1
|
Wang Z, Zhao M, Su Y, Zhao Q, Ma Z, Yue Q, Zhu Z, Zhang L, Hou Z, Li H. The impact of NUMB on chicken abdominal adipogenesis: A comprehensive analysis. Int J Biol Macromol 2024; 278:134904. [PMID: 39168214 DOI: 10.1016/j.ijbiomac.2024.134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Excessive abdominal fat deposition negatively impacts poultry meat production and carcass yield. Identification of novel adipogenesis regulators may help improve production performance declines caused by excessive fat deposition. NUMB Endocytic Adaptor Protein (NUMB) typically functions as a cell fate determinant and plays a significant role in cell development and various diseases. Here, we found that NUMB is abundantly expressed in chicken abdominal fat depots and is induced in cultured adipocytes following adipogenic treatment. The gain- and loss-of-function experiments demonstrated that NUMB promotes the proliferation and G1/S transition of chicken adipocytes, enhances adipocyte differentiation, and increases the expression of PPARγ1 transcript. Through mRNA-seq analysis and molecular experiments, we further confirmed that NUMB inhibits the transcriptional activation of the NOTCH1 pathway and the expression of the downstream transcription factor HES1 by inducing NOTCH1 degradation. Nevertheless, the inhibition of the NOTCH1/HES1 axis alone cannot fully explain NUMB's role in adipogenesis, as NUMB also regulates the expression of multiple adipogenic transcription factors such as E2F1, EGR2, and NR4A3. Our data suggest that NUMB is a potent activator of adipogenesis and enhances our understanding of its regulatory mechanisms in chicken abdominal fat deposition.
Collapse
Affiliation(s)
- Zheng Wang
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Mingyu Zhao
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Yue Su
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Qiangsen Zhao
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenhua Ma
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Qiaoxian Yue
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Zhiwei Zhu
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Lihuan Zhang
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huifeng Li
- College of Life Science, Shanxi Agricultural University, Shanxi 030801, China.
| |
Collapse
|
2
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
3
|
Rajan A, Ostgaard CM, Lee CY. Regulation of Neural Stem Cell Competency and Commitment during Indirect Neurogenesis. Int J Mol Sci 2021; 22:12871. [PMID: 34884676 PMCID: PMC8657492 DOI: 10.3390/ijms222312871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Indirect neurogenesis, during which neural stem cells generate neurons through intermediate progenitors, drives the evolution of lissencephalic brains to gyrencephalic brains. The mechanisms that specify intermediate progenitor identity and that regulate stem cell competency to generate intermediate progenitors remain poorly understood despite their roles in indirect neurogenesis. Well-characterized lineage hierarchy and available powerful genetic tools for manipulating gene functions make fruit fly neural stem cell (neuroblast) lineages an excellent in vivo paradigm for investigating the mechanisms that regulate neurogenesis. Type II neuroblasts in fly larval brains repeatedly undergo asymmetric divisions to generate intermediate neural progenitors (INPs) that undergo limited proliferation to increase the number of neurons generated per stem cell division. Here, we review key regulatory genes and the mechanisms by which they promote the specification and generation of INPs, safeguarding the indirect generation of neurons during fly larval brain neurogenesis. Homologs of these regulators of INPs have been shown to play important roles in regulating brain development in vertebrates. Insight into the precise regulation of intermediate progenitors will likely improve our understanding of the control of indirect neurogenesis during brain development and brain evolution.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
| | - Cyrina M. Ostgaard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Ko FC, Kobelski MM, Zhang W, Grenga GM, Martins JS, Demay MB. Phosphate restriction impairs mTORC1 signaling leading to increased bone marrow adipose tissue and decreased bone in growing mice. J Bone Miner Res 2021; 36:1510-1520. [PMID: 33900666 DOI: 10.1002/jbmr.4312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Frank C Ko
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Wanlin Zhang
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina M Grenga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
6
|
Huang D, Qiu J, Kuang S, Deng M. In Vitro Evaluation of Clinical Candidates of γ-Secretase Inhibitors: Effects on Notch Inhibition and Promoting Beige Adipogenesis and Mitochondrial Biogenesis. Pharm Res 2020; 37:185. [PMID: 32888109 PMCID: PMC8011272 DOI: 10.1007/s11095-020-02916-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Inhibition of Notch signaling has been recently demonstrated to promote beige adipocyte biogenesis. However, most γ-secretase inhibitors (GSIs) used to achieve pharmacological inhibition of Notch signaling are at the basic research or preclinical stage, limiting the translation of fundamental findings into clinical practice. This present study aimed to evaluate the potential of several clinical candidates of GSIs as browning agents for the treatment of obesity. METHODS Seven GSIs that are clinical candidates for the treatment of Alzheimer's disease or cancer were selected and their impacts on Notch inhibition as well as promoting beige biogenesis were compared using in vitro culture of 3T3-L1 preadipocytes. RESULTS Four compounds (i.e.RO4929097, PF-03084014, LY3039478, and BMS-906024) that efficiently inhibited the expression of Notch target genes in 3T3-L1 preadipocytes were identified. Moreover, these compounds were optimized for dose-dependent effects at three gradient concentrations (0.5, 1, and 10 μM) to promote beige adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes without causing severe cytotoxicity. CONCLUSIONS Our findings not only highlight the potential of cross-therapeutic application of these GSIs for obesity treatment via inhibition of γ-secretase-mediated processing of Notch signaling, but also provide important experimental evidence to support further design and development of clinically translatable Notch-inhibiting drug delivery systems.
Collapse
Affiliation(s)
- Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
The Role of Pref-1 during Adipogenic Differentiation: An Overview of Suggested Mechanisms. Int J Mol Sci 2020; 21:ijms21114104. [PMID: 32526833 PMCID: PMC7312882 DOI: 10.3390/ijms21114104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity contributes significantly to the global health burden. A better understanding of adipogenesis, the process of fat formation, may lead to the discovery of novel treatment strategies. However, it is of concern that the regulation of adipocyte differentiation has predominantly been studied using the murine 3T3-L1 preadipocyte cell line and murine experimental animal models. Translation of these findings to the human setting requires confirmation using experimental models of human origin. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is an attractive model to study adipogenesis in vitro. Differences in the ability of MSCs isolated from different sources to undergo adipogenic differentiation, may be useful in investigating elements responsible for regulating adipogenic differentiation potential. Genes involved may be divided into three broad categories: early, intermediate and late-stage regulators. Preadipocyte factor-1 (Pref-1) is an early negative regulator of adipogenic differentiation. In this review, we briefly discuss the adipogenic differentiation potential of MSCs derived from two different sources, namely adipose-derived stromal/stem cells (ASCs) and Wharton’s Jelly derived stromal/stem cells (WJSCs). We then discuss the function and suggested mechanisms of action of Pref-1 in regulating adipogenesis, as well as current findings regarding Pref-1’s role in human adipogenesis.
