1
|
Okami N, Wakui H, Azushima K, Miyazawa T, Kubo E, Tsukamoto S, Sotozawa M, Taguchi S, Urate S, Ishiga K, Kinguchi S, Kanaoka T, Tamura K. Leucine-rich alpha-2-glycoprotein 1 deficiency suppresses ischemia-reperfusion injury-induced renal fibrosis. Sci Rep 2025; 15:1259. [PMID: 39779883 PMCID: PMC11711393 DOI: 10.1038/s41598-024-84798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Ischemia reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and ultimately leads to renal fibrosis, primarily via the transforming growth factor-β (TGF-β) pathway. Leucine-rich alpha-2-glycoprotein 1 (LRG1), a novel modulator of the TGF-β pathway, has been implicated in the modulation of renal fibrosis by affecting the TGF-β/Smad3 signaling axis. However, the role of LRG1 in the transition from AKI to chronic kidney disease (CKD) remains unclear. This study aimed to investigate the functional role of LRG1 during the remodeling phase post-IRI. Unilateral IRI was induced in C57BL/6J wild-type (WT) mice and systemic LRG1 knockout (KO) mice. In C57BL/6J WT mice, renal LRG1 mRNA expression was significantly elevated on the ischemia/reperfusion side compared to the sham side over a 28-day period. In contrast, LRG1 KO mice demonstrated significantly reduced renal fibrosis compared to WT mice on postoperative day 28. Additionally, renal mRNA expression of TGF-β and associated pro-fibrotic genes was diminished in LRG1 KO mice compared to WT mice. Consequently, LRG1 KO mice exhibited attenuated IRI-induced chronic fibrosis. These findings indicate that LRG1 is involved in the pathogenesis of the transition from AKI to CKD and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Naohito Okami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Tomohito Miyazawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eisuke Kubo
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Mari Sotozawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shingo Urate
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kohei Ishiga
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Yokohama City University Medical Center, Yokohama, Japan
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Yokohama City University Medical Center, Yokohama, Japan
| |
Collapse
|
2
|
Xing J, Huang L, Ren W, Mei X. Risk factors for rapid kidney function decline in diabetes patients. Ren Fail 2024; 46:2398188. [PMID: 39258389 PMCID: PMC11391878 DOI: 10.1080/0886022x.2024.2398188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy, as a severe microvascular complication of diabetes, manifests in four clinical types: classic, albuminuria regression, a rapid decline in kidney function (RDKF), and non-proteinuric or non-albuminuric DKD. Rapidly progressive diabetic nephropathy advances to end-stage renal disease more swiftly than the typical form, posing significant risks. However, a comprehensive understanding of rapidly progressive diabetic nephropathy is currently lacking. This article reviewed latest developments in genetic and clinical risk factors associated with rapidly progressive diabetic nephropathy, aiming to broad perspectives concerning the diagnosis and interventions of this condition.
Collapse
Affiliation(s)
- Jixin Xing
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Linxi Huang
- Department of Nephrology, PLA Navy No. 905 Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Weifu Ren
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaobin Mei
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
3
|
Krienke M, Kralisch S, Wagner L, Tönjes A, Miehle K. Serum Leucine-Rich Alpha-2 Glycoprotein 1 Levels in Patients with Lipodystrophy Syndromes. Biomolecules 2024; 14:1474. [PMID: 39595649 PMCID: PMC11592172 DOI: 10.3390/biom14111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Serum concentrations of leucine-rich alpha-2 glycoprotein 1 (LRG1) are elevated in several cardio-metabolic and inflammatory diseases. LRG1 also plays an important role in the development of hepatic steatosis and insulin resistance. In lipodystrophies (LDs), severe cardio-metabolic complications can be observed. The dysregulation of several adipokines plays a significant role in the clinical manifestation of this syndrome. To date, there have been no studies of LRG1 levels in non-HIV-LD patients. We performed a cross-sectional analysis of LRG1 serum levels in 60 patients with non-HIV-associated LD and in 60 age-, sex-, and BMI-matched healthy controls. Furthermore, we investigated the gene expression of Lrg1 in a mouse model of generalised LD. No significant difference was found in the median concentration of LRG1 serum levels between LD patients (18.2 ng/L; interquartile range 8.3 ng/L) and healthy controls (17.8 ng/L; interquartile range 11.0 ng/L). LRG1 serum concentrations correlated positively with CRP serum levels (p < 0.001). Lrg1 mRNA expression was downregulated in the adipose tissue, whereas in the liver, no difference in Lrg1 expression between LD and wild-type mice was detected. In summary, circulating levels of LRG1 are associated with low-grade inflammation but cannot distinguish between patients with LD and controls.
Collapse
Affiliation(s)
| | | | | | | | - Konstanze Miehle
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstraße 20, 04103 Leipzig, Germany (S.K.); (L.W.); (A.T.)
| |
Collapse
|
4
|
Wang Y, Jiang Y, Xie M, Qi B, Pu K, Du W, Zhang Q, Ma M, Chen Z, Guo Y, Qian H, Wang K, Tian T, Fu L, Zhang X. Cross-Sectional and Longitudinal Associations of Serum LRG1 with Severity and Prognosis Among Adult Community-Acquired Pneumonia Patients. J Inflamm Res 2024; 17:7951-7962. [PMID: 39502939 PMCID: PMC11537034 DOI: 10.2147/jir.s485932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Background Leucine-rich α-2 glycoprotein 1 (LRG1) is associated with various inflammatory lung diseases. Nevertheless, the connection between LRG1 and adult community-acquired pneumonia (CAP) individuals was still not well understood. Through a prospective cohort study, the correlations of serum LRG1 with severity and prognosis were evaluated in CAP patients. Methods The study encompassed 327 patients who received the diagnosis of CAP. We collected fasting venous blood and clinical features. Serum LRG1 was detected by ELISA. CAP severity was assessed using various scoring systems. The prognostic outcomes were observed through follow-up visits. Results The level of serum LRG1 at admission was gradually increased with CAP severity scores. Serum LRG1 level shown positive associations with inflammatory indices, including C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6). Linear and logistic regression analyses suggested that serum LRG1 at admission was positively associated with severity scores and the risk of death in CAP patients. Serum LRG1 in combination with CAP severity scores significantly increased the predictive powers for severity and death compared with single serum LRG1 or severity scores. Conclusion The study revealed positive connections of serum LRG1 levels with severity and poor prognosis in CAP patients, suggesting LRG1 partakes into the physiological processes of CAP. Serum LRG1 may be regarded as a potential biomarker in predicting the severity and death among CAP patients.
Collapse
Affiliation(s)
- Yingli Wang
- Bengbu Medical University Graduate School, Bengbu, Anhui, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Yalin Jiang
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Meiling Xie
- Bengbu Medical University Graduate School, Bengbu, Anhui, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Bin Qi
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Kunpeng Pu
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Wenjie Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Qingqing Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Mengmeng Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Ziyong Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Yongxia Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Hui Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Kaiqin Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Tulei Tian
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiaofei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui, People’s Republic of China
| |
Collapse
|
5
|
Clara TSH, Huili Z, Jian-Jun L, Liu S, Janus LWL, Xiang KK, Gurung RL, Yiamunaa M, Keven AKL, Yi-Ming S, Subramaniam T, Fang SC, Chi LS. Association of major candidate protein biomarkers and long-term diabetic kidney disease progression among Asians with young-onset type 2 diabetes mellitus. Diabetes Res Clin Pract 2024; 216:111821. [PMID: 39142520 DOI: 10.1016/j.diabres.2024.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
AIMS We aim to determine the association of seven major candidate protein biomarkers and diabetic kidney disease (DKD) progression among Asians with young-onset type 2 diabetes mellitus (T2DM). METHODS 824 T2DM patients (onset ≤ 40 years old) were classified as DKD progressors based on yearly estimated glomerular filtration rate (eGFR) decline of >3 ml/min/1.73 m2 or >40 % from baseline. Plasma leucine-rich α-2-glycoprotein 1 (pLRG1), tumor necrosis factor-receptor 1 (pTNF-R1), pigment epithelium-derived factor (pPEDF), urinary α-1-microglobulin (uA1M), kidney injury molecular 1 (uKIM-1), haptoglobin (uHP) and uromodulin (uUMOD) were measured using enzyme-linked immunoassays. RESULTS Over 5.7 years of follow-up, 25.2 % of patients were DKD progressors. Elevated levels of pLRG1, pTNF-R1, pPEDF, uA1M, uKIM-1 and uHP were associated with DKD progression. The association between pTNF-R1 levels and DKD progression persisted after adjusting for clinical covariates (OR 1.84, 95 %CI 1.44-2.34, p < 0.001). The effects of pTNF-R1 were partially mediated through hyperglycemia (8 %) and albuminuria (10 %). Inclusion of pTNF-R1 in a clinical variable-based model improved the area under the receiver operating characteristics curve for predicting DKD progression by 0.02, from 0.72 (95 %CI 0.68-0.76) to 0.74 (95 %CI 0.70-0.78), p = 0.099. CONCLUSIONS Among seven major candidate proteins, pTNF-R1, partially mediated through hyperglycemia and albuminuria, robustly predicted DKD progression among Asians with young-onset T2DM.
Collapse
Affiliation(s)
| | - Zheng Huili
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Liu Jian-Jun
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Kee Kai Xiang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Resham Lal Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - M Yiamunaa
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Shao Yi-Ming
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Tavintharan Subramaniam
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Sum Chee Fang
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Lim Su Chi
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Singapore; Saw Swee Hock School of Public Heath, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
6
|
Wang X, Sun Z, Fu J, Fang Z, Zhang W, He JC, Lee K. LRG1 loss effectively restrains glomerular TGF-β signaling to attenuate diabetic kidney disease. Mol Ther 2024; 32:3177-3193. [PMID: 38910328 PMCID: PMC11403230 DOI: 10.1016/j.ymthe.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Transforming growth factor (TGF)-β signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-β signaling regulators can substantially influence TGF-β's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-β-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-β-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-β signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-β signaling to attenuate DKD.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeguo Sun
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Fu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengying Fang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, NY 10468, USA.
