1
|
Xie B, Chen Q, Dai Z, Jiang C, Chen X. Progesterone (P4) ameliorates cigarette smoke-induced chronic obstructive pulmonary disease (COPD). Mol Med 2024; 30:123. [PMID: 39138434 PMCID: PMC11323532 DOI: 10.1186/s10020-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with high morbidity and mortality worldwide. Oxidative injury and mitochondrial dysfunction in the airway epithelium are major events in COPD progression. METHODS AND RESULTS The therapeutic effects of Progesterone (P4) were investigated in vivo and in vitro in this study. In vivo, in a cigarette smoke (CS) exposure-induced COPD mouse model, P4 treatment significantly ameliorated CS exposure-induced physiological and pathological characteristics, including inflammatory cell infiltration and oxidative injury, in a dose-dependent manner. The c-MYC/SIRT1/PGC-1α pathway is involved in the protective function of P4 against CS-induced COPD. In vitro, P4 co-treatment significantly ameliorated H2O2-induced oxidative injury and mitochondrial dysfunctions by promoting cell proliferation, increasing mitochondrial membrane potential, decreasing ROS levels and apoptosis, and increasing ATP content. Moreover, P4 co-treatment partially attenuated H2O2-caused inhibition in Nrf1, Tfam, Mfn1, PGR-B, c-MYC, SIRT1, and PGC-1α levels. In BEAS-2B and ASM cells, the c-MYC/SIRT1 axis regulated P4's protective effects against H2O2-induced oxidative injury and mitochondrial dysfunctions. CONCLUSION P4 activates the c-MYC/SIRT1 axis, ameliorating CS-induced COPD and protecting both airway epithelial cells and smooth muscle cells against H2O2-induced oxidative damage. PGC-1α and downstream mitochondrial signaling pathways might be involved.
Collapse
Affiliation(s)
- Bin Xie
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Jiang
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Kashyap J, Chhabra A, Kumari N, Tyagi RK. Nuclear localization signal in nuclear receptor VDR facilitates the mitotic genome bookmarking by involving distinct amino acid residues. Mol Cell Endocrinol 2024; 589:112233. [PMID: 38616036 DOI: 10.1016/j.mce.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Mitotic genome-bookmarking preserves epigenetic information, re-establishing progenitor's gene expression profile through transcription factors, chromatin remodelers, and histone modifiers, thereby regulating cell fate and lineage commitment post-mitotically in progeny cells. Our recent study revealed that the constitutive association of VDR with mitotic chromatin involves its DNA-binding domain. However, amino acid residues in this domain, crucial for genome bookmarking, remain elusive. This study demonstrates that nuclear localization signal (NLS) residues between 49 and 55 amino acids in VDR are essential for receptor-chromatin interaction during mitosis. Furthermore, it is revealed that both bipartite nature of VDR-NLS region and N-terminally located positively charged arginine residues are critical for its 'genome-bookmarking' property. Since mitotic chromatin association of heterodimeric partner RXR depends on VDR-chromatin association, interventions in VDR binding also abort RXR-chromatin interaction. Overall, this study documents the mechanistic details underlying VDR-chromatin interactions in genome-bookmarking behavior, potentially aiding in comprehending VDR-mediated diseases attributed to certain SNPs.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
4
|
Quintero J, Saad NY, Pagnoni SM, Jacquelin DK, Gatica LV, Harper SQ, Rosa AL. The DUX4 protein is a co-repressor of the progesterone and glucocorticoid nuclear receptors. FEBS Lett 2022; 596:2644-2658. [PMID: 35662006 DOI: 10.1002/1873-3468.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/09/2022]
Abstract
DUX4 is a transcription factor required during early embryonic development in placental mammals. In this work, we provide evidence that DUX4 is a co-repressor of nuclear receptors (NRs) of progesterone (PR) and glucocorticoids (GR). The DUX4 C-ter and N-ter regions, including the nuclear localization signals and homeodomain motifs, contribute to the co-repressor activity of DUX4 on PR and GR. Immunoprecipitation studies, using total protein extracts of cells expressing tagged versions of DUX4 and GR, support that these proteins are physically associated. Our studies suggest that DUX4 could modulate gene expression by co-regulating the activity of hormone NRs. This is the first report highlighting a potential endocrine role for DUX4.
Collapse
Affiliation(s)
- Julieta Quintero
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Nizar Y Saad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Daniela K Jacquelin
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Laura V Gatica
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
- Fundación Allende-CONICET, Córdoba, Argentina
| |
Collapse
|
5
|
P38α MAPK is a gatekeeper of uterine progesterone responsiveness at peri-implantation via Ube3c-mediated PGR degradation. Proc Natl Acad Sci U S A 2022; 119:e2206000119. [PMID: 35914132 PMCID: PMC9371708 DOI: 10.1073/pnas.2206000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.
Collapse
|
6
|
Pei J, Liu Z, Wang C, Chu N, Liu L, Tang Y, Liu H, Xiang Q, Cheng H, Li M, Gu W. Progesterone Attenuates SIRT1-Deficiency-Mediated Pre-Eclampsia. Biomolecules 2022; 12:biom12030422. [PMID: 35327614 PMCID: PMC8946184 DOI: 10.3390/biom12030422] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-eclampsia is a severe hypertensive disorder of pregnancy (HDP), mainly characterized by new-onset hypertension with proteinuria after 20-week gestation. Sirtuin1 (SIRT1), a class III histone deacetylase, is associated with the regulation of various pathophysiological processes, including inflammation, immune response, metabolism, and autophagy. However, the effect of SIRT1 in the pathogenesis of pre-eclampsia remains to be elucidated. In this study, we found that the expression of SIRT1 was relatively lower in the placentas and serum samples of pre-eclampsia patients. Typical pre-eclampsia-like symptoms, such as hypertension, proteinuria, fetal growth restriction, kidney injury, and a narrow placental labyrinth layer, were observed in SIRT1 knockdown (SIRT1+/−) mice. Of note, these performances could be improved after the intraperitoneal injection of SIRT1 agonist SRT2104. More importantly, we found that the efficacy of progesterone on attenuating symptoms of PE was profoundly better than that of metformin in SIRT1+/− mice. In addition, our results suggested that progesterone can promote the invasion and inhibit the apoptosis of trophoblasts. These data suggest that SIRT1 plays an important role in pre-eclampsia and that progesterone alleviates pre-eclampsia-like symptoms mediated by SIRT1 deficiency.