Collapse
|
8
|
Wang Z, Yin ZT, Zhang F, Li XQ, Chen SR, Yang N, Porter TE, Hou Z. Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks. BMC Genomics 2019; 20:688. [PMID: 31477016 PMCID: PMC6720933 DOI: 10.1186/s12864-019-6055-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pekin duck is an important animal model for its ability for fat synthesis and deposition. However, transcriptional dynamic regulation of adipose differentiation driven by complex signal cascades remains largely unexplored in this model. This study aimed to explore adipogenic transcriptional dynamics before (proliferation) and after (differentiation) initial preadipocyte differentiation in ducks. RESULTS Exogenous oleic acid alone successfully induced duck subcutaneous preadipocyte differentiation. We explored 36 mRNA-seq libraries in order to study transcriptome dynamics during proliferation and differentiation processes at 6 time points. Using robust statistical analysis, we identified 845, 652, 359, 2401 and 1933 genes differentially expressed between -48 h and 0 h, 0 h and 12 h, 12 h and 24 h, 24 h and 48 h, 48 h and 72 h, respectively (FDR < 0.05, FC > 1.5). At the proliferation stage, proliferation related pathways and basic cellular and metabolic processes were inhibited, while regulatory factors that initiate differentiation enter the ready-to-activate state, which provides a precondition for initiating adipose differentiation. According to weighted gene co-expression network analysis, pathways positively related to adipogenic differentiation are significantly activated at the differentiation stage, while WNT, FOXO and other pathways that inhibit preadipocyte differentiation are negatively regulated. Moreover, we identified and classified more than 100 transcription factors that showed significant changes during differentiation, and found novel transcription factors that were not reported to be related to preadipoctye differentiation. Finally, we manually assembled a proposed regulation network model of subcutaneous preadipocyte differentiation base on the expression data, and suggested that E2F1 may serve as an important link between the processes of duck subcutaneous preadipocyte proliferation and differentiation. CONCLUSIONS For the first time we comprehensively analyzed the transcriptome dynamics of duck subcutaneous preadipocyte proliferation and differentiation. The current study provides a solid basis for understanding the synthesis and deposition of subcutaneous fat in ducks. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of duck adipogenesis.
Collapse
Affiliation(s)
- Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Si-Rui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Komori H, Golden KL, Kobayashi T, Kageyama R, Lee CY. Multilayered gene control drives timely exit from the stem cell state in uncommitted progenitors during Drosophila asymmetric neural stem cell division. Genes Dev 2018; 32:1550-1561. [PMID: 30463902 PMCID: PMC6295162 DOI: 10.1101/gad.320333.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
Self-renewal genes maintain stem cells in an undifferentiated state by preventing the commitment to differentiate. Robust inactivation of self-renewal gene activity following asymmetric stem cell division allows uncommitted stem cell progeny to exit from an undifferentiated state and initiate the commitment to differentiate. Nonetheless, how self-renewal gene activity at mRNA and protein levels becomes synchronously terminated in uncommitted stem cell progeny is unclear. We demonstrate that a multilayered gene regulation system terminates self-renewal gene activity at all levels in uncommitted stem cell progeny in the fly neural stem cell lineage. We found that the RNA-binding protein Brain tumor (Brat) targets the transcripts of a self-renewal gene, deadpan (dpn), for decay by recruiting the deadenylation machinery to the 3' untranslated region (UTR). Furthermore, we identified a nuclear protein, Insensible, that complements Cullin-mediated proteolysis to robustly inactivate Dpn activity by limiting the level of active Dpn through protein sequestration. The synergy between post-transcriptional and transcriptional control of self-renewal genes drives timely exit from the stem cell state in uncommitted progenitors. Our proposed multilayered gene regulation system could be broadly applicable to the control of exit from stemness in all stem cell lineages.
Collapse
Affiliation(s)
- Hideyuki Komori
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Krista L Golden
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Taeko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
10
|
Wang Y, Tan J, Du H, Liu X, Wang S, Wu S, Yuan Z, Zhu X. Notch1 Inhibits Rosiglitazone-Induced Adipogenic Differentiation in Primary Thymic Stromal Cells. Front Pharmacol 2018; 9:1284. [PMID: 30483127 PMCID: PMC6240707 DOI: 10.3389/fphar.2018.01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
Adipocyte deposition is believed to be a primary characteristic of age-related thymic involution. Herein, we cultured primary thymic stromal cells (TSCs), used rosiglitazone, a potent peroxisome proliferator-activated receptor γ (PPARγ) agonist, to induce adipogenic differentiation, and investigated the differentially expressed genes during adipogenic differentiation by using RNA-sequencing analysis. Furthermore, the effects of Notch1 on rosiglitazone-induced adipogenic differentiation of TSCs as well as the underlying mechanisms were also investigated. As a result, we identified a total of 1737 differentially expressed genes, among which 965 genes were up-regulated and 772 genes were down-regulated in rosiglitazone-treated cells compared with control cells. Gene ontology (GO) enrichment analysis showed that the GO terms were enriched in metabolic process, intracellular, and protein binding. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that a number of pathways, including ubiquitin mediated proteolysis, PPAR signaling pathway, and mammalian target of rapamycin (mTOR) signaling pathway were predominantly over-represented. Meanwhile, overexpression of Notch1 suppressed and inhibition of Notch1 promoted rosiglitazone-induced adipogenic differentiation in TSCs, and the pro-adipogenic effects of the Notch inhibitor DAPT were associated with the activation of autophagy. Taken together, our results suggest that Notch1 is a key regulator in thymic adipogenesis and may serve as a potential target to hinder thymic adiposity in age-related thymic involution.
Collapse
Affiliation(s)
- Yajun Wang
- Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianxin Tan
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongmei Du
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Liu
- Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siliang Wang
- Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Simeng Wu
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Yuan
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xike Zhu
- Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Shan T, Liu J, Wu W, Xu Z, Wang Y. Roles of Notch Signaling in Adipocyte Progenitor Cells and Mature Adipocytes. J Cell Physiol 2017; 232:1258-1261. [PMID: 27869309 DOI: 10.1002/jcp.25697] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/05/2023]
Abstract
Adipose tissues, composed with mature adipocytes and preadipocytic stromal/stem cells, play crucial roles in whole body energy metabolism and regenerative medicine. Mature adipocytes are derived and differentiated from mesenchymal stem cells (MSCs) or preadipocytes. This differentiation process, also called adipogenesis, is regulated by several signaling pathways and transcription factors. Notch1 signaling is a highly conserved pathway that is indispensable for stem cell hemostasis and tissue development. In adipocyte progenitor cells, Notch1 signaling regulates the adipogenesis process including proliferation and differentiation of the adipocyte progenitor cells in vitro. Notably, the roles of Notch1 signaling in beige adipocytes formation, adipose development, and function, and the whole body energy metabolism have been recently reported. Here, we mainly review and discuss the roles of Notch1 signaling in adipogenesis in vitro as well as in beige adipocytes formation, adipocytes dedifferentiation, and function in vivo. J. Cell. Physiol. 232: 1258-1261, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tizhong Shan
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiaqi Liu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Weiche Wu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ziye Xu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yizhen Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
12
|
Stefanon B, Colitti M. Original Research: Hydroxytyrosol, an ingredient of olive oil, reduces triglyceride accumulation and promotes lipolysis in human primary visceral adipocytes during differentiation. Exp Biol Med (Maywood) 2016; 241:1796-802. [PMID: 27287014 DOI: 10.1177/1535370216654226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022] Open
Abstract
Hydroxytyrosol has various pharmacological properties, including anti-oxidative stress and anti-inflammatory activities, preventing hyperglycemia, insulin resistance, and the metabolic syndrome. The present study is focused on the anti-adipogenic and lipolytic activity of hydroxytyrosol on primary human visceral adipocytes. Pre-adipocytes were analyzed after 10 (P10) and 20 (P20) days of treatment during differentiation and after 7 (A7) days of treatment when they reached mature shape. The treatment with hydroxytyrosol extract significantly (P < 0.001) increased apoptosis in P10 and P20 cells in comparison to control and A7 cells; significantly (P < 0.001) reduced triglyceride accumulation in P20 cells compared to P10 and control cells; and significantly (P < 0.001) increased lipolysis in P20 cells in comparison to control cells and A7 mature adipocytes. Hydroxytyrosol-treated P20 cells significantly (P < 0.05) increased expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT3A, SFRP5, HES1, and SIRT1. In contrast, genes involved in promoting adipogenesis such as LEP, FGF1, CCND1, and SREBF1 were significantly down-regulated by hydroxytyrosol treatment. These data suggest that hydroxytyrosol promotes lipolysis and apoptotic activity in primary human visceral pre-adipocytes during differentiation and does not affect already mature adipocytes.
