblete
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D Akula
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - David Ley
- Pediatrics, Department of Clinical Sciences, Skåne University Hospital and University of Lund, Lund, Sweden
| | - Ingrid Hansen Pupp
- Pediatrics, Department of Clinical Sciences, Skåne University Hospital and University of Lund, Lund, Sweden
| | | | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Drost FJ, Keunen K, Moeskops P, Claessens NHP, van Kalken F, Išgum I, Voskuil-Kerkhof ESM, Groenendaal F, de Vries LS, Benders MJNL, Termote JUM. Severe retinopathy of prematurity is associated with reduced cerebellar and brainstem volumes at term and neurodevelopmental deficits at 2 years. Pediatr Res 2018; 83:818-824. [PMID: 29320482 DOI: 10.1038/pr.2018.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/24/2017] [Indexed: 11/09/2022]
Abstract
BackgroundTo evaluate the association between severe retinopathy of prematurity (ROP), measures of brain morphology at term-equivalent age (TEA), and neurodevelopmental outcome.MethodsEighteen infants with severe ROP (median gestational age (GA) 25.3 (range 24.6-25.9 weeks) were included in this retrospective case-control study. Each infant was matched to two extremely preterm control infants (n=36) by GA, birth weight, sex, and brain injury. T2-weighted images were obtained on a 3 T magnetic resonance imaging (MRI) at TEA. Brain volumes were computed using an automatic segmentation method. In addition, cortical folding metrics were extracted. Neurodevelopment was formally assessed at the ages of 15 and 24 months.ResultsInfants with severe ROP had smaller cerebellar volumes (21.4±3.2 vs. 23.1±2.6 ml; P=0.04) and brainstem volumes (5.4±0.5 ml vs. 5.8±0.5 ml; P=0.01) compared with matched control infants. Furthermore, ROP patients showed a significantly lower development quotient (Griffiths Mental Development Scales) at the age of 15 months (93±15 vs. 102±10; P=0.01) and lower fine motor scores (10±3 vs. 12±2; P=0.02) on Bayley Scales (Third Edition) at the age of 24 months.ConclusionSevere ROP was associated with smaller volumes of the cerebellum and brainstem and with poorer early neurodevelopmental outcome. Follow-up through childhood is needed to evaluate the long-term consequences of our findings.
Collapse
Affiliation(s)
- Femke J Drost
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Kristin Keunen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Pim Moeskops
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Femke van Kalken
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jacqueline U M Termote
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr Res 2018; 83:102-110. [PMID: 28915232 DOI: 10.1038/pr.2017.227] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/08/2017] [Indexed: 01/31/2023]
Abstract
BackgroundThis study aimed to investigate the effect of nutrition and growth during the first 4 weeks after birth on cerebral volumes and white matter maturation at term equivalent age (TEA) and on neurodevelopmental outcome at 2 years' corrected age (CA), in preterm infants.MethodsOne hundred thirty-one infants born at a gestational age (GA) <31 weeks with magnetic resonance imaging (MRI) at TEA were studied. Cortical gray matter (CGM) volumes, basal ganglia and thalami (BGT) volumes, cerebellar volumes, and total brain volume (TBV) were computed. Fractional anisotropy (FA) in the posterior limb of internal capsule (PLIC) was obtained. Cognitive and motor scores were assessed at 2 years' CA.ResultsCumulative fat and enteral intakes were positively related to larger cerebellar and BGT volumes. Weight gain was associated with larger cerebellar, BGT, and CGM volume. Cumulative fat and caloric intake, and enteral intakes were positively associated with FA in the PLIC. Cumulative protein intake was positively associated with higher cognitive and motor scores (all P<0.05).ConclusionOur study demonstrated a positive association between nutrition, weight gain, and brain volumes. Moreover, we found a positive relationship between nutrition, white matter maturation at TEA, and neurodevelopment in infancy. These findings emphasize the importance of growth and nutrition with a balanced protein, fat, and caloric content for brain development.