Collapse
Affiliation(s)
- Jiangnan Pei
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Zhenzhen Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Chengjie Wang
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Nan Chu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Lei Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Yao Tang
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Haiyan Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
| | - Qianqian Xiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;
| | - Haidong Cheng
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
- Correspondence: (H.C.); (M.L.); (W.G.)
| | - Mingqing Li
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
- Correspondence: (H.C.); (M.L.); (W.G.)
| | - Weirong Gu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (J.P.); (Z.L.); (C.W.); (N.C.); (L.L.); (Y.T.); (H.L.)
- Correspondence: (H.C.); (M.L.); (W.G.)
| |
Collapse
|
7
|
Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid Receptors in Breast Cancer: Understanding of Molecular Function as a Basis for Effective Therapy Development. Cancers (Basel) 2021; 13:4779. [PMID: 34638264 PMCID: PMC8507808 DOI: 10.3390/cancers13194779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains one of the most important health problems worldwide. The family of steroid receptors (SRs), which comprise estrogen (ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors, along with a receptor for a secosteroid-vitamin D, play a crucial role in the pathogenesis of the disease. They function predominantly as nuclear receptors to regulate gene expression, however, their full spectrum of action reaches far beyond this basic mechanism. SRs are involved in a vast variety of interactions with other proteins, including extensive crosstalk with each other. How they affect the biology of a breast cell depends on such factors as post-translational modifications, expression of coregulators, or which SR isoform is predominantly synthesized in a given cellular context. Although ER has been successfully utilized as a breast cancer therapy target for years, research on therapeutic application of other SRs is still ongoing. Designing effective hormone therapies requires thorough understanding of the molecular function of the SRs. Over the past decades, huge amount of data was obtained in multiple studies exploring this field, therefore in this review we attempt to summarize the current knowledge in a comprehensive way.
Collapse
Affiliation(s)
- Wojciech Kowalczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Grzegorz Waliszczak
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 23 Kopernika St., 31-501 Kraków, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| |
Collapse
|
8
|
Kunc M, Popęda M, Biernat W, Senkus E. Lost but Not Least-Novel Insights into Progesterone Receptor Loss in Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13194755. [PMID: 34638241 PMCID: PMC8507533 DOI: 10.3390/cancers13194755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor α (ERα) and progesterone receptor (PgR) are crucial prognostic and predictive biomarkers that are usually co-expressed in breast cancer (BC). However, 12-24% of BCs present ERα(+)/PgR(-) phenotype at immunohistochemical evaluation. In fact, BC may either show primary PgR(-) status (in chemonaïve tumor sample), lose PgR expression during neoadjuvant treatment, or acquire PgR(-) phenotype in local relapse or metastasis. The loss of PgR expression in ERα(+) breast cancer may signify resistance to endocrine therapy and poorer outcomes. On the other hand, ERα(+)/PgR(-) BCs may have a better response to neoadjuvant chemotherapy than double-positive tumors. Loss of PgR expression may be a result of pre-transcriptional alterations (copy number loss, mutation, epigenetic modifications), decreased transcription of the PGR gene (e.g., by microRNAs), and post-translational modifications (e.g., phosphorylation, sumoylation). Various processes involved in the down-regulation of PgR have distinct consequences on the biology of cancer cells. Occasionally, negative PgR status detected by immunohistochemical analysis is paradoxically associated with enhanced transcriptional activity of PgR that might be inhibited by antiprogestin treatment. Identification of the mechanism of PgR loss in each patient seems challenging, yet it may provide important information on the biology of the tumor and predict its responsiveness to the therapy.
Collapse
Affiliation(s)
- Michał Kunc
- Department of Pathomorphology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (W.B.)
| | - Marta Popęda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (W.B.)
| | - Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 80-214 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-584-4481
| |
Collapse
|
9
|
Salsano S, González-Martín R, Quiñonero A, Pérez-Debén S, Domínguez F. Deciphering the Role of PGRMC1 During Human Decidualization Using an In Vitro Approach. J Clin Endocrinol Metab 2021; 106:2313-2327. [PMID: 33955452 DOI: 10.1210/clinem/dgab303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Non-classical membrane progesterone receptor (mPRs) and progesterone receptor membrane component 1 (PGRMC1) expression have been detected in endometrium, but their role in decidualization had not yet been investigated. We previously demonstrated PGRMC1 downregulation in receptive endometrium and that its overexpression inhibits decidualization. Furthermore, during decidualization, PGRMC1 mainly interacts with proteins involved in biosynthesis, intracellular transport, and mitochondrial activity. OBJECTIVE To determine PGRMC1 and mPRs signaling role during decidualization. METHODS Isolated primary endometrial stromal cells (EnSC) were decidualized in vitro in the presence of classic stimuli (E2 + P4), PGRMC1 inhibitor (AG205), or membrane-impermeable P4 (P4-BSA). Endometrial biopsies were obtained from 19 fertile oocyte donors attending the IVI-Valencia in vitro fertilization (IVF) clinic. EnSC decidualization was evaluated by prolactin ELISA and F-actin immunostaining. Progesterone receptor localization was evaluated by immunofluorescence. EnSC transcriptomic profiles were analyzed by microarray technology. RESULTS PGRMC1 inhibition during EnSC decidualization (AG205dEnSC) does not interfere with EnSC cytoskeletal rearrangements and prolactin secretion. However, global transcriptional profiling revealed more differentially expressed genes in AG205dEnSC than in dEnSC, compared with nondecidualized EnSC (ndEnSC). In silico analysis showed that PGRMC1 inhibition upregulated more genes related to metabolism, molecular transport, and hormonal biosynthesis compared with control dEnSC. EnSC decidualized in the presence of P4-BSA showed a similar behavior as ndEnSC in terms of morphological features, absence of prolactin secretion, and transcriptomic pattern. CONCLUSION Our findings associate PGRMC1 to hormonal biosynthesis, metabolism, and vesicular transport-important cellular functions for dEnSC supporting pregnancy. Activation of membrane P4 receptor signaling alone was unable to induce downstream effects needed for proper decidualization.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Domínguez
- IVI Foundation-RMA Global, 46026, Valencia, Spain
- IIS La Fe, 46026, Valencia, Spain
| |
Collapse
|
10
|
Albaghdadi AJH, Kan FWK. Therapeutic Potentials of Low-Dose Tacrolimus for Aberrant Endometrial Features in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:2872. [PMID: 33808965 PMCID: PMC7998611 DOI: 10.3390/ijms22062872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major anovulatory infertility affecting a great proportion of women of childbearing age and is associated with obesity, insulin resistance and chronic inflammation. Poor endometrial receptivity and recurrent implantation failure are major hurdles to the establishment of pregnancy in women with PCOS. The accumulating body of evidence obtained from experimental and clinical studies suggests a link between inherent adaptive and innate immune irregularities and aberrant endometrial features in PCOS. The use of conventional therapeutic interventions such as lifestyle modification, metformin and ovarian stimulation has achieved limited clinical success in restoring ovulation and endometrial receptivity in women with PCOS. Unlike other immunosuppressive drugs prescribed in the clinical management of autoimmune and inflammatory disorders that may have deleterious effects on fertility and fetal development, preclinical studies in mice and in women without PCOS but with repeated implantation failure revealed potential therapeutic benefits for the use of low-dose tacrolimus in treating female infertility. Improved systemic and ovarian immune functions, endometrial progesterone receptor and coreceptor expressions and uterine vascular adaptation to pregnancy were among features of enhanced progesterone-receptor sensitivity in the low-dose tacrolimus-treated mouse model of the disease. In this review, we have compiled available experimental and clinical data in literature on endometrial progesterone resistance and current therapeutic options, as well as mechanisms of actions and reported outcomes relevant to the potential therapeutic benefits for the use of low-dose tacrolimus in treating PCOS-associated female infertility.