Collapse
Affiliation(s)
- Bruno Stefanon
- Department of Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine 33100, Italy
| | - Monica Colitti
- Department of Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine 33100, Italy
| |
Collapse
|
13
|
Abstract
Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
14
|
Scroyen I, Bauters D, Vranckx C, Lijnen HR. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1. PLoS One 2015; 10:e0145608. [PMID: 26719988 PMCID: PMC4697848 DOI: 10.1371/journal.pone.0145608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic. METHODS AND RESULTS Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue. CONCLUSIONS These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.
Collapse
Affiliation(s)
- Ilse Scroyen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - Dries Bauters
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - Christine Vranckx
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
| | - H. Roger Lijnen
- KU Leuven, University of Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, B-3000, Leuven, Belgium
- * E-mail:
| |
Collapse
|
15
|
Prenatal notch1 receptor blockade by protein delta homolog 1 (DLK1) modulates adipocyte size in vivo. Int J Obes (Lond) 2015; 40:698-705. [PMID: 26499442 DOI: 10.1038/ijo.2015.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/12/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION/OBJECTIVES The protein delta homolog 1 (DLK1) has been reported to have an important role as inhibitor of adipogenesis. Understanding its mode of action can be a promising approach to cope with the formation of obesity. However, data on DLK1 signaling are not consistent, and especially its role as negative regulator of Notch receptors is discussed controversially. METHODS DLK1 effects have been investigated in differentiated 3T3-L1 cells by Adipokine Profiler Array, enzyme-linked immunosorbent assay and quantitative real-time PCR (qRT-PCR). In vivo effects of DLK1 on adipogenesis have been studied by the DLK1 treatment of pregnant C57BL/6NTac mice and the phenotypical characterization of the offspring fed on chow or high-fat diet (HFD). Furthermore, gene expression of key adipogenesis genes in adipose tissue (AT) samples was observed by qRT-PCR. RESULTS In 3T3-L1 cells, DLK1 was found to be an inhibitor of Notch1 signaling. Gene expression of Notch1 and Hes1 was lowered by 53% and 65%, respectively, and the expression of protein target PAI-1 was decreased by 51%. The offspring of DLK1-treated pregnant mice were fed chow or HFD starting from week 4. At week 18, a larger proportion of visceral AT was determined on HFD after DLK1 treatment (P=0.011), whereas adipocyte size was reduced (P=0.007 for maximal size). This was affiliated to an upregulation of adipocyte differentiation. The underlying mechanism was found in an increased expression of the Notch1 receptor gene and protein in AT of the offsprings independently of the diet. However, feeding a chow diet resulted in a decreased expression of Notch1 target genes Hes1 and RBP-Jκ, whereas under HFD these genes were upregulated. CONCLUSIONS Treatment of mice with recombinant human DLK1 during pregnancy has significant effects on AT of the offspring. This can be associated with counter-regulatory changes in the Notch1 signaling cascade.
Collapse
|
16
|
Martins V, Gonzalez De Los Santos F, Wu Z, Capelozzi V, Phan SH, Liu T. FIZZ1-induced myofibroblast transdifferentiation from adipocytes and its potential role in dermal fibrosis and lipoatrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2768-76. [PMID: 26261086 DOI: 10.1016/j.ajpath.2015.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/28/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Subcutaneous lipoatrophy characteristically accompanies dermal fibrosis with de novo emergence of myofibroblasts such as in systemic sclerosis or scleroderma. Recently dermal adipocytes were shown to have the capacity to differentiate to myofibroblasts in an animal model. Transforming growth factor β can induce this phenomenon in vitro; however its in vivo significance is unclear. Because found in inflammatory zone 1 (FIZZ1) is an inducer of myofibroblast differentiation but an inhibitor of adipocyte differentiation, we investigated its potential role in adipocyte transdifferentiation to myofibroblast in dermal fibrosis. FIZZ1 caused significant and rapid suppression of the expression of fatty acid binding protein 4 and peroxisome proliferator-activated receptor-γ in adipocytes, consistent with dedifferentiation with loss of lipid and Oil Red O staining. The suppression was accompanied subsequently with stimulation of α-smooth muscle actin and type I collagen expression, indicative of myofibroblast differentiation. In vivo FIZZ1 expression was significantly elevated in the murine bleomycin-induced dermal fibrosis model, which was associated with significant reduction in adipocyte marker gene expression and subcutaneous lipoatrophy. Finally, FIZZ1 knockout mice exhibited significantly reduced bleomycin-induced dermal fibrosis with greater preservation of the subcutaneous fat than wild-type mice. These findings suggested that the FIZZ1 induction of adipocyte transdifferentiation to myofibroblast might be a key pathogenic mechanism for the accumulation of myofibroblasts in dermal fibrosis.
Collapse
Affiliation(s)
- Vanessa Martins
- Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Zhe Wu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Vera Capelozzi
- Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sem H Phan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| | - Tianju Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| |
Collapse
|
17
|
Cakouros D, Isenmann S, Hemming SE, Menicanin D, Camp E, Zannetinno ACW, Gronthos S. Novel Basic Helix–Loop–Helix Transcription Factor Hes4 Antagonizes the Function of Twist-1 to Regulate Lineage Commitment of Bone Marrow Stromal/Stem Cells. Stem Cells Dev 2015; 24:1297-308. [DOI: 10.1089/scd.2014.0471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Isenmann
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah Elizabeth Hemming
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Danijela Menicanin
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Esther Camp
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew Christopher William Zannetinno
- Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice. Mol Metab 2015; 4:543-50. [PMID: 26137442 PMCID: PMC4481462 DOI: 10.1016/j.molmet.2015.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023] Open
Abstract
Objective The Notch family of intermembrane receptors is highly conserved across species and is involved in cell fate and lineage control. Previous in vitro studies have shown that Notch may inhibit adipogenesis. Here we describe the role of Notch in adipose tissue by employing an in vivo murine model which overexpresses Notch in adipose tissue. Methods Albino C57BL/6J RosaNICD/NICD::Adipoq-Cre (Ad-NICD) male mice were generated to overexpress the Notch intracellular domain (NICD) specifically in adipocytes. Male RosaNICD/NICD mice were used as controls. Mice were evaluated metabolically at the ages of 1 and 3 months by assessing body weights, serum metabolites, body composition (EchoMRI), glucose tolerance and insulin tolerance. Histological sections of adipose tissue depots as well as of liver were examined. The mRNA expression profile of genes involved in adipogenesis was analyzed by quantitative real-time PCR. Results The Ad-NICD mice were heavier with significantly lower body fat mass compared to the controls. Small amounts of white adipose tissue could be seen in the 1-month old Ad-NICD mice, but was almost absent in the 3-months old mice. The Ad-NICD mice also had higher serum levels of glucose, insulin, triglyceride and non-esterified fatty acids. These differences were more prominent in the older (3-months) than in the younger (1-month) mice. The Ad-NICD mice also showed severe insulin resistance along with a steatotic liver. Gene expression analysis in the adipose tissue depots showed a significant repression of lipogenic (Fasn, Acacb) and adipogenic pathways (C/ebpα, C/ebpβ, Pparγ2, Srebf1). Conclusions Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for therapeutic interventions in metabolic disease. Adipocyte-specific NICD (Ad-NICD) overexpression results in lipodystrophy in mice. Ad-NICD mice have increased body weight but diminished white adipose tissue. Transcriptional downregulation of adipogenesis and lipogenesis in adipose tissue of Ad-NICD mice.
