1
|
Bolamperti S, Villa I, di Filippo L. Growth hormone and bone: a basic perspective. Pituitary 2024; 27:745-751. [PMID: 39476263 DOI: 10.1007/s11102-024-01464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
Growth hormone is fundamental for growth during childhood and for maintaining bone mass and homeostasis in the adults. GH deficiency causes decreased bone growth and osteopenia, whereas GH excess causes increased bone fragility and decreased bone quality. In the past, it was common knowledge that GH effects on the skeletal system were due to the production of IGF1 from the liver, which has a huge bone anabolic effect per se. However, with the progress of basic research techniques new light has been shed on the mechanisms underlying GH effect in bone, and it is now clear that GH has effects that go beyond the downstream activation of liver IGFs. Therefore, the purpose of this review is to summarize the milestones in basic research that led to the discovery of GH local activity on bone.
Collapse
Affiliation(s)
- Simona Bolamperti
- Endocrine and Osteometabolic Lab, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy.
| | - Isabella Villa
- Endocrine and Osteometabolic Lab, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Li X, Li S, Bai S, Tang Y, Jia Z, Yin J, Xu X, Zhang J, Irwin DM, Zhang S, Wang Z. Research Note: SOCS2 contributes to reduction of the third digit during development of the chicken forelimb. Poult Sci 2024; 103:103672. [PMID: 38564834 PMCID: PMC10999695 DOI: 10.1016/j.psj.2024.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The development of the avian wing pattern has been the subject of heated debate due to its special shape. The Suppressor of cytokine signaling 2 (SOCS2) gene encodes a negative regulator of growth hormone (GH) signaling and bone growth and is known to be strongly expressed in the third digit of chicken forelimbs. These observations suggest that SOCS2 might regulate the morphology of the avian wing, however, the function of SOCS2 in avian limb development remains unknown. Here, we reexamined SOCS2 expression in successive developmental stages of chicken limb development by in situ hybridization (ISH) and describe extended expression from the posterior of the stypolod to the third digit of the forelimbs. We used the RCAS avian retrovirus to overexpress SOCS2 in the developing chicken limb buds, which resulted in reduced or malformed chicken wings while hindlimbs developed normally. Transcriptome sequencing (mRNA-Seq) revealed changes in expression of genes known to be associated with growth and development in forelimbs with overexpressed SOCS2. This study highlights a pivotal role for SOCS2 during the development of the wing in the chicken and provides new insight into molecular mechanisms regulating avian limb development.
Collapse
Affiliation(s)
- Xiaoping Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shanshan Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shibin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yining Tang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Ziqiu Jia
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jialong Yin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiaona Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
3
|
Grimberg A, Hawkes CP. Growth Hormone Treatment for Non-GHD Disorders: Excitement Tempered by Biology. J Clin Endocrinol Metab 2024; 109:e442-e454. [PMID: 37450564 PMCID: PMC10795916 DOI: 10.1210/clinem/dgad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The success of growth hormone (GH) replacement in children with classical GH deficiency has led to excitement that other causes of short stature may benefit similarly. However, clinical experience has shown less consistent and generally less dramatic effects on adult height, perhaps not surprising in light of increased understanding of GH and growth plate biology. Nonetheless, clinical demand for GH treatment continues to grow. Upon the 20th anniversary of the US Food and Drug Administration's approval of GH treatment for idiopathic short stature, this review will consider the factors underlying the expansion of GH treatment, the biological mechanisms of GH action, the non-GH-deficient uses of GH as a height-promoting agent, biological constraints to GH action, and future directions.
Collapse
Affiliation(s)
- Adda Grimberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colin P Hawkes
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- INFANT Research Centre, University College Cork, Cork T12 DC4A, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork T12 R229, Ireland
| |
Collapse
|
4
|
Likitnukul S, Thammacharoen S, Sriwatananukulkit O, Duangtha C, Hemstapat R, Sunrat C, Mangmool S, Pinthong D. Short-Term Growth Hormone Administration Mediates Hepatic Fatty Acid Uptake and De Novo Lipogenesis Gene Expression in Obese Rats. Biomedicines 2023; 11:biomedicines11041050. [PMID: 37189668 DOI: 10.3390/biomedicines11041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity has been linked to metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). Obesity causes a decrease in growth hormone (GH) levels and an increase in insulin levels. Long-term GH treatment increased lipolytic activity as opposed to decreasing insulin sensitivity. Nonetheless, it is possible that short-term GH administration had no impact on insulin sensitivity. In this study, the effect of short-term GH administration on liver lipid metabolism and the effector molecules of GH and insulin receptors were investigated in diet-induced obesity (DIO) rats. Recombinant human GH (1 mg/kg) was then administered for 3 days. Livers were collected to determine the hepatic mRNA expression and protein levels involved in lipid metabolism. The expression of GH and insulin receptor effector proteins was investigated. In DIO rats, short-term GH administration significantly reduced hepatic fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) mRNA expression while increasing carnitine palmitoyltransferase 1A (CPT1A) mRNA expression. Short-term GH administration reduced hepatic FAS protein levels and downregulated gene transcription of hepatic fatty acid uptake and lipogenesis, while increasing fatty acid oxidation in DIO rats. DIO rats had lower hepatic JAK2 protein levels but higher IRS-1 levels than control rats due to hyperinsulinemia. Our findings suggest that short-term GH supplementation improves liver lipid metabolism and may slow the progression of NAFLD, where GH acts as the transcriptional regulator of related genes.
Collapse
|
5
|
Sun S, Chen Q, Chen G, Chen Z, Wang K, Wang H. Toxicity of nitenpyram to silkworm (Bombyx mori L.) and its potential mechanisms. CHEMOSPHERE 2023; 311:137026. [PMID: 36419271 DOI: 10.1016/j.chemosphere.2022.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Silkworm (Bombyx mori L.), as an economic insect, occupies a certain position in the development of China's economy. The neonicotinoid insecticide nitenpyram is commonly used in farmland to control planthoppers and aphids. In China, mulberry orchards are often planted adjacent to fields or commercial crops, and mist drifts occur during application, which may affect the production safety of Bombyx mori. In this study, a risk assessment of nitenpyram was carried out, and the results showed that there were risks in spraying nitenpyram around the periphery and subperipheries of mulberry fields. However, few studies have reported the mechanism underlying nitenpyram's toxic effect on silkworms. Here, we validated 25 differentially expressed (DE) miRNAs in the nitenpyram treatment group of silkworms, and the significantly enriched mTOR signaling pathway, oxidative phosphorylation and FoxO signaling pathway were verified. Among them, bmo-miR-2766-5P was up-regulated by 2.122-fold, and the expression of its regulated target gene 101,741,287 was up-regulated. After the injection of bmo-miR-2766-5P inhibitor, the Log2FC value of 101,741,287 was changed from 1.26 to -2.19. Bmo-miR-3326, bmo-miR-3378-5P and bmo-miR-2761-3P were down-regulated by 2.386-fold, 1.158-fold and 2.359-fold, respectively. After injecting miRNA mimics into silkworms, the Log2FC values of the target genes 100,302,609, 101,740,730 and 101,746,319 were changed from 1.24 to -11.94, -1.12 changed to 2.84 and 1.93 changed to -0.37, respectively. In addition, nitenpyram induced oxidative damage in silkworms, and the degree of DNA damage increased with the increase of concentration and time. Meanwhile Imd was significantly up-regulated in IMD-related pathways (38.7-fold, p < 0.01). The results indicated that nitenpyram could affect the growth and development process of silkworms, and these DE-miRNAs may have an important impact on the stress response of silkworms to nitenpyram.
Collapse
Affiliation(s)
- Shoumin Sun
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qiqi Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Gang Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhenzhen Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
6
|
Mahdi AK, Medrano JF, Ross PJ. Single-Step Genome Editing of Small Ruminant Embryos by Electroporation. Int J Mol Sci 2022; 23:ijms231810218. [PMID: 36142132 PMCID: PMC9499182 DOI: 10.3390/ijms231810218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the possibility of single-step genome editing in small ruminants by CRISPR-Cas9 zygote electroporation. We targeted SOCS2 and PDX1 in sheep embryos and OTX2 in goat embryos, utilizing a dual sgRNA approach. Gene editing efficiency was compared between microinjection and three different electroporation settings performed at four different times of embryo development. Electroporation of sheep zygotes 6 h after fertilization with settings that included short high-voltage (poring) and long low-voltage (transfer) pulses was efficient at producing SOCS2 knock-out blastocysts. The mutation rate after CRISPR/Cas9 electroporation was 95.6% ± 8%, including 95.4% ± 9% biallelic mutations; which compared favorably to 82.3% ± 8% and 25% ± 10%, respectively, when using microinjection. We also successfully disrupted the PDX1 gene in sheep and the OTX2 gene in goat embryos. The biallelic mutation rate was 81 ± 5% for PDX1 and 85% ± 6% for OTX2. In conclusion, using single-step CRISPR-Cas9 zygote electroporation, we successfully introduced biallelic deletions in the genome of small ruminant embryos.
Collapse
|
7
|
Verreault M, Segoviano Vilchis I, Rosenberg S, Lemaire N, Schmitt C, Guehennec J, Royer-Perron L, Thomas JL, Lam TT, Dingli F, Loew D, Ducray F, Paris S, Carpentier C, Marie Y, Laigle-Donadey F, Rousseau A, Pigat N, Boutillon F, Bielle F, Mokhtari K, Frank SJ, de Reyniès A, Hoang-Xuan K, Sanson M, Goffin V, Idbaih A. Identification of growth hormone receptor as a relevant target for precision medicine in low-EGFR expressing glioblastoma. Clin Transl Med 2022; 12:e939. [PMID: 35808822 PMCID: PMC9270581 DOI: 10.1002/ctm2.939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/11/2022] Open
Abstract
Objective New therapeutic approaches are needed to improve the prognosis of glioblastoma (GBM) patients. Methods With the objective of identifying alternative oncogenic mechanisms to abnormally activated epidermal growth factor receptor (EGFR) signalling, one of the most common oncogenic mechanisms in GBM, we performed a comparative analysis of gene expression profiles in a series of 54 human GBM samples. We then conducted gain of function as well as genetic and pharmocological inhibition assays in GBM patient‐derived cell lines to functionnally validate our finding. Results We identified that growth hormone receptor (GHR) signalling defines a distinct molecular subset of GBMs devoid of EGFR overexpression. GHR overexpression was detected in one third of patients and was associated with low levels of suppressor of cytokine signalling 2 (SOCS2) expression due to SOCS2 promoter hypermethylation. In GBM patient‐derived cell lines, GHR signalling modulates the expression of proteins involved in cellular movement, promotes cell migration, invasion and proliferation in vitro and promotes tumourigenesis, tumour growth, and tumour invasion in vivo. GHR genetic and pharmacological inhibition reduced cell proliferation and migration in vitro. Conclusion This study pioneers a new field of investigation to improve the prognosis of GBM patients.
