1
|
Mohd MA, Ahmad Norudin NA, Muhammad TST. Transcriptional regulation of retinol binding protein 4 by Interleukin-6 via peroxisome proliferator-activated receptor α and CCAAT/Enhancer binding proteins. Mol Cell Endocrinol 2020; 505:110702. [PMID: 31927097 DOI: 10.1016/j.mce.2020.110702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/17/2023]
Abstract
Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.
Collapse
Affiliation(s)
- Muzaida Aminah Mohd
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Nur Adelina Ahmad Norudin
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5-A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | | |
Collapse
|
2
|
Unraveling the Hierarchy of cis and trans Factors That Determine the DNA Binding by Peroxisome Proliferator-Activated Receptor γ. Mol Cell Biol 2020; 40:MCB.00547-19. [PMID: 31932484 DOI: 10.1128/mcb.00547-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor essential for adipocyte development and the maintenance of the alternatively polarized macrophage phenotype. Biochemical studies have established that as an obligate heterodimer with retinoid X receptor (RXR), PPARγ binds directly repeated nuclear receptor half sites spaced by one nucleotide (direct repeat 1 [DR1]). However, it has not been analyzed systematically and genome-wide how cis factors such as the sequences of DR1s and adjacent sequences and trans factors such as cobinding lineage-determining transcription factors (LDTFs) contribute to the direct binding of PPARγ in different cellular contexts. We developed a novel motif optimization approach using sequence composition and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) densities from macrophages and adipocytes to complement de novo motif enrichment analysis and to define and classify high-affinity binding sites. We found that approximately half of the PPARγ cistrome represents direct DNA binding; both half sites can be extended upstream, and these are typically not of equal strength within a DR1. Strategically positioned LDTFs have greater impact on PPARγ binding than the quality of DR1, and the presence of the extension of DR1 provides a remarkable synergy with LDTFs. This approach of considering not only nucleotide frequencies but also their contribution to protein binding in a cellular context is applicable to other transcription factors.
Collapse
|
3
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
4
|
Verhoog N, Allie-Reid F, Vanden Berghe W, Smith C, Haegeman G, Hapgood J, Louw A. Inhibition of corticosteroid-binding globulin gene expression by glucocorticoids involves C/EBPβ. PLoS One 2014; 9:e110702. [PMID: 25335188 PMCID: PMC4205011 DOI: 10.1371/journal.pone.0110702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Corticosteroid-binding globulin (CBG), a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs). It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR), which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE) are present in the Cbg promoter, putative binding sites for C/EBPβ, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPβ, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPβ protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPβ’s involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP) after DEX treatment indicated increased co-recruitment of C/EBPβ and GR to the Cbg promoter, while C/EBPβ knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPβ.
Collapse
Affiliation(s)
- Nicolette Verhoog
- Department of Biochemistry, Stellenbosch University, Matieland, Western Cape, South Africa
| | - Fatima Allie-Reid
- Department of Biochemistry, Stellenbosch University, Matieland, Western Cape, South Africa
| | - Wim Vanden Berghe
- PPES, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- LEGEST, University of Ghent, Ghent, Belgium
| | - Carine Smith
- Dept of Physiological Sciences, Stellenbosch University, Matieland, Western Cape, South Africa
| | | | - Janet Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Matieland, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
5
|
Porez G, Gross B, Prawitt J, Gheeraert C, Berrabah W, Alexandre J, Staels B, Lefebvre P. The hepatic orosomucoid/α1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR. Endocrinology 2013; 154:3690-701. [PMID: 23861371 DOI: 10.1210/en.2013-1263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The α-1-acid glycoprotein/orosomucoids (ORMs) are members of the lipocalin protein family. Encoded by 3 polymorphic genes in mouse (2 in man, 1 in rat), ORMs are expressed in hepatocytes and function as acute-phase proteins secreted in plasma under stressful conditions. In addition to their role of nanocarrier, ORMs are involved in several pathophysiological processes such as immunosuppression, cardioprotection, and inflammatory bowel disease. The nuclear bile acid receptor farnesoid X receptor (FXR) regulates bile acid homeostasis and lipid and glucose metabolism and is an important modulator of enterohepatic functions. Here we report that hepatic FXR deletion in mice affects the expression of several members of the lipocalin family, among which ORMs are identified as direct FXR target genes. Indeed, a FXR response element upstream of the mouse Orm1 promoter was identified to which hepatic, but not ileal, FXR can bind and activate ORM expression in vitro and in vivo. However, ORMs are regulated in a species-specific manner because the ORM cluster is regulated by FXR neither in human nor rat cell lines. Consistent with these data, chromatin immunoprecipitation sequencing analysis of the FXR genomic binding sites did not detect any FXR response element in the vicinity of the human or rat ORM gene cluster. Thus, bile acids and their cognate nuclear receptor, FXR, are regulators of ORM expression, with potential implications for the species-specific metabolic and inflammation control by FXR because the expression of the proinflammatory genes in epididymal white adipose tissue was dependent on liver FXR activation.