Collapse
|
19
|
HES1 as an Independent Prognostic Marker in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2014; 45:466-71. [DOI: 10.1007/s12029-014-9648-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Revollo JR, Oakley RH, Lu NZ, Kadmiel M, Gandhavadi M, Cidlowski JA. HES1 is a master regulator of glucocorticoid receptor-dependent gene expression. Sci Signal 2013; 6:ra103. [PMID: 24300895 DOI: 10.1126/scisignal.2004389] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hairy and enhancer of split-1 (HES1) is a basic helix-loop-helix transcription factor that is a key regulator of development and organogenesis. However, little is known about the role of HES1 after birth. Glucocorticoids, primary stress hormones that are essential for life, regulate numerous homeostatic processes that permit vertebrates to cope with physiological challenges. The molecular actions of glucocorticoids are mediated by glucocorticoid receptor-dependent regulation of nearly 25% of the genome. Here, we established a genome-wide molecular link between HES1 and glucocorticoid receptors that controls the ability of cells and animals to respond to stress. Glucocorticoid signaling rapidly and robustly silenced HES1 expression. This glucocorticoid-dependent repression of HES1 was necessary for the glucocorticoid receptor to regulate many of its target genes. Mice with conditional knockout of HES1 in the liver exhibited an expanded glucocorticoid receptor signaling profile and aberrant metabolic phenotype. Our results indicate that HES1 acts as a master repressor, the silencing of which is required for proper glucocorticoid signaling.
Collapse
Affiliation(s)
- Javier R Revollo
- 1Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
21
|
De Obaldia ME, Bell JJ, Wang X, Harly C, Yashiro-Ohtani Y, DeLong JH, Zlotoff DA, Sultana DA, Pear WS, Bhandoola A. T cell development requires constraint of the myeloid regulator C/EBP-α by the Notch target and transcriptional repressor Hes1. Nat Immunol 2013; 14:1277-84. [PMID: 24185616 DOI: 10.1038/ni.2760] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Notch signaling induces gene expression of the T cell lineage and discourages alternative fate outcomes. Hematopoietic deficiency in the Notch target Hes1 results in severe T cell lineage defects; however, the underlying mechanism is unknown. We found here that Hes1 constrained myeloid gene-expression programs in T cell progenitor cells, as deletion of the myeloid regulator C/EBP-α restored the development of T cells from Hes1-deficient progenitor cells. Repression of Cebpa by Hes1 required its DNA-binding and Groucho-recruitment domains. Hes1-deficient multipotent progenitor cells showed a developmental bias toward myeloid cells and dendritic cells after Notch signaling, whereas Hes1-deficient lymphoid progenitor cells required additional cytokine signaling for diversion into the myeloid lineage. Our findings establish the importance of constraining developmental programs of the myeloid lineage early in T cell development.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lei T, Bi Y, Gao MJ, Gao SM, Zhou LL, Zheng HL, Chen XD. HES1 inhibits adipogenesis of porcine mesenchymal stem cells via transcriptional repression of FAD24. Domest Anim Endocrinol 2013; 45:28-32. [PMID: 23611667 DOI: 10.1016/j.domaniend.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 11/15/2022]
Abstract
Adipogenesis, the development from preadipocytes or mesenchymal stem cells (MSCs) to mature adipocytes, is regulated by a network of signaling pathways and transcription factors. The involvement of Notch signaling and its effector HES1 in adipogenesis has been investigated in several studies with conflicting results. The underlying mechanisms remain unclear because of the lack of information about HES1 target genes during adipocyte differentiation. As a novel gene transiently up-regulated in early adipogenesis, FAD24 functions as a positive regulator of adipocyte differentiation in both preadipocytes and MSCs. In the present study, we report that the expression level of FAD24 is inversely associated with that of HES1 in porcine MSCs after adipogenic induction. Enforced overexpression of HES1 in MSCs during the early stage of adipogenesis significantly repressed the transcription of FAD24 (P < 0.01) and the other pro-adipogenic genes (P < 0.05), resulting in reduced intracellular lipid accumulation. Sequence analysis showed that porcine FAD24 harbors an evolutionarily conserved HES1 binding site in its proximal promoter region. Functional HES1, but not its dominant-negative mutant, markedly reduced the promoter activity of FAD24 (P < 0.01). Site-directed mutation and chromatin immunoprecipitation further confirmed that HES1 inhibits FAD24 transcription by direct binding to the promoter. Taken together, we identified FAD24 as a novel downstream target of HES1 during adipogenesis. Our data suggest that HES1-mediated repression of FAD24 transcription at the early stage of adipocyte differentiation may contribute to the impaired adipogenesis induced by the Notch-HES1 signaling pathway.
Collapse
Affiliation(s)
- T Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lai PY, Tsai CB, Tseng MJ. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2012; 430:1132-9. [PMID: 23237809 DOI: 10.1016/j.bbrc.2012.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 11/25/2022]
Abstract
Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.
Collapse
Affiliation(s)
- Peng-Yeh Lai
- Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC
| | | | | |
Collapse
|
24
|
Ba K, Yang X, Wu L, Wei X, Fu N, Fu Y, Cai X, Yao Y, Ge Y, Lin Y. Jagged-1-mediated activation of notch signalling induces adipogenesis of adipose-derived stem cells. Cell Prolif 2012; 45:538-44. [PMID: 23046039 DOI: 10.1111/j.1365-2184.2012.00850.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/19/2012] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Notch signalling plays an important role in many cell activities, involving proliferation, migration, differentiation and cell death. The aim of this study was to investigate effects of such signalling on adipogenesis of mouse adipose-derived stem cells (mASCs). MATERIALS AND METHODS Jagged1 (50 and 100 ng/ml) was added to mASCs to activate Notch signalling, 2 days before adipogenic induction. At 5 and 7 days after induction, oil red-O staining was performed to evaluate lipid accumulation. Then real-time PCR was performed to examine expression of Notch downstream genes (Notch-1, -2, Hes-1 and Hey-1) and adipogenic transcription factor (PPAR-γ). Expressions of Hes-1 and PPAR-γ at protein level were confirmed by immunofluorescence staining. RESULTS Our data indicated that Jagged1 promoted adipogenic differentiation of mASCs. Moreover, Jagged1 also increased expression of Notch downstream genes and PPAR-γ. Expressions of Hes-1 and PPAR-γ were found to be enhanced in Jagged1 pre-treated mASCs when compared to controls. DISCUSSION The results led to the conclusion that activation of Notch signalling had stimulated adipogenesis of mASCs in the presence of adipogenic medium by promoting expression of PPAR-γ.
Collapse
Affiliation(s)
- K Ba
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:988-95. [PMID: 22353464 DOI: 10.1016/j.bbadis.2012.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.