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Low S, Moh A, Pandian B, Tan XL, Pek S, Zheng H, Ang K, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Association Between Plasma LRG1 and Lower Cognitive Function in Asians With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2024; 109:e1732-e1740. [PMID: 38170213 DOI: 10.1210/clinem/dgad768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
CONTEXT Leucine-rich α-2-glycoprotein 1 (LRG1) has been implicated in the pathogenesis of diabetic complications, but its association with cognitive function remains unclear. OBJECTIVE Our primary objective is to investigate the longitudinal association between LRG1 and cognitive function in patients with type 2 diabetes mellitus (T2DM). Secondarily, we determine the causal relationship using Mendelian randomization (MR) and the role of arterial stiffness as a potential mediator. METHODS T2DM patients (n = 1039; age = 64.1 ± 6.4 years) were followed-up for 5.3 ± 1.2 years. Plasma LRG1 was measured at baseline using enzyme-linked immunosorbent assay. Baseline and follow-up cognitive function was assessed using Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). One-sample MR was performed with rs4806985 as plasma LRG1-associated single-nucleotide polymorphism. Mediation analysis was performed to examine if pulse wave velocity (PWV), an arterial stiffness index, mediated the association between plasma LRG1 and follow-up cognitive function. RESULTS Elevated baseline natural log (Ln)-transformed LRG1 was inversely associated with baseline and follow-up RBANS total score with adjusted coefficients -1.38 (95% CI -2.55 to -.21; P = .021) and -1.38 (95% CI -2.70 to -.07; P = .039), respectively. Genetically predicted higher levels of plasma LRG1 was associated with lower follow-up RBANS total score with coefficient -7.44 (95% CI -14.14 to -.74; P = .030) per unit increase in LnLRG1. Higher PWV accounted for 27.7% of the association between LnLRG1 and follow-up RBANS total score. CONCLUSION Baseline plasma LRG1 was associated with lower cognitive function at follow-up in patients with T2DM, mediated by PWV. MR analysis provided evidence of an association between genetically influenced plasma LRG1 and lower cognitive function at follow-up.
Collapse
Affiliation(s)
- Serena Low
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
- Diabetes Centre, Admiralty Medical Centre, Singapore, 730676
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | | | - Xin Li Tan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Sharon Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore, 138543
| | - Ziliang Lim
- National Healthcare Group Polyclinics, Singapore, 138543
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore, 730676
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
- Diabetes Centre, Admiralty Medical Centre, Singapore, 730676
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549
| |
Collapse
|
8
|
Chen C, Zhang J, Yu T, Feng H, Liao J, Jia Y. LRG1 Contributes to the Pathogenesis of Multiple Kidney Diseases: A Comprehensive Review. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:237-248. [PMID: 38799248 PMCID: PMC11126829 DOI: 10.1159/000538443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 05/29/2024]
Abstract
Background The increasing prevalence of kidney diseases has become a significant public health issue, with a global prevalence exceeding 10%. In order to accurately identify biochemical changes and treatment outcomes associated with kidney diseases, novel methods targeting specific genes have been discovered. Among these genes, leucine-rich α-2 glycoprotein 1 (LRG1) has been identified to function as a multifunctional pathogenic signaling molecule in multiple diseases, including kidney diseases. This study aims to provide a comprehensive overview of the current evidence regarding the roles of LRG1 in different types of kidney diseases. Summary Based on a comprehensive review, it was found that LRG1 was upregulated in the urine, serum, or renal tissues of patients or experimental animal models with multiple kidney diseases, such as diabetic nephropathy, kidney injury, IgA nephropathy, chronic kidney diseases, clear cell renal cell carcinoma, end-stage renal disease, canine leishmaniosis-induced kidney disease, kidney fibrosis, and aristolochic acid nephropathy. Mechanistically, the role of LRG1 in kidney diseases is believed to be detrimental, potentially through its regulation of various genes and signaling cascades, i.e., fibronectin 1, GPR56, vascular endothelial growth factor (VEGF), VEGFR-2, death receptor 5, GDF15, HIF-1α, SPP1, activin receptor-like kinase 1-Smad1/5/8, NLRP3-IL-1b, and transforming growth factor β pathway. Key Messages Further research is needed to fully comprehend the molecular mechanisms by which LRG1 contributes to the pathogenesis and pathophysiology of kidney diseases. It is anticipated that targeted treatments focusing on LRG1 will be utilized in clinical trials and implemented in clinical practice in the future.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Jingwei Zhang
- Department of Urology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Dean People’s Hospital, Jiujiang, China
| | - Haiya Feng
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Yifei Jia
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
9
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
10
|
Luo T, Jiang X, Zhang Z, Gao M, Wang H. Plasma leucine-rich α-2 glycoprotein 1 in ST-elevation myocardial infarction: vertical variation, correlation with T helper 17/regulatory T ratio, and predictive value on major adverse cardiovascular events. Front Cardiovasc Med 2024; 11:1326897. [PMID: 38742172 PMCID: PMC11089199 DOI: 10.3389/fcvm.2024.1326897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Leucine-rich α-2 glycoprotein 1 (LRG1) promotes inflammation and myocardial injury, but its clinical role in ST-elevation myocardial infarction (STEMI) is rarely disclosed. Herein, this prospective study aimed to explore the value of plasma LRG1 at different time points to predict major adverse cardiovascular event (MACE) risk in patients with STEMI. Methods In total, 209 patients with STEMI were enrolled for determining plasma LRG1 at admission and on day (D)1/D7/D30 after admission via enzyme-linked immunosorbent assay, as well as for determination of peripheral blood T helper 17 (Th17) cells and regulatory T (Treg) cells by flow cytometry. In addition, plasma LRG1 was obtained from 30 healthy controls at enrollment. Results LRG1 was increased in patients with STEMI at admission compared with healthy controls (P < 0.001). In patients with STEMI, LRG1 varied at different time points (P < 0.001), which elevated from admission to D1, and gradually declined thereafter. LRG1 at admission was positively associated with Th17 cells (P = 0.001) and Th17/Treg ratio (P = 0.014). LRG1 at admission (P = 0.013), D1 (P = 0.034), D7 (P = 0.001), and D30 (P = 0.010) were increased in patients with MACE compared with those without. LRG1 at D7 exhibited good ability to estimate MACE risk (area under curve = 0.750, 95% confidence interval = 0.641-0.858). LRG1 at admission > 60 μg/ml (P = 0.031) and D7 > 60 μg/ml (P = 0.018) were linked with increased accumulating MACE. Importantly, LRG1 at D7 > 60 μg/ml was independently correlated with increased MACE risk (hazard ratio = 5.216, P = 0.033). Conclusion Plasma LRG1 increases from admission to D1 and gradually declines until D30, which positively links with Th17 cells and MACE risk in patients with STEMI.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| | - Xiaoli Jiang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China
| | - Zhenzhen Zhang
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| | - Ming Gao
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| | - Hao Wang
- Department of Cardiology, The First People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
11
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
12
|
Chen J, Zhang Z, Feng L, Liu W, Wang X, Chen H, Zou H. Lrg1 silencing attenuates ischemia-reperfusion renal injury by regulating autophagy and apoptosis through the TGFβ1- Smad1/5 signaling pathway. Arch Biochem Biophys 2024; 753:109892. [PMID: 38246328 DOI: 10.1016/j.abb.2024.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Dysfunction in the processes of autophagy and apoptosis within renal tubular epithelial cells (RTEc) contributes to renal ischemia-reperfusion injury (IRI). However, the factors influencing this dysfunction remain unclear. Leucine-rich alpha-2-glycoprotein 1 (Lrg1) plays a role in the progression of diabetic nephropathy and kidney fibrosis by modulating the activin receptor-like kinase 1 (ALK1)-Smad1/5/8 and TGF-β1/Smad3 pathways, respectively. Therefore, we aimed to investigate whether Lrg1 is involved in the pathological mechanisms of renal IRI and whether its effects are related to the dysregulation of autophagy and apoptosis in RTEc. METHODS We conducted in vitro and in vivo experiments using CoCl2-induced hypoxic human kidney-2 (HK-2) cells and mice with renal IRI, respectively. Lrg1 was silenced using siRNA and lentiviral vectors in HK-2 cells and mouse kidneys. Rapamycin (Rapa) and methyladenine were applied to regulate autophagy in renal IRI models. RESULTS Increased Lrg1 expression was observed in hypoxic HK-2 cells and in the kidneys of mice with renal IRI. Silencing of Lrg1 through siRNA and lentiviral approaches restored autophagy and suppressed apoptosis in CoCl2-induced hypoxic HK-2 cells and renal IRI models. Additionally, reduced Lrg1 expression alleviated kidney damage caused by renal IRI. The downregulation of Lrg1 expression restrained the TGFβ-Smad1/5 signaling pathway in hypoxic-induced HK-2 cells and renal IRI by reducing ALK1 expression. Lastly, the enhancement of autophagy, achieved through Rapa treatment, provided protection against renal IRI in mice. CONCLUSIONS Our findings suggest that Lrg1 silencing can be applied as a potential therapeutic target to inhibit the TGFβ1-Smad1/5 pathway, thereby enhancing autophagy and decreasing apoptosis in patients with acute kidney injury.
Collapse
Affiliation(s)
- Jianhui Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ling Feng
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Weihua Liu
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Xin Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Haishan Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
13
|
Altıncık SA, Yıldırımçakar D, Avcı E, Özhan B, Girişgen İ, Yüksel S. Plasma leucine-rich α-2-glycoprotein 1 - a novel marker of diabetic kidney disease in children and adolescents with type 1 diabetes mellitus? Pediatr Nephrol 2023; 38:4043-4049. [PMID: 37401956 DOI: 10.1007/s00467-023-06019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 05/02/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Glomerular endothelial dysfunction and neoangiogenesis play a significant role in the pathogenesis of diabetic kidney disease (DKD). Leucine-rich α-2 glycoprotein 1 (LRG1) is a recently discovered protein that participates in the molecular pathway of inflammation and angiogenesis. We aimed to investigate efficacy of LRG1 to predict estimated glomerular filtration rate (eGFR) decrease in children and adolescents with type 1 diabetes mellitus (T1DM). METHODS The study comprised 72 participants with diabetes duration for ≥ 2 years. At study initiation, LRG1, urine albumin, eGFR (cystatin C-based, and Schwartz), HbA1c, and lipid values were evaluated and diabetes-related clinical features and anthropometric measurements were collected. These results were compared with final control values after ≥ 1 year. Patients were divided into subgroups according to presence of albuminuria progression, eGFR decrease, and metabolic control parameters. RESULTS There was positive correlation between LRG1 level and Schwartz and cystatin C-based eGFR decline (r = 0.360, p = 0.003; r = 0.447, p = 0.001, respectively), and negative correlation between final cystatin C-based eGFR and LRG1 (p = 0.01, r = -0.345). Patients with cystatin C-based eGFR decrease > 10% had significantly higher LRG1 levels (p = 0.03), however, LRG1 was not different between albuminuria progression subgroups. A 0.282 μg/ml increase in LRG1 correlated with a 1% decrease in eGFR in simple linear regression analysis (β = 0.282, %CI 0.11-0.45, p = 0.001) and LRG1 was an independent predictor of GFR decline even in the presence of covariates. CONCLUSIONS Our study supports the relationship between plasma LRG1 and eGFR decline and suggests LRG1 may be an early marker of DKD progression in children with T1DM. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Selda Ayça Altıncık
- Department of Pediatric Endocrinology, Pamukkale University, Denizli, Turkey
| | - Didem Yıldırımçakar
- Department of Pediatric Endocrinology, Pamukkale University, Denizli, Turkey.
| | - Esin Avcı
- Department of Medical Biochemistry, Pamukkale University, Denizli, Turkey
| | - Bayram Özhan
- Department of Pediatric Endocrinology, Pamukkale University, Denizli, Turkey
| | - İlknur Girişgen
- Department of Pediatric Nephrology, Pamukkale University, Denizli, Turkey
| | - Selçuk Yüksel
- Department of Pediatric Nephrology and Pediatric Rheumatology, Pamukkale University, Denizli, Turkey
| |
Collapse
|
14
|
Chung JO, Park SY, Cho DH, Chung DJ, Chung MY. Relationship between plasma leucine-rich α-2-glycoprotein 1 and urinary albumin excretion in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1232021. [PMID: 37916147 PMCID: PMC10617030 DOI: 10.3389/fendo.2023.1232021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
Aims To explore the relationship between plasma leucine-rich α-2-glycoprotein 1 (LRG1) level and the degree of urinary albumin excretion in patients with type 2 diabetes. Methods We evaluated 332 patients with type 2 diabetes in a cross-sectional study. Result The plasma LRG1 level differed significantly according to the quartiles of urinary albumin excretion (Q1 [<7.7 mg/g], 17.1 μg/mL; Q2 [7.7-15.0 mg/g], 17.5 μg/mL; Q3 [15.1-61.4 mg/g], 18.6 μg/mL; Q4 [≥61.5 mg/g], 22.3 μg/mL; p for trend = 0.003) under adjustment with other covariates. A positive correlation was found between plasma LRG1 level and urinary albumin excretion (ρ = 0.256, p <0.001). According to a multivariate model, the association between LRG1 and urinary albumin excretion remained significant, under adjustment for confounding factors (β = 0.285, p <0.001). Conclusion Plasma LRG1 level was independently associated with urinary albumin excretion in patients with type 2 diabetes. This study suggests that LRG1 may be associated with increased excretion of urinary albumin in the early stages of diabetic nephropathy.