Collapse
Affiliation(s)
- Geoffrey Porez
- PhD, Director, Institut National de la Santé et de la Recherche Médicale, Atherosclerosis, Boulevard Du Pr Leclerc, Batiment J&K, Faclte De Medecine De Lille, Lille 59000, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Glucocorticoids (GCs) have been successfully used in the treatment of inflammatory diseases for decades. However, there is a relative GC resistance in several inflammatory lung disorders, such as chronic obstructive pulmonary disease (COPD), but still the mechanism(s) behind this unresponsiveness remains unknown. Interaction between transcription factors and the GC receptor contribute to GC effects but may also provide mechanisms explaining steroid resistance. CCAAT/enhancer-binding protein (C/EBP) transcription factors are important regulators of pulmonary gene expression and have been implicated in inflammatory lung diseases such as asthma, pulmonary fibrosis, cystic fibrosis, sarcoidosis, and COPD. In addition, several studies have indicated a role for C/EBPs in mediating GC effects. In this review, we discuss the different mechanisms of GC action as well as the function of the lung-enriched members of the C/EBP transcription factor family. We also summarize the current knowledge of the role of C/EBP transcription factors in mediating the effects of GCs, with emphasis on pulmonary effects, and their potential role in mediating GC resistance.
Collapse
Affiliation(s)
- Abraham B Roos
- Respiratory Medicine Unit, Lung Research Laboratory L4:01, Department of Medicine, Karolinska Institutet, Karolinska University Hospital - Solna, 171 76 Stockholm, Sweden.
| | | |
Collapse
|
7
|
Role of peroxisome proliferator-activated receptor alpha in the control of cyclooxygenase 2 and vascular endothelial growth factor: involvement in tumor growth. PPAR Res 2011; 2008:352437. [PMID: 18670614 PMCID: PMC2490577 DOI: 10.1155/2008/352437] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 01/29/2023] Open
Abstract
A growing body of evidence indicates that PPAR (peroxisome
proliferator-activated receptor) α agonists might have therapeutic usefulness in antitumoral therapy by decreasing abnormal cell growth, and reducing tumoral angiogenesis. Most of the anti-inflammatory and antineoplastic properties of PPAR ligands are due to their inhibitory effects on transcription of a variety of genes involved in inflammation, cell growth and angiogenesis. Cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF) are crucial agents in inflammatory and angiogenic processes. They also have been significantly associated to cell proliferation, tumor growth, and metastasis, promoting tumor-associated angiogenesis. Aberrant expression of VEGF and COX-2 has been observed in a variety of tumors, pointing to these proteins as important therapeutic targets in the treatment of pathological angiogenesis and tumor growth. This review summarizes the current understanding of the role of PPARα and its ligands in the regulation of COX-2 and VEGF gene expression in the context of tumor progression.
Collapse
|
8
|
Siersbaek R, Nielsen R, Mandrup S. PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies. FEBS Lett 2010; 584:3242-9. [PMID: 20542036 DOI: 10.1016/j.febslet.2010.06.010] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 12/14/2022]
Abstract
Adipocyte differentiation is controlled by a tightly regulated transcriptional cascade in which PPARgamma and members of the C/EBP family are key players. Here we review the roles of PPARgamma and C/EBPs in adipocyte differentiation with emphasis on the recently published genome-wide binding profiles for PPARgamma and C/EBPalpha. Interestingly, these analyses show that PPARgamma and C/EBPalpha binding sites are associated with most genes that are induced during adipogenesis suggesting direct activation of many more adipocyte genes than previously anticipated. Furthermore, an extensive overlap between the C/EBPalpha and PPARgamma cistromes indicate a hitherto unrecognized direct crosstalk between these transcription factors. As more genome-wide data emerge in the future, this crosstalk will likely be found to include several other adipogenic transcription factors.