Collapse
Affiliation(s)
- Farah A Falix
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Indulekha CL, Divya TS, Divya MS, Sanalkumar R, Rasheed VA, Dhanesh SB, Sebin A, George A, James J. Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression. Cell Mol Life Sci 2012; 69:611-27. [PMID: 21744064 PMCID: PMC11114997 DOI: 10.1007/s00018-011-0765-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Tlx3 (HOX11L2) is regarded as one of the selector genes in excitatory versus inhibitory fate specification of neurons in distinct regions of the nervous system. Expression of Tlx3 in a post-mitotic immature neuron favors a glutamatergic over GABAergic fate. The factors that regulate Tlx3 have immense importance in the fate specification of glutamatergic neurons. Here, we have shown that Notch target gene, Hes-1, negatively regulates Tlx3 expression, resulting in decreased generation of glutamatergic neurons. Down-regulation of Hes-1 removed the inhibition on Tlx3 promoter, thus promoting glutamatergic differentiation. Promoter-protein interaction studies with truncated/mutated Hes-1 protein suggested that the co-repressor recruitment mediated through WRPW domain of Hes-1 has contributed to the repressive effect. Our results clearly demonstrate a new and unique role for canonical Notch signaling through Hes-1, in neurotransmitter/subtype fate specification of neurons in addition to its known functional role in proliferation/maintenance of neural progenitors.
Collapse
Affiliation(s)
- Chandrasekharan Lalitha Indulekha
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Thulasi Sheela Divya
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Mundackal Sivaraman Divya
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Rajendran Sanalkumar
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Vazhanthodi Abdul Rasheed
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Anu Sebin
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Amitha George
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| |
Collapse
|
27
|
Urs S, Turner B, Tang Y, Rostama B, Small D, Liaw L. Effect of soluble Jagged1-mediated inhibition of Notch signaling on proliferation and differentiation of an adipocyte progenitor cell model. Adipocyte 2012; 1:46-57. [PMID: 23700510 PMCID: PMC3661121 DOI: 10.4161/adip.19186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue development is dependent on multiple signaling mechanisms and cell-cell interactions that regulate adipogenesis, angiogenesis and extracellular remodeling. The Notch signaling pathway is an important cell-fate determinant whose role in adipogenesis is not clearly defined. To address this issue, we examined the effect of inhibition of Notch signaling by soluble-Jagged1 in the 3T3-L1 preadipocyte line. In vitro, soluble-Jagged1 expression in 3T3-L1 cells altered cell morphology, increased the rate of cell proliferation and induced an early transcriptional response to differentiation stimuli. However, these cells did not form mature adipocytes due to their inability to exit the cell-cycle in response to serum-starvation and glucocorticoid-induced cell-cycle arrest. In contrast, subcutaneous allografts of soluble-Jagged1 cells formed larger fat pads containing lipid-filled adipocytes with improved neovascularization compared with controls. Since adipogenesis is tightly associated with angiogenesis, we evaluated the influence of soluble-Jagged1 on endothelial cells by culturing them in cell-free conditioned media from preadipocytes. Soluble Jagged1-mediated inhibition of Notch signaling increased levels of secreted cytokines, potentially contributing to the improved cell growth and proliferation observed in these cultures. Our findings demonstrate an initial requirement of Notch signaling inactivation for preadipocyte cell commitment and support the hypothesis that cell-to-cell crosstalk between the preadipocytes and endothelial cells is required for neovascularization and remodeling of the tissue to promote hyperplasia and hypertrophy of differentiating adipocytes.
Collapse
|
28
|
Abstract
Activation of the KEAP1-NRF2 signaling pathway is an adaptive response to environmental and endogenous stresses and serves to render animals resistant to chemical carcinogenesis and other forms of toxicity, whereas disruption of the pathway exacerbates these outcomes. This pathway, which can be activated by sulfhydryl-reactive, small-molecule pharmacologic agents, regulates the inducible expression of an extended battery of cytoprotective genes, often by direct binding of the transcription factor to antioxidant response elements in the promoter regions of target genes. However, it is becoming evident that some of the protective effects may be mediated indirectly through cross talk with additional pathways affecting cell survival and other aspects of cell fate. These interactions provide a multi-tiered, integrated response to chemical stresses. This review highlights recent observations on the molecular interactions and their functional consequences between NRF2 and the arylhydrocarbon receptor (AhR), NF-κB, p53, and Notch1 signaling pathways.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
29
|
Zanotti S, Smerdel-Ramoya A, Canalis E. HES1 (hairy and enhancer of split 1) is a determinant of bone mass. J Biol Chem 2010; 286:2648-57. [PMID: 21084301 DOI: 10.1074/jbc.m110.183038] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HES1 (hairy and enhancer of split) is a transcription factor that regulates osteoblastogenesis in vitro. The skeletal effects of HES1 misexpression were studied. Transgenic mice where a 3.6-kilobase fragment of the collagen type 1 α1 promoter directs HES1 overexpression were created. Transgenics were osteopenic due to decreased osteoblast function in female and increased bone resorption in male mice. HES1 impaired osteoblastogenesis in vitro, and transgenic osteoblasts enhanced the resorptive activity of co-cultured osteoclast precursors. Mice homozygous for a Hes1 loxP-targeted allele were bred to transgenics, where the paired-related homeobox gene enhancer or the osteocalcin promoter direct Cre recombinase expression to inactivate Hes1 in the limb bud or in osteoblasts. To avoid genetic compensation, Hes1 was inactivated in the context of the global deletion of Hes3 and Hes5. Hes3 and Hes5 null mice had no skeletal phenotype. Hes1 inactivation in the limb bud increased femoral length and trabecular number. Hes1 inactivation in osteoblasts increased trabecular bone volume, number, and connectivity due to increased mineral apposition rate and suppressed bone resorption. Hes1 inactivation in vitro increased alkaline phosphatase expression and suppressed the resorptive activity of co-cultured osteoclast precursors. In conclusion, by inhibiting osteoblast function and inducing bone resorption, HES1 is an intracellular determinant of bone mass and structure.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
30
|
Delhanty PJD, Sun Y, Visser JA, van Kerkwijk A, Huisman M, van Ijcken WFJ, Swagemakers S, Smith RG, Themmen APN, van der Lely AJ. Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice. PLoS One 2010; 5:e11749. [PMID: 20668691 PMCID: PMC2909919 DOI: 10.1371/journal.pone.0011749] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/12/2010] [Indexed: 12/25/2022] Open
Abstract
Background There is increasing evidence that unacylated ghrelin (UAG) improves insulin sensitivity and glucose homeostasis; however, the mechanism for this activity is not fully understood since a UAG receptor has not been discovered. Methodology/Principal Findings To assess potential mechanisms of UAG action in vivo, we examined rapid effects of UAG on genome-wide expression patterns in fat, muscle and liver of growth hormone secretagogue receptor (GHSR)-ablated mice using microarrays. Expression data were analyzed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Regulation of subsets of these genes was verified by quantitative PCR in an independent experiment. UAG acutely regulated clusters of genes involved in glucose and lipid metabolism in all three tissues, consistent with enhancement of insulin sensitivity. Conclusions/Significance Fat, muscle and liver are central to the control of lipid and glucose homeostasis. UAG rapidly modulates the expression of metabolically important genes in these tissues in GHSR-deleted mice indicating a direct, GHSR-independent, action of UAG to improve insulin sensitivity and metabolic profile.