Collapse
Affiliation(s)
| | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
11
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
13
|
Dwyer AR, Truong TH, Ostrander JH, Lange CA. 90 YEARS OF PROGESTERONE: Steroid receptors as MAPK signaling sensors in breast cancer: let the fates decide. J Mol Endocrinol 2020; 65:T35-T48. [PMID: 32209723 PMCID: PMC7329584 DOI: 10.1530/jme-19-0274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Steroid hormone receptors (SRs) are classically defined as ligand-activated transcription factors that function as master regulators of gene programs important for a wide range of processes governing adult physiology, development, and cell or tissue homeostasis. A second function of SRs includes the ability to activate cytoplasmic signaling pathways. Estrogen (ER), androgen (AR), and progesterone (PR) receptors bind directly to membrane-associated signaling molecules including mitogenic protein kinases (i.e. c-SRC and AKT), G-proteins, and ion channels to mediate context-dependent actions via rapid activation of downstream signaling pathways. In addition to making direct contact with diverse signaling molecules, SRs are further fully integrated with signaling pathways by virtue of their N-terminal phosphorylation sites that act as regulatory hot-spots capable of sensing the signaling milieu. In particular, ER, AR, PR, and closely related glucocorticoid receptors (GR) share the property of accepting (i.e. sensing) ligand-independent phosphorylation events by proline-directed kinases in the MAPK and CDK families. These signaling inputs act as a 'second ligand' that dramatically impacts cell fate. In the face of drugs that reliably target SR ligand-binding domains to block uncontrolled cancer growth, ligand-independent post-translational modifications guide changes in cell fate that confer increased survival, EMT, migration/invasion, stemness properties, and therapy resistance of non-proliferating SR+ cancer cell subpopulations. The focus of this review is on MAPK pathways in the regulation of SR+ cancer cell fate. MAPK-dependent phosphorylation of PR (Ser294) and GR (Ser134) will primarily be discussed in light of the need to target changes in breast cancer cell fate as part of modernized combination therapies.
Collapse
Affiliation(s)
- Amy R. Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Julie H. Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
- Department of Pharmacology, University of Minnesota, Minneapolis MN 55455
- Corresponding author: Carol A Lange, Professor, ; 612-626-0621 (phone), University of Minnesota Masonic Cancer Center, Delivery Code 2812, Cancer and Cardiovascular Research Building, 2231 6th St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
PRMT1 Is Critical for the Transcriptional Activity and the Stability of the Progesterone Receptor. iScience 2020; 23:101236. [PMID: 32563156 PMCID: PMC7305383 DOI: 10.1016/j.isci.2020.101236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in female reproductive processes and in several aspects of breast cancer tumorigenesis. Our report describes the type I protein arginine methyltransferase 1 (PRMT1) as a cofactor controlling progesterone pathway, through the direct methylation of PR. Mechanistic assays in breast cancer cells indicate that PRMT1 methylates PR at the arginine 637 and reduces the stability of the receptor, thereby accelerating its recycling and finally its transcriptional activity. Depletion of PRMT1 decreases the expression of a subset of progesterone-inducible genes, controlling breast cancer cells proliferation and migration. Consistently, Kaplan-Meier analysis revealed that low expression of PRMT1 predicts a longer survival among the subgroup with high PR. Our study highlights PR methylation as a molecular switch adapting the transcription requirement of breast cells during tumorigenesis.
Collapse
|
15
|
Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomed Pharmacother 2020; 127:110106. [PMID: 32248001 DOI: 10.1016/j.biopha.2020.110106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiac glycosides are compounds isolated from plants and animals and have been known since ancient times. These compounds inhibit the activity of the sodium potassium pump in eukaryotic cells. Cardiac glycosides were used as drugs in heart ailments to increase myocardial contraction force and, at the same time, to lower frequency of this contraction. An increasing number of studies have indicated that the biological effects of these compounds are not limited to inhibition of sodium-potassium pump activity. Furthermore, an increasing number of data have shown that they are synthesized in tissues of mammals, where they may act as a new class of steroid hormones or other hormones by mimicry to modulate various signaling pathways and influence whole organisms. Thus, we discuss the interactions of cardiac glycosides with the nuclear receptor superfamily of transcription factors activated by low-weight molecular ligands (including hormones) that regulate many functions of cells and organisms. Cardiac glycosides of endogenous and exogenous origin by interacting with nuclear receptors can affect the processes regulated by these transcription factors, including hormonal management, immune system, body defense, and carcinogenesis. They can also be treated as initial structures for combinatorial chemistry to produce new compounds (including drugs) with the desired properties.