Collapse
Affiliation(s)
- Jin Ook Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seon-Young Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Dong Hyeok Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Min Young Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
15
|
Arredondo Montero J, Pérez Riveros BP, Bueso Asfura OE, Rico Jiménez M, López-Andrés N, Martín-Calvo N. Leucine-Rich Alpha-2-Glycoprotein as a non-invasive biomarker for pediatric acute appendicitis: a systematic review and meta-analysis. Eur J Pediatr 2023; 182:3033-3044. [PMID: 37148275 PMCID: PMC10354117 DOI: 10.1007/s00431-023-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
The aim of this study was to analyze the diagnostic performance of Leucine-Rich Alpha-2-Glycoprotein (LRG1) in pediatric acute appendicitis (PAA). We conducted a systematic review of the literature in the main databases of medical bibliography. Two independent reviewers selected the articles and extracted relevant data. Methodological quality was assessed using the QUADAS2 index. A synthesis of the results, standardization of the metrics and 4 random-effect meta-analyses were performed. Eight studies with data from 712 participants (305 patients with confirmed diagnosis of PAA and 407 controls) were included in this review. The random-effect meta-analysis of serum LRG1 (PAA vs control) resulted in a significant mean difference (95% CI) of 46.76 μg/mL (29.26-64.26). The random-effect meta-analysis for unadjusted urinary LRG1 (PAA vs control) resulted in a significant mean difference (95% CI) of 0.61 μg/mL (0.30-0.93). The random-effect meta-analysis (PAA vs control) for urinary LRG1 adjusted for urinary creatinine resulted in a significant mean difference (95% CI) of 0.89 g/mol (0.11-1.66). Conlusion: Urinary LRG1 emerges as a potential non-invasive biomarker for the diagnosis of PAA. On the other hand, due to the high between-study heterogeneity, the results on serum LRG1 should be interpreted with caution. The only study that analyzed salivary LRG1 showed promising results. Further prospective studies are needed to confirm these findings. What is Known: • Pediatric acute appendicitis continues to be a pathology with a high rate of diagnostic error. • Invasive tests, although useful, are a source of stress for patients and their parents. What is New: • LRG1 emerges as a promising urinary and salivary biomarker for the noninvasive diagnosis of pediatric acute appendicitis.
Collapse
Affiliation(s)
- Javier Arredondo Montero
- Department of Pediatric Surgery, Hospital Universitario de Navarra, 31008, Pamplona, Navarra, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain.
| | - Blanca Paola Pérez Riveros
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
| | - Oscar Emilio Bueso Asfura
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
| | - María Rico Jiménez
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
| | - Natalia López-Andrés
- Cardiovascular Translational Research. NavarraBiomed (Miguel Servet Foundation), Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Nerea Martín-Calvo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Moh MC, Pek SLT, Sze KCP, Low S, Subramaniam T, Ang K, Tang WE, Lee SBM, Sum CF, Lim SC. Associations of non-invasive indices of liver steatosis and fibrosis with progressive kidney impairment in adults with type 2 diabetes. Acta Diabetol 2023; 60:827-835. [PMID: 36943479 DOI: 10.1007/s00592-023-02058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
AIMS Longitudinal data linking non-alcoholic fatty liver disease to kidney dysfunction in type 2 diabetes (T2D) are limited. This study evaluated the associations of non-invasive indices of liver steatosis and liver fibrosis with kidney impairment, and the mediatory role of the pro-angiogenic factor leucine-rich α-2 glycoprotein 1 (LRG1). METHODS T2D adults (n = 2057) were followed for a mean period of 6.1 ± 1.6 years. Baseline liver steatosis [(hepatic steatosis index (HSI) and Zhejiang University index (ZJU)] and liver fibrosis [aspartate transaminase/alanine transaminase ratio (AAR) and BARD] indices derived from composite scoring systems were calculated. Plasma LRG1 levels were quantified using immunoassay. The study outcomes were progressive kidney function decline defined as estimated glomerular filtration rate (eGFR) decline of ≥ 40% and albuminuria progression defined as an increase in albuminuria category. RESULTS Cross-sectionally, liver steatosis and liver fibrosis indices were associated with increased albuminuria (urinary albumin/creatinine ratio ≥ 30 µg/mg) and reduced renal function (eGFR < 60 mL/min/1.73 m2) after covariate adjustment, respectively. Approximately 32% of the participants experienced progressive kidney function decline, while 38% had albuminuria worsening over time. Longitudinal analysis revealed that baseline AAR (hazard ratio: 1.56; 95% CI 1.15-2.11) and BARD (hazard ratio: 1.16, 95% CI 1.04-1.28) predicted progressive kidney function decline, partly mediated by LRG1. In contrast, liver steatosis (HSI and ZJU) but not liver fibrosis (AAR and BARD) indices were independently associated with albuminuria progression. CONCLUSIONS Increased liver steatosis scores were associated with albuminuria deterioration. Conversely, liver fibrosis indices may be associated with progressive kidney function decline, potentially driven by increased inflammation and angiogenesis.
Collapse
Affiliation(s)
- Mei Chung Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | | | - Kenny Ching Pan Sze
- Gastroenterology and Hepatology Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Serena Low
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, 676 Woodlands Drive 71 #03-01, Singapore, 730676, Singapore
| | - Tavintharan Subramaniam
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, 676 Woodlands Drive 71 #03-01, Singapore, 730676, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore, Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, 676 Woodlands Drive 71 #03-01, Singapore, 730676, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, 676 Woodlands Drive 71 #03-01, Singapore, 730676, Singapore.
- Saw Swee Hock School of Public Health, National University Hospital, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
17
|
Liu JJ, Liu S, Wang J, Pek SL, Lee J, Gurung RL, Ang K, Shao YM, Tavintharan S, Tang WE, Sum CF, Lim SC. Urine Leucine-Rich α-2 Glycoprotein 1 (LRG1) Predicts the Risk of Progression to End-Stage Kidney Disease in Patients With Type 2 Diabetes. Diabetes Care 2023; 46:408-415. [PMID: 36516193 PMCID: PMC9887617 DOI: 10.2337/dc22-1611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Leucine-rich α-2 glycoprotein 1 (LRG1) was recently identified as an amplifier of transforming growth factor-β (TGF-β)-induced kidney fibrosis in animal models. We aimed to study whether urine LRG1 is associated with risk of progression to end-stage kidney disease (ESKD) in individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 1,837 participants with type 2 diabetes and estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m2 were recruited from a regional hospital and a primary care facility. Association of urine LRG1 with risk of ESKD (progression to sustained eGFR <15 mL/min/1.73 m2, dialysis, or death resulting from renal causes) was assessed by survival analyses. RESULTS During a median follow-up of 8.6 (interquartile range 5.8-9.6) years, 134 incident ESKD events were identified. Compared with those in the lowest tertile, participants with baseline urine LRG1 in the highest tertile had a 1.91-fold (95% CI 1.04-3.50) increased risk of progression to ESKD, after adjustment for cardiorenal risk factors, including eGFR and albuminuria. As a continuous variable, 1 SD increment in urine LRG1 was associated with a 1.53-fold (95% CI 1.19-1.98) adjusted risk of ESKD. Of note, the association of urine LRG1 with ESKD was independent of plasma LRG1. Moreover, urine LRG1 was associated with rapid kidney function decline and progression to macroalbuminuria, two common pathways leading to ESKD. CONCLUSIONS Urine LRG1, a TGF-β signaling modulator, predicts risk of progression to ESKD independently of clinical risk factors in patients with type 2 diabetes, suggesting that it may be a novel factor involved in the pathophysiological pathway leading to kidney disease progression.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | - Chee Fang Sum
- Diabetes Center, Admiralty Medical Center, Singapore
| | - Su Chi Lim
- Diabetes Center, Admiralty Medical Center, Singapore
- Saw Swee Hock School of Public Heath, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Corresponding author: Su Chi Lim,
| |
Collapse
|
18
|
Bilić P, Horvatić A, Kuleš J, Gelemanović A, Beer Ljubić B, Mũnoz-Prieto A, Gotić J, Žubčić D, Barić Rafaj R, Mrljak V. Serum and urine profiling by high-throughput TMT-based proteomics for the investigation of renal dysfunction in canine babesiosis. J Proteomics 2023; 270:104735. [PMID: 36174949 DOI: 10.1016/j.jprot.2022.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023]
Abstract
Canine babesiosis is a tick-borne disease caused by Babesia canis, with acute kidney injury as one of the common complications. In the study 8 healthy control dogs and 22 dogs with naturally occurring babesiosis were enrolled, with the aim to analyse differences in serum and urinary proteomes between healthy dogs and dogs with different degree of renal dysfunction in babesiosis using a label-based high-throughput quantitative proteomic approach. In serum, 58 proteins were found differentially abundant between healthy controls and groups of dogs with different degrees of renal dysfunction in babesiosis, while in urine there were 259 differentially abundant proteins. In addition, altered biological pathways were detected in the diseased dogs using bioinformatics tools and validation of several candidate biomarkers was performed. SIGNIFICANCE: The main aim of this comprehensive study was to perform analyses of serum and urinary proteomes of dogs with renal dysfunction in babesiosis compared to healthy dogs using, for the first time, a high-throughput proteomic method and functional enrichment analyses. Serum and urine samples of the same dogs were investigated in order to gain a more complete picture of pathologic changes taking place in renal dysfunction in babesiosis. We highlighted two putative biomarkers validated herein which could be of importance for early diagnosis of renal dysfunction in canine babesiosis, as they are easily accessible from urine and their concentration rises before the appearance of azotaemia: urinary neutrophil gelatinase-associated lipocalin (NGAL) and urinary liver-type fatty acid-binding protein (L-FABP).