Collapse
|
31
|
Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, Bono H, Ninomiya Y, Kanesaki-Yatsuka Y, Akita M, Motegi H, Wakana S, Noda T, Sablitzky F, Arai S, Kurokawa R, Fukuda T, Katagiri T, Schönbach C, Suda T, Mizuno Y, Okazaki Y. Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS Genet 2010; 6:e1001019. [PMID: 20628571 PMCID: PMC2900302 DOI: 10.1371/journal.pgen.1001019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/04/2010] [Indexed: 01/03/2023] Open
Abstract
Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated. To identify candidate genes associated with senile osteoporosis, we performed genome-wide expression analyses of differentiating osteoblasts and adipocytes. Among transcription factors that were enriched in the early phase of differentiation, Id4 was identified as a key molecule affecting the differentiation of both cell types. Experiments using bone marrow-derived stromal cell line ST2 and Id4-deficient mice showed that lack of Id4 drastically reduces osteoblast differentiation and drives differentiation toward adipocytes. On the other hand knockdown of Id4 in adipogenic-induced ST2 cells increased the expression of Pparγ2, a master regulator of adipocyte differentiation. Similar results were observed in bone marrow cells of femur and tibia of Id4-deficient mice. However the effect of Id4 on Pparγ2 and adipocyte differentiation is unlikely to be of direct nature. The mechanism of Id4 promoting osteoblast differentiation is associated with the Id4-mediated release of Hes1 from Hes1-Hey2 complexes. Hes1 increases the stability and transcriptional activity of Runx2, a key molecule of osteoblast differentiation, which results in an enhanced osteoblast-specific gene expression. The new role of Id4 in promoting osteoblast differentiation renders it a target for preventing the onset of senile osteoporosis. Increased bone marrow adiposity is observed in the bone marrow of senile osteoporosis patients. This is caused by unbalanced differentiation of mesenchymal stem cells (MSCs) into osteoblast or adipocyte. Previous reports have indicated that several transcription factors play important roles in determining the direction of MSCs differentiation into osteoblast or adipocyte. So far, little is known about the overall dynamics and regulation of transcription factor expression changes leading to the imbalance of osteoblast and adipocyte differentiation inside the bone marrow. We have performed genome-wide gene expression analyses during the differentiation of MSCs into osteoblast or adipocyte. We identified basic helix-loop-helix transcription factor family member Id4 as a leading candidate controlling the differentiation toward adipocyte or osteoblast. Suppression of Id4 expression in MSCs repressed osteoblast differentiation and increased adipocyte differentiation. In contrast, overexpression of Id4 in MSCs promoted osteoblast differentiation and attenuated adipocyte differentiation. Moreover, Id4-mutant mice showed abnormal accumulation of lipid droplets in bone marrow and impaired bone formation activity. In summary, we have demonstrated a molecular function of Id4 in osteoblast differentiation. The findings revealed that Id4 is a molecular switch enhancing osteoblast differentiation at the expense of adipocyte differentiation.
Collapse
Affiliation(s)
- Yoshimi Tokuzawa
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Ken Yagi
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yzumi Yamashita
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yutaka Nakachi
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Itoshi Nikaido
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Hidemasa Bono
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yuichi Ninomiya
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yukiko Kanesaki-Yatsuka
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Masumi Akita
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Iruma-gun, Saitama, Japan
| | | | | | - Tetsuo Noda
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
- The Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ward, Tokyo, Japan
| | - Fred Sablitzky
- Developmental Genetics and Gene Control, Institute of Genetics, University of Nottingham, Queen's Medical Center, Nottingham, United Kingdom
| | - Shigeki Arai
- Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Riki Kurokawa
- Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Toru Fukuda
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Christian Schönbach
- Division of Genomics and Genetics, Nanyang Technological University School of Biological Sciences, Singapore, Singapore
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Tatsuo Suda
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
- * E-mail:
| |
Collapse
|
32
|
Huang Y, Yang X, Wu Y, Jing W, Cai X, Tang W, Liu L, Liu Y, Grottkau BE, Lin Y. gamma-secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-gamma. Cell Prolif 2010; 43:147-156. [PMID: 20447060 PMCID: PMC6496520 DOI: 10.1111/j.1365-2184.2009.00661.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 06/03/2009] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To determine the inhibitory effect and mechanism of Notch signalling on adipogenesis of mouse adipose-derived stem cells (mASCs). MATERIALS AND METHODS Varied concentrations of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT) were added to mASCs 3 days before adipogenic induction with insulin-containing differentiation medium. The process of adipogenesis and ability of lipid droplet accumulation were analysed using oil red-O staining. The Notch signalling pathway (Notch-1, -2, -3, -4, Hes-1 and Hey-1) and adipogenesis-related factors (PPAR-gamma, DLK-1/Pref-1 and Acrp) were tested using real-time PCR, Western blot analysis and immunofluorescence staining assays. RESULTS We demonstrated that Notch-2-Hes-1 signalling pathway was inhibited dose-dependently by DAPT in mASCs. In addition, transcription of PPAR-gamma was promoted by DAPT before adipogenic induction, while inhibitor of adipogenesis DLK-1/Pref-1 was further depressed. At early stages of differentiation (2-4 days), adipogenesis in mASCs was advanced and significantly enhanced in 5 and 10 mum DAPT pre-treated cases. On day 4, in differentiated mASCs cases with DAPT pre-treatment, we also found promotion of activation of de-PPAR-gamma and depression of HES-1, DLK-1/Pref-1 mRNA and protein expression. CONCLUSIONS We conclude that blocking Notch signalling with DAPT enhances adipogenesis of differentiated mASCs at an early stage. It may be due to depression of DLK-1/Pref-1 and promotion of de-PPAR-gamma activation, which work through inhibition of Notch-2-Hes-1 pathway by DAPT.
Collapse
Affiliation(s)
- Y. Huang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Beijing Friendship Hospital affiliated to Capital Medicine University, Beijing, China
| | - X. Yang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Y. Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - W. Jing
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - X. Cai
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - W. Tang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - L. Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Y. Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - B. E. Grottkau
- Department of Oral and Maxillofacial Surgery, Beijing Friendship Hospital affiliated to Capital Medicine University, Beijing, China
| | - Y. Lin
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
- Department of Orthopaedic Surgery, MassGeneral Hospital for Children and the Pediatric Orthopaedic Laboratory for Tissue Engineering, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Grogan SP, Olee T, Hiraoka K, Lotz MK. Repression of chondrogenesis through binding of notch signaling proteins HES-1 and HEY-1 to N-box domains in the COL2A1 enhancer site. ACTA ACUST UNITED AC 2010; 58:2754-63. [PMID: 18759300 DOI: 10.1002/art.23730] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Notch signaling is implicated in the repression of mesenchymal stem cell (MSC) chondrogenic differentiation. The purpose of this study was to examine the mechanism of this repression and how it is modulated to permit chondrogenesis. METHODS Notch intracellular domain (NICD) protein levels were monitored via Western blotting throughout chondrogenic differentiation of human MSCs in pellet cultures. Overexpression of Notch signaling components and their effect on chondrogenesis was achieved by transfecting plasmids coding for NICD, HES-1, and HERP-2/HEY-1. COL2A1 and AGGRECAN expression was monitored via quantitative polymerase chain reaction analysis. Chromatin immunoprecipitation (ChIP) was used to test whether HES-1 and HEY-1 bind putative N-box domains in intron 1 of COL2A1. RESULTS High levels of NICD proteins were reduced during chondrogenesis of human MSCs, and this was mediated by transforming growth factor beta3 (TGFbeta3). COL2A1 gene expression was repressed following overexpression of NICD (2-fold) and HES-1 (3-fold) and was markedly repressed by overexpression of HEY-1 (80-fold). HEY-1 repressed AGGRECAN expression 10-fold, while NICD and HES-1 had no effect. We identified 2 putative N-box domains adjacent to, and part of, the SOX9 enhancer binding site located in intron 1 of COL2A1. ChIP studies showed that endogenous HES-1 and HEY-1 bound to these sites. Transducin-like enhancer, the HES-1 corepressor protein, was displaced during chondrogenic differentiation and following TGFbeta3 treatment. CONCLUSION These results reveal novel mechanisms by which Notch signaling represses gene expression. Notch signaling proteins act on the SOX9 binding site in the COL2A1 enhancer and prevent SOX9-mediated transcriptional activation of COL2A1 and, thus, chondrogenic differentiation.