Collapse
|
16
|
Fowler AM, Salem K, DeGrave M, Ong IM, Rassman S, Powers GL, Kumar M, Michel CJ, Mahajan AM. Progesterone Receptor Gene Variants in Metastatic Estrogen Receptor Positive Breast Cancer. Discov Oncol 2020; 11:63-75. [PMID: 31942683 DOI: 10.1007/s12672-020-00377-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023] Open
Abstract
Tumor mutations in the gene encoding estrogen receptor alpha (ESR1) have been identified in metastatic breast cancer patients with endocrine therapy resistance. However, relatively little is known about the occurrence of mutations in the progesterone receptor (PGR) gene in this population. The study objective was to determine the frequency and prognostic significance of tumor PGR mutations for patients with estrogen receptor (ER)-positive metastatic breast cancer. Thirty-five women with metastatic or locally recurrent ER+ breast cancer were included in this IRB-approved, retrospective study. Targeted next-generation sequencing of the PGR gene was performed on isolated tumor DNA. Associations between mutation status and clinicopathologic factors were analyzed as well as overall survival (OS) from time of metastatic diagnosis. The effect of the PGR variant Y890C (c.2669A>G) identified in this cohort on PR transactivation function was tested using ER-PR- (MDA-MB-231), ER+PR+ (T47D), and ER+PR- (T47D PR KO) breast cancer cell lines. There were 71 occurrences of protein-coding PGR variants in 67% (24/36; 95% CI 49-81%) of lesions. Of the 49 unique variants, 14 are single nucleotide polymorphisms (SNPs). Excluding SNPs, the median OS of patients with PGR variants was 32 months compared to 79 months with wild-type PGR (p = 0.42). The most frequently occurring (4/36 lesions) non-SNP variant was Y890C. Cells expressing Y890C had reduced progestin-stimulated PR transactivation compared to cells expressing wild-type PR. PGR variants occur frequently in ER+ metastatic breast cancer. Although some variants are SNPs, others are predicted to be functionally deleterious as demonstrated with Y890C PR.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA.
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Michael DeGrave
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Irene M Ong
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Shane Rassman
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ginny L Powers
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ciara J Michel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Aparna M Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| |
Collapse
|
17
|
Cenciarini ME, Proietti CJ. Molecular mechanisms underlying progesterone receptor action in breast cancer: Insights into cell proliferation and stem cell regulation. Steroids 2019; 152:108503. [PMID: 31562879 DOI: 10.1016/j.steroids.2019.108503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The ovarian steroid hormone progesterone and its nuclear receptor, the Progesterone Receptor (PR), play an essential role in the regulation of cell proliferation and differentiation in the mammary gland. In addition, experimental and clinical evidence demonstrate their critical role in controlling mammary gland tumorigenesis and breast cancer development. When bound to its ligand, the main action of PR is as a transcription factor, which regulates the expression of target genes networks. PR also activates signal transduction pathways through a rapid or non-genomic mechanism in breast cancer cells, an event that is fully integrated with its genomic effects. This review summarizes the molecular mechanisms of the ligand-activated PR actions that drive epithelial cell proliferation and the regulation of the stem cell population in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Mauro E Cenciarini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
18
|
Yang P, Xu C, Reece EA, Chen X, Zhong J, Zhan M, Stumpo DJ, Blackshear PJ, Yang P. Tip60- and sirtuin 2-regulated MARCKS acetylation and phosphorylation are required for diabetic embryopathy. Nat Commun 2019; 10:282. [PMID: 30655546 PMCID: PMC6336777 DOI: 10.1038/s41467-018-08268-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Failure of neural tube closure results in severe birth defects and can be induced by high glucose levels resulting from maternal diabetes. MARCKS is required for neural tube closure, but the regulation and of its biological activity and function have remained elusive. Here, we show that high maternal glucose induced MARCKS acetylation at lysine 165 by the acetyltransferase Tip60, which is a prerequisite for its phosphorylation, whereas Sirtuin 2 (SIRT2) deacetylated MARCKS. Phosphorylated MARCKS dissociates from organelles, leading to mitochondrial abnormalities and endoplasmic reticulum stress. Phosphorylation dead MARCKS (PD-MARCKS) reversed maternal diabetes-induced cellular organelle stress, apoptosis and delayed neurogenesis in the neuroepithelium and ameliorated neural tube defects. Restoring SIRT2 expression in the developing neuroepithelium exerted identical effects as those of PD-MARCKS. Our studies reveal a new regulatory mechanism for MARCKS acetylation and phosphorylation that disrupts neurulation under diabetic conditions by diminishing the cellular organelle protective effect of MARCKS.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA.,Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA.,Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 21201, MD, USA. .,Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA.
| |
Collapse
|
19
|
Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, Skladanowski AC, Zaczek AJ, Biernat W, Kordek R, Romanska HM, Sadej R. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget 2018; 7:86011-86025. [PMID: 27852068 PMCID: PMC5349893 DOI: 10.18632/oncotarget.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023] Open
Abstract
We have recently demonstrated that, fibroblast growth factor 2 (FGFR2), signalling via ribosomal S6 kinase 2 (RSK2), promotes progression of breast cancer (BCa). Loss of progesterone receptor (PR), whose activity in BCa cells can be stimulated by growth factor receptors (GFRs), is associated with poor patient outcome. Here we showed that FGF7/FGFR2 triggered phosphorylation of PR at Ser294, PR ubiquitination and subsequent receptor`s degradation via the 26S proteasome pathway in BCa cells. We further demonstrated that RSK2 mediated FGF7/FGFR2-induced PR downregulation. In addition, a strong synergistic effect of FGF7 and progesterone (Pg), reflected in the enhanced anchorage-independent growth and cell migration, was observed. Analysis of clinical material demonstrated that expression of PR inversely correlated with activated RSK (RSK-P) (p = 0.016). Patients with RSK-P(+)/PR(–) tumours had 3.629-fold higher risk of recurrence (p = 0.002), when compared with the rest of the cohort. Moreover, RSK-P(+)/PR(–) phenotype was shown as an independent prognostic factor (p = 0.006). These results indicate that the FGF7/FGFR2-RSK2 axis promotes PR turnover and activity, which may sensitize BCa cells to stromal stimuli and contribute to the progression toward steroid hormone negative BCa.