Collapse
Affiliation(s)
- Petra Bilić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
| | | | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Alberto Mũnoz-Prieto
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Jelena Gotić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Damir Žubčić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Mrljak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
Ala M. Sestrin2 Signaling Pathway Regulates Podocyte Biology and Protects against Diabetic Nephropathy. J Diabetes Res 2023; 2023:8776878. [PMID: 36818747 PMCID: PMC9937769 DOI: 10.1155/2023/8776878] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-β)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
20
|
González MA, Barrera-Chacón R, Peña FJ, Fernández-Cotrina J, Robles NR, Pérez-Merino EM, Martín-Cano FE, Duque FJ. Urinary proteome of dogs with renal disease secondary to leishmaniosis. Res Vet Sci 2022; 149:108-118. [PMID: 35777279 DOI: 10.1016/j.rvsc.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 10/17/2022]
Abstract
Canine leishmaniosis is frequently associated with the development of renal disease. Its pathogenesis is complex and not fully understood. For this reason, this study aimed to describe the urinary proteome, and identify possible new biomarkers in dogs with kidney disease secondary to leishmaniosis. Urine samples were collected from 20 dogs, 5 from healthy dogs, and 15 from stages Leishvet III and IV. Urine samples were analyzed by UHPLC-MS/MS. The data are available via ProteomeXchange with identifier PXD029165. A total of 951 proteins were obtained. After bioinformatic analysis, 93 urinary proteins were altered in the study group. Enrichment analysis performed on these proteins showed an overrepresentation of the complement activation pathway, among others. Finally, 12 discriminant variables were found in dogs with renal disease secondary to leishmaniosis, highlighting C4a anaphylatoxin, apolipoprotein A-I, haptoglobin, leucine-rich alpha-2-glycoprotein 1, and beta-2-microglobulin. This study is the first to describe the urinary proteomics of dogs with renal disease caused by leishmaniosis, and it provides new possible biomarkers for the diagnosis and monitoring of this disease.
Collapse
Affiliation(s)
- Mario A González
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain.
| | | | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Javier Fernández-Cotrina
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Nicolás R Robles
- Nephrology Service, Badajoz University Hospital, University of Extremadura, 06080 Badajoz, Spain
| | - Eva M Pérez-Merino
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco J Duque
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
21
|
Low S, Pek S, Moh A, Ang K, Khoo J, Shao YM, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Triglyceride-glucose index is prospectively associated with chronic kidney disease progression in Type 2 diabetes - mediation by pigment epithelium-derived factor. Diab Vasc Dis Res 2022; 19:14791641221113784. [PMID: 35938490 PMCID: PMC9364218 DOI: 10.1177/14791641221113784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Triglyceride-glucose (TyG) index is a surrogate marker of insulin resistance. Its role in chronic kidney disease (CKD) progression in Type 2 Diabetes Mellitus (T2DM) is unclear. We investigated the association between TyG index and CKD progression, and possible mediation of the association by pigment epithelium-derived factor (PEDF). METHODS This was a prospective study on 1571 patients with T2DM. CKD progression was defined as worsening across KDIGO estimated glomerular filtration rate (eGFR) categories with ≥25% reduction from baseline. PEDF was quantitated using enzyme-linked immunosorbent assay method. Cox proportional hazards regression model was used to assess the relationship between TyG index and CKD progression. RESULTS Over a follow-up period of up to 8.6 years (median 4.6 years, IQR 3.0-3.6), 42.7% of subjects had CKD progression. Every unit increase in TyG was associated with hazards of 1.44 (95%CI 1.29-1.61; p < 0.001) in unadjusted analysis and 1.21 (1.06-1.37; p = 0.004) in fully adjusted model. Compared to tertile 1, tertiles 2 and 3 TyG index were positively associated with CKD progression with corresponding hazard ratios HRs 1.24 (1.01-1.52; p = 0.037) and 1.37 (1.11-1.68; p = 0.003) in fully adjusted models. PEDF accounted for 36.0% of relationship between TyG index and CKD progression. CONCLUSIONS Higher TyG index independently predicted CKD progression in T2DM. PEDF mediated the association between TyG index and CKD progression.
Collapse
Affiliation(s)
- Serena Low
- Diabetes Centre, Admiralty Medical
Centre, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore
| | - Sharon Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jonathon Khoo
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi-Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Wern E Tang
- National Healthcare Group
Polyclinics, Singapore
| | - Ziliang Lim
- National Healthcare Group
Polyclinics, Singapore
| | | | - Chee F Sum
- Diabetes Centre, Admiralty Medical
Centre, Singapore
| | - Su C Lim
- Diabetes Centre, Admiralty Medical
Centre, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore
- Saw Swee Hock School of Public
Health, National University of
Singapore, Singapore
- Su C Lim, Diabetes Centre, Admiralty
Medical Centre, 676 Woodlands Drive 71, #03-01 Kampung Admiralty, Singapore
730676.
| |
Collapse
|
22
|
Yin GN, Kim DK, Kang JI, Im Y, Lee DS, Han AR, Ock J, Choi MJ, Kwon MH, Limanjaya A, Jung SB, Yang J, Min KW, Yun J, Koh Y, Park JE, Hwang D, Suh JK, Ryu JK, Kim HM. Latrophilin-2 is a novel receptor of LRG1 that rescues vascular and neurological abnormalities and restores diabetic erectile function. Exp Mol Med 2022; 54:626-638. [PMID: 35562586 PMCID: PMC9166773 DOI: 10.1038/s12276-022-00773-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia, which causes endothelial dysfunction and peripheral neuropathy, ultimately leading to multiple complications. One prevalent complication is diabetic erectile dysfunction (ED), which is more severe and more resistant to treatment than nondiabetic ED. The serum glycoprotein leucine-rich ɑ-2-glycoprotein 1 (LRG1) is a modulator of TGF-β-mediated angiogenesis and has been proposed as a biomarker for a variety of diseases, including DM. Here, we found that the adhesion GPCR latrophilin-2 (LPHN2) is a TGF-β-independent receptor of LRG1. By interacting with LPHN2, LRG1 promotes both angiogenic and neurotrophic processes in mouse tissue explants under hyperglycemic conditions. Preclinical studies in a diabetic ED mouse model showed that LRG1 administration into the penile tissue, which exhibits significantly increased LPHN2 expression, fully restores erectile function by rescuing vascular and neurological abnormalities. Further investigations revealed that PI3K, AKT, and NF-κB p65 constitute the key intracellular signaling pathway of the LRG1/LPHN2 axis, providing important mechanistic insights into LRG1-mediated angiogenesis and nerve regeneration in DM. Our findings suggest that LRG1 can be a potential new therapeutic option for treating aberrant peripheral blood vessels and neuropathy associated with diabetic complications, such as diabetic ED.
Collapse
Affiliation(s)
- Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Do-Kyun Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Ji In Kang
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yebin Im
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Sun Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Min-Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea
| | - Saet-Byel Jung
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jimin Yang
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Kwang Wook Min
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jeongwon Yun
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongjun Koh
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea.
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, 22332, Republic of Korea.
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Hong Q, Cai H, Zhang L, Li Z, Zhong F, Ni Z, Cai G, Chen XM, He JC, Lee K. Modulation of transforming growth factor-β-induced kidney fibrosis by leucine-rich ⍺-2 glycoprotein-1. Kidney Int 2022; 101:299-314. [PMID: 34774561 PMCID: PMC8792236 DOI: 10.1016/j.kint.2021.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 02/03/2023]
Abstract
Kidney fibrosis is considered the final convergent pathway for progressive chronic kidney diseases, but there is still a paucity of success in clinical application for effective therapy. We recently demonstrated that the expression of secreted leucine-rich α-2 glycoprotein-1 (LRG1) is associated with worsened kidney outcomes in patients with type 2 diabetes and that LRG1 enhances endothelial transforming growth factor-β signaling to promote diabetic kidney disease progression. While the increased expression of LRG1 was most prominent in the glomerular endothelial cells in diabetic kidneys, its increase was also observed in the tubulointerstitial compartment. Here, we explored the potential role of LRG1 in kidney epithelial cells and TGF-β-mediated tubulointerstitial fibrosis independent of diabetes. LRG1 expression was induced by tumor necrosis factor-α in cultured kidney epithelial cells and potentiated TGF-β/Smad3 signal transduction. Global Lrg1 loss in mice led to marked attenuation of tubulointerstitial fibrosis in models of unilateral ureteral obstruction and aristolochic acid fibrosis associated with concomitant decreases in Smad3 phosphorylation in tubule epithelial cells. In mice with kidney epithelial cell-specific LRG1 overexpression, while no significant phenotypes were observed at baseline, marked exacerbation of tubulointerstitial fibrosis was observed in the obstructed kidneys. This was associated with enhanced Smad3 phosphorylation in both kidney epithelial cells and α-smooth muscle actin-positive interstitial cells. Co-culture of kidney epithelial cells with primary kidney fibroblasts confirmed the potentiation of TGF-β-mediated Smad3 activation in kidney fibroblasts through epithelial-derived LRG1. Thus, our results indicate that enhanced LRG1 expression-induced epithelial injury is an amplifier of TGF-β signaling in autocrine and paracrine manners promoting tubulointerstitial fibrosis. Hence, therapeutic targeting of LRG1 may be an effective means to curtail kidney fibrosis progression in chronic kidney disease.
Collapse
Affiliation(s)
- Quan Hong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Hong Cai
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhang
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhengzhe Li
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, USA.
| | - Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
24
|
De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic target in eye disease. Eye (Lond) 2022; 36:328-340. [PMID: 34987199 PMCID: PMC8807626 DOI: 10.1038/s41433-021-01807-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Retinal and choroidal diseases are major causes of blindness and visual impairment in the developed world and on the rise due to an ageing population and diabetes epidemic. Standard of care is centred around blockade of vascular endothelial growth factor (VEGF), but despite having halved the number of patients losing sight, a high rate of patient non-response and loss of efficacy over time are key challenges. Dysregulation of vascular homoeostasis, coupled with fibrosis and inflammation, are major culprits driving sight-threatening eye diseases. Improving our knowledge of these pathological processes should inform the development of new drugs to address the current clinical challenges for patients. Leucine-rich α-2 glycoprotein 1 (LRG1) is an emerging key player in vascular dysfunction, inflammation and fibrosis. Under physiological conditions, LRG1 is constitutively expressed by the liver and granulocytes, but little is known about its normal biological function. In pathological scenarios, such as diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD), its expression is ectopically upregulated and it acquires a much better understood pathogenic role. Context-dependent modulation of the transforming growth-factor β (TGFβ) pathway is one of the main activities of LRG1, but additional roles have recently been emerging. This review aims to highlight the clinical and pre-clinical evidence for the pathogenic contribution of LRG1 to vascular retinopathies, as well as extrapolate from other diseases, functions which may be relevant to eye disease. Finally, we will provide a current update on the development of anti-LRG1 therapies for the treatment of nvAMD.