Collapse
Affiliation(s)
- Rasmus Siersbaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | | | | |
Collapse
|
9
|
Daire V, Giustiniani J, Leroy-Gori I, Quesnoit M, Drevensek S, Dimitrov A, Perez F, Poüs C. Kinesin-1 regulates microtubule dynamics via a c-Jun N-terminal kinase-dependent mechanism. J Biol Chem 2009; 284:31992-2001. [PMID: 19759393 DOI: 10.1074/jbc.m109.007906] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the kinesin family, all the molecular motors that have been implicated in the regulation of microtubule dynamics have been shown to stimulate microtubule depolymerization. Here, we report that kinesin-1 (also known as conventional kinesin or KIF5B) stimulates microtubule elongation and rescues. We show that microtubule-associated kinesin-1 carries the c-Jun N-terminal kinase (JNK) to allow its activation and that microtubule elongation requires JNK activity throughout the microtubule life cycle. We also show that kinesin-1 and JNK promoted microtubule rescues to similar extents. Stimulation of microtubule rescues by the kinesin-1/JNK pathway could not be accounted for by the rescue factor CLIP-170. Indeed only a dual inhibition of kinesin-1/JNK and CLIP-170 completely blocked rescues and led to extensive microtubule loss. We propose that the kinesin-1/JNK signaling pathway is a major regulator of microtubule dynamics in living cells and that it is required with the rescue factor CLIP-170 to allow cells to build their interphase microtubule network.
Collapse
Affiliation(s)
- Vanessa Daire
- Faculté de Pharmacie, Université Paris-Sud 11, JE2493, IFR141, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Villacorta L, Garcia-Barrio MT, Chen YE. Transcriptional regulation of peroxisome proliferator-activated receptors and liver X receptors. Curr Atheroscler Rep 2008; 9:230-7. [PMID: 18241618 DOI: 10.1007/s11883-007-0024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR) and liver X receptors (LXR) regulate a plethora of biologic processes and key metabolic and physiologic events. Deregulation of their transcription and activity is commonly associated with dyslipidemic disorders, diabetes, cancer, and cardiovascular disease. This review addresses recent advances in our understanding of the molecular mechanisms regulating transcription of these nuclear receptors. The heterogeneity of factors regulating their transcription and activity suggests intricate regulatory networks that determine their tissue expression pattern and their responses to pharmacologic agents. Understanding such mechanisms will facilitate unraveling their protective effects in disease as well as the design of effective targeted therapies.
Collapse
Affiliation(s)
- Luis Villacorta
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
11
|
Brunelli L, Cieslik KA, Alcorn JL, Vatta M, Baldini A. Peroxisome proliferator-activated receptor-delta upregulates 14-3-3 epsilon in human endothelial cells via CCAAT/enhancer binding protein-beta. Circ Res 2007; 100:e59-71. [PMID: 17303761 DOI: 10.1161/01.res.0000260805.99076.22] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptor delta (PPARdelta) agonists are promising new agents for treatment of the metabolic syndrome. Although they possess antiatherosclerotic properties in vivo and promote endothelial cell survival, their mechanism of action is incompletely understood. 14-3-3epsilon is a critical component of the endothelial cell antiapoptotic machinery, which is essential to maintain homeostasis of the vascular wall. To test the hypothesis that PPARdelta targets 14-3-3epsilon in endothelial cells, we studied the response of the gene that encodes 14-3-3epsilon in humans, YWHAE, to PPARdelta ligands (L-165,041 and GW501516). We found that PPARdelta activates YWHAE promoter in a concentration and time-dependent manner. Consistent with these findings, L-165,041 increased 14-3-3epsilon mRNA and protein level, whereas PPARdelta small interfering RNA suppressed both basal and L-165,041-dependent YWHAE transcription and 14-3-3epsilon protein expression. Surprisingly, PPAR response elements in YWHAE promoter were not required for upregulation by PPARdelta, whereas a CCAAT/enhancer binding protein (C/EBP) site located at -160/-151 bp regulated both basal and PPARdelta-dependent promoter activity. Intriguingly, activation or knock down of endogenous PPARdelta regulated C/EBPbeta protein expression. Chromatin immunoprecipitation assays demonstrated that L-165,041 determines the localization of C/EBPbeta to the region spanning this C/EBP response element, whereas sequential chromatin immunoprecipitation analysis revealed that C/EBPbeta and PPARdelta form a transcriptional activating complex on this C/EBP site. Our work uncovers a novel role for C/EBPbeta as a mediator of PPARdelta-dependent 14-3-3epsilon gene regulation in human endothelial cells and provides insight into the mechanism by which PPARdelta agonists may be beneficial in atherosclerosis.