Collapse
|
43
|
Sveinsdóttir K, Ley D, Hövel H, Fellman V, Hüppi PS, Smith LEH, Hellström A, Hansen Pupp I. Relation of Retinopathy of Prematurity to Brain Volumes at Term Equivalent Age and Developmental Outcome at 2 Years of Corrected Age in Very Preterm Infants. Neonatology 2018; 114:46-52. [PMID: 29649829 PMCID: PMC5997524 DOI: 10.1159/000487847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/17/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a major complication of preterm birth and has been associated with later visual and nonvisual impairments. OBJECTIVES To evaluate relationships between any stage of ROP, brain volumes, and developmental outcomes. METHODS This study included 52 very preterm infants (gestational age [mean ± SD]: 26.4 ± 1.9 weeks). Total brain, gray matter, unmyelinated white matter (UWMV), and cerebellar volumes were estimated in 51 out of 52 infants by magnetic resonance imaging at term-equivalent age. Bayley Scales of Infant Development were used to assess developmental outcomes in 49 out of 52 infants at a mean corrected age of 24.6 months. RESULTS Nineteen out of 52 infants developed any stage of ROP. Infants with ROP had a lower median (IQR) UWMV (173 [156-181] vs. 204 [186-216] mL, p < 0.001) and cerebellar volume (18.3 [16.5-20] vs. 22.3 [20.3-24.7] mL, p < 0.001) than infants without ROP. They also had a lower median (IQR) mental developmental index (72 [56-83] vs. 100 [88-104], p < 0.001) and a lower psychomotor developmental index (80 [60-85] vs. 92 [81-103], p = 0.002). Brain volumes and developmental outcomes did not differ among infants with different stages of ROP. CONCLUSION Any stage of ROP in preterm infants was associated with a reduced brain volume and an impaired developmental outcome. These results suggest that common pathways may lead to impaired neural and neurovascular development in the brain and retina and that all stages of ROP may be considered in future studies on ROP and development.
Collapse
Affiliation(s)
- Kristbjörg Sveinsdóttir
- Division of Pediatrics, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - David Ley
- Division of Pediatrics, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Holger Hövel
- Division of Pediatrics, Department of Clinical Sciences, Central Hospital Kristianstad, Lund, Sweden
| | - Vineta Fellman
- Division of Pediatrics, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden.,Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Lois E H Smith
- Department of Opthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann Hellström
- Sahlgrenska Center for Pediatric Ophthalmology Research, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hansen Pupp
- Division of Pediatrics, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Wikström S, Hövel H, Hansen Pupp I, Fellman V, Hüppi PS, Ley D, Hellström-Westas L. Early Electroencephalography Suppression and Postnatal Morbidities Correlate with Cerebral Volume at Term-Equivalent Age in Very Preterm Infants. Neonatology 2018; 113:15-20. [PMID: 28934743 DOI: 10.1159/000479423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Early brain activity is associated with long-term outcome. Establishing a relation also with postnatal brain growth may increase our understanding of early life influences on preterm brain development. OBJECTIVES The aim of this study was to investigate whether early electroencephalography (EEG) activity in infants born very preterm is associated with brain volumes at term, and whether postnatal morbidity affects this association. METHODS Very preterm infants (n = 38) with a median gestational age (GA) of 25.6 weeks had early recordings of single-channel EEG. The percentage of suppressed EEG, i.e., interburst intervals (IBI%) between 24 and 72 h of age, was analyzed in relation to brain volumes on magnetic resonance imaging performed at term-equivalent age, taking into account neonatal morbidities. RESULTS Early electrocortical depression and a higher IBI% were associated with increased cerebrospinal fluid volume (CSFV) and lower total brain volume relative to intracranial volume, also after adjustment for GA, postnatal morbidities, morphine administration, and postnatal head growth. Overall, an increase in IBI% to 1 SD from the mean corresponded with an increase in CSFV to +0.7 SD and a decrease in brain volume to -0.7 SD. The presence of 2 or more postnatal morbidities were associated with around 10% lower brain volumes. CONCLUSIONS More suppressed early EEG activity of very preterm infants is associated with lower brain volume and increased CSFV at term age, also when adjusting for postnatal morbidities. The findings indicate the importance of pre- and early postpartal determinants of postnatal brain growth, possibly also including activity-dependent mechanisms for brain growth.