Collapse
Affiliation(s)
- Dominika Piasecka
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland.,Department of Pathology, Medical University of Lodz, Poland
| | - Kamila Kitowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Dominika Czaplinska
- Department of Cell Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Kamil Mieczkowski
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Magdalena Mieszkowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Andrzej C Skladanowski
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Anna J Zaczek
- Department of Cell Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Poland
| | | | | | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| |
Collapse
|
20
|
Albaghdadi AJH, Kan FWK. Immunosuppression with tacrolimus improved implantation and rescued expression of uterine progesterone receptor and its co-regulators FKBP52 and PIASy at nidation in the obese and diabetic mice: Comparative studies with metformin. Mol Cell Endocrinol 2018; 460:73-84. [PMID: 28689771 DOI: 10.1016/j.mce.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023]
Abstract
Diabesity is often associated with subfertility and recurrent miscarriages. Evidence links systemic and local uterine cytotoxicity to the pathogenesis of implantation failure (IF) in diabetes. Immunosuppression with tacrolimus improved pregnancy outcomes in obese and diabetic mice and repeated IF in women with elevated Th1/Th2 blood cell ratios. However the mode of action of tacrolimus in protecting against IF and the molecular mechanisms associated with recurrent miscarriages in the obese and diabetic subjects are yet to be elucidated. Here we administered tacrolimus (FK506) (0.1 mg/kg) for four consecutive weeks to the NONcNZO10/LtJ mice, a model of human PCOS, chronically fed with 60% kCal fat for 16 consecutive weeks to simulate human obesity-associated T2DM. Compared to those immunosuppressed with tacrolimus and their normative controls, high-fat fed (HFD) diabetic NONcNZO mice exhibited higher rates of peri- and post-implantation resorption and had aberrant expression of uterine IFNγ and progesterone receptor (PGR) and its immunophilin co-chaperone FKBP52 at nidation. Immature uterodomes and lack of activation of uterine STAT3 and NFκB at implantation were characteristics of IF in the HFD-dNONcNZO dams also low in the deciduogenic factors IL11 and GM-CSF. Therapeutic interventions with tacrolimus or metformin normalized the expression of decidual IFNγ, PGR and FKBP52, increased co-localization of protein inhibitor of activated STATy (PIASy) to PGR and resulted in the upregulation of uterine IL11and LIF. Rescued phosphorylation of STAT3 and NFκBp65 and uterodome maturation at nidation defined implantation success in treated dams. To our knowledge this is the first report to show that the impact of HFD on the hemochorial implantation is at least in part mediated through disruption of PGR signaling at nidation and that immunosuppression with tacrolimus or treatment with metformin restores PGR-mediated influences during implantation in the obese and diabetic subjects.
Collapse
Affiliation(s)
- Ahmad J H Albaghdadi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
21
|
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner. Diseases 2018; 6:diseases6010005. [PMID: 29301281 PMCID: PMC5871951 DOI: 10.3390/diseases6010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022] Open
Abstract
Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors’ dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others down-regulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.
Collapse
|
22
|
Lou P, Li C, Shi L, Xia TS, Zhou W, Wu J, Zhou X, Li X, Wang Y, Wei JF, Ding Q. RNPC1 enhances progesterone receptor functions by regulating its mRNA stability in breast cancer. Oncotarget 2017; 8:16387-16400. [PMID: 27634883 PMCID: PMC5369970 DOI: 10.18632/oncotarget.12016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/26/2016] [Indexed: 02/04/2023] Open
Abstract
Progesterone receptor (PR) could activate transcriptional process involved in normal mammary gland proliferation and breast cancer development. Moreover, PR expression is an important marker of luminal breast cancer, which is associated with good prognosis and indicates better responding to endocrine therapies. The regulation of PR expression was studied mainly on its post-translational levels. In this study, we found PR was positively regulated by RNA-binding region-containing protein 1 (RNPC1), a RNA-binding protein, in PR positive breast cancer. Overexpression of RNPC1 increased, whereas knockdown of RNPC1 decreased, the level of PR protein and transcripts. Additionally, we demonstrated that RNPC1 could bind to PR mRNA via AU-rich elements (AREs) within PR 3′-untranslated region (3′-UTR) and then enhance PR mRNA stability. Moreover, we proved that progesterone-dependent PR functions which could induce breast cancer proliferation were enhanced by RNPC1, both in vitro and in vivo. Conclusively, we revealed a novel mechanism by which PR could be regulated by RNPC1 via stabilizing its mRNA.
Collapse
Affiliation(s)
- Peipei Lou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Chunlian Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Tian-Song Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Wenbin Zhou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Jing Wu
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Xujie Zhou
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Xiaoxia Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Ying Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing City, Jiangsu Province, 210000, China
| |
Collapse
|
23
|
Diep CH, Ahrendt H, Lange CA. Progesterone induces progesterone receptor gene (PGR) expression via rapid activation of protein kinase pathways required for cooperative estrogen receptor alpha (ER) and progesterone receptor (PR) genomic action at ER/PR target genes. Steroids 2016; 114:48-58. [PMID: 27641443 PMCID: PMC5068826 DOI: 10.1016/j.steroids.2016.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
Progesterone Receptors (PRs) are critical effectors of estrogen receptor (ER) signaling required for mammary gland development and reproductive proficiency. In breast and reproductive tract malignancies, PR expression is a clinical prognostic marker of ER action. While estrogens primarily regulate PR expression, other factors likely contribute to a dynamic range of receptor expression across diverse tissues. In this study, we identified estrogen-independent but progestin (R5020)-dependent regulation of ER target genes including PGR in ER+/PR+ cancer cell lines. R5020 (10nM-10μM range) induced dose-dependent PR mRNA and protein expression in the absence of estrogen but required both PR and ERα. Antagonists of either PR (RU486, onapristone) or ERα (ICI 182,780) attenuated R5020 induction of TFF1, CTSD, and PGR. Chromatin immunoprecipitation (ChIP) assays performed on ER+/PR+ cells demonstrated that both ERα and PR were recruited to the same ERE/Sp1 site-containing region of the PGR proximal promoter in response to high dose progestin (10μM). Recruitment of ERα and PR to chromatin and subsequent PR mRNA induction were dependent upon rapid activation of MAPK/ERK and AKT; inhibition of these kinase pathways via U0126 or LY294002 blocked these events. Overall, we have identified a novel mechanism of ERα activation initiated by rapid PR-dependent kinase pathway activation and associated with phosphorylation of ERα Ser118 for estrogen-independent but progestin-dependent ER/PR cross talk. These studies may provide insight into mechanisms of persistent ER-target gene expression during periods of hormone (i.e. estrogen) ablation and suggest caution following prolonged treatment with aromatase or CYP17 inhibitors (i.e. contexts when progesterone levels may be abnormally elevated).