Collapse
Affiliation(s)
- Maïté Verreault
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Irma Segoviano Vilchis
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Shai Rosenberg
- Laboratory for Cancer Computational Biology & Gaffin Center for Neuro-Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nolwenn Lemaire
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Charlotte Schmitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jérémy Guehennec
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Louis Royer-Perron
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jean-Léon Thomas
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - TuKiet T Lam
- Mass Spectrometry & Proteomics Resource, Keck Biotechnology Resource Laboratory, New Haven, Connecticut, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Florent Dingli
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | | | - Sophie Paris
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Catherine Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Yannick Marie
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Florence Laigle-Donadey
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Audrey Rousseau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Natascha Pigat
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Florence Boutillon
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Franck Bielle
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Karima Mokhtari
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stuart J Frank
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama, Birmingham, Alabama, USA.,Endocrinology Section, Medical Service, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Service de Bioinformatique, Paris, France
| | - Khê Hoang-Xuan
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marc Sanson
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Vincent Goffin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
8
|
Li J, Wang Y, Deng Y, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food Chem Toxicol 2022; 164:113044. [PMID: 35452771 DOI: 10.1016/j.fct.2022.113044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
The toxic mechanisms of trichothecenes, including T-2 toxin and deoxynivalenol (DON), are closely related with their effects on protein synthesis. Increasing lines of evidence show that T-2 toxin can reduce the levels of tight junction proteins, and nuclear factor erythroid 2-related factor 2 (Nrf2) by disrupting cellular barriers and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Nrf2/heme oxygenase (HO)-1 pathways. Moreover, it can inhibit aggrecan synthesis, thus causing Kashin-Beck disease. Regarding type B trichothecene, DON inhibits activation marker and β-catenin synthesis by acting on immune cells and the wingless/integrated (Wnt) pathway; it also inhibits cell proliferation and immune surveillance. In addition, DON has been shown to destroy tight junctions, glucose transport, and tumor endothelial marker 8, thus disturbing intestinal function and changing cell migration. This review summarizes the inhibitory effects of the trichothecenes T-2 toxin and DON on different protein synthesis, while discussing their underlying mechanisms. Focus is given to the effects of these toxins on tight junctions, aggrecan, activation markers, and hormones including testosterone under the influence of steroidogenic enzymes. This review can extend the current understanding of the effects of trichothecenes on protein synthesis and help to further understand their toxic mechanisms.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, 430070, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
Albornoz-Abud NA, Canul-Marín GF, Chan-Cuá I, Hernández-Núñez E, Cañizares-Martínez MA, Valdés-Lozano D, Rodríguez-Canul R, Albores-Medina A, Colli-Dula RC. Gene expression analysis on growth, development and toxicity pathways of male Nile tilapia (Oreochromis niloticus), after acute and sub-chronic benzo (α) pyrene exposures. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109160. [PMID: 34371172 DOI: 10.1016/j.cbpc.2021.109160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 01/19/2023]
Abstract
Benzo[α]pyrene (BaP), a lipophilic polycyclic aromatic hydrocarbon (PAH), is a contaminant widely distributed in aquatic systems. Its presence in freshwater organisms is of great concern; particularly in Nile tilapia (Oreochromis niloticus), due to its economic relevance. The aim of this study is to evaluate the effects of acute and sub-chronic BaP exposures on molecular growth/development responses, toxicity to DNA pathways and xenobiotic metabolism. Negative morphometric changes (the growth condition factor, hepatosomatic and gonadosomatic indices), the fluorescent aromatic compounds (FACs) in bile were also studied in order to understand the mechanisms of action of BaP. Genes involved in the growth hormone GH/insulin-like growth factor 1 (IGF-1) were measured, such as IGF1-2 with the growth hormone receptor gene expression GHR1-2, and the endocrine disruption biomarker vitellogenin (VTG). Acute exposure elicited changes in the GH/IGF axis, mainly in the GHR1 and in IGF1 mRNA levels without affecting the GHR2 expression. While sub-chronic exposure had less effect on both GHR and IGF genes. The most notable tissue-specific effects and morphometric endpoints were observed upon sub-chronic exposure, such as changes in key genes involved in detoxification, DNA damage, and altered reproductive morphological endpoints; showing that sub-chronic BaP doses have longer-lasting toxic effects. This study shows that sub-chronic BaP exposure may compromise the health of Nile tilapia and sheds light on the changes of the GH/IGF axis and the biotransformation of the xenobiotics due to the presence of this contaminant.
Collapse
Affiliation(s)
- Nacira Anahí Albornoz-Abud
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, México
| | - Gerson Felipe Canul-Marín
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, México
| | - Iván Chan-Cuá
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, México
| | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, México; Consejo Nacional de Ciencia y Tecnología, CONACYT, México
| | | | - David Valdés-Lozano
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, México
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, México
| | - Arnulfo Albores-Medina
- Sección Externa de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Reyna Cristina Colli-Dula
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, México; Consejo Nacional de Ciencia y Tecnología, CONACYT, México.
| |
Collapse
|
10
|
Wei W, Liu Z, Zhang C, Khoriaty R, Zhu M, Zhang B. A common human missense mutation of vesicle coat protein SEC23B leads to growth restriction and chronic pancreatitis in mice. J Biol Chem 2021; 298:101536. [PMID: 34954140 PMCID: PMC8760524 DOI: 10.1016/j.jbc.2021.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wei Wei
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio, USA
| | - Zhigang Liu
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio, USA
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rami Khoriaty
- Departments of Internal Medicine, Cell and Developmental Biology and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Min Zhu
- Department of Pathology, Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, China.
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
11
|
Liu X, Shen J, Zong J, Liu J, Jin Y. Beta-Sitosterol Promotes Milk Protein and Fat Syntheses-Related Genes in Bovine Mammary Epithelial Cells. Animals (Basel) 2021; 11:ani11113238. [PMID: 34827970 PMCID: PMC8614283 DOI: 10.3390/ani11113238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The levels of milk fats and proteins are important indexes used to evaluate milk quality. Generally, feed additives are used to improve milk quality. This study aimed to investigate the effect of β-sitosterol on milk fat and protein gene expression in bovine mammary epithelial cells. β-sitosterol increased the β-casein levels in bovine mammary epithelial cells and promoted the expression of milk fat and protein synthesis-related genes, suggesting the use of β-sitosterol as a potential feed additive to improve milk quality in dairy cows. Abstract β-sitosterol, a phytosterol with multiple biological activities, has been used in the pharmaceutical industry. However, there are only a few reports on the use of β-sitosterol in improving milk synthesis in dairy cows. This study aimed to investigate the effects of β-sitosterol on milk fat and protein syntheses in bovine mammary epithelial cells (MAC-T) and its regulatory mechanism. MAC-T cells were treated with different concentrations (0.01, 0.1, 1, 5, 10, 20, 30, or 40 μM) of β-sitosterol, and the expression levels of milk protein and fat synthesis-related genes and proteins were analyzed. β-sitosterol at 0.1, 1, and 10 μM concentrations promoted the mRNA and protein expression of β-casein. β-sitosterol (0.1, 1, 10 μM) increased the mRNA and protein expression levels of signal transducer activator of transcription 5 (STAT5), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase beta-1 (S6K1) of the JAK2/STAT5 and mTOR signaling pathways. It also stimulated the milk fat synthesis-related factors, including sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), and stearyl CoA desaturase (SCD). β-sitosterol (0.1, 1, 10 μM) also significantly increased the expression of growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and hypoxia-inducible factor-1α (HIF-1α)-related genes. Notably, the compound inhibited the expression of the negative regulator, the suppressor of cytokine signaling 2 (SOCS2) at the two lower concentrations (0.1, 1 μM), but significantly promoted the expression at the highest concentration (30 μM). These results highlight the role of β-sitosterol at concentrations ranging from 0.1 to 10 μM in improving milk protein and fat syntheses, regulating milk quality. Therefore, β-sitosterol can be used as a potential feed additive to improve milk quality in dairy cows.
Collapse
|
12
|
Siddiqua TJ, Roy AK, Akhtar E, Haq MA, Wagatsuma Y, Ekström EC, Afsar MNA, Hossain MI, Ahmed T, El Arifeen S, Raqib R. Prenatal nutrition supplementation and growth biomarkers in preadolescent Bangladeshi children: A birth cohort study. MATERNAL AND CHILD NUTRITION 2021; 18:e13266. [PMID: 34467639 PMCID: PMC8710124 DOI: 10.1111/mcn.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Little is known about the usefulness of biomarkers to study the influence of prenatal nutrition supplementation in improving child growth. Anthropometry is not always straightforward to understand how nutrition might impact growth, especially in settings with high rates of malnutrition and infections. We examined the effects of prenatal supplementation on growth and growth biomarkers and the relationship between anthropometric measures and growth biomarkers of children at 4.5 and 9 years of age. Children were enrolled from a longitudinal cohort, where mothers were randomized into daily supplementation with either early‐food (≤9 gestation week [GW]) or usual‐food (~20 GW) (608 kcal 6 days/week); they were further randomized to receive 30‐mg or 60‐mg iron with 400‐μg folic acid, or multiple micronutrients (MM) in rural Bangladesh. Anthropometric data were collected from mothers at GW8 and children at 4.5 (n = 640) and 9 years (n = 536). Fasting blood was collected from children at each age. Early‐food supplementation showed reduced stunting and underweight at 4.5 and 9 years age respectively compared to usual‐food. Prenatal supplementations did not have any effect on growth biomarkers except for STAT5b expression which was lower in the early‐food compared to the usual‐food group (β = −0.21; 95 CI% = −0.36, −0.07). Plasma concentrations of 25‐hydroxy vitamin D and calcium were both inversely associated with weight‐for‐age and body mass index‐for‐age Z‐scores at 9 years, particularly in early‐food and MM groups. Although there was minimal effect on child growth by prenatal supplementations, the associations of biomarkers with anthropometric indices were predominantly driven by timing of food or MM supplementations.