Collapse
Affiliation(s)
- Sverre Wikström
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Glass TJA, Chau V, Gardiner J, Foong J, Vinall J, Zwicker JG, Grunau RE, Synnes A, Poskitt KJ, Miller SP. Severe retinopathy of prematurity predicts delayed white matter maturation and poorer neurodevelopment. Arch Dis Child Fetal Neonatal Ed 2017; 102:F532-F537. [PMID: 28536205 DOI: 10.1136/archdischild-2016-312533] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine whether severe retinopathy of prematurity (ROP) is associated with (1) abnormal white matter maturation and (2) neurodevelopmental outcomes at 18 months' corrected age (CA) compared with neonates without severe ROP. DESIGN We conducted a prospective longitudinal cohort of extremely preterm neonates born 24-28 weeks' gestational age recruited between 2006 and 2013 with brain MRIs obtained both early in life and at term-equivalent age. Severe ROP was defined as ROP treated with retinal laser photocoagulation. Using diffusion tensor imaging and tract-based spatial statistics (TBSS), white matter maturation was assessed by mean fractional anisotropy (FA) in seven predefined regions of interest. Neurodevelopmental outcomes were assessed with Bayley Scales of Infant and Toddler Development-III (Bayley-III) composite scores at 18 months' CA. Subjects were compared using Fisher's exact, Kruskal-Wallis and generalised estimating equations. SETTING Families were recruited from the neonatal intensive care unit at BC Women's Hospital. PATIENTS Of 98 extremely preterm neonates (median: 26.0 weeks) assessed locally for ROP, 19 (19%) had severe ROP and 83 (85%) were assessed at 18 months' CA. RESULTS Severe ROP was associated with lower FA in the posterior white matter, and with decreased measures of brain maturation in the optic radiations, posterior limb of the internal capsule (PLIC) and external capsule on TBSS. Bayley-III cognitive and motor scores were lower in infants with severe ROP. CONCLUSIONS Severe ROP is associated with maturational delay in the optic radiations, PLIC, external capsule and posterior white matter, housing the primary visual and motor pathways, and is associated with poorer cognitive and motor outcomes at 18 months' CA.
Collapse
Affiliation(s)
- Torin J A Glass
- Department of Pediatrics (Neurology), University of Toronto and the Hospital for Sick Children, Toronto, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, Canada
| | - Vann Chau
- Department of Pediatrics (Neurology), University of Toronto and the Hospital for Sick Children, Toronto, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jane Gardiner
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Ophthalmology and Vision Science, University of British Columbia and BC Children's Hospital, Vancouver, Canada
| | - Justin Foong
- Neurosciences & Mental Health, SickKids Research Institute, Toronto, Canada
| | - Jillian Vinall
- Department of Anesthesiology, University of Calgary, Calgary, Canada
| | - Jill G Zwicker
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics (Developmental Pediatrics), University of British Columbia and BC Children's and Women's Hospitals, Vancouver, Canada.,Department of Occupational Science and Occupational Therapy, Vancouver, Canada.,Sunny Hill Health Centre for Children, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics (Neonatology), University of British Columbia and BC Children's and Women's Hospitals, Vancouver, Canada
| | - Anne Synnes
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics (Neonatology), University of British Columbia and BC Children's and Women's Hospitals, Vancouver, Canada
| | - Kenneth J Poskitt
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Radiology, University of British Columbia and BC Children's Hospital, Vancouver, Canada
| | - Steven P Miller
- Department of Pediatrics (Neurology), University of Toronto and the Hospital for Sick Children, Toronto, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
46
|
Sveinsdóttir K, Länsberg JK, Sveinsdóttir S, Garwicz M, Ohlsson L, Hellström A, Smith L, Gram M, Ley D. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups. Dev Neurosci 2017; 39:487-497. [PMID: 28972955 DOI: 10.1159/000480428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022] Open
Abstract
Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population.