Collapse
Affiliation(s)
- Giulia De Rossi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
25
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
27
|
Jiang S, Luo M, Bai X, Nie P, Zhu Y, Cai H, Li B, Luo P. Cellular crosstalk of glomerular endothelial cells and podocytes in diabetic kidney disease. J Cell Commun Signal 2022; 16:313-331. [PMID: 35041192 DOI: 10.1007/s12079-021-00664-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes and is the leading cause of end-stage renal disease (ESRD). Persistent proteinuria is an important feature of DKD, which is caused by the destruction of the glomerular filtration barrier (GFB). Glomerular endothelial cells (GECs) and podocytes are important components of the GFB, and their damage can be observed in the early stages of DKD. Recently, studies have found that crosstalk between cells directly affects DKD progression, which has prospective research significance. However, the pathways involved are complex and largely unexplored. Here, we review the literature on cellular crosstalk of GECs and podocytes in the context of DKD, and highlight specific gaps in the field to propose future research directions. Elucidating the intricates of such complex processes will help to further understand the pathogenesis of DKD and develop better prevention and treatment options.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Hangxi Cai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
28
|
Quan KY, Yap CG, Jahan NK, Pillai N. Review of early circulating biomolecules associated with diabetes nephropathy - Ideal candidates for early biomarker array test for DN. Diabetes Res Clin Pract 2021; 182:109122. [PMID: 34742785 DOI: 10.1016/j.diabres.2021.109122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/26/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the catastrophic complications of type 2 diabetes mellitus (T2DM). 45% of DN patients progressed to End Stage Renal Disease (ESRD) which robs casualties of the quality of live. The challenge in early diagnosis of DN is it is asymptomatic in the early phase. Current gold standard test for screening and diagnosis of DN are nonspecific and are not sensitive in detecting DN early enough and subsequently monitor renal function during management and intervention plans. Recent studies reported various biomolecules which are associated with the onset of DN in T2DM using cutting-edge technologies. These biomolecules could be potential early biomarkers for DN. This review selectively identified potential early serum biomolecules which are potential candidates for developing an Early Biomarker Array Test for DN. METHODS An advanced literature search was conducted on 4 online databases. Search terms used were "Diabetes Mellitus, Type 2", "Diabetic nephropathy", "pathogenesis" and "early biomarker. Filters were applied to capture articles published from 2010 to 2020, written in English, human or animal models and focused on serum biomolecules associated with DN. RESULTS Five serum biomolecules have been evidently described as contributing pivotal roles in the pathophysiology of DN. MiR-377, miR-99b, CYP2E1, TGF-β1 and periostin are potential candidates for designing an early biomarker array for screening and diagnosis of early stages of DN. The five shortlisted biomolecules originates from endogenous biochemical processes which are specific to the progressive pathophysiology of DN. CONCLUSION miR-377, miR-99b, CYP2E1, TGF-β1 and periostin are potential candidate biomolecules for diagnosing DN at the early phases and can be developed into a panel of endogenous biomarkers for early detection of DN in patients with T2DM. The outcomes of this study will be a stepping stone towards planning and developing an early biomarker array test for diabetic nephropathy. The proposed panel of early biomarkers for DN has potential of stratifying the stages of DN because each biomolecule appears at distinct stages in the pathophysiology of DN.
Collapse
Affiliation(s)
- Kok Ying Quan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia
| | - Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia.
| | - Nowrozy Kamar Jahan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia.
| | - Naganathan Pillai
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Liu JJ, Pek SLT, Liu S, Wang J, Lee J, Ang K, Shao YM, Gurung RL, Tavintharan S, Tang WE, Sum CF, Lim SC. Association of Plasma Leucine-Rich Alpha-2 Glycoprotein 1 (LRG1) with All-Cause and Cause-Specific Mortality in Individuals with Type 2 Diabetes. Clin Chem 2021; 67:1640-1649. [PMID: 34568896 DOI: 10.1093/clinchem/hvab172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Leucine-rich alpha-2 glycoprotein 1 (LRG1) is a circulating protein in the transforming growth factor-beta superfamily. We sought to study whether LRG1 might predict risk for all-cause and cause-specific mortality in individuals with type 2 diabetes. METHODS 2012 outpatients with type 2 diabetes were followed for a median of 7.2 years and 188 death events were identified. Association of LRG1 with risk for mortality was assessed by multivariable Cox regression models. RESULTS Participants with a higher concentration of LRG1 had an increased risk for all-cause mortality [HR (95% CI), 1.76 (1.03-3.01), 1.75 (1.03-2.98), and 4.37 (2.72-7.02) for quartiles 2, 3, and 4, respectively, compared to quartile 1]. The association remained significant after adjustment for known cardio-renal risk factors including estimated glomerular filtration rate and albuminuria [adjusted HR 2.76 (1.66-4.59), quartile 4 versus 1]. As a continuous variable, a 1-SD increment in LRG1 was associated with 1.34 (1.14-1.57)-fold adjusted risk for all-cause mortality. High plasma LRG1 was independently associated with mortality attributable to cardiovascular disease, infection, and renal diseases. Adding LRG1 into a clinical variable-based model improved discrimination (c statistics from 0.828 to 0.842, P = 0.006) and reclassification (net reclassification improvement 0.47, 95% CI 0.28-0.67) for prediction of 5-year all-cause mortality. CONCLUSION Plasma LRG1 predicts risk for all-cause mortality and mortality attributable to cardiovascular disease, infection, and renal disease independent of known cardio-renal risk factors. It may be a potential novel biomarker to improve risk stratification in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sharon L T Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Su Chi Lim
- Diabetes Centre, Admiralty Medical Centre, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
30
|
Sun Z, Ji S, Wu J, Tian J, Quan W, Shang A, Ji P, Xiao W, Liu D, Wang X, Li D. Proteomics-Based Identification of Candidate Exosomal Glycoprotein Biomarkers and Their Value for Diagnosing Colorectal Cancer. Front Oncol 2021; 11:725211. [PMID: 34737948 PMCID: PMC8560707 DOI: 10.3389/fonc.2021.725211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023] Open
Abstract
Early diagnosis and treatment of colorectal cancer (CRC) significantly improves the survival rate and quality of life. Here we screened for differences in glycoproteins associated with tumor-derived exosomes and validated their clinical value to serve as liquid biopsy biomarkers to diagnosed early CRC. Exosomes were extracted from paracancerous tissues, cancer tissues, and plasma. LC-MS/MS proteomic and glycoproteomics analyses were performed using an LTQ-Orbitrap Elite mass spectrometer. The differences in glycoproteins associated with exosomes of paracancerous tissues and cancer tissue were determined, and their levels in plasma exosomes were determined. Statistical analysis was performed to evaluate the diagnostic efficacy of exosome-associated glycoproteins for CRC. We found that the levels of fibrinogen beta chain (FGB) and beta-2-glycoprotein 1 (β2-GP1) in the exosome of CRC tissue were significantly higher compared with those of paracancerous tissues exosome. The areas under the receiver operating characteristic (ROC) curves of plasma exosomal FGB and β2-GP1 as biomarkers for CRC were 0.871 (95% CI = 0.786–0.914) and 0.834 (95% CI = 0.734–0.901), respectively, compared with those of the concentrations of carcinoembryonic antigen concentration [0.723 (95% CI = 0.679–0.853)] and carbohydrate antigen19-9 concentration [0.614 (95% CI = 0.543–0.715)]. Comprehensive proteomics analyses of plasma exosomal biomarkers in CRC identified biomarkers with significant diagnostic efficacy for early CRC, which can be measured using relatively non-invasive techniques.
Collapse
Affiliation(s)
- Zujun Sun
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shurong Ji
- Department of General Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junlu Wu
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiale Tian
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Quan
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Ji
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Xuan Wang
- Department of Pharmacy, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Li
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Gurung RL, Dorajoo R, M Y, Liu JJ, Pek SLT, Wang J, Wang L, Sim X, Liu S, Shao YM, Ang K, Subramaniam T, Tang WE, Sum CF, Liu JJ, Lim SC. Association of Genetic Variants for Plasma LRG1 With Rapid Decline in Kidney Function in Patients With Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:2384-2394. [PMID: 33889958 DOI: 10.1210/clinem/dgab268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Elevated levels of plasma leucine-rich α-2-glycoprotein 1 (LRG1), a component of transforming growth factor beta signaling, are associated with development and progression of chronic kidney disease in patients with type 2 diabetes (T2D). However, whether this relationship is causal is uncertain. OBJECTIVES To identify genetic variants associated with plasma LRG1 levels and determine whether genetically predicted plasma LRG1 contributes to a rapid decline in kidney function (RDKF) in patients with T2D. DESIGN AND PARTICIPANTS We performed a genome-wide association study of plasma LRG1 among 3694 T2D individuals [1881 (983 Chinese, 420 Malay, and 478 Indian) discovery from Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes cohort and 1813 (Chinese) validation from Diabetic Nephropathy cohort]. One- sample Mendelian randomization analysis was performed among 1337 T2D Chinese participants with preserved glomerular filtration function [baseline estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2)]. RDKF was defined as an eGFR decline of 3 mL/min/1.73 m2/year or greater. RESULTS We identified rs4806985 variant near LRG1 locus robustly associated with plasma LRG1 levels (meta P = 6.66 × 10-16). Among 1337 participants, 344 (26%) developed RDKF, and the rs4806985 variant was associated with higher odds of RDKF (meta odds ratio = 1.23, P = 0.030 adjusted for age and sex). Mendelian randomization analysis provided evidence for a potential causal effect of plasma LRG1 on kidney function decline in T2D (P < 0.05). CONCLUSION We demonstrate that genetically influenced plasma LRG1 increases the risk of RDKF in T2D patients, suggesting plasma LRG1 as a potential treatment target. However, further studies are warranted to elucidate underlying pathways to provide insight into diabetic kidney disease prevention.
Collapse
Affiliation(s)
- Resham Lal Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | | | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Heath, Singapore, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Yi-Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | | | - Wern Ee Tang
- National Healthcare Group Polyclinic, Singapore, Singapore
| | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| | - Jian-Jun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Heath, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| |
Collapse
|
32
|
Low S, Pek S, Moh A, Khin CYA, Lim CL, Ang SF, Wang J, Ang K, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Low muscle mass is associated with progression of chronic kidney disease and albuminuria - An 8-year longitudinal study in Asians with Type 2 Diabetes. Diabetes Res Clin Pract 2021; 174:108777. [PMID: 33745995 DOI: 10.1016/j.diabres.2021.108777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
AIMS We examined the longitudinal relationship between baseline skeletal muscle mass and its change over time with eGFR decline and albuminuria progression among Asians with type 2 diabetes(T2D). METHODS This was a prospective cohort study of 1272 T2D patients. Skeletal muscle mass was estimated using tetra-polar multi-frequency bio-impedance analysis and Skeletal Muscle Mass Index(SMI) was defined as skeletal muscle mass/weight * 100. RESULTS After up to 8 years of follow-up, 33.3% of participants had CKD progression and 28.3% albuminuria progression. Every 1-SD above baseline SMI was associated with 18% lower risk of CKD progression[Hazards Ratio(HR)0.82; 95%CI 0.70-0.97; p = 0.018] and 17% lower risk of albuminuria progression [HR 0.83 (95%CI 0.71-0.97; p = 0.017)]. The largest decrease in SMI over time was associated with 67% higher risk of CKD progression, compared to those with the smallest change from baseline SMI tertile 2[HR 1.67 (95%CI 1.10-2.55); p = 0.016]. Pigment epithelium-derived factor(PEDF) and plasma leucine-rich α-2-glycoprotein (LRG1) accounted for 40.1% of the association between SMI and CKD progression. CONCLUSIONS Low baseline skeletal muscle mass and its reduction over time is associated with increased risk of progression of CKD among Asians with T2D. PEDF and LRG1 mediated the inverse relationship between SMI and CKD progression.