Collapse
Affiliation(s)
- Towfida Jahan Siddiqua
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anjan Kumar Roy
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Evana Akhtar
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Ahsanul Haq
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, University of Tsukuba, Tsukuba, Japan
| | - Eva-Charlotte Ekström
- International Maternal and Child Health, Womens and Childrens Health, Uppsala University, Uppsala, Sweden
| | - Md Nure Alam Afsar
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Iqbal Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shams El Arifeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rubhana Raqib
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
13
|
Gossing W, Radke L, Biering H, Diederich S, Mai K, Frohme M. The ElonginB/C-Cullin5-SOCS-Box-Complex Is a Potential Biomarker for Growth Hormone Disorders. Biomedicines 2021; 9:biomedicines9020201. [PMID: 33671326 PMCID: PMC7921923 DOI: 10.3390/biomedicines9020201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is the standard biochemical marker for the diagnosis and treatment control of acromegaly and growth hormone deficiency (GHD). However, its limitations necessitate the screening for new specific and sensitive biomarkers. The elonginB/C-cullin5-SOCS-box-complex (ECS-complex) (an intracellular five-protein complex) is stimulated by circulating growth hormone (GH) and regulates GH receptor levels through a negative feedback loop. It mediates the cells' sensitivity for GH and therefore, represents a potent new biomarker for those diseases. In this study, individual ECS-complex proteins were measured in whole blood samples of patients with acromegaly (n = 32) or GHD (n = 12) via ELISA and compared to controls. Hierarchical clustering of the results revealed that by combining the three ECS-complex proteins suppressor of cytokine signaling 2 (SOCS2), cullin-5 and ring-box protein 2 (Rbx-2), 93% of patient samples could be separated from controls, despite many patients having a normal IGF-1 or not receiving medical treatment. SOCS2 showed the best individual diagnostic performance with an overall accuracy of 0.93, while the combination of the three proteins correctly identified all patients and controls. This resulted in perfect sensitivity and specificity for all patient groups, which demonstrates potential benefits of the ECS-complex proteins as clinical biomarkers for the diagnostics of GH-related diseases and substantiates their important role in GH metabolism.
Collapse
Affiliation(s)
- Wilhelm Gossing
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
| | - Lars Radke
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
| | - Henrik Biering
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Praxis an der Kaisereiche, Innere Medizin, Endokrinologie, Diabetologie, 12159 Berlin, Germany
| | - Sven Diederich
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
- MVZ Medicover Berlin-Mitte, Innere Medizin, Endokrinologie, Andrologie, 10117 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Correspondence:
| |
Collapse
|
14
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
15
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Lyu X, Wang G, Pi Z, Wu L. Acute sleep deprivation leads to growth hormone (GH) resistance in rats. Gen Comp Endocrinol 2020; 296:113545. [PMID: 32622934 DOI: 10.1016/j.ygcen.2020.113545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
Abstract
Sleep is an essential physiological process that is required by all higher animals. Sleep has many important physiological functions. Previous studies have focused on the relationship between sleep and growth hormone secretion patterns. However, to date, whether sleep affects the biological activities of GH remains unclear. Here, we investigated this issue by evaluating the growth hormone receptor (GHR)-mediated intracellular signalling pathway in a sleep-deprived rat model. The results showed that GH's signalling ability is decreased in an acute sleep deprivation rat model. JAK2-STAT signalling was decreased significantly compared to that in control rats. We further analysed the possible molecular mechanism of GH signal inhibition in sleep-deprived rats. The results showed that the protein expression levels of SOCS3 (suppressors of cytokine signalling 3, which functions as the negative regulatory molecule of GH's signalling) increased; however, other negative regulatory proteins, such as protein phosphatase (PTP1B), did not change. In addition, acute sleep deprivation results in a significant increase in serum FFA (free fatty acid) level, which is also one of the factors contributing to GH inhibition. These findings suggest that GH signal resistance may be caused by a combination of factors. This study could serve as an important reference for related studies on the effect of sleep deprivation on endocrine systems.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Guohua Wang
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhuang Pi
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Lan Wu
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
17
|
Habel J, Sundrum A. Mismatch of Glucose Allocation between Different Life Functions in the Transition Period of Dairy Cows. Animals (Basel) 2020; 10:E1028. [PMID: 32545739 PMCID: PMC7341265 DOI: 10.3390/ani10061028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023] Open
Abstract
Immune cell functions such as phagocytosis and synthesis of immunometabolites, as well as immune cell survival, proliferation and differentiation, largely depend on an adequate availability of glucose by immune cells. During inflammation, the glucose demands of the immune system may increase to amounts similar to those required for high milk yields. Similar metabolic pathways are involved in the adaptation to both lactation and inflammation, including changes in the somatotropic axis and glucocorticoid response, as well as adipokine and cytokine release. They affect (i) cell growth, proliferation and activation, which determines the metabolic activity and thus the glucose demand of the respective cells; (ii) the overall availability of glucose through intake, mobilization and gluconeogenesis; and (iii) glucose uptake and utilization by different tissues. Metabolic adaptation to inflammation and milk synthesis is interconnected. An increased demand of one life function has an impact on the supply and utilization of glucose by competing life functions, including glucose receptor expression, blood flow and oxidation characteristics. In cows with high genetic merits for milk production, changes in the somatotropic axis affecting carbohydrate and lipid metabolism as well as immune functions are profound. The ability to cut down milk synthesis during periods when whole-body demand exceeds the supply is limited. Excessive mobilization and allocation of glucose to the mammary gland are likely to contribute considerably to peripartal immune dysfunction.
Collapse
Affiliation(s)
- Jonas Habel
- Department of Animal Nutrition and Animal Health, Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany;
| | | |
Collapse
|
18
|
Ramli NS, Jia H, Sekine A, Lyu W, Furukawa K, Saito K, Hasebe Y, Kato H. Eggshell membrane powder lowers plasma triglyceride and liver total cholesterol by modulating gut microbiota and accelerating lipid metabolism in high-fat diet-fed mice. Food Sci Nutr 2020; 8:2512-2523. [PMID: 32405407 PMCID: PMC7215208 DOI: 10.1002/fsn3.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major global lifestyle disorder associated with gut microbiota. The health benefits of eggshell membrane (ESM) have been shown in previous reports, particularly as regards gut microbiota composition. Here, we investigated whether ESM improves lipid metabolism and alters gut microbiota in high-fat diet-fed mice. A total of 20 C57BL/6J mice aged 6 weeks were given either a control diet (CON), high-fat diet (HFD), or high-fat diet + 8% ESM powder (HESM) for 20 weeks. ESM supplementation in HFD-fed mice reduced plasma triglycerides (TG) and liver total cholesterol (TC) and upregulated the expression of lipid metabolism genes carnitine palmitoyltransferase 1A and suppressor of cytokine signaling 2. Microbiota analysis showed increased relative abundance of the anti-obesity bacterium, Lactobacillus reuteri, at 4, 12, and 16 weeks and reduced the abundance of inflammation-related Blautia hydrogenotrophica, Roseburia faecis, and Ruminococcus callidus at 12 and 20 weeks. ESM-supplemented mice had increased cecal isobutyrate, negatively correlated with B. hydrogenotrophica and Parabacteroides goldsteinii abundance. The results indicate that ESM supplementation in HFD-fed mice reduced plasma TG and liver TC, possibly through alteration of lipid metabolism gene expression and gut microbiota composition, suggesting that ESM may be effective in obesity management.
Collapse
Affiliation(s)
- Nurul Shazini Ramli
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
- Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
| | - Huijuan Jia
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Ayumu Sekine
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Weida Lyu
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kyohei Furukawa
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kenji Saito
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Hisanori Kato
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
19
|
Li F, Li M, Wang H, Mao T, Chen J, Lu Z, Qu J, Fang Y, Li B. Effects of phoxim pesticide on the immune system of silkworm midgut. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:58-64. [PMID: 32284137 DOI: 10.1016/j.pestbp.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 06/11/2023]
Abstract
Silkworm (Bombyx mori) is an important economic insect. Bombyx mori, which is exposed to sublethal doses of pesticides, has a low or no mortality rate, while it is susceptible to infections triggered by foreign pathogens. The immune regulatory mechanism of silkworms caused by trace pesticides still remains unclear. The midgut is the major organ of silkworm for digestion and nutrient absorption, and it plays a critical defensive role against pathogens. In the present study, the silkworm was susceptible to Enterobacter cloacae sp. (E. cloacae) after exposure to sublethal dose of phoxim. The body weight and survival rate of the phoxim-E. cloacae co-treatment group were significantly decreased after 120 h of treatment compared with the phoxim treatment group. The immune responses and expressions of immune-related genes were dysregulated in the midgut of silkworm following exposure to phoxim. Digital gene expression (DGE) analysis revealed that 44 immune response-related and immune defense-related genes were differentially expressed. qRT-PCR results indicated that the transcriptional levels of antimicrobial peptide genes Bmdefensin1, BmcecA, Bmglv1, Bmglv2, Bmmoricin and BmmoricinB3 were down-regulated by 0.77-, 0.37-, 0.05-, 0.19-, 0.34- and 0.54-fold, respectively. The transcriptional levels of Toll signaling pathway genes Bmcactus, Bmspatzle and Bmrel were down-regulated by 0.4-, 0.37- and 0.96-fold, respectively. Peritrophic membrane (PM) protein-related genes BmCBP-02, BmPM-41, BmPM-43 and BmCDA7 were down-regulated by 0.18-, 0.02-, 0.66- and 0.16-fold, respectively. The expressions of Toll signaling pathway genes were down-regulated at 48 h and 72 h. Immune deficiency (IMD) and Janus kinase and signal transducer and activator of transcription (JAK/STAT) signaling pathway genes were dysregulated after phoxim exposure. These results indicated that phoxim might cause damage to the PM and reduce the immune response of the silkworm, leading to susceptibility of silkworm to disease and damage from foreign pathogens.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
20
|
Li CH, Tang X, Wasnik S, Wang X, Zhang J, Xu Y, Lau KHW, Nguyen HB, Baylink DJ. Mechanistic study of the cause of decreased blood 1,25-Dihydroxyvitamin D in sepsis. BMC Infect Dis 2019; 19:1020. [PMID: 31791247 PMCID: PMC6888965 DOI: 10.1186/s12879-019-4529-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background Vitamin D deficiency, determined by blood levels of 25-hydroxyvitamin D [25(OH) D, i.e. the major vitamin D form in blood], has been shown to associate with all-cause mortalities. We recently demonstrated that blood levels of 1,25-dihydroxyvitamin D [1,25(OH)2D, i.e. the active vitamin D] were significantly lower in non-survivors compared to survivors among sepsis patients. Unexpectedly, despite the well documented roles of 1,25(OH)2D in multiple biological functions such as regulation of immune responses, stimulation of antimicrobials, and maintenance of barrier function, 1,25(OH)2D supplementation failed to improve disease outcomes. These previous findings suggest that, in addition to 1,25(OH)2D deficiency, disorders leading to the 1,25(OH)2D deficiency also contribute to mortality among sepsis patients. Therefore, this study investigated the mechanisms leading to sepsis-associated 1,25(OH)2D deficiency. Methods We studied mechanisms known to regulate kidney 25-hydroxylvitamin D 1α-hydroxylase which physiologically catalyzes the conversion of 25(OH) D into 1,25(OH)2D. Such mechanisms included parathyroid hormone (PTH), insulin-like growth factor 1 (IGF-1), fibroblast growth factor 23 (FGF-23), and kidney function. Results We demonstrated in both human subjects and mice that sepsis-associated 1,25(OH)2D deficiency could not be overcome by increased production of PTH which stimulates 1α-hydroxylase. Further studies showed that this failure of PTH to maintain blood 1,25(OH)2D levels was associated with decreased blood levels of IGF-1, increased blood levels of FGF-23, and kidney failure. Since the increase in blood levels of FGF-23 is known to associate with kidney failure, we further investigated the mechanisms leading to sepsis-induced decrease in blood levels of IGF-1. Our data showed that blood levels of growth hormone, which stimulates IGF-1 production in liver, were increased but could not overcome the IGF-1 deficiency. Additionally, we found that the inability of growth hormone to restore the IGF-1 deficiency was associated with suppressed expression and signaling of growth hormone receptor in liver. Conclusions Because FGF-23 and IGF-1 have multiple biological functions besides their role in regulating kidney 1α-hydroxylase, our data suggest that FGF-23 and IGF-1 are warranted for further investigation as potential agents for the correction of 1,25(OH)2D deficiency and for the improvement of survival among sepsis patients.