Collapse
|
47
|
Harding JE, Cormack BE, Alexander T, Alsweiler JM, Bloomfield FH. Advances in nutrition of the newborn infant. Lancet 2017; 389:1660-1668. [PMID: 28443560 DOI: 10.1016/s0140-6736(17)30552-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
Abstract
Nutrition of newborn infants, particularly of those born preterm, has advanced substantially in recent years. Extremely preterm infants have high nutrient demands that are challenging to meet, such that growth faltering is common. Inadequate growth is associated with poor neurodevelopmental outcomes, and although improved early growth is associated with better cognitive outcomes, there might be a trade-off in terms of worse metabolic outcomes, although the contribution of early nutrition to these associations is not established. New developments include recommendations to increase protein supply, improve formulations of parenteral lipids, and provide mineral supplements while encouraging human milk feeding. However, high quality evidence of the risks and benefits of these developments is lacking. Clinical trials are also needed to assess the effect on preterm infants of experiencing the smell and taste of milk, to determine whether boys and girls should be fed differently, and to test effects of insulin and IGF-1 supplements on growth and developmental outcomes. Moderate-to-late preterm infants have neonatal nutritional challenges that are similar to those infants born at earlier gestations, but even less high quality evidence exists upon which to base clinical decisions. The focus of research in nutrition of infants born at term is largely directed at new formula products that will improve cognitive and metabolic outcomes. Providing the most effective nutrition to preterm infants should be prioritised as an important focus of neonatal care research to improve long-term metabolic and developmental outcomes.
Collapse
Affiliation(s)
- Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Barbara E Cormack
- Liggins Institute, University of Auckland, Auckland, New Zealand; Newborn Services, Auckland City Hospital, Auckland, New Zealand
| | - Tanith Alexander
- Liggins Institute, University of Auckland, Auckland, New Zealand; Neonatal Unit, Middlemore Hospital, Auckland, New Zealand
| | - Jane M Alsweiler
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
48
|
Development and verification of a pharmacokinetic model to optimize physiologic replacement of rhIGF-1/rhIGFBP-3 in preterm infants. Pediatr Res 2017; 81:504-510. [PMID: 27870826 DOI: 10.1038/pr.2016.255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/04/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND rhIGF-1/rhIGFBP-3 is being investigated for prevention of retinopathy of prematurity in extremely preterm infants. METHODS A population pharmacokinetic model was developed using data from phase I/II (Sections A-C) trials of rhIGF-1/rhIGFBP-3 and additional studies in preterm infants to predict optimal dosing to establish/maintain serum IGF-1 within physiological intrauterine levels. In Section D of the phase II study, infants (gestational age (GA) (wk+d) 23+0 to 27+6) were randomized to rhIGF-1/rhIGFBP-3, administered at the model-predicted dose of 250 µg/kg/d continuous i.v. infusion up to postmenstrual age (PMA) 29 wk+6 d or standard of care. An interim pharmacokinetic analysis was performed for the first 10 treated infants to verify dosing. RESULTS Serum IGF-1 data were reviewed for 10 treated/9 control infants. Duration of therapy in treated infants ranged 1-34.5 d. At baseline (before infusion and <24 h from birth), mean (SD) IGF-1 was 19.2 (8.0) μg/l (treated) and 15.4 (4.7) μg/l (controls). Mean (SD) IGF-1 increased to 45.9 (19.6) μg/l at 12 h in treated infants, and remained within target levels for all subsequent timepoints. For treated infants, 88.8% of the IGF-1 measurements were within target levels (controls, 11.1%). CONCLUSION Through the reported work, we determined appropriate rhIGF-1/rhIGFBP-3 dosing to achieve physiological intrauterine serum IGF-1 levels in extremely preterm infants.