Collapse
|
34
|
Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 2010; 137:1461-71. [PMID: 20335360 DOI: 10.1242/dev.042911] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Notch pathway has recently been implicated in mesenchymal progenitor cell (MPC) differentiation from bone marrow-derived progenitors. However, whether Notch regulates MPC differentiation in an RBPjkappa-dependent manner, specifies a particular MPC cell fate, regulates MPC proliferation and differentiation during early skeletal development or controls specific Notch target genes to regulate these processes remains unclear. To determine the exact role and mode of action for the Notch pathway in MPCs during skeletal development, we analyzed tissue-specific loss-of-function (Prx1Cre; Rbpjk(f/f)), gain-of-function (Prx1Cre; Rosa-NICD(f/+)) and RBPjkappa-independent Notch gain-of-function (Prx1Cre; Rosa-NICD(f/+); Rbpjk(f/f)) mice for defects in MPC proliferation and differentiation. These data demonstrate for the first time that the RBPjkappa-dependent Notch signaling pathway is a crucial regulator of MPC proliferation and differentiation during skeletal development. Our study also implicates the Notch pathway as a general suppressor of MPC differentiation that does not bias lineage allocation. Finally, Hes1 was identified as an RBPjkappa-dependent Notch target gene important for MPC maintenance and the suppression of in vitro chondrogenesis.
Collapse
Affiliation(s)
- Yufeng Dong
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang X, Fu Y, Chen X, Ye J, Lü B, Ye F, Lü W, Xie X. The expressions of bHLH gene HES1 and HES5 in advanced ovarian serous adenocarcinomas and their prognostic significance: a retrospective clinical study. J Cancer Res Clin Oncol 2009; 136:989-96. [PMID: 20091184 PMCID: PMC2874490 DOI: 10.1007/s00432-009-0744-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 12/01/2009] [Indexed: 02/07/2023]
Abstract
Purpose Notch signaling was recently found to be associated with prognosis of some cancers. The aim of the study is to investigate significance of the expression of HES1/HES5 protein, downstream effectors of Notch, in prognosis of the patients with advanced ovarian epithelial cancers. Methods Formalin-fixed, paraffin embedded tissues and clinic-pathological parameters from 61 patients with FIGO stage IIIc–IV ovarian serous adenocarcinoma were collected, the expression of HES1 and HES5 protein were immunohistochemically detected, and the association of HES1 and HES5 expression with survival of the patients were analyzed. Results The expressions of both HES1 and HES5 in adenocarcinoma were significantly higher than those in adenoma and normal control (χ2 = 32.915, P = 0.000 and χ2 = 46.863, P = 0.000 respectively). Overall survival and disease-free period were longer in HES1 low-expression patients (median 43.0 and 22.0 months) than those in high-expression patients (median 24.0 and 14.5 months). Of those, Overall survival period of patients with HES1 low-expression was significantly longer than that of those with high-expression (χ2 = 4.049, P = 0.044). Univariate analysis and multivariate Cox regression model did not show that HES1 or HES5 expression was a factor associated with survival of advanced ovarian serous adenocarcinoma patients. Conclusions The expressions of bHLH gene HES1 and HES5 are increased in advanced ovarian serous adenocarcinomas, and HES1 high-expression probably is a potential poor prognostic factor for the patients.
Collapse
Affiliation(s)
- Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, 310006 Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dang H, Lin AL, Zhang B, Zhang HM, Katz MS, Yeh CK. Role for Notch signaling in salivary acinar cell growth and differentiation. Dev Dyn 2009; 238:724-31. [PMID: 19235730 DOI: 10.1002/dvdy.21875] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. The Notch signaling is essential for Drosophila salivary gland development but its role in mammalian salivary gland remains unclear. The human salivary epithelial cell line, HSG, was studied to determine the role of Notch signaling in salivary epithelial cell differentiation. HSG expressed Notch 1 to 4, and the Notch ligands Jagged 1 and 2 and Delta 1. Treatment of HSG cells with inhibitors of gamma-secretase, which is required for Notch cleavage and activation, blocked vimentin and cystatin S expression, an indicator of HSG differentiation. HSG differentiation was also associated with Notch downstream signal Hes-1 expression, and Hes-1 expression was inhibited by gamma-secretase inhibitors. siRNA corresponding to Notch 1 to 4 was used to show that silencing of all four Notch receptors was required to inhibit HSG differentiation. Normal human submandibular gland expressed Notch 1 to 4, Jagged 1 and 2, and Delta 1, with nuclear localization indicating Notch signaling in vivo. Hes-1 was also expressed in the human tissue, with staining predominantly in the ductal cells. In salivary tissue from rats undergoing and recovering from ductal obstruction, we found that Notch receptors and ligands were expressed in the nucleus of the regenerating epithelial cells. Taken together, these data suggest that Notch signaling is critical for normal salivary gland cell growth and differentiation.
Collapse
Affiliation(s)
- Howard Dang
- The University of Texas Health Science Center, Department of Community Dentistry, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
37
|
Liu L, Clipstone NA. Prostaglandin F2alpha induces the normoxic activation of the hypoxia-inducible factor-1 transcription factor in differentiating 3T3-L1 preadipocytes: Potential role in the regulation of adipogenesis. J Cell Biochem 2008; 105:89-98. [PMID: 18461556 PMCID: PMC2634301 DOI: 10.1002/jcb.21801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandin F2alpha (PGF2alpha) is a potent paracrine inhibitor of adipocyte differentiation. Here we show that treatment of differentiating 3T3-L1 preadipocytes with PGF2alpha induces the expression of DEC1, a transcriptional repressor that has previously been implicated in the inhibition of adipogenesis in response to hypoxia as a downstream effector of the hypoxia-inducible factor-1 (HIF-1) transcription factor. Surprisingly, despite performing our experiments under normal ambient oxygen conditions, we find that treatment of differentiating 3T3-L1 preadipocytes with PGF2alpha also results in the marked activation of HIF-1, as measured by an increase in the accumulation of the HIF-1alpha regulatory subunit. However, unlike the effects of hypoxia, this PGF2alpha-induced normoxic increase in HIF-1alpha is not mediated by an increase in the stability of the HIF-1alpha polypeptide, rather we find that PGF2alpha selectively increases the expression of the alternatively spliced HIF-1alpha I.1 mRNA isoform. Significantly, we demonstrate that the shRNA-mediated knockdown of endogenous HIF-1alpha expression attenuates the PGF2alpha-induced expression of DEC1, overcomes the inhibitory effects of PGF2alpha on the expression of proadipogenic transcription factors C/EBPalpha and PPARgamma and partially rescues the PGF2alpha-induced inhibition of adipogenesis. Taken together, these results indicate that PGF2alpha promotes the activation of the HIF-1 transcription factor pathway under normal oxygen conditions, and highlight a potential role for the normoxic activation of the HIF-1/DEC1-pathway in mediating the inhibitory effects of PGF2alpha on adipocyte differentiation.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave. Chicago, Illinois 60611
| | - Neil A. Clipstone
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153
| |
Collapse
|
38
|
Urs S, Roudabush A, O'Neill CF, Pinz I, Prudovsky I, Kacer D, Tang Y, Liaw L, Small D. Soluble forms of the Notch ligands Delta1 and Jagged1 promote in vivo tumorigenicity in NIH3T3 fibroblasts with distinct phenotypes. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:865-78. [PMID: 18688026 DOI: 10.2353/ajpath.2008.080006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously found that soluble forms of the Notch ligands Jagged1 and Delta1 induced fibroblast growth factor receptor-dependent cell transformation in NIH3T3 fibroblasts. However, the phenotypes of these lines differed, indicating distinct functional differences among these Notch ligands. In the present study, we used allografts to test the hypothesis that NIH3T3 fibroblasts that express soluble forms of Delta1 and Jagged1 accelerate tumorigenicity in vivo. With the exception of the full-length Jagged1 transfectant, all other cell lines, including the control, generated tumors when injected subcutaneously in athymic mice. Suppression of Notch signaling by the soluble ligands significantly increased tumor onset and growth, whereas full-length Jagged1 completely suppressed tumor development. In addition, there were striking differences in tumor pathology with respect to growth kinetics, vascularization, collagen content, size and number of necrotic foci, and invasiveness into the underlying tissue. Further, the production of angiogenic factors, including vascular endothelial growth factor, also differed among the tumor types. Lastly, both Jagged1- and Delta1-derived tumors contained phenotypically distinct populations of lipid-filled cells that corresponded with increased expression of adipocyte markers. The divergence of tumor phenotype may be attributed to ligand-specific alterations in Notch receptor responses in exogenous and endogenous cell populations within the allographs. Our findings demonstrate distinct functional properties for these Notch ligands in the promotion of tumorigenicity in vivo.