Collapse
Affiliation(s)
- Chih-Huang Li
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA.,Department of Emergency Medicine, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Xiaolei Tang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA. .,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548, USA.
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| | - Xiaohua Wang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA.,Division of Infectious Disease, Jinan Infectious Disease Hospital, Shandong University, Jinan, Shandong, China
| | - Jintao Zhang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA.,Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Xu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| | - Kin-Hing William Lau
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California, USA
| | - H Bryant Nguyen
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA.,Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University, Loma Linda, California, USA
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
21
|
Pagani S, Bozzola E, Acquafredda G, Terlizzi V, Raia V, Majo F, Villani A, Bozzola M. GH-IGF-1 Axis in Children with Cystic Fibrosis. Clin Med Res 2019; 17:82-89. [PMID: 31462537 PMCID: PMC6886888 DOI: 10.3121/cmr.2019.1476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To verify whether growth hormone receptor (GHR) gene expression plays a role in growth of children with cystic fibrosis (CF), as a consequence of the chronic inflammatory condition and malnutrition. DESIGN We enrolled 49 prepubertal patients (24 males and 25 females) affected by CF in a stable clinical condition, 19 of whom had been diagnosed through newborn screening and 30 following presentation of symptoms. Patients had no significant comorbidity affecting growth or cystic fibrosis transmembrane conductance regulator (CFTR)-related diabetes requiring insulin therapy. Blood was collected during two follow-up visits to measure insulin-like growth factor (IGF-I), growth hormone-binding protein (GHBP), and GHR gene expression. Recruited as a control group were 52 healthy children, sex- and age-matched, were recruited as a control group. METHODS We compared body mass index (BMI), height, weight, IGF-I, GHBP, and GHR gene expression values (evaluated by Chemiluminescent Immunometric assay; ELISA and real-time PCR, respectively) in CF patients diagnosed through newborn screening (NBS) or by symptoms (late diagnosis [LD]) and in healthy controls. RESULTS BMI increased significantly in patients between the time of diagnosis and check-up (P<0.001), particularly in the LD group; median value was lower at diagnosis and significantly higher (P<0.001) at follow-up visits compared to controls. At initial evaluation, higher levels of IGF-I (not statistically significant) were found in both the NBS group and the LD group compared to the control group. At the second evaluation, significantly higher levels of IGF-I (P=0.003) were found in both the NBS and LD groups compared to controls; GHR mRNA expression had significantly increased (P=0.013) in LD patients compared with the first evaluation and was significantly higher in the NBS and LD groups than in controls. GHBP values had significantly increased (P=0.047) in the NBS group after one year of therapy compared to first visit levels and were significantly higher (P<0,0001) in the NBS and LD groups compared to controls. CONCLUSION In our LD patients during childhood, we observed good auxological values and a GH/IGF-I axis function within normal range for the factor evaluated. However, earlier diagnosis through NBS might further minimize and prevent growth retardation, by reducing the duration of symptoms before treatment.
Collapse
Affiliation(s)
- Sara Pagani
- Unit of Pediatrics and Adolescentology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Elena Bozzola
- Pediatrics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Pediatric Haematology and Oncology, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Vito Terlizzi
- Cystic Fibrosis Centre, Department of Pediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Valeria Raia
- Cystic Fibrosis Centre, Department of Medical Translational Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Fabio Majo
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Alberto Villani
- Pediatrics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mauro Bozzola
- Unit of Pediatrics and Adolescentology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Ran L, Wang X, Mi A, Liu Y, Wu J, Wang H, Guo M, Sun J, Liu B, Li Y, Wang D, Jiang R, Wang N, Gao W, Zeng L, Huang L, Chen X, LeRoith D, Liang B, Li X, Wu Y. Loss of Adipose Growth Hormone Receptor in Mice Enhances Local Fatty Acid Trapping and Impairs Brown Adipose Tissue Thermogenesis. iScience 2019; 16:106-121. [PMID: 31154207 PMCID: PMC6545351 DOI: 10.1016/j.isci.2019.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
Growth hormone (GH) binds to its receptor (growth hormone receptor [GHR]) to exert its pleiotropic effects on growth and metabolism. Disrupted GH/GHR actions not only fail growth but also are involved in many metabolic disorders, as shown in murine models with global or tissue-specific Ghr deficiency and clinical observations. Here we constructed an adipose-specific Ghr knockout mouse model Ad-GHRKO and studied the metabolic adaptability of the mice when stressed by high-fat diet (HFD) or cold. We found that disruption of adipose Ghr accelerated dietary obesity but protected the liver from ectopic adiposity through free fatty acid trapping. The heat-producing brown adipose tissue burning and white adipose tissue browning induced by cold were slowed in the absence of adipose Ghr but were recovered after prolonged cold acclimation. We conclude that at the expense of excessive subcutaneous fat accumulation and lower emergent cold tolerance, down-tuning adipose GHR signaling emulates a healthy obesity situation which has metabolic advantages against HFD.
Collapse
Affiliation(s)
- Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Xiaoshuang Wang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Ai Mi
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Yanshuang Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China
| | - Jin Wu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Haoan Wang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Jie Sun
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Youwei Li
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Dan Wang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Rujiao Jiang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Wenting Gao
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China
| | - Li Zeng
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China
| | - Lin Huang
- Department of Pathophysiology, Dalian Medical University, Dalian 116044, China
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities, MN, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn Mount Sinai School of Medicine, New York 10029, USA
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York 10010, USA; Department of Urology, New York University Langone Medical Center, New York 10016, USA; Perlmutter Cancer Institute, New York University Langone Medical Center, New York 10016, USA.
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China; National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian 116044, China; Liaoning Provence Key Lab of Genome Engineered Animal Models, Dalian Medical University, Dalian 116044, China; College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn Mount Sinai School of Medicine, New York 10029, USA; Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York 10010, USA.
| |
Collapse
|
23
|
Witte S, Brockelmann Y, Haeger JD, Schmicke M. Establishing a model of primary bovine hepatocytes with responsive growth hormone receptor expression. J Dairy Sci 2019; 102:7522-7535. [PMID: 31155243 DOI: 10.3168/jds.2018-15873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
The liver becomes resistant to growth hormone before parturition in dairy cows (uncoupling of the somatotropic axis). However, the mechanism of growth hormone insensitivity has not been fully described. The aim of the present study was to improve a previous model of adult bovine hepatocytes in a sandwich culture system to ensure growth hormone receptor (GHR) expression. First, we modified the protocol for hepatocyte retrieval and tested the effect of short (18 min) and long (up to 30 min) warm ischemia on hepatocyte viability. Second, we used medium additives that affect GHR expression in vivo-insulin (INS), dexamethasone (DEX), both (INS+DEX), or no hormone additives (CTRL)-to ensure the functionality of hepatocytes, as measured by lactate dehydrogenase activity and urea concentration in the medium. We also used reverse transcriptase PCR of hepatocytes to evaluate expression of albumin (ALB), hepatocyte nuclear factor 4α (HNF4A), nuclear factor-κ-B-inhibitor α (NFKBIA), cytosolic phosphoenolpyruvate carboxykinase (PCK1), and vimentin (VIM) mRNA. Moreover, we analyzed the expression of GHRtot (GHR), GHR1A, insulin-like growth factor-1 (IGF1), and IGF binding protein-2 (IGFBP2) in response to exposure to media with the different compositions. Modification of the protocol (changes in rinsing and perfusion times, buffer composition, and the volume and standardization of collagenase) led to increased cell counts and cell viability. Short warm ischemia with the modified protocol significantly increased cell count (4.7 × 107 ± 1.9 × 107 vs. 3.5 × 106 ± 1.5 × 106 vital cells/g of liver) and viability (79.1 ± 8.4 vs. 37.1 ± 8.9%). Therefore, we gathered hepatocytes from the liver after short warm ischemia with the modified protocol. For these hepatocytes, lactate dehydrogenase activity was lower in media with INS and with DEX than in media with INS+DEX or CTRL; urea concentrations were highest at d 4 for INS+DEX. As well, HNF4A and ALB were more highly expressed in hepatocytes cultured with INS and INS+DEX than in those cultured with DEX or CTRL, and the substitution of DEX suppressed VIM and NFKBIA expression but increased PCK1 expression. The expression of GHR, GHR1A, and IGF1 was suppressed by dexamethasone (DEX and INS+DEX), whereas INS distinctly increased GHR, GHR1A, and IGF1 mRNA expression. Hepatocytes in a sandwich culture showed influenceable GHR expression; this study provides a model that can be used in studies examining factors that influence the expression and signal transduction of GHR in dairy cows.