Collapse
Affiliation(s)
- Caroline H Diep
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, United States.
| | - Hannah Ahrendt
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, United States.
| | - Carol A Lange
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, United States; Department of Pharmacology, and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
24
|
Grimm SL, Hartig SM, Edwards DP. Progesterone Receptor Signaling Mechanisms. J Mol Biol 2016; 428:3831-49. [PMID: 27380738 DOI: 10.1016/j.jmb.2016.06.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022]
Abstract
Progesterone receptor (PR) is a master regulator in female reproductive tissues that controls developmental processes and proliferation and differentiation during the reproductive cycle and pregnancy. PR also plays a role in progression of endocrine-dependent breast cancer. As a member of the nuclear receptor family of ligand-dependent transcription factors, the main action of PR is to regulate networks of target gene expression in response to binding its cognate steroid hormone, progesterone. This paper summarizes recent advances in understanding the structure-function properties of the receptor protein and the tissue/cell-type-specific PR signaling pathways that contribute to the biological actions of progesterone in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA.
| |
Collapse
|
25
|
Seok YM, Lee HA, Park KM, Hwangbo MH, Kim IK. Lysine deacetylase inhibition attenuates hypertension and is accompanied by acetylation of mineralocorticoid receptor instead of histone acetylation in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:799-808. [DOI: 10.1007/s00210-016-1246-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/10/2016] [Indexed: 12/15/2022]
|
26
|
Leehy KA, Regan Anderson TM, Daniel AR, Lange CA, Ostrander JH. Modifications to glucocorticoid and progesterone receptors alter cell fate in breast cancer. J Mol Endocrinol 2016; 56:R99-R114. [PMID: 26831511 PMCID: PMC7256961 DOI: 10.1530/jme-15-0322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
Abstract
Steroid hormone receptors (SRs) are heavily posttranslationally modified by the reversible addition of a variety of molecular moieties, including phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. These rapid and dynamic modifications may be combinatorial and interact (i.e. may be sequential, complement, or oppose each other), creating a vast array of uniquely modified receptor subspecies that allow for diverse receptor behaviors that enable highly sensitive and context-dependent hormone action. For example, in response to hormone or growth factor membrane-initiated signaling events, posttranslational modifications (PTMs) to SRs alter protein-protein interactions that govern the complex process of promoter or gene-set selection coupled to transcriptional repression or activation. Unique phosphorylation events allow SRs to associate or disassociate with specific cofactors that may include pioneer factors and other tethering partners, which specify the resulting transcriptome and ultimately change cell fate. The impact of PTMs on SR action is particularly profound in the context of breast tumorigenesis, in which frequent alterations in growth factor-initiated signaling pathways occur early and act as drivers of breast cancer progression toward endocrine resistance. In this article, with primary focus on breast cancer relevance, we review the mechanisms by which PTMs, including reversible phosphorylation events, regulate the closely related SRs, glucocorticoid receptor and progesterone receptor, allowing for precise biological responses to ever-changing hormonal stimuli.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Female
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Prognosis
- Protein Isoforms
- Protein Processing, Post-Translational
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Signal Transduction
- Stress, Physiological
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Katherine A Leehy
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Tarah M Regan Anderson
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Andrea R Daniel
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Carol A Lange
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Julie H Ostrander
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| |
Collapse
|
27
|
Abstract
Progesterone and progesterone receptors (PRs) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two PR isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential crosstalk with growth factor signaling pathways, and distinct post-translational modifications and cofactor-binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
Collapse
Affiliation(s)
- Caroline H Diep
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Andrea R Daniel
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Laura J Mauro
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Todd P Knutson
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Carol A Lange
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| |
Collapse
|
28
|
Wetendorf M, DeMayo FJ. Progesterone receptor signaling in the initiation of pregnancy and preservation of a healthy uterus. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:95-106. [PMID: 25023675 DOI: 10.1387/ijdb.140069mw] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Infertility and reproductive-associated disease are global problems in the world today affecting millions of women. A successful pregnancy requires a healthy uterus ready to receive and support an implanting embryo. As an endocrine organ, the uterus is dependent on the secretions of the ovarian hormones estrogen and progesterone which signal via their cognate receptors, the estrogen and progesterone receptors. The progesterone receptor not only functions using classical nuclear receptor signaling, but also participates in non-genomic signaling at the cellular membrane. The complexity of progesterone signaling is further enhanced by the existence of multiple isoforms and post-translational regulation via kinases and transcription coregulators. This dynamic means of regulation of the progesterone receptor is evidenced in its necessary role in a successful pregnancy. Within early pregnancy, the progesterone receptor elicits activation of its target genes in a spatiotemporal manner in order to allow for successful embryo attachment and uterine decidualization. Additionally, appropriate progesterone signaling is important for the prevention of uterine disease such as endometrial cancer, endometriosis, and leiomyoma. The utilization of progesterone receptor modulators in the treatment of these devastating uterine diseases is promising. This review presents a general overview of progesterone receptor structure, function, and regulation and highlights its important role in the establishment of pregnancy and as a therapeutic target in uterine disease.
Collapse
Affiliation(s)
- Margeaux Wetendorf
- Integrative Molecular and Biomedical Sciences Graduate Program , Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | | |
Collapse
|
29
|
The Role of Steroid Hormone Receptors in the Establishment of Pregnancy in Rodents. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2015; 216:27-49. [DOI: 10.1007/978-3-319-15856-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Tian L, Wang C, Hagen FK, Gormley M, Addya S, Soccio R, Casimiro MC, Zhou J, Powell MJ, Xu P, Deng H, Sauve AA, Pestell RG. Acetylation-defective mutant of Pparγ is associated with decreased lipid synthesis in breast cancer cells. Oncotarget 2014; 5:7303-15. [PMID: 25229978 PMCID: PMC4202124 DOI: 10.18632/oncotarget.2371] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/18/2014] [Indexed: 01/09/2023] Open
Abstract
In our prior publications we characterized a conserved acetylation motif (K(R)xxKK) of evolutionarily related nuclear receptors. Recent reports showed that peroxisome proliferator activated receptor gamma (PPARγ) deacetylation by SIRT1 is involved in delaying cellular senescence and maintaining the brown remodeling of white adipose tissue. However, it still remains unknown whether lysyl residues 154 and 155 (K154/155) of the conserved acetylation motif (RIHKK) in Pparγ1 are acetylated. Herein, we demonstrate that Pparγ1 is acetylated and regulated by both endogenous TSA-sensitive and NAD-dependent deacetylases. Acetylation of lysine 154 was identified by mass spectrometry (MS) while deacetylation of lysine 155 by SIRT1 was confirmed by in vitro deacetylation assay. An in vivo labeling assay revealed K154/K155 as bona fide acetylation sites. The conserved acetylation sites of Pparγ1 and the catalytic domain of SIRT1 are both required for the interaction between Pparγ1 and SIRT1. Sirt1 and Pparγ1 converge to govern lipid metabolism in vivo. Acetylation-defective mutants of Pparγ1 were associated with reduced lipid synthesis in ErbB2 overexpressing breast cancer cells. Together, these results suggest that the conserved lysyl residues K154/K155 of Pparγ1 are acetylated and play an important role in lipid synthesis in ErbB2-positive breast cancer cells.