Collapse
Affiliation(s)
- Luca Brunelli
- Department of Pediatrics, The University of Texas at Houston Medical School, Houston, TX 77030-1503, USA.
| | | | | | | | | |
Collapse
|
12
|
Yang Q, Kurotani R, Yamada A, Kimura S, Gonzalez FJ. Peroxisome proliferator-activated receptor alpha activation during pregnancy severely impairs mammary lobuloalveolar development in mice. Endocrinology 2006; 147:4772-80. [PMID: 16857745 PMCID: PMC1570154 DOI: 10.1210/en.2006-0437] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To identify the potential functions of peroxisome proliferator-activated receptor alpha (PPARalpha) in skin development, transgenic mice were generated to target constitutively activated PPARalpha (VP16PPARalpha) to the stratified epithelia by use of the keratin K5 promoter. In addition to marked alterations in epidermal development, the transgenic mice had a severe defect in lactation during pregnancy resulting in 100% pup mortality. In this study, the alteration of mammary gland development in these transgenic mice was investigated. The results showed that expression of the VP16PPARalpha transgene during pregnancy resulted in impaired development of lobuloalveoli, which is associated with reduced proliferation and increased apoptosis of mammary epithelia. Mammary epithelia from transgenic mice also showed a significant reduction in the expression of beta-catenin and a down-regulation of one of its target genes, cyclin D1, which is thought to be required for lobuloalveolar development. Furthermore, upon PPARalpha ligand treatment, similar effects on lobuloalveolar development were observed in wild-type mice, but not in PPARalpha-null mice. These findings suggest that PPARalpha activation has a marked influence in mammary lobuloalveolar development.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
13
|
Venteclef N, Smith JC, Goodwin B, Delerive P. Liver receptor homolog 1 is a negative regulator of the hepatic acute-phase response. Mol Cell Biol 2006; 26:6799-807. [PMID: 16943422 PMCID: PMC1592867 DOI: 10.1128/mcb.00579-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The orphan nuclear receptor liver receptor homolog 1 (LRH-1) has been reported to play an important role in bile acid biosynthesis and reverse cholesterol transport. Here, we show that LRH-1 is a key player in the control of the hepatic acute-phase response. Ectopic expression of LRH-1 with adenovirus resulted in strong inhibition of both interleukin-6 (IL-6)- and IL-1beta-stimulated haptoglobin, serum amyloid A, and fibrinogen beta gene expression in hepatocytes. Furthermore, induction of the hepatic inflammatory response was significantly exacerbated in HepG2 cells expressing short hairpin RNA targeting LRH-1 expression. Moreover, transient-transfection experiments and electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that LRH-1 regulates this cytokine-elicited inflammatory response by, at least in part, antagonizing the CCAAT/enhancer binding protein beta signaling pathway. Finally, we show, by using LRH-1 heterozygous mice, that LRH-1 is involved in the control of the inflammatory response at the hepatic level in vivo. Taken together, our results outline an unexpected role for LRH-1 in the modulation of the hepatic acute-phase response.