Collapse
Affiliation(s)
- S Witte
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - Y Brockelmann
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - J-D Haeger
- Institute for Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany
| | - M Schmicke
- Clinic for Cattle, Endocrinology Laboratory, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Germany.
| |
Collapse
|
24
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
25
|
Monti-Rocha R, Cramer A, Gaio Leite P, Antunes MM, Pereira RVS, Barroso A, Queiroz-Junior CM, David BA, Teixeira MM, Menezes GB, Machado FS. SOCS2 Is Critical for the Balancing of Immune Response and Oxidate Stress Protecting Against Acetaminophen-Induced Acute Liver Injury. Front Immunol 2019; 9:3134. [PMID: 30723477 PMCID: PMC6349694 DOI: 10.3389/fimmu.2018.03134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) is usually safe when administrated in therapeutic doses; however, APAP overdose can lead to severe liver injury. APAP can cause direct hepatocyte damage, and stimulates an inflammatory response leading to oxidative stress. Supressor of Cytokine Signaling (SOCS) 2 modulates cytokine and growth factor signaling, and plays a role in the regulation of hepatic cellular processes. Our study evaluated the role of SOCS2 in APAP liver injury. The administration of a toxic dose (600 mg/kg) of APAP caused significant liver necrosis in WT mice. In SOCS2−/− mice, there was significantly more necrosis, neutrophil recruitment, and expression of the neutrophil-active chemokine CXCL-1. Expression of proinflammatory cytokines, such as TNF-α and IL-6, was elevated, while expression of anti-inflammatory cytokines, IL-10 and TGF-β, was diminished. In vitro, SOCS2−/− hepatocytes expressed more p-NF-kB and produced more ROS than WT hepatocytes when exposed to APAP. SOCS2−/− hepatocytes were more sensitive to cell death in the presence of IL-6 and hydrogen peroxide. The administration of catalase in vitro and in vivo resulted in a pronounced reduction of cells/mice death and necrosis in the SOCS2−/− group. We have demonstrated that SOCS2 has a protective role in the liver by controlling pro-oxidative and inflammatory mechanisms induced by APAP.
Collapse
Affiliation(s)
- Renata Monti-Rocha
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Allysson Cramer
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Gaio Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maísa Mota Antunes
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafaela Vaz Sousa Pereira
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Andréia Barroso
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruna Araújo David
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
26
|
Kaltenecker D, Themanns M, Mueller KM, Spirk K, Suske T, Merkel O, Kenner L, Luís A, Kozlov A, Haybaeck J, Müller M, Han X, Moriggl R. Hepatic growth hormone - JAK2 - STAT5 signalling: Metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression. Cytokine 2018; 124:154569. [PMID: 30389231 DOI: 10.1016/j.cyto.2018.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
The rising prevalence of obesity came along with an increase in associated metabolic disorders in Western countries. Non-alcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of the metabolic syndrome and is linked to primary stages of liver cancer development. Growth hormone (GH) regulates various vital processes such as energy supply and cellular regeneration. In addition, GH regulates various aspects of liver physiology through activating the Janus kinase (JAK) 2- signal transducer and activator of transcription (STAT) 5 pathway. Consequently, disrupted GH - JAK2 - STAT5 signaling in the liver alters hepatic lipid metabolism and is associated with NAFLD development in humans and mouse models. Interestingly, while STAT5 as well as JAK2 deficiency correlates with hepatic lipid accumulation, recent studies suggest that these proteins have unique ambivalent functions in chronic liver disease progression and tumorigenesis. In this review, we focus on the consequences of altered GH - JAK2 - STAT5 signaling for hepatic lipid metabolism and liver cancer development with an emphasis on lessons learned from genetic knockout models.
Collapse
Affiliation(s)
- Doris Kaltenecker
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Madeleine Themanns
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Kristina M Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Katrin Spirk
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olaf Merkel
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria; Institute of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Xiaonan Han
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health; Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
28
|
Li R, Hong P, Lan H, Zheng X. Growth Hormone Did Not Activate Its Intracellular Signaling Molecules in Rats' Liver Hepatocytes During Early Life Period. Int J Endocrinol Metab 2018; 16:e61385. [PMID: 30214460 PMCID: PMC6119208 DOI: 10.5812/ijem.61385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/26/2018] [Accepted: 06/02/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although growth hormone (GH) has essential roles in the growth of animals, it has no growth-promoting effect during infancy period. The molecular mechanism underlying lack of growth-promoting effect of GH during infancy period remains unclear. Important signaling pathways are mediated by GH, including Janus kinase 2 (JAK2), extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducers, and activators of transcription 5, 3, and 1 (STATs 5, 3 and 1). OBJECTIVES This study explored the underlying molecular mechanisms driving to the lack of growth-promoting effect of GH in the early stage of life by in vivo assessment of intracellular signal response (STAT5/ 3/ 1, JAK2 and ERK1/ 2) to GH at different physiological stages. METHODS In this study, five age groups of rats (1-, 4-day-old, and 1-, 2-, 3-week-old) were selected. The rats were anesthetized using pentobarbital (100 mg/kg) and then received the rat GH (2mg/kg) via inferior vena cava injection. The control rats were injected with normal saline during the same period. The intracellular signal response to GH was assessed by Western blot analysis. RESULTS JAK2 and STAT5 were expressed in 1-day and 4-day-old newborn rats and their expression levels were comparable with the levels of the 1-, 2-, and 3-week-old rats; however, JAK2/STAT5 phosphorylation was not observed in 1-day-old and 4-day-old newborn rats after stimulation with GH in the liver. Similar to JAK2 and STAT5, we did not detect STAT3/1 activation during infancy stages although basic STAT3 and STAT1 were also expressed in hepatocytes from newborn rats. In addition we detected ERK1/2 activation in 4-day-old, 1-, 2-, and 3-week-old rats but not in 1-day-old rats. CONCLUSIONS JAK2, STAT5, STAT3, STAT1, and ERK1/2 were not simultaneously activated by GH in newborn rats; this finding may be one of the underlying mechanism of GH insensitivity in newborn rats.
Collapse
Affiliation(s)
- Ruonan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Pan Hong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Corresponding author: Hainan Lan, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail: ; Xin Zheng, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail:
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Corresponding author: Hainan Lan, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail: ; Xin Zheng, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail:
| |
Collapse
|
29
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Chhabra Y, Wong HY, Nikolajsen LF, Steinocher H, Papadopulos A, Tunny KA, Meunier FA, Smith AG, Kragelund BB, Brooks AJ, Waters MJ. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation. Oncogene 2018; 37:489-501. [PMID: 28967904 PMCID: PMC5799715 DOI: 10.1038/onc.2017.352] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
Abstract
Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lung cancer. We show that the GHRP495T variant located in the receptor intracellular domain is able to prolong the GH signal in vitro using stably expressing mouse pro-B-cell and human lung cell lines. This is relevant because GH secretion is pulsatile, and extending the signal duration makes it resemble autocrine GH action. Signal duration for the activated GHR is primarily controlled by suppressor of cytokine signalling 2 (SOCS2), the substrate recognition component of the E3 protein ligase responsible for ubiquitinylation and degradation of the GHR. SOCS2 is induced by a GH pulse and we show that SOCS2 binding to the GHR is impaired by a threonine substitution at Pro 495. This results in decreased internalisation and degradation of the receptor evident in TIRF microscopy and by measurement of mature (surface) receptor expression. Mutational analysis showed that the residue at position 495 impairs SOCS2 binding only when a threonine is present, consistent with interference with the adjacent Thr494. The latter is key for SOCS2 binding, together with nearby Tyr487, which must be phosphorylated for SOCS2 binding. We also undertook nuclear magnetic resonance spectroscopy approach for structural comparison of the SOCS2 binding scaffold Ile455-Ser588, and concluded that this single substitution has altered the structure of the SOCS2 binding site. Importantly, we find that lung BEAS-2B cells expressing GHRP495T display increased expression of transcripts associated with tumour proliferation, epithelial-mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer.
Collapse
Affiliation(s)
- Y Chhabra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - H Y Wong
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - L F Nikolajsen
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - H Steinocher
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - A Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - K A Tunny
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - F A Meunier
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - B B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - A J Brooks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - M J Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Dobie R, MacRae VE, Pass C, Milne EM, Ahmed SF, Farquharson C. Suppressor of cytokine signaling 2 ( Socs2) deletion protects bone health of mice with DSS-induced inflammatory bowel disease. Dis Model Mech 2018; 11:dmm.028456. [PMID: 29343614 PMCID: PMC5818069 DOI: 10.1242/dmm.028456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Individuals with inflammatory bowel disease (IBD) often present with poor bone health. The development of targeted therapies for this bone loss requires a fuller understanding of the underlying cellular mechanisms. Although bone loss in IBD is multifactorial, the altered sensitivity and secretion of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in IBD is understood to be a critical contributing mechanism. The expression of suppressor of cytokine signaling 2 (SOCS2), a well-established negative regulator of GH signaling, is stimulated by proinflammatory cytokines. Therefore, it is likely that SOCS2 expression represents a critical mediator through which proinflammatory cytokines inhibit GH/IGF-1 signaling and decrease bone quality in IBD. Using the dextran sodium sulfate (DSS) model of colitis, we reveal that endogenously elevated GH function in the Socs2−/− mouse protects the skeleton from osteopenia. Micro-computed tomography assessment of DSS-treated wild-type (WT) mice revealed a worsened trabecular architecture compared to control mice. Specifically, DSS-treated WT mice had significantly decreased bone volume, trabecular thickness and trabecular number, and a resulting increase in trabecular separation. In comparison, the trabecular bone of Socs2-deficient mice was partially protected from the adverse effects of DSS. The reduction in a number of parameters, including bone volume, was less, and no changes were observed in trabecular thickness or separation. This protected phenotype was unlikely to be a consequence of improved mucosal health in the DSS-treated Socs2−/− mice but rather a result of unregulated GH signaling directly on bone. These studies indicate that the absence of SOCS2 is protective against bone loss typical of IBD. This study also provides an improved understanding of the relative effects of GH/IGF-1 signaling on bone health in experimental colitis, information that is essential before these drugs are explored as bone protective agents in children and adults with IBD. Summary: Using a mouse model of inflammatory bowel disease, this article provides an improved understanding of the relative effects of GH/IGF-1 on bone health in experimental colitis.