Collapse
Affiliation(s)
- Sumithra Urs
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Villacorta L, Garcia-Barrio MT, Chen YE. Transcriptional regulation of peroxisome proliferator-activated receptors and liver X receptors. Curr Atheroscler Rep 2008; 9:230-7. [PMID: 18241618 DOI: 10.1007/s11883-007-0024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR) and liver X receptors (LXR) regulate a plethora of biologic processes and key metabolic and physiologic events. Deregulation of their transcription and activity is commonly associated with dyslipidemic disorders, diabetes, cancer, and cardiovascular disease. This review addresses recent advances in our understanding of the molecular mechanisms regulating transcription of these nuclear receptors. The heterogeneity of factors regulating their transcription and activity suggests intricate regulatory networks that determine their tissue expression pattern and their responses to pharmacologic agents. Understanding such mechanisms will facilitate unraveling their protective effects in disease as well as the design of effective targeted therapies.
Collapse
Affiliation(s)
- Luis Villacorta
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
40
|
Suh JH, Lee HW, Lee JW, Kim JB. Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem Biophys Res Commun 2008; 367:97-102. [DOI: 10.1016/j.bbrc.2007.12.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
41
|
Liu J, Ye F, Chen H, Lü W, Zhou C, Xie X. Expression of differentiation associated protein Hes1 and Hes5 in cervical squamous carcinoma and its precursors. Int J Gynecol Cancer 2007; 17:1293-9. [PMID: 17388915 DOI: 10.1111/j.1525-1438.2007.00930.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hairy and Enhancer-of-split homologues 1 and 5 (Hes1 and Hes5) are the basic helix-loop-helix transcriptional factors that negatively regulate the cell differentiation during embryogenesis. It has been reported that they may be involved in carcinogenesis in some tumors. The roles of Hes1 and Hes5 in development and progression of cervical carcinoma are not well documented todate. In the study, the expression of Hes1 and Hes5 were detected by immunohistochemistry in 295 cases with various degrees of cervical epithelial lesions, including 78 normal cervical epithelia, 31 mild dysplasia (CIN I), 77 moderate-severe dysplasia (CIN II-III), and 109 squamous cervical carcinomas (SCCs), and their association with various clinical pathologic prognostic variables were analyzed in 73 early-stage SCC patients who underwent surgery. Hes1 and Hes5 expression were found to be significantly higher in SCC compared with CIN as well as higher in CIN than normal cervical epithelia, and positively correlated with various prognostic factors in early-stage cervical carcinoma. Our findings suggest that Hes1 and Hes5 may be involved in carcinogenesis of the cervix and progression of cervical carcinoma. Hes1 and Hes5 overexpression are probably variables to predict poor prognosis of the patients with early-stage cervical carcinoma.
Collapse
Affiliation(s)
- J Liu
- Women's Reproductive Health Key Laboratory of Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
42
|
Fischer A, Gessler M. Delta-Notch--and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res 2007; 35:4583-96. [PMID: 17586813 PMCID: PMC1950541 DOI: 10.1093/nar/gkm477] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hes and Hey genes are the mammalian counterparts of the Hairy and Enhancer-of-split type of genes in Drosophila and they represent the primary targets of the Delta–Notch signaling pathway. Hairy-related factors control multiple steps of embryonic development and misregulation is associated with various defects. Hes and Hey genes (also called Hesr, Chf, Hrt, Herp or gridlock) encode transcriptional regulators of the basic helix-loop-helix class that mainly act as repressors. The molecular details of how Hes and Hey proteins control transcription are still poorly understood, however. Proposed modes of action include direct binding to N- or E-box DNA sequences of target promoters as well as indirect binding through other sequence-specific transcription factors or sequestration of transcriptional activators. Repression may rely on recruitment of corepressors and induction of histone modifications, or even interference with the general transcriptional machinery. All of these models require extensive protein–protein interactions. Here we review data published on protein–protein and protein–DNA interactions of Hairy-related factors and discuss their implications for transcriptional regulation. In addition, we summarize recent progress on the identification of potential target genes and the analysis of mouse models.
Collapse
Affiliation(s)
| | - Manfred Gessler
- *To whom correspondence should be addressed.+49 931 888 4158+49 931 888 4150
| |
Collapse
|
43
|
Blanpain C, Lowry WE, Pasolli HA, Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 2006; 20:3022-35. [PMID: 17079689 PMCID: PMC1620020 DOI: 10.1101/gad.1477606] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mammalian epidermis consists of a basal layer of proliferative progenitors that gives rise to multiple differentiating layers to provide a waterproof envelope covering the skin surface. To accomplish this, progenitor cells must detach from the basal layer, move upward, and execute a terminal differentiation program consisting of three distinct stages: spinous, granular layer, and stratum corneum. Notch signaling has been implicated in late stages of differentiation, but the commitment switch remains unknown. Here we show with loss and gain-of-function studies that active Notch intracellular domain (NICD) and its obligate canonical signaling partner RBP-J act at the basal/suprabasal juncture to induce spinous and down-regulate basal fate. Spinous layers are absent in RBP-J conditional null epidermis and expanded when Notch1 signaling is elevated transgenically in epidermis. We show that RBP-J is essential for mediating both spinous gene activation and basal gene repression. In contrast, the NICD/RBP-J target gene Hes1 is expressed in spinous layers and mediates spinous gene induction but not basal gene repression. These data uncover an early role for RBP-J and Notch in commitment of epidermal cells to terminally differentiate and reveal that spinous gene induction is mediated by a Hes1-dependent mechanism, while basal gene repression occurs independently of Hes1.
Collapse
Affiliation(s)
- Cédric Blanpain
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
44
|
Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 2006; 4:263-73. [PMID: 17011499 PMCID: PMC1958996 DOI: 10.1016/j.cmet.2006.07.001] [Citation(s) in RCA: 1412] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/24/2006] [Accepted: 07/07/2006] [Indexed: 12/13/2022]
Abstract
A detailed understanding of the processes governing adipose tissue formation will be instrumental in combating the obesity epidemic. Much progress has been made in the last two decades in defining transcriptional events controlling the differentiation of mesenchymal stem cells into adipocytes. A complex network of transcription factors and cell-cycle regulators, in concert with specific transcriptional coactivators and corepressors, respond to extracellular stimuli to activate or repress adipocyte differentiation. This review summarizes advances in this field, which constitute a framework for potential antiobesity strategies.
Collapse
Affiliation(s)
- Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|