Collapse
Affiliation(s)
- Lifeng Tian
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chenguang Wang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred K Hagen
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - Michael Gormley
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jie Zhou
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael J Powell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ping Xu
- Department of Pharmacology, Weill Medical College of Cornell University, York Avenue LC216, New York, NY, USA
| | - Haiteng Deng
- Proteomics Resource Center, Rockefeller University, New York, NY, USA
| | - Anthony A Sauve
- Department of Pharmacology, Weill Medical College of Cornell University, York Avenue LC216, New York, NY, USA
| | - Richard G Pestell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Incani F, Serra ML, Meloni A, Cossu C, Saba L, Cabras T, Messana I, Rosatelli MC. AIRE acetylation and deacetylation: effect on protein stability and transactivation activity. J Biomed Sci 2014; 21:85. [PMID: 25158603 PMCID: PMC4256887 DOI: 10.1186/s12929-014-0085-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/16/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The AIRE protein plays a remarkable role as a regulator of central tolerance by controlling the promiscuous expression of tissue-specific antigens in thymic medullary epithelial cells. Defects in AIRE gene cause the autoimmune polyendocrinopathy- candidiasis-ectodermal dystrophy, a rare disease frequent in Iranian Jews, Finns, and Sardinian population. RESULTS In this study, we have precisely mapped, by mass spectrometry experiments, the sites of protein acetylation and, by mutagenesis assays, we have described a set of acetylated lysines as being crucial in influencing the subcellular localization of AIRE. Furthermore, we have also determined that the de-acetyltransferase enzymes HDAC1-2 are involved in the lysine de-acetylation of AIRE. CONCLUSIONS On the basis of our results and those reported in literature, we propose a model in which lysines acetylation increases the stability of AIRE in the nucleus. In addition, we observed that the interaction of AIRE with deacetylases complexes inhibits its transcriptional activity and is probably responsible for the instability of AIRE, which becomes more susceptible to degradation in the proteasome.
Collapse
Affiliation(s)
- Federica Incani
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Maria Luisa Serra
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Alessandra Meloni
- />Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Carla Cossu
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Luisella Saba
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Tiziana Cabras
- />Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Biochimica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Irene Messana
- />Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Biochimica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Rosatelli
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| |
Collapse
|
32
|
The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Nat Commun 2014; 5:4139. [DOI: 10.1038/ncomms5139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/16/2014] [Indexed: 11/09/2022] Open
|
33
|
Tavares-Sanchez OL, Rodriguez C, Gortares-Moroyoqui P, Estrada MI. Hepatocyte nuclear factor-4α, a multifunctional nuclear receptor associated with cardiovascular disease and cholesterol catabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:126-139. [PMID: 24848804 DOI: 10.1080/09603123.2014.915015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, are associated with high plasma cholesterol levels. The conversion of cholesterol to bile acids (BAs) accounts for about 50% of total cholesterol elimination from the body. This phenomenon occurs in the liver and is regulated by nuclear receptors such as hepatocyte nuclear factor-4α (HNF-4α). Therefore, special emphasis is given to HNF-4α properties and its multifunctional role, particularly in the conversion of cholesterol to BAs. HNF-4α is a highly conserved transcription factor that has the potential capacity to transactivate a vast number of genes, including CYP7 which codes for cholesterol 7α-hydroxylase (CYP7A1; EC 1.14.13.17), the rate-limiting enzyme of BA biosynthesis. The fact that HNF-4α transactivation potential can be modulated via phosporylation is of particular interest. Additional findings on structural and functional characteristics of HNF-4α may eventually present alternatives to control the levels of cholesterol in the body and consequently reduce the risk of CVDs.
Collapse
Affiliation(s)
- Olga Lidia Tavares-Sanchez
- a Departamento de Biotecnología y Ciencias Alimentarias , Instituto Tecnológico de Sonora , Ciudad Obregón , Mexico
| | | | | | | |
Collapse
|
34
|
Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther 2014; 142:114-25. [PMID: 24291072 PMCID: PMC3943696 DOI: 10.1016/j.pharmthera.2013.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022]
Abstract
Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR's contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered alongside antiestrogens and aromatase inhibitors.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Kadiyala V, Smith CL. Minireview: The versatile roles of lysine deacetylases in steroid receptor signaling. Mol Endocrinol 2014; 28:607-21. [PMID: 24645680 DOI: 10.1210/me.2014-1002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lysine deacetylases have been known to regulate nuclear receptor function for many years. In the unliganded state, nuclear receptors that form heterodimers with retinoid X receptors, such as the retinoic acid and thyroid hormone receptors, associate with deacetylases to repress target genes. In the case of steroid receptors, binding of an antagonist ligand was initially reported to induce association of deacetylases to prevent activation of target genes. Since then, deacetylases have been shown to have diverse functions in steroid receptor signaling, from regulating interactions with molecular chaperones to facilitating their ability to activate transcription. The purpose of this review is to summarize recent studies on the role of deacetylases in steroid receptor signaling, which show deacetylases to be highly versatile regulators of steroid receptor function.