Collapse
|
49
|
de Jong M, Cranendonk A, Twisk JWR, van Weissenbruch MM. IGF-I and relation to growth in infancy and early childhood in very-low-birth-weight infants and term born infants. PLoS One 2017; 12:e0171650. [PMID: 28182752 PMCID: PMC5300132 DOI: 10.1371/journal.pone.0171650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background In very-low-birth-weight infants IGF-I plays an important role in postnatal growth restriction and is probably also involved in growth restriction in childhood. We compared IGF-I and its relation to growth in early childhood in very-low-birth-weight infants and term appropriate for gestational age born infants. Methods We included 41 very-low-birth-weight and 64 term infants. Anthropometry was performed at all visits to the outpatient clinic. IGF-I and insulin were measured in blood samples taken at 6 months and 2 years corrected age (very-low-birth-weight children) and at 3 months, 1 and 2 years (term children). Results Over the first 2 years of life growth parameters are lower in very-low-birth-weight children compared to term children, but the difference in length decreases significantly. During the first 2 years of life IGF-I is higher in very-low-birth-weight children compared to term children. In both groups there is a significant relationship between IGF-I and (change in) length and weight over the first 2 years of life and between insulin and change in total body fat. Conclusions Considering the relation of IGF-I to growth and the decrease in difference in length, higher IGF-I levels in very-low-birth-weight infants in early childhood probably have an important role in catch-up growth in length.
Collapse
Affiliation(s)
- Miranda de Jong
- Department of Pediatrics, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Anneke Cranendonk
- Department of Pediatrics, Division of Neonatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jos W. R. Twisk
- Department of Clinical Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Mirjam M. van Weissenbruch
- Department of Pediatrics, Division of Neonatology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Beauport L, Schneider J, Faouzi M, Hagmann P, Hüppi PS, Tolsa JF, Truttmann AC, Fischer Fumeaux CJ. Impact of Early Nutritional Intake on Preterm Brain: A Magnetic Resonance Imaging Study. J Pediatr 2017; 181:29-36.e1. [PMID: 27837953 DOI: 10.1016/j.jpeds.2016.09.073] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the association between early nutritional intake and brain development assessed by magnetic resonance imaging (MRI). STUDY DESIGN A cohort of neonates born at ≤30 weeks gestational age underwent MRI at term equivalent age. Brain maturation and injury were assessed using the Kidokoro score. Two groups were defined by severity of the scores. The associations between macronutrients intake during the first 2 weeks of life, clinical factors, and imaging scores were analyzed using logistic regression. RESULTS MRI scores from group 1 patients (n = 27) were normal to mildly abnormal (0-5). Group 2 (n = 15) had more abnormal scores (6-12). The median gestational ages (IQR) were 27.4 (1.9) weeks in group 1 and 27.0 (2.9) weeks in group 2, with birth weights of 900 (318) g (group 1) and 844 (293) g (group 2). In group 2, energy, lipid, and carbohydrate intake were significantly lower than in group 1. Group 2 also showed higher rates of sepsis and clinical risk scores than group 1. After adjustments in bivariate models, higher energy and lipid intake remained significantly associated with improved scores on MRI. This association was stronger for the gray matter component of the score. CONCLUSIONS Higher energy and lipid intake during the first 2 weeks after birth was associated with a lower incidence of brain lesions and dysmaturation at term equivalent age in preterm neonates.
Collapse
Affiliation(s)
- Lydie Beauport
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland; Division of Neonatology, Department of Pediatrics, Centre Hospitalier Chrétien, Site St-Vincent, Rocourt, Belgium
| | - Juliane Schneider
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland; Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mohamed Faouzi
- Biostatitics, Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Jean-François Tolsa
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Céline J Fischer Fumeaux
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|