Collapse
Affiliation(s)
- Ross Dobie
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - Vicky E MacRae
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - Chloe Pass
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - Elspeth M Milne
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - S Faisal Ahmed
- School of Medicine, University of Glasgow, Royal Hospital for Children, Govan Road, Glasgow G51 4TF, UK
| | - Colin Farquharson
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| |
Collapse
|
32
|
Pagani S, Bozzola E, Strisciuglio C, Meazza C, Miele E, Malamisura M, De Angelis P, Bozzola M. Growth Hormone Receptor Gene Expression Increase Reflects Nutritional Status Improvement in Patients Affected by Crohn's Disease. Front Pediatr 2018; 6:338. [PMID: 30483486 PMCID: PMC6240681 DOI: 10.3389/fped.2018.00338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/19/2018] [Indexed: 01/07/2023] Open
Abstract
Background: We proposed to verify the role of growth hormone receptor gene expression in growth failure of children with Crohn's disease (CD). Methods: We measured serum levels of growth hormone binding protein (GHBP) and insulin-like growth factor-I (IGF-I), and growth hormone receptor (GHR) gene expression in peripheral blood mononuclear cells of 21 patients with CD (before and after therapy) and in 27 age-sex-matched controls. Results: At diagnosis, significantly lower insulin-like growth factor-I and growth hormone binding protein levels were found in the CD group compared to the controls. Growth hormone receptor mRNA expression was lower in patients at diagnosis compared to the controls, even though the difference did not reach statistical significance, and significantly increased in patients in the following year. Insulin-like growth factor-I levels showed significant improvements 1 year after diagnosis compared to basal levels. On the contrary, growth hormone binding protein values had not significantly changed after 1 year of therapy. Conclusion: Our study raises the hypothesis of another mechanism through which cytokines interact with the growth hormone/insulin-like growth factor-I (GH/IGF-I) axis.
Collapse
Affiliation(s)
- Sara Pagani
- Unit of Pediatrics and Adolescentology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Elena Bozzola
- Pediatrics Department Bambino Gesù Children's Hospital, Rome, Italy
| | - Caterina Strisciuglio
- Department of Women, Children and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Cristina Meazza
- Unit of Pediatrics and Adolescentology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Erasmo Miele
- Pediatric Gastroenterology Division, University of Naples Federico II, Naples, Italy
| | - M Malamisura
- Digestive Surgery and Endoscopy Unit,Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola De Angelis
- Digestive Surgery and Endoscopy Unit,Bambino Gesù Children's Hospital, Rome, Italy
| | - Mauro Bozzola
- Unit of Pediatrics and Adolescentology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Huang D, Cui L, Guo P, Xue X, Wu Q, Hussain HI, Wang X, Yuan Z. Nitric oxide mediates apoptosis and mitochondrial dysfunction and plays a role in growth hormone deficiency by nivalenol in GH3 cells. Sci Rep 2017; 7:17079. [PMID: 29213091 PMCID: PMC5719085 DOI: 10.1038/s41598-017-16908-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Nivalenol (NIV), a type B trichothecenes commonly found in cereal crops, can cause growth impairment in animals. However, limited information about its mechanisms is available. Trichothecenes have been characterized as an inhibitor of protein synthesis and induce apoptosis in cells. Oxidative stress is considered an underlying mechanism. However, whether NIV can induce oxidative stress and apoptosis in rat pituitary cells line GH3 is unclear. The present study showed that NIV significantly reduced the viability of cells and caused oxidative stress in GH3 cells. Further experiments showed that nitric oxide (NO), but not ROS, mediated NIV-induced oxidative stress. Additionally, NIV induced caspase-dependent apoptosis, decrease in mitochondrial membrane potential and mitochondrial ultrastructural changes. However, NIV-induced caspase activation, mitochondrial damage and apoptosis were partially alleviated by Z-VAD-FMK or NO scavenger hemoglobin. Finally, NIV changed the expression of growth-associated genes and pro-inflammatory cytokines. NIV also reduced the GH secretion in GH3 cells, which was reversed by hemoglobin. Taken together, these results suggested that NIV induced apoptosis in caspase-dependent mitochondrial pathway in GH3 cells, which might be an underlying mechanism of NIV-induced GH deficiency. Importantly, NO played a critical role in the induction of oxidative stress, apoptosis and GH deficiency in NIV-treated GH3 cells.
Collapse
Affiliation(s)
- Deyu Huang
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China
| | - Luqing Cui
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Pu Guo
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xijuan Xue
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| | - Hafiz Iftikhar Hussain
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xu Wang
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| | - Zonghui Yuan
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China. .,Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| |
Collapse
|
34
|
Abbas MN, Zhu BJ, Kausar S, Dai LS, Sun YX, Tian JW, Liu CL. Suppressor of cytokine signaling 2-12 regulates antimicrobial peptides and ecdysteroid signaling pathways in Bombyx mori (Dazao). JOURNAL OF INSECT PHYSIOLOGY 2017; 103:47-56. [PMID: 29032156 DOI: 10.1016/j.jinsphys.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Suppressors of cytokine signaling (SOCS) are a potent negative regulator of diverse cytokine-related responses to maintain various physiological processes in animals. Here, we obtained the SOCS2-12 gene sequence of Bombyx mori (Dazao) (BmSOCS2-12) from the National Center for Biotechnology Information (NCBI) to study its expression profile in different tissues, as well as in the immune tissues following larval exposure to pathogens. Further, we investigated the role of BmSOCS2-12 in producing antimicrobial peptides (AMPs) and as a regulator of ecdysteroid signaling transduction. The quantitative real-time PCR analysis revealed unequal transcript levels of BmSOCS2-12 in the different tissues, however the gene's expression was highest in those of fat body and hemocyte. The challenge with pathogens significantly upregulated the transcript level of BmSOCS2-12 in both fat body and hemocyte when compared with the control. By contrast, recombinant BmSOCS2-12 protein injections strongly suppressed the expression of AMPs, while the knockdown of BmSOCS2-12 by double-stranded RNA enhanced their production. Administration of 20-hydroxyecdysone significantly downregulated the BmSOCS2-12 expression in fat body, and the depletion of BmSOCS2-12 enhanced the transcript levels of 20-hydroxyecdysone-responsive genes at 48 h. Altogether, BmSOCS2-12 may have multiple functional roles in the physiology of B. mori (Dazao), since it negatively regulates the expression of AMPs and ecdysteroid signaling transduction.
Collapse
Affiliation(s)
| | - Bao-Jian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Saima Kausar
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Li-Shang Dai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yu-Xuan Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Ji Wu Tian
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Chao-Liang Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
35
|
Kallenberger SM, Unger AL, Legewie S, Lymperopoulos K, Klingmüller U, Eils R, Herten DP. Correlated receptor transport processes buffer single-cell heterogeneity. PLoS Comput Biol 2017; 13:e1005779. [PMID: 28945754 PMCID: PMC5659801 DOI: 10.1371/journal.pcbi.1005779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/27/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022] Open
Abstract
Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system. Cell surface receptors translate extracellular ligand concentrations to intracellular responses. Receptor transport between the plasma membrane and other cellular compartments regulates the number of accessible receptors at the plasma membrane that determines the strength of downstream pathway activation at a given ligand concentration. In cell populations, pathway activation strength and cellular responses vary between cells. Understanding origins of cell-to-cell variability is highly relevant for cancer research, motivated by the problem of fractional killing by chemotherapies and development of resistance in subpopulations of tumor cells. The erythropoietin receptor (EpoR) is a characteristic example of a receptor system that strongly depends on receptor transport processes. It is involved in several cellular processes, such as differentiation or proliferation, regulates the renewal of erythrocytes, and is expressed in several tumors. To investigate the involvement of receptor transport processes in cell-to-cell variability, we quantitatively characterized trafficking of EpoR in individual cells by combining live-cell imaging with mathematical modeling. Thereby, we found that EpoR dynamics was strongly dependent on rapid receptor transport and turnover. Interestingly, although transport processes largely differed between individual cells, receptor concentrations in cellular compartments were robust to variability in trafficking processes due to the correlated kinetics of opposing transport processes.
Collapse
Affiliation(s)
- Stefan M. Kallenberger
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Anne L. Unger
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Konstantinos Lymperopoulos
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| | - Roland Eils
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| | - Dirk-Peter Herten
- Cellnetworks Cluster and Institute of Physical Chemistry, BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail: (DPH); (RE); (UK)
| |
Collapse
|
36
|
Pagani S, Radetti G, Meazza C, Bozzola M. Analysis of growth hormone receptor gene expression in tall and short stature children. J Pediatr Endocrinol Metab 2017; 30:427-430. [PMID: 28301320 DOI: 10.1515/jpem-2016-0355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/30/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The majority of children who present for evaluation of tall stature fall under the diagnosis of constitutional tall stature (CTS). METHODS To investigate mechanisms of tall stature, we evaluated serum IGF-I values and the expression of the GHR gene in the peripheral blood cells of 46 subjects with normal height, 38 with tall stature and 30 healthy children with short stature. RESULTS Our results showed significantly lower IGF-I levels in children with short stature (-0.57±0.18 SDS) compared to control children (0.056±0.19 SDS; p<0.0001) and to subjects with tall stature (0.594±0.17; p=0.00067). Furthermore, we found significantly higher GHR gene expression levels in tall children (321.84±90.04 agGHR/5×105agGAPDH) compared with other groups of subjects (short children: 30.13±7.5 agGHR/5×105agGAPDH, p<0.0001; controls: 86.81ag±19.5 GHR/5×105agGAPDH, p=0.035). The GHR gene expression level in short children was significantly lower compared with control subjects (p=0.0068). CONCLUSIONS Significantly higher GHR gene expression levels in tall subjects suggests a sensitization of the GHR-IGF system leading to overgrowth in CTS.