Collapse
Affiliation(s)
- Serena Low
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sharon Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Chaw Yu Aung Khin
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore
| | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore, 3 Fusionopolis Link, Nexus@one-north, South Tower, Singapore 138543, Singapore
| | - Ziliang Lim
- National Healthcare Group Polyclinics, Singapore, 3 Fusionopolis Link, Nexus@one-north, South Tower, Singapore 138543, Singapore
| | - Tavintharan Subramaniam
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore
| | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore
| | - Su Chi Lim
- Diabetes Centre, Admiralty Medical Centre, Singapore, Block 676, Level 4, Kampung Admiralty, Woodlands Drive 71, Singapore 730676, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 90 Yishun Central, Singapore 768828, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, Singapore 117549, Singapore.
| |
Collapse
|
33
|
Nakajima H, Nakajima K, Takaishi M, Ohko K, Serada S, Fujimoto M, Naka T, Sano S. The Skin-Liver Axis Modulates the Psoriasiform Phenotype and Involves Leucine-Rich α-2 Glycoprotein. THE JOURNAL OF IMMUNOLOGY 2021; 206:1469-1477. [PMID: 33648938 DOI: 10.4049/jimmunol.2000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/27/2021] [Indexed: 01/04/2023]
Abstract
Leucine-rich α-2 glycoprotein (LRG), one of the acute phase proteins mainly produced by the liver, similar to C-reactive protein, has been recognized as an inflammatory biomarker for rheumatoid arthritis and inflammatory bowel diseases. We recently demonstrated that LRG was also increased in the sera of psoriasis patients and correlated well with disease activity with a sensitivity and specificity much higher than C-reactive protein; however, whether LRG mechanistically contributed to the pathogenesis of psoriasis remained unclear. In this study, we explored the role of LRG in psoriasiform inflammation using LRG-knockout (KO) mice in an imiquimod (IMQ)-mediated model. Following topical treatment with IMQ, serum levels of LRG and its expression in the liver were abruptly elevated. Similarly, an acute surge of proinflammatory cytokines was observed in the liver, including IL-1β, TNF-α, and IL-6, although LRG-KO mice showed delayed responses. LRG-KO mice showed less skin inflammation in the IMQ model than wild-type mice. K5.Stat3C mice developed psoriasis-like lesions following tape stripping, which also abruptly induced LRG expression in the liver. A deficiency of Lrg mitigated tape stripping-induced lesions, similar to the IMQ model. These results indicate that LRG modulates both feed-forward and feedback loops of cytokines in the skin-liver axis involved with psoriasiform inflammation.
Collapse
Affiliation(s)
- Hideki Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Kentaro Ohko
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| | - Satoshi Serada
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Minoru Fujimoto
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Tetsuji Naka
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan; and
| |
Collapse
|
34
|
Yoshimura T, Mitsuyama K, Sakemi R, Takedatsu H, Yoshioka S, Kuwaki K, Mori A, Fukunaga S, Araki T, Morita M, Tsuruta K, Yamasaki H, Torimura T. Evaluation of Serum Leucine-Rich Alpha-2 Glycoprotein as a New Inflammatory Biomarker of Inflammatory Bowel Disease. Mediators Inflamm 2021; 2021:8825374. [PMID: 33623482 PMCID: PMC7874844 DOI: 10.1155/2021/8825374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Studies on serum leucine-rich alpha-2 glycoprotein (LRG) in inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are scarce; the methods for estimating disease activity are less established, particularly for CD. This study is aimed at evaluating the utility of serum LRG as a potential inflammatory marker for IBD and to investigate the LRG gene expression in peripheral blood mononuclear cells (PBMCs) as a possible source of serum LRG. Overall, 98 patients with UC and 96 patients with CD were prospectively enrolled and clinically evaluated; 92 age-matched individuals served as the healthy controls. The blood samples were analyzed for serum LRG levels and routine laboratory parameters. Disease activity was assessed clinically and endoscopically. Finally, LRG gene expression in the PBMCs from a different cohort (41 patients with UC, 34 patients with CD, and 30 healthy controls) was examined. The serum LRG levels were higher during active disease than during inactive disease; additionally, serum LRG levels were positively correlated with clinical disease activity, C-reactive protein (CRP) levels, and other laboratory parameters in patients with UC and CD and with endoscopic disease activity in UC. UC and CD showed comparable areas under the curve (AUC) values for determining clinical remission and differentiating between endoscopic remission associated with LRG and CRP. The levels of LRG mRNA were also increased in PBMCs from patients with UC and CD and reflected disease activity. These data suggest that serum LRG, originated partially from PBMCs, is an inflammatory marker in UC and CD. A large-scale well-designed study should be conducted in the future to more accurately reveal the clinical significance of LRG in patients with IBD.
Collapse
Affiliation(s)
- Tetsuhiro Yoshimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Ryosuke Sakemi
- Department of Gastroenterology, Tobata Kyoritsu Hospital, Kitakyushu, Japan
| | - Hidetoshi Takedatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kotaro Kuwaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shuhei Fukunaga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Masaru Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hiroshi Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
35
|
Liu JJ, Pek SLT, Wang J, Liu S, Ang K, Shao YM, Tang JIS, Gurung RL, Tavintharan S, Tang WE, Sum CF, Lim SC. Association of Plasma Leucine-Rich α-2 Glycoprotein 1, a Modulator of Transforming Growth Factor-β Signaling Pathway, With Incident Heart Failure in Individuals With Type 2 Diabetes. Diabetes Care 2021; 44:571-577. [PMID: 33293346 DOI: 10.2337/dc20-2065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/01/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Leucine-rich α-2 glycoprotein 1 (LRG1) is a circulating protein potentially involved in several pathways related to pathogenesis of heart failure (HF). We aimed to study whether plasma LRG1 is associated with risks of incident HF and hospitalization attributable to HF (HHF) in individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 1,978 individuals with type 2 diabetes were followed for a median of 7.1 years (interquartile range 6.1-7.6). Association of LRG1 with HF was studied using cause-specific Cox regression models. RESULTS In follow-up, 191 incident HF and 119 HHF events were identified. As compared with quartile 1, participants with LRG1 in quartiles 3 and 4 had 3.60-fold (95% CI 1.63-7.99) and 5.99-fold (95% CI 2.21-16.20) increased risk of incident HF and 5.88-fold (95% CI 1.83-18.85) and 10.44-fold (95% CI 2.37-45.98) increased risk of HHF, respectively, after adjustment for multiple known cardiorenal risk factors. As a continuous variable, 1 SD increment in natural log-transformed LRG1 was associated with 1.78-fold (95% CI 1.33-2.38) adjusted risk of incident HF and 1.92-fold (95% CI 1.27-2.92) adjusted risk of HHF. Adding LRG1 to the clinical variable-based model improved risk discrimination for incident HF (area under the curve [AUC] 0.79-0.81; P = 0.02) and HHF (AUC 0.81-0.84; P = 0.02). CONCLUSIONS Plasma LRG1 is associated with risks of incident HF and HHF, suggesting that it may potentially be involved in pathogenesis of HF in individuals with type 2 diabetes. Additional studies are warranted to determine whether LRG1 is a novel biomarker for HF risk stratification.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sharon L T Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | | | | | - Chee Fang Sum
- Diabetes Center, Admiralty Medical Center, Singapore
| | - Su Chi Lim
- Diabetes Center, Admiralty Medical Center, Singapore .,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
36
|
Mondello S, Kobeissy FH, Mechref Y, Zhao J, El Hayek S, Zibara K, Moresco M, Plazzi G, Cosentino FII, Ferri R. Searching for Novel Candidate Biomarkers of RLS in Blood by Proteomic Analysis. Nat Sci Sleep 2021; 13:873-883. [PMID: 34234594 PMCID: PMC8243594 DOI: 10.2147/nss.s311801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE We performed comparative proteomic analyses of blood of patients with RLS and healthy individuals aiming to identify potential biomarker and therapeutic target candidate for RLS. PATIENTS AND METHODS Blood serum samples from 12 patients with a clinical diagnosis of RLS (8 females and 4 males, with a mean age of 68.52 years) and 10 healthy controls (5 females and 5 males, with a mean age of 67.61 years) underwent proteomic profiling by liquid chromatography coupled with tandem mass spectrometry. Pathway analysis incorporating protein-protein interaction networks was carried out to identify pathological processes linked to the differentially expressed proteins. RESULTS We quantified 272 proteins in patients with RLS and healthy controls, of which 243 were shared. Five proteins - apolipoprotein C-II, leucine-rich alpha-2-glycoprotein 1, FLJ92374, extracellular matrix protein 1, and FLJ93143 - were substantially increased in RLS patients, whereas nine proteins - vitamin D-binding protein, FLJ78071, alpha-1-antitrypsin, CD5 antigen-like, haptoglobin, fibrinogen alpha chain, complement factor H-related protein 1, platelet factor 4, and plasma protease C1 inhibitor - were decreased. Bioinformatics analyses revealed that these proteins were linked to 1) inflammatory and immune response, and complement activation, 2) brain-related development, cell aging, and memory disorders, 3) pregnancy and associated complications, 4) myocardial infarction, and 5) reactive oxygen species generation and subsequent diabetes mellitus. CONCLUSION Our findings shed light on the multifactorial nature of RLS and identified a set of circulating proteins that may have clinical importance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Firas H Kobeissy
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Samer El Hayek
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- Department of Biology, Faculty of Sciences-I, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Monica Moresco
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
37
|
Zhang A, Fang H, Chen J, He L, Chen Y. Role of VEGF-A and LRG1 in Abnormal Angiogenesis Associated With Diabetic Nephropathy. Front Physiol 2020; 11:1064. [PMID: 32982792 PMCID: PMC7488177 DOI: 10.3389/fphys.2020.01064] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is an important public health concern of increasing proportions and the leading cause of end-stage renal disease (ESRD) in diabetic patients. It is one of the most common long-term microvascular complications of diabetes mellitus that is characterized by proteinuria and glomerular structural changes. Angiogenesis has long been considered to contribute to the pathogenesis of DN, whereas the molecular mechanisms of which are barely known. Angiogenic factors associated with angiogenesis are the major candidates to explain the microvascular and pathologic finds of DN. Vascular endothelial growth factor A (VEGF-A), leucine-rich α-2-glycoprotein 1, angiopoietins and vasohibin family signal between the podocytes, endothelium, and mesangium have important roles in the maintenance of renal functions. An appropriate amount of VEGF-A is beneficial to maintaining glomerular structure, while excessive VEGF-A can lead to abnormal angiogenesis. LRG1 is a novel pro-angiogenic factors involved in the abnormal angiogenesis and renal fibrosis in DN. The imbalance of Ang1/Ang2 ratio has a role in leading to glomerular disease. Vasohibin-2 is recently shown to be in diabetes-induced glomerular alterations. This review will focus on current understanding of these angiogenic factors in angiogenesis and pathogenesis associated with the development of DN, with the aim of evaluating the potential of anti-angiogenesis therapy in patients with DN.