Collapse
Affiliation(s)
- Vineela Kadiyala
- Department of Pharmacology and Toxicology, College of Pharmacy (V.K., C.L.S.), Department of Chemistry and Biochemistry, College of Science (V.K.), University of Arizona, Tucson Arizona 85721
| | | |
Collapse
|
36
|
Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc Natl Acad Sci U S A 2014; 111:4007-12. [PMID: 24591583 DOI: 10.1073/pnas.1400522111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligand activation and DNA-binding dictate the outcome of glucocorticoid receptor (GR)-mediated transcriptional regulation by inducing diverse receptor conformations that interact differentially with coregulators. GR recruits many coregulators via the well-characterized AF2 interaction surface in the GR ligand-binding domain, but Lin11, Isl-1, Mec-3 (LIM) domain coregulator Hic-5 (TGFB1I1) binds to the relatively uncharacterized tau2 activation domain in the hinge region of GR. Requirement of hydrogen peroxide-inducible clone-5 (Hic-5) for glucocorticoid-regulated gene expression was defined by Hic-5 depletion and global gene-expression analysis. Hic-5 depletion selectively affected both activation and repression of GR target genes, and Hic-5 served as an on/off switch for glucocorticoid regulation of many genes. For some hormone-induced genes, Hic-5 facilitated recruitment of Mediator complex. In contrast, many genes were not regulated by glucocorticoid until Hic-5 was depleted. On these genes Hic-5 prevented GR occupancy and chromatin remodeling and thereby inhibited their hormone-dependent regulation. Transcription factor binding to genomic sites is highly variable among different cell types; Hic-5 represents an alternative mechanism for regulating transcription factor-binding site selection that could apply both within a given cell type and among different cell types. Thus, Hic-5 is a versatile coregulator that acts by multiple gene-specific mechanisms that influence genomic occupancy of GR as well transcription complex assembly.
Collapse
|
37
|
Abdel-Hafiz HA, Horwitz KB. Post-translational modifications of the progesterone receptors. J Steroid Biochem Mol Biol 2014; 140:80-9. [PMID: 24333793 PMCID: PMC3923415 DOI: 10.1016/j.jsbmb.2013.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
Progesterone plays a key role in the development, differentiation and maintenance of female reproductive tissues and has multiple non-reproductive neural functions. Depending on the cell and tissue, the hormonal environment, growth conditions and the developmental stage, progesterone can either stimulate cell growth or inhibit it while promoting differentiation. Progesterone receptors (PRs) belong to the steroid hormone receptor superfamily of ligand-dependent transcription factors. PR proteins are subject to extensive post-translational modifications that include phosphorylation, acetylation, ubiquitination and SUMOylation. The interplay among these modifications is complex with alteration of the receptors by one factor influencing the impact of another. Control over these modifications is species-, tissue- and cell-specific. They in turn regulate multiple functions including PR stability, their subcellular localization, protein-protein interactions and transcriptional activity. These complexities may explain how tissue- and gene-specific differences in regulation are achieved in the same organism, by the same receptor protein and hormone. Here we review current knowledge of PR post-translational modifications and discuss how these may influence receptor function focusing on human breast cancer cells. There is much left to be learned. However, our understanding of this may help to identify therapeutic agents that target PR activity in tissue-specific, even gene-specific ways.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
38
|
Hagan CR, Lange CA. Molecular determinants of context-dependent progesterone receptor action in breast cancer. BMC Med 2014; 12:32. [PMID: 24552158 PMCID: PMC3929904 DOI: 10.1186/1741-7015-12-32] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/21/2014] [Indexed: 12/22/2022] Open
Abstract
The ovarian steroid hormone, progesterone, and its nuclear receptor, the progesterone receptor, are implicated in the progression of breast cancer. Clinical trial data on the effects of hormone replacement therapy underscore the importance of understanding how progestins influence breast cancer growth. The progesterone receptor regulation of distinct target genes is mediated by complex interactions between the progesterone receptor and other regulatory factors that determine the context-dependent transcriptional action of the progesterone receptor. These interactions often lead to post-translational modifications to the progesterone receptor that can dramatically alter receptor function, both in the normal mammary gland and in breast cancer. This review highlights the molecular components that regulate progesterone receptor transcriptional action and describes how a better understanding of the complex interactions between the progesterone receptor and other regulatory factors may be critical to enhancing the clinical efficacy of anti-progestins for use in the treatment of breast cancer.
Collapse
Affiliation(s)
| | - Carol A Lange
- Department of Medicine (Hematology, Oncology, and Transplantation) and the Department of Pharmacology, University of Minnesota, Masonic Cancer Center, 420 Delaware St SE, MMC 806, Minneapolis, MN 55455, USA.
| |
Collapse
|
39
|
Helsen C, Claessens F. Looking at nuclear receptors from a new angle. Mol Cell Endocrinol 2014; 382:97-106. [PMID: 24055275 DOI: 10.1016/j.mce.2013.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
While the structures of the DNA- and ligand-binding domains of many nuclear receptors have been determined in great detail; the mechanisms by which these domains interact and possibly 'communicate' is still under debate. The first crystal structures of receptor dimers bound to ligand, DNA and coactivator peptides provided new insights in this matter. The observed binding modes revealed exciting new interaction surfaces between the different nuclear receptor domains. Such interfaces are proposed to be the route through which allosteric signals from the DNA are passed on to the ligand-binding domain and the activating functions of the receptor. The structural determinations of DNA-bound receptor dimers in solution, however, revealed an extended structure of the receptors. Here, we discuss these apparent contradictory structural data and their possible implications for the functioning of nuclear receptors.
Collapse
Affiliation(s)
- Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, O&N1, Herestraat 49, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, O&N1, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
40
|
Chung HH, Sze SK, Woo ARE, Sun Y, Sim KH, Dong XM, Lin VCL. Lysine methylation of progesterone receptor at activation function 1 regulates both ligand-independent activity and ligand sensitivity of the receptor. J Biol Chem 2014; 289:5704-22. [PMID: 24415758 DOI: 10.1074/jbc.m113.522839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone receptor (PR) exists in two isoforms, PRA and PRB, and both contain activation functions AF-1 and AF-2. It is believed that AF-1 is primarily responsible for the ligand-independent activity, whereas AF-2 mediates ligand-dependent PR activation. Although more than a dozen post-translational modifications of PR have been reported, no post-translational modification on AF-1 or AF-2 has been reported. Using LC-MS/MS-based proteomic analysis, this study revealed AF-1 monomethylation at Lys-464. Mutational analysis revealed the remarkable importance of Lys-464 in regulating PR activity. Single point mutation K464Q or K464A led to ligand-independent PR gel upshift similar to the ligand-induced gel upshift. This upshift was associated with increases in both ligand-dependent and ligand-independent PR phosphorylation and PR activity due to the hyperactivation of AF-1. In contrast, mutation of Lys-464 to the bulkier phenylalanine to mimic the effect of methylation caused a drastic decrease in PR activity. Importantly, PR-K464Q also showed heightened ligand sensitivity, and this was associated with increases in its functional interaction with transcription co-regulators NCoR1 and SRC-1. These results suggest that monomethylation of PR at