Collapse
Affiliation(s)
- Sara Pagani
- Department of Internal Medicine and Therapeutics, Unit of Pediatrics and Adolescentology, University of Pavia, Fondazione IRCCS San Matteo, Pavia
| | | | - Cristina Meazza
- Department of Internal Medicine and Therapeutics, Unit of Pediatrics and Adolescentology, University of Pavia, Fondazione IRCCS San Matteo, Pavia
| | - Mauro Bozzola
- Department of Internal Medicine and Therapeutics, Unit of Pediatrics and Adolescentology, University of Pavia, Fondazione IRCCS San Matteo, Pavia
| |
Collapse
|
37
|
Cady G, Landeryou T, Garratt M, Kopchick JJ, Qi N, Garcia-Galiano D, Elias CF, Myers MG, Miller RA, Sandoval DA, Sadagurski M. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons. Mol Metab 2017; 6:393-405. [PMID: 28462074 PMCID: PMC5404104 DOI: 10.1016/j.molmet.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 12/22/2022] Open
Abstract
Objective The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR). The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. GHR and LepRb are co-localized in the ARH, DMH and LHA neurons. GHR signaling does not regulate food intake and body weight in LepRb neurons. Diminished GHR signaling in LepRb neurons impairs hepatic glucose production.
Collapse
Key Words
- ARH, arcuate nucleus of the hypothalamus
- CNS, central nervous system
- DMH, dorsomedial hypothalamic nucleus
- GH, growth hormone
- GHR, growth hormone receptor
- Glucose production
- Growth hormone receptor
- Hypothalamus
- LHA, lateral hypothalamus
- Lepr, leptin receptor
- Leptin receptor
- Liver
- POMC, proopiomelanocortin
- PVH, paraventricular hypothalamic nucleus
- Stat3, signal transducer and activator of transcription 3
- Stat5, signal transducer and activator of transcription 5
Collapse
Affiliation(s)
- Gillian Cady
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - Taylor Landeryou
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - Michael Garratt
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Nathan Qi
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, USA
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marianna Sadagurski
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Ceballos Osorio ML, Cano Schuffeneger F. [Somatotropic axis and molecular markers of mineral metabolism in children undergoing chronic peritoneal dialysis]. ACTA ACUST UNITED AC 2017; 88:119-127. [PMID: 28288230 DOI: 10.1016/j.rchipe.2016.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
Growth failure is one of the most relevant complications in children with chronic kidney disease (CKD). Among others, growth hormone (GH) resistance and bone mineral disorders have been identified as the most important causes of growth retardation. OBJECTIVES 1. To characterize bone mineral metabolism and growth hormone bio-markers in CKD children treated with chronic peritoneal dialysis (PD). 2. To evaluate height change with rhGH treatment. PATIENTS AND METHOD A longitudinal 12-month follow-up in prepuberal PD children. EXCLUSION CRITERIA Tanner stage >1, nephrotic syndrome, genetic disorders, steroids, intestinal absorption disorders, endocrine disturbances, treatment with GH to the entry of the study. Demographic and anthropometric data were registered. FGF23, Klotho, VitD, IGF-1, IGFBP3, and GHBP were measured to evaluate mineral and growth metabolism. RESULTS 15 patients, 7 male, age 6.9 ± 3.0 y were included. Time on PD was 14.33 ± 12.26 months. Height/age Z score at month 1 was -1.69 ± 1.03. FGF23 and Klotho: 131.7 ± 279.4 y 125.9 ± 24.2 pg/ml, respectively. 8 patients were treated with GH during 6-12 months, showing a non-significant increase in height/age Z-score during the treatment period. Bivariate analysis showed a positive correlation between Klotho and delta ZT/E, and between GHBP vs growth velocity index (p < .05). CONCLUSIONS FGF23 values were high and Klotho values were reduced in children with CKD in PD, comparing to healthy children. Somatotropic axis variables were normal or elevated. rhGH tends to improve height and there is a positive correlation of GHBP and growth velocity in these children.
Collapse
|
39
|
Alkharusi A, Mirecki-Garrido M, Ma Z, Zadjali F, Flores-Morales A, Nyström T, Castrillo A, Bjorklund A, Norstedt G, Fernandez-Pérez L. Suppressor of cytokine signaling 2 (SOCS2) deletion protects against multiple low dose streptozotocin-induced type 1 diabetes in adult male mice. Horm Mol Biol Clin Investig 2017; 26:67-76. [PMID: 26562042 DOI: 10.1515/hmbci-2015-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diabetes type 1 is characterized by the failure of beta cells to produce insulin. Suppressor of cytokine signaling (SOCS) proteins are important regulators of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. Previous studies have shown that GH can prevent the development of type I diabetes in mice and that SOCS2 deficiency mimics a state of increased GH sensitivity. METHODOLOGY The elevated sensitivity of SOCS2-/- mice to GH and possibly to PRL was the rationale to analyze the effects of multiple low dose streptozotocin (MLDSTZ)-induced diabetes in SOCS2-/- mice. RESULTS We show that 6-month-old SOCS2-/- mice, but not 2-month-old mice, were less sensitive to MLDSTZ-induced diabetes, compared to controls. MLDSTZ treatment induced glucose intolerance in both SOCS2+/+ and SOCS2-/- mice, as shown by glucose tolerance tests, with SOCS2+/+ mice showing a more marked intolerance, compared to SOCS2-/- mice. Furthermore, insulin tolerance tests showed that the SOCS2-/- mice have an improved hypoglycemic response to exogenous insulin, compared to SOCS2+/+ mice. Moreover, in isolated islets, lipotoxic effects on insulin release could partly be overcome by ligands, which bind to GH or PRL receptors. CONCLUSION Knockdown of SOCS2 makes mice less sensitive to MLDSTZ. These results are consistent with the proposal that elimination of SOCS2 in pancreatic islets creates a state of β-cell hypersensitivity to GH/PRL that mimics events in pregnancy, and which is protective against MLDSTZ-induced type I diabetes in mice. SOCS2-dependent control of β-cell survival may be of relevance to islet regeneration and survival in transplantation.
Collapse
|
40
|
Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation. Mol Biol Cell 2017; 28:834-842. [PMID: 28100634 PMCID: PMC5349790 DOI: 10.1091/mbc.e16-08-0624] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/13/2016] [Accepted: 01/09/2017] [Indexed: 01/05/2023] Open
Abstract
The circadian clock regulates IGF-1 production and signaling through proteins called cryptochromes, which regulate the activity of transcriptional factor STAT5B and control mouse body and organ size. Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)—transcriptional repressors and components of the circadian clock. IGF-1 rhythms are disrupted in Cry-deficient mice, and IGF-1 level is reduced by 80% in these mice, which leads to reduced IGF signaling. In agreement, Cry-deficient mice have reduced body (∼30% reduction) and organ size. Down-regulation of IGF-1 upon Cry deficiency correlates with reduced Igf-1 mRNA expression in the liver and skeletal muscles. Igf-1 transcription is regulated through growth hormone–induced, JAK2 kinase–mediated phosphorylation of transcriptional factor STAT5B. The phosphorylation of STAT5B on the JAK2-dependent Y699 site is significantly reduced in the liver and skeletal muscles of Cry-deficient mice. At the same time, phosphorylation of JAK2 kinase was not reduced upon Cry deficiency, which places CRY activity downstream from JAK2. Thus CRYs link the circadian clock and JAK-STAT signaling through control of STAT5B phosphorylation, which provides the mechanism for circadian rhythms in IGF signaling in vivo.
Collapse
Affiliation(s)
- Amol Chaudhari
- Center for Gene Regulation and Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Richa Gupta
- Center for Gene Regulation and Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Sonal Patel
- Center for Gene Regulation and Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Nikkhil Velingkaar
- Center for Gene Regulation and Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Roman Kondratov
- Center for Gene Regulation and Health and Disease and Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
41
|
Impaired phosphorylation of JAK2-STAT5b signaling in fibroblasts from uremic children. Pediatr Nephrol 2016; 31:965-74. [PMID: 26747624 DOI: 10.1007/s00467-015-3289-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) in children is characterized by severe growth failure. The growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis in uremic animals shows a post-receptor impaired phosphorylation of Janus kinase 2/signal transducer and activator of transcription (JAK-STAT) proteins. The objective of our study was to characterize the intracellular phosphorylation of JAK-STAT signaling in fibroblasts from children with CKD on chronic peritoneal dialysis (PD). METHODS Serum GH-binding protein (GHBP), IGF-1 and IGFBP3 were measured in 15 prepubertal CKD stage-5 children on PD. Cytoplasmic JAK2, cytoplasmic/nuclear STAT5b and nuclear IGFBP3, acid-labile subunit (ALS) and IGF-1 mRNA expression were quantified in fibroblasts obtained from skin biopsies before and after stimulation with 200 ng/ml recombinant human growth hormone (rhGH). Phosphorylation activity at both the cytoplasmic and nuclear level was expressed as the ratio phosphorylated (p)/total (t) abundance of the product (p/t) at 30 and 60 min. Fifteen healthy children were recruited as the control group. Values were expressed in arbitrary units (AU) and normalized for comparison. Significance was defined as p < 0.05. RESULTS Thirty minutes after rhGH stimulus, the cytoplasmic (p/t) JAK2 ratio was significantly lower in patients than in controls [median and interquartile range (IQR): 7.4 (4.56) vs. 20.5 (50.06) AU]. At 60 min after rhGH stimulation, median JAK2 phosphorylation activity was still significantly lower in the patients [7.14 (IQR 3.8) vs. 10.2 (IQR 29.8) AU; p < 0.05]. The increase in the cytoplasmic (p/t) STAT5b/β-actin ratio was lower at both measurement points in the patients compared to the controls, without reaching statistical significance between groups. Median IGFBP3 mRNA abundance was significantly decreased in fibroblasts from uremic patients 24 h after rhGH stimulation compared to the healthy controls [1.27 (IQR 0.83) vs. 2.37 (IQR 0.80) AU]. Median ALS and IGF-1 mRNA expression changed in response to rhGH stimuli at 24 and 48 h. CONCLUSION In this study, children with CKD undergoing PD therapy showed an impaired phosphorylation of JAK2/STAT5b signaling in fibroblasts after GH stimulation, as well as impaired IGFBP3 mRNA abundance. Both impairments may be partially responsible for the observed resistance to the growth-promoting actions of GH in chronic kidney failure.