Collapse
Affiliation(s)
- Afei Zhang
- Department of Nephrology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huawei Fang
- Department of Nephrology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jie Chen
- Department of Nephrology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Leyu He
- Department of Nephrology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Youwei Chen
- Department of Nephrology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
38
|
Li W, Wang X, Cheng J, Li J, Wang Q, Zhou Q, Li H, Xue J, Zhang Y, Yang L, Xie L. Leucine-rich α-2-glycoprotein-1 promotes diabetic corneal epithelial wound healing and nerve regeneration via regulation of matrix metalloproteinases. Exp Eye Res 2020; 196:108060. [DOI: 10.1016/j.exer.2020.108060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
|
39
|
Urinary Protein Biomarker Panel for the Diagnosis of Antibody-Mediated Rejection in Kidney Transplant Recipients. Kidney Int Rep 2020; 5:1448-1458. [PMID: 32954069 PMCID: PMC7486186 DOI: 10.1016/j.ekir.2020.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 01/11/2023] Open
Abstract
Introduction Antibody-mediated rejection (ABMR) impacts kidney allograft outcome. The diagnosis is made based on findings from invasive kidney transplant biopsy specimens. The aim of this study was to identify a noninvasive urinary protein biomarker for ABMR after kidney transplantation. Methods We performed a multicenter case-control study to identify a urinary biomarker for ABMR (training cohort, n = 249) and an independent, prospective multicenter cohort study for validation (n = 391). We used concomitant biopsies to classify the samples according to the Banff classification. After untargeted protein identification and quantification, we used a support vector machine to train the model in the training cohort. The primary endpoint was the diagnostic accuracy of the urinary biomarker for ABMR in the validation cohort. Results We identified a set of 10 urinary proteins that accurately discriminated patients with (n = 60) and without (n = 189) ABMR in the training cohort with an area under the curve (AUC) of 0.98 (95% confidence interval [CI], 0.96–1.00). The diagnostic accuracy was maintained in the validation cohort (AUC, 0.88; 95% CI, 0.8–0.93) for discriminating the presence (n = 43) from the absence (n = 348) of ABMR. The negative predictive value of the 10-protein marker set for exclusion of ABMR was 0.99, and the positive predictive value was 0.33. The diagnostic accuracy was independent of the reason for performing the biopsy, time after transplantation, and better than the accuracy of gross proteinuria (AUC, 0.76). Conclusions We identified and validated a urinary protein biomarker set that can be used to exclude ABMR.
Collapse
|
40
|
Plasma Leucine-Rich α-2-Glycoprotein 1 Predicts Cardiovascular Disease Risk in End-Stage Renal Disease. Sci Rep 2020; 10:5988. [PMID: 32249825 PMCID: PMC7136266 DOI: 10.1038/s41598-020-62989-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
Plasma leucine-Rich α-2-glycoprotein 1 (LRG1) is an innovative biomarker for inflammation and angiogenesis. Many adverse pathophysiological changes including inflammation, atherosclerosis, and premature mortality is associated with End-stage renal disease (ESRD). However, whether levels of plasma LRG1 correlate with the co-morbidities of ESRD patients is unknown. Plasma LRG1 and high-sensitivity C-reactive protein (hsCRP) were analyzed by ELISA in 169 hemodialysis patients from the Immunity in ESRD (iESRD) study. Patient demographics and comorbidities at the time of enrollment were recorded. Peripheral blood monocyte and T cell subsets were assessed by multicolor flow cytometry. In the univariate analysis, a higher level of LRG1 was associated with the presence of cardiovascular disease (CVD) and peripheral arterial occlusive disease (PAOD). In multivariate logistic regression models, higher LRG1 tertile was significantly associated with PAOD (odds ratio = 3.49) and CVD (odds ratio = 1.65), but not with coronary artery disease, history of myocardial infarction, or stroke after adjusting for gender, diabetes, hemoglobin, albumin, calcium-phosphate product, and level of hsCRP. In addition, the level of LRG1 had a positive correlation with IL-6, hsCRP, and also more advanced T cell differentiation. The association suggests that LRG1 participates in the progression of atherosclerosis by inducing inflammation. Therefore, the role of LRG1 in coexisting inflammatory response should be further investigated in the pathogenesis of cardiovascular morbidity and mortality in patients with ESRD.
Collapse
|
41
|
Moh AMC, Pek SLT, Liu J, Wang J, Subramaniam T, Ang K, Sum CF, Kwan PY, Lee SBM, Tang WE, Lim SC. Plasma osteoprotegerin as a biomarker of poor glycaemic control that predicts progression of albuminuria in type 2 diabetes mellitus: A 3-year longitudinal cohort study. Diabetes Res Clin Pract 2020; 161:107992. [PMID: 32032675 DOI: 10.1016/j.diabres.2019.107992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
AIMS Poor glycaemic control elevates the risk for vascular complications. Biomarkers for predicting susceptibility to glycaemic worsening are lacking. This 3-year prospective analysis assessed the utility of several circulating diabetes-related biomarkers for predicting loss of glycaemic control, and their contribution to albuminuria progression in type 2 diabetes mellitus (T2DM). METHODS T2DM subjects with adequately-controlled diabetes (HbA1c < 8%) at initial recruitment were analysed (N = 859). Baseline plasma levels of osteoprotegerin (OPG), C-reactive protein (CRP), adiponectin, intercellular-cell adhesion molecule-1, and vascular-cell adhesion molecule-1 were quantified using immunoassay. Definitions for development of uncontrolled diabetes and albuminuria progression were HbA1c ≥ 8.0% and increase in albuminuria category at follow-up, respectively. RESULTS At follow-up, 185 subjects developed uncontrolled diabetes. Higher baseline CRP and OPG levels were observed in the high-risk individuals, and predicted increased risk for developing uncontrolled diabetes. OPG, but not CRP, was associated with albuminuria progression after multivariable adjustment. The relationship was attenuated following adjustment for development of uncontrolled diabetes, which emerged as a significant associate. Mediation analysis revealed that loss of glycaemic control explained 64.5% of the relationship between OPG and albuminuria progression. CONCLUSIONS OPG outperformed other diabetes-related biomarkers to be a potentially useful biomarker for predicting loss of glycaemic control and its associated albuminuria deterioration.
Collapse
Affiliation(s)
| | | | - Jianjun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Tavintharan Subramaniam
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
| | - Pek Yee Kwan
- National Healthcare Group Polyclinics, Singapore
| | | | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University Hospital, Singapore.
| |
Collapse
|
42
|
Fujimoto M, Matsumoto T, Serada S, Tsujimura Y, Hashimoto S, Yasutomi Y, Naka T. Leucine-rich alpha 2 glycoprotein is a new marker for active disease of tuberculosis. Sci Rep 2020; 10:3384. [PMID: 32099022 PMCID: PMC7042324 DOI: 10.1038/s41598-020-60450-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a global health problem. At present, prior exposure to Mtb can be determined by blood-based interferon-gamma release assay (IGRA), but active TB is not always detectable by blood tests such as CRP and ESR. This study was undertaken to investigate whether leucine-rich alpha-2 glycoprotein (LRG), a new inflammatory biomarker, could be used to assess active disease of TB. Cynomolgus macaques pretreated with or without Bacille Calmette-Guerin (BCG) vaccination were inoculated with Mtb to induce active TB. Blood was collected over time from these animals and levels of LRG as well as CRP and ESR were quantified. In the macaques without BCG vaccination, Mtb inoculation caused extensive TB and significantly increased plasma CRP and LRG levels, but not ESR. In the macaques with BCG vaccination, whereas Mtb challenge caused pulmonary TB, only LRG levels were significantly elevated. By immunohistochemical analysis of the lung, LRG was visualized in epithelioid cells and giant cells of the granulation tissue. In humans, serum LRG levels in TB patients were significantly higher than those in healthy controls and declined one month after anti-tubercular therapy. These findings suggest that LRG is a promising biomarker when performed following IGRA for the detection of active TB.
Collapse
Affiliation(s)
- Minoru Fujimoto
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan.
| | - Tomoshige Matsumoto
- Department of Medicine, Osaka Prefectural Hospital Organization Osaka Habikino Medical Center, Habikino, 583-8588, Japan.,Department of Internal Medicine, Osaka Anti-Tuberculosis Association Osaka Hospital, Neyagawa, 572-0854, Japan
| | - Satoshi Serada
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Shoji Hashimoto
- Department of Clinical Research Center, Osaka Prefectural Hospital Organization Osaka Habikino Medical Center, Habikino, 583-8588, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Tetsuji Naka
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, 783-8505, Japan.,Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 567-0085, Japan
| |
Collapse
|
43
|
Pugliese G, Penno G, Natali A, Barutta F, Di Paolo S, Reboldi G, Gesualdo L, De Nicola L. Diabetic kidney disease: new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on "The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function". J Nephrol 2020; 33:9-35. [PMID: 31576500 PMCID: PMC7007429 DOI: 10.1007/s40620-019-00650-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS This joint document of the Italian Diabetes Society and the Italian Society of Nephrology reviews the natural history of diabetic kidney disease (DKD) in the light of the recent epidemiological literature and provides updated recommendations on anti-hyperglycemic treatment with non-insulin agents. DATA SYNTHESIS Recent epidemiological studies have disclosed a wide heterogeneity of DKD. In addition to the classical albuminuric phenotype, two new albuminuria-independent phenotypes have emerged, i.e., "nonalbuminuric renal impairment" and "progressive renal decline", suggesting that DKD progression toward end-stage kidney disease (ESKD) may occur through two distinct pathways, albuminuric and nonalbuminuric. Several biomarkers have been associated with decline of estimated glomerular filtration rate (eGFR) independent of albuminuria and other clinical variables, thus possibly improving ESKD prediction. However, the pathogenesis and anatomical correlates of these phenotypes are still unclear. Also the management of hyperglycemia in patients with type 2 diabetes and impaired renal function has profoundly changed during the last two decades. New anti-hyperglycemic drugs, which do not cause hypoglycemia and weight gain and, in some cases, seem to provide cardiorenal protection, have become available for treatment of these individuals. In addition, the lowest eGFR safety thresholds for some of the old agents, particularly metformin and insulin secretagogues, have been reconsidered. CONCLUSIONS The heterogeneity in the clinical presentation and course of DKD has important implications for the diagnosis, prognosis, and possibly treatment of this complication. The therapeutic options for patients with type 2 diabetes and impaired renal function have substantially increased, thus allowing a better management of these individuals.