Collapse
Affiliation(s)
- Nicolas Venteclef
- GlaxoSmithKline R&D, CVU CEDD, 25 Avenue du Quebec, 91951 Les Ulis, France
| | | | | | | |
Collapse
|
14
|
Selim E, Frkanec JT, Cunard R. Fibrates upregulate TRB3 in lymphocytes independent of PPAR alpha by augmenting CCAAT/enhancer-binding protein beta (C/EBP beta) expression. Mol Immunol 2006; 44:1218-29. [PMID: 16949670 DOI: 10.1016/j.molimm.2006.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
Fibrates, which function by binding and activating peroxisome proliferator-activated receptor alpha (PPARalpha), have been used successfully to treat hyperlipidemia and atherosclerosis. Increasing evidence suggests that in addition to their lipid lowering activities these medications also function as immunosuppressive agents. Tribbles is a Drosophila protein that slows cell cycle progression, and its mammalian homolog, TRB3 interferes with insulin-induced activation of AKT. In these studies we demonstrate that fibrates upregulate TRB3 expression in mitogen-activated lymphocytes. Interestingly, in lymphocytes fibrates augment TRB3 expression in both PPARalpha wildtype and knockout mice, suggesting that upregulation of this protein occurs in a PPARalpha-independent manner. Fibrates activate a proximal TRB3 promoter construct and mutation or partial deletion of a potential PPAR response element does not alter the ability of fibrates to drive TRB3 expression. Subsequent studies reveal that fibrates upregulate C/EBPbeta and CHOP in lymphocytes and mutation of potential C/EBPbeta and CHOP consensus sequences abrogates the ability of fibrates to upregulate TRB3 promoter activity. Accordingly, fibrates enhance the recruitment of C/EBPbeta and CHOP to the proximal TRB3 promoter. Finally, TRB3 expression in lymphocytes induces G2 cell cycle delay and cellular depletion. These studies outline a novel PPARalpha-independent mechanism of action of fibrates and document for the first time the expression of TRB3 in activated lymphocytes.
Collapse
Affiliation(s)
- Erin Selim
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | | | | |
Collapse
|
15
|
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006; 45:120-59. [PMID: 16476485 DOI: 10.1016/j.plipres.2005.12.002] [Citation(s) in RCA: 582] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.
Collapse
Affiliation(s)
- Jérôme N Feige
- Center for Integrative Genomics, NCCR Frontiers in Genetics, Le Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Hewitt DP, Mark PJ, Waddell BJ. Placental Expression of Peroxisome Proliferator-Activated Receptors in Rat Pregnancy and the Effect of Increased Glucocorticoid Exposure1. Biol Reprod 2006; 74:23-8. [PMID: 16135695 DOI: 10.1095/biolreprod.105.045914] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Recent gene deletion studies indicate that PPARG and PPARD play critical roles in rodent development, including effects on placental vascularization. In this study we investigated the expression of the PPAR isoforms and their heterodimeric partner, RXRA, in the two functionally and morphologically distinct zones of the rat placenta during normal gestation and after glucocorticoid-induced fetal and placental growth restriction. Real-time reverse transcription-polymerase chain reaction and immunohistochemical analysis demonstrated markedly higher expression of Ppara, Pparg, and Rxra mRNA in labyrinth zone trophoblast as compared with basal zone near term. There was also a marked increase in Pparg (65%, P < 0.05) and Ppara (91%, P < 0.05) mRNA specifically in the labyrinth zone over the final third of pregnancy. In contrast, expression of Ppard mRNA fell (P < 0.001) in both placental zones over the same period. Maternal dexamethasone treatment (1 mug/ml in drinking water; Days 13-22, term = 23 days) reduced placental (44%) and fetal (31%) weights and resulted in a fall in Pparg (37%, P < 0.05) mRNA expression specifically in the labyrinth zone at Day 22. Placental expression of Ppara, Ppard, and Rxra was unaffected by dexamethasone treatment. These data suggest that PPARG:RXRA heterodimers play important roles in labyrinth zone growth late in pregnancy, possibly supporting vascular development. Moreover, glucocorticoid inhibition of placental growth appears to be mediated, in part, via a labyrinth-zone-specific suppression of PPARG.
Collapse
Affiliation(s)
- Damien P Hewitt
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | | | | |
Collapse
|