Collapse
|
42
|
Fernández-Pérez L, de Mirecki-Garrido M, Guerra B, Díaz M, Díaz-Chico JC. Sex steroids and growth hormone interactions. ACTA ACUST UNITED AC 2016; 63:171-80. [PMID: 26775014 DOI: 10.1016/j.endonu.2015.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 01/17/2023]
Abstract
GH and sex hormones are critical regulators of body growth and composition, somatic development, intermediate metabolism, and sexual dimorphism. Deficiencies in GH- or sex hormone-dependent signaling and the influence of sex hormones on GH biology may have a dramatic impact on liver physiology during somatic development and in adulthood. Effects of sex hormones on the liver may be direct, through hepatic receptors, or indirect by modulating endocrine, metabolic, and gender-differentiated functions of GH. Sex hormones can modulate GH actions by acting centrally, regulating pituitary GH secretion, and peripherally, by modulating GH signaling pathways. The endocrine and/or metabolic consequences of long-term exposure to sex hormone-related compounds and their influence on the GH-liver axis are largely unknown. A better understanding of these interactions in physiological and pathological states will contribute to preserve health and to improve clinical management of patients with growth, developmental, and metabolic disorders.
Collapse
Affiliation(s)
- Leandro Fernández-Pérez
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain.
| | - Mercedes de Mirecki-Garrido
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain
| | - Borja Guerra
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain
| | - Mario Díaz
- Department of Animal Biology, University of La Laguna, Laboratory of Membrane Physiology and Biophysics, La Laguna, Spain
| | - Juan Carlos Díaz-Chico
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain
| |
Collapse
|
43
|
Multifactorial processes to slowing the biological clock: Insights from a comparative approach. Exp Gerontol 2015; 71:27-37. [DOI: 10.1016/j.exger.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 08/29/2015] [Indexed: 02/07/2023]
|
44
|
McCormick SM, Heller NM. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins. Front Immunol 2015; 6:549. [PMID: 26579124 PMCID: PMC4621458 DOI: 10.3389/fimmu.2015.00549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte-macrophage phenotype and function are highlighted.
Collapse
Affiliation(s)
- Sarah M McCormick
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| | - Nicola M Heller
- Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA ; Anesthesiology and Critical Care Medicine, The Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
45
|
Dobie R, Ahmed SF, Staines KA, Pass C, Jasim S, MacRae VE, Farquharson C. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1. J Cell Physiol 2015; 230:2796-806. [PMID: 25833299 PMCID: PMC4949688 DOI: 10.1002/jcp.25006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/30/2015] [Indexed: 11/12/2022]
Abstract
Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like‐growth factor‐1 (IGF‐1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling‐2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF‐1 levels. Wild‐type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF‐1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF‐1 levels were unchanged in GH‐challenged postnatal Socs2‐/‐ conditioned medium despite metatarsals showing enhanced linear growth. Growth‐plate Igf1 mRNA levels were not elevated in juvenile Socs2‐/‐ mice. GH did however elevate IGF‐binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2‐/‐ metatarsals. GH did not enhance the growth of Socs2‐/‐ metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF‐2 may be responsible as IGF‐2 promoted metatarsal growth and Igf2 expression was elevated in Socs2‐/‐ (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2‐/‐ mice, promoting growth via a mechanism that is independent of IGF‐1. J. Cell. Physiol. 9999: 2796–2806, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ross Dobie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Syed F Ahmed
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Yorkhill, Glasgow, Scotland, UK
| | - Katherine A Staines
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Chloe Pass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Seema Jasim
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Vicky E MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Colin Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
46
|
Kim JH, Leggatt RA, Chan M, Volkoff H, Devlin RH. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon. Mol Cell Endocrinol 2015; 413:178-88. [PMID: 26123591 DOI: 10.1016/j.mce.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which elevated feeding response is controlled, independently of food availability and growth.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Michelle Chan
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada.
| |
Collapse
|
47
|
Lu RH, Zhou Y, Yuan XC, Liang XF, Fang L, Bai XL, Wang M, Zhao YH. Effects of glucose, insulin and triiodothyroxine on leptin and leptin receptor expression and the effects of leptin on activities of enzymes related to glucose metabolism in grass carp (Ctenopharyngodon idella) hepatocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:981-989. [PMID: 25952973 DOI: 10.1007/s10695-015-0063-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Leptin is an important regulator of appetite and energy expenditure in mammals, but its role in fish metabolism control is poorly understood. Our previous studies demonstrated that leptin has an effect on the regulation of food intake and energy expenditure as well as lipid metabolism (stimulation of lipolysis and inhibition of adipogenesis) in the grass carp Ctenopharyngodon idella. To further investigate the role of leptin in fish, the effects of glucose, insulin and triiodothyroxine (T3) on the expression levels of leptin and leptin receptor (Lepr) and the effects of leptin on the activities of critical glucose metabolism enzymes in grass carp hepatocytes were evaluated in the present study. Our data indicated that leptin gene expression was induced by glucose in a dose-dependent manner, while Lepr gene expression exhibited a biphasic change. A high dose of insulin (100 ng/mL) significantly up-regulated the expression of leptin and Lepr. Leptin expression was markedly up-regulated by a low concentration of T3 but inhibited by a high concentration of T3. T3 up-regulated Lepr expression in a dose-dependent manner. Together, these data suggest that leptin had a close relationship with three factors (glucose, insulin and T3) and might participate in the regulation of glucose metabolism in grass carp. In addition, we also found that leptin affected the activities of key enzymes that are involved in glucose metabolism, which might be mediated by insulin receptor substrate-phosphoinositol 3-kinase signaling.
Collapse
Affiliation(s)
- Rong-Hua Lu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Philip AM, Vijayan MM. Stress-Immune-Growth Interactions: Cortisol Modulates Suppressors of Cytokine Signaling and JAK/STAT Pathway in Rainbow Trout Liver. PLoS One 2015; 10:e0129299. [PMID: 26083490 PMCID: PMC4470514 DOI: 10.1371/journal.pone.0129299] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Chronic stress is a major factor in the poor growth and immune performance of salmonids in aquaculture. However, the molecular mechanisms linking stress effects to growth and immune dysfunction is poorly understood. The suppressors of cytokine signaling (SOCS), a family of genes involved in the inhibition of JAK/STAT pathway, negatively regulates growth hormone and cytokine signaling, but their role in fish is unclear. Here we tested the hypothesis that cortisol modulation of SOCS gene expression is a key molecular mechanism leading to growth and immune suppression in response to stress in fish. Exposure of rainbow trout (Oncorhynchus mykiss) liver slices to cortisol, mimicking stress level, upregulated SOCS-1 and SOCS-2 mRNA abundance and this response was abolished by the glucocorticoid receptor antagonist mifepristone. Bioinformatics analysis confirmed the presence of putative glucocorticoid response elements in rainbow trout SOCS-1 and SOCS-2 promoters. Prior cortisol treatment suppressed acute growth hormone (GH)-stimulated IGF-1 mRNA abundance in trout liver and this involved a reduction in STAT5 phosphorylation and lower total JAK2 protein expression. Prior cortisol treatment also suppressed lipopolysaccharide (LPS)-induced IL-6 but not IL-8 transcript levels; the former but not the latter cytokine expression is via JAK/STAT phosphorylation. LPS treatment reduced GH signaling, but this was associated with the downregulation of GH receptors and not due to the upregulation of SOCS transcript levels by this endotoxin. Collectively, our results suggest that upregulation of SOCS-1 and SOCS-2 transcript levels by cortisol, and the associated reduction in JAK/STAT signaling pathway, may be a novel mechanism leading to growth reduction and immune suppression during stress in trout.
Collapse
Affiliation(s)
- Anju M. Philip
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
49
|
Raman S, Grimberg A, Waguespack SG, Miller BS, Sklar CA, Meacham LR, Patterson BC. Risk of Neoplasia in Pediatric Patients Receiving Growth Hormone Therapy--A Report From the Pediatric Endocrine Society Drug and Therapeutics Committee. J Clin Endocrinol Metab 2015; 100:2192-203. [PMID: 25839904 PMCID: PMC5393518 DOI: 10.1210/jc.2015-1002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT GH and IGF-1 have been shown to affect tumor growth in vitro and in some animal models. This report summarizes the available evidence on whether GH therapy in childhood is associated with an increased risk of neoplasia during treatment or after treatment is completed. EVIDENCE ACQUISITION A PubMed search conducted through February 2014 retrieved original articles written in English addressing GH therapy and neoplasia risk. Subsequent searches were done to include additional relevant publications. EVIDENCE SYNTHESIS In children without prior cancer or known risk factors for developing cancer, the clinical evidence does not affirm an association between GH therapy during childhood and neoplasia. GH therapy has not been reported to increase the risk for neoplasia in this population, although most of these data are derived from postmarketing surveillance studies lacking rigorous controls. In patients who are at higher risk for developing cancer, current evidence is insufficient to conclude whether or not GH further increases cancer risk. GH treatment of pediatric cancer survivors does not appear to increase the risk of recurrence but may increase their risk for subsequent primary neoplasms. CONCLUSIONS In children without known risk factors for malignancy, GH therapy can be safely administered without concerns about an increased risk for neoplasia. GH use in children with medical diagnoses predisposing them to the development of malignancies should be critically analyzed on an individual basis, and if chosen, appropriate surveillance for malignancies should be undertaken. GH can be used to treat GH-deficient childhood cancer survivors who are in remission with the understanding that GH therapy may increase their risk for second neoplasms.
Collapse
Affiliation(s)
- Sripriya Raman
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Adda Grimberg
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Steven G Waguespack
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Bradley S Miller
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Charles A Sklar
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Lillian R Meacham
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| | - Briana C Patterson
- Division of Pediatric Endocrinology (S.R.), Children's Mercy Hospital, University of Missouri, Kansas City, Missouri 64111; University of Kansas Medical Center (S.R.), Kansas City, Kansas 66160; Department of Pediatrics (A.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Division of Endocrinology and Diabetes (A.G.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Endocrine Neoplasia and Hormonal Disorders (S.G.W.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Division of Endocrinology (B.S.M.), Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota 55455; Memorial Sloan Kettering Cancer Center (C.A.S.), New York, New York 10065; and Emory University/Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta (L.R.M., B.C.P.), Atlanta, Georgia 30322
| |
Collapse
|
50
|
Banerjee S, Das RK, Giffear KA, Shapiro BH. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate. Toxicol Appl Pharmacol 2015; 284:79-91. [PMID: 25697375 PMCID: PMC4374021 DOI: 10.1016/j.taap.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 01/29/2023]
Abstract
Perinatal exposure of rats and mice to the typically reported 4mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform--all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2mg/g bd wt on alternate days for the first 9days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70-80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible.
Collapse
Affiliation(s)
- Sarmistha Banerjee
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Rajat Kumar Das
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Kelly A Giffear
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA
| | - Bernard H Shapiro
- Laboratories of Biochemistry, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6009, USA.
| |
Collapse
|