Collapse
Affiliation(s)
- Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy.
- Endocrine and Metabolic Unit, Sant'Andrea University Hospital, Rome, Italy.
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Diabetes Unit, University Hospital, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Unit of Internal Medicine, University Hospital, Pisa, Italy
| | - Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, "Aldo Moro" University, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, "Policlinico" University Hospital, Bari, Italy
| | - Luca De Nicola
- Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
44
|
Pugliese G, Penno G, Natali A, Barutta F, Di Paolo S, Reboldi G, Gesualdo L, De Nicola L. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on "The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function". Nutr Metab Cardiovasc Dis 2019; 29:1127-1150. [PMID: 31586514 DOI: 10.1016/j.numecd.2019.07.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
AIMS This joint document of the Italian Diabetes Society and the Italian Society of Nephrology reviews the natural history of diabetic kidney disease (DKD) in the light of the recent epidemiological literature and provides updated recommendations on anti-hyperglycemic treatment with non-insulin agents. DATA SYNTHESIS Recent epidemiological studies have disclosed a wide heterogeneity of DKD. In addition to the classical albuminuric phenotype, two new albuminuria-independent phenotypes have emerged, i.e., "nonalbuminuric renal impairment" and "progressive renal decline", suggesting that DKD progression toward end-stage kidney disease (ESKD) may occur through two distinct pathways, albuminuric and nonalbuminuric. Several biomarkers have been associated with decline of estimated glomerular filtration rate (eGFR) independent of albuminuria and other clinical variables, thus possibly improving ESKD prediction. However, the pathogenesis and anatomical correlates of these phenotypes are still unclear. Also the management of hyperglycemia in patients with type 2 diabetes and impaired renal function has profoundly changed during the last two decades. New anti-hyperglycemic drugs, which do not cause hypoglycemia and weight gain and, in some cases, seem to provide cardiorenal protection, have become available for treatment of these individuals. In addition, the lowest eGFR safety thresholds for some of the old agents, particularly metformin and insulin secretagogues, have been reconsidered. CONCLUSIONS The heterogeneity in the clinical presentation and course of DKD has important implications for the diagnosis, prognosis, and possibly treatment of this complication. The therapeutic options for patients with type 2 diabetes and impaired renal function have substantially increased, thus allowing a better management of these individuals.
Collapse
Affiliation(s)
- Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Endocrine and Metabolic Unit, Sant'Andrea University Hospital, Rome, Italy.
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, University of Pisa, Diabetes Unit, University Hospital, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Unit of Internal Medicine, University Hospital, Pisa, Italy
| | - Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, "Aldo Moro" University, Nephrology, Dialysis and Transplantation Unit, "Policlinico" University Hospital, Bari, Italy
| | - Luca De Nicola
- Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
45
|
Zhang X, Pek SLT, Tavintharan S, Sum CF, Lim SC, Ang K, Yeo D, Ee TW, Yip CC, Kumari N. Leucine-rich α-2-glycoprotein predicts proliferative diabetic retinopathy in type 2 diabetes. J Diabetes Complications 2019; 33:651-656. [PMID: 31256924 DOI: 10.1016/j.jdiacomp.2019.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/08/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022]
Abstract
AIM We aim to examine the association of plasma leucine-rich-α-2-glycoprotein 1 (LRG1) with diabetic retinopathy (DR) in type 2 diabetes. METHODS At baseline visit, plasma LRG1 levels were assessed using ELISA. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity (PWV). At follow-up visit (median = 3.2 years), digital color fundus photographs were assessed for DR. DR severity was categorized into non-proliferative DR (NPDR) and proliferative DR (PDR). RESULTS DR was diagnosed in 396 (32.8%) of 1206 patients. DR has higher LRG1 than non-DR (19.5 ± 11.3vs.16.9 ± 8.9 μg/ml, p ≪ 0.001). After adjustment, LRG1 was not associated with DR (OR = 1.2, [95% CI, 0.96-1.30], p = 0.16). LRG1 was higher in PDR (n = 107) than NPDR (n = 270) (23.2 ± 15.4vs.18.1 ± 8.9 μg/ml, n = 270, p ≪ 0.001). After adjustment, with 1-SD increase in LRG1, the relative risk of NPDR and PDR was 0.99 ([0.83-1.18], p = 0.91) and 1.42 ([95% CI, 1.14-1.76], p = 0.002) (p-trend = 0.01), respectively. We didn't observe significant improvement in AUC after adding LRG1 into the model. Baseline PWV mediated 12.0% of the association between LRG1 and PDR (p = 0.03). CONCLUSION Baseline plasma LRG1 is associated with PDR, suggesting it maybe a promising biomarker for prediction for advanced proliferative stages of DR. The mediation result indicates the potential benefit of ameliorating central arterial stiffness to prevent PDR.
Collapse
Affiliation(s)
- Xiao Zhang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sharon L T Pek
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Subramaniam Tavintharan
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore; Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Chee Fang Sum
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore; Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Su Chi Lim
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore; Department of Medicine, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Darren Yeo
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Tang Wern Ee
- National Healthcare Group Polyclinics, Singapore
| | - Chee Chew Yip
- Department of ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore
| | - Neelam Kumari
- Department of ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore.
| |
Collapse
|
46
|
Liu Z, Liu H, Xiao L, Liu G, Sun L, He L. STC-1 ameliorates renal injury in diabetic nephropathy by inhibiting the expression of BNIP3 through the AMPK/SIRT3 pathway. J Transl Med 2019; 99:684-697. [PMID: 30683904 DOI: 10.1038/s41374-018-0176-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of morbidity and mortality in individuals with diabetes, and it is the leading cause of end-stage renal disease (ESRD) worldwide. Stanniocalcin-1 (STC-1) is present in various tissues, and it has antioxidant and anti-apoptotic activities, which play a role in kidney protection, including diabetic nephropathy (DN). However, the mechanism that underlies these effects remains unknown. This study suggests that STC-1 ameliorates oxidative stress and cell apoptosis in the kidneys of db/db mice and high glucose (HG)-treated BUMPT cells by inhibiting Bnip3 expression through AMPK/Sirt3 pathway activation. In the clinic, DKD patients with high levels of STC-1 have a better prognosis than patients with low STC-1 levels. Thus, we concluded that STC-1 ameliorates renal injury in DN by inhibiting the expression of Bnip3 through the AMPK/SIRT3 pathway and that serum STC-1 is independently associated with DKD progression in patients with type 2 diabetes. As high STC-1 levels indicate a better prognosis, synthetic STC-1 may become a potential drug for the treatment of DKD patients.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Guoyong Liu
- Department of Nephrology, The First Affiliated Hospital of Changde Vocational Technical College, Changde, 415000, People's Republic of China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
47
|
Bidin MZ, Shah AM, Stanslas J, Seong CLT. Blood and urine biomarkers in chronic kidney disease: An update. Clin Chim Acta 2019; 495:239-250. [PMID: 31009602 DOI: 10.1016/j.cca.2019.04.069] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a silent disease. Most CKD patients are unaware of their condition during the early stages of the disease which poses a challenge for healthcare professionals to institute treatment or start prevention. The trouble with the diagnosis of CKD is that in most parts of the world, it is still diagnosed based on measurements of serum creatinine and corresponding calculations of eGFR. There are controversies with the current staging system, especially in the methodology to diagnose and prognosticate CKD. OBJECTIVE The aim of this review is to examine studies that focused on the different types of samples which may serve as a good and promising biomarker for early diagnosis of CKD or to detect rapidly declining renal function among CKD patient. METHOD The review of international literature was made on paper and electronic databases Nature, PubMed, Springer Link and Science Direct. The Scopus index was used to verify the scientific relevance of the papers. Publications were selected based on the inclusion and exclusion criteria. RESULT 63 publications were found to be compatible with the study objectives. Several biomarkers of interest with different sample types were taken for comparison. CONCLUSION Biomarkers from urine samples yield more significant outcome as compare to biomarkers from blood samples. But, validation and confirmation with a different type of study designed on a larger population is needed. More comparison studies on different types of samples are needed to further illuminate which biomarker is the better tool for the diagnosis and prognosis of CKD.
Collapse
Affiliation(s)
- Mohammad Zulkarnain Bidin
- Nephrology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Anim Md Shah
- Nephrology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Nephrology Department, Serdang Hospital, Selangor, Malaysia
| | - J Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Christopher Lim Thiam Seong
- Nephrology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Nephrology Department, Serdang Hospital, Selangor, Malaysia.
| |
Collapse
|
48
|
Hong Q, Zhang L, Fu J, Verghese DA, Chauhan K, Nadkarni GN, Li Z, Ju W, Kretzler M, Cai GY, Chen XM, D'Agati VD, Coca SG, Schlondorff D, He JC, Lee K. LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF- β-Induced Angiogenesis. J Am Soc Nephrol 2019; 30:546-562. [PMID: 30858225 DOI: 10.1681/asn.2018060599] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glomerular endothelial dysfunction and neoangiogenesis have long been implicated in the pathogenesis of diabetic kidney disease (DKD). However, the specific molecular pathways contributing to these processes in the early stages of DKD are not well understood. Our recent transcriptomic profiling of glomerular endothelial cells identified a number of proangiogenic genes that were upregulated in diabetic mice, including leucine-rich α-2-glycoprotein 1 (LRG1). LRG1 was previously shown to promote neovascularization in mouse models of ocular disease by potentiating endothelial TGF-β/activin receptor-like kinase 1 (ALK1) signaling. However, LRG1's role in the kidney, particularly in the setting of DKD, has been unclear. METHODS We analyzed expression of LRG1 mRNA in glomeruli of diabetic kidneys and assessed its localization by RNA in situ hybridization. We examined the effects of genetic ablation of Lrg1 on DKD progression in unilaterally nephrectomized, streptozotocin-induced diabetic mice at 12 and 20 weeks after diabetes induction. We also assessed whether plasma LRG1 was associated with renal outcome in patients with type 2 diabetes. RESULTS LRG1 localized predominantly to glomerular endothelial cells, and its expression was elevated in the diabetic kidneys. LRG1 ablation markedly attenuated diabetes-induced glomerular angiogenesis, podocyte loss, and the development of diabetic glomerulopathy. These improvements were associated with reduced ALK1-Smad1/5/8 activation in glomeruli of diabetic mice. Moreover, increased plasma LRG1 was associated with worse renal outcome in patients with type 2 diabetes. CONCLUSIONS These findings identify LRG1 as a potential novel pathogenic mediator of diabetic glomerular neoangiogenesis and a risk factor in DKD progression.
Collapse
Affiliation(s)
- Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Lu Zhang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Divya A Verghese
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wenjun Ju
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | | | - Guang-Yan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York; and
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Detlef Schlondorff
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; .,Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York;
| |
Collapse
|
49
|
Lee H, Fujimoto M, Ohkawara T, Honda H, Serada S, Terada Y, Naka T. Leucine rich α-2 glycoprotein is a potential urinary biomarker for renal tubular injury. Biochem Biophys Res Commun 2018; 498:1045-1051. [DOI: 10.1016/j.bbrc.2018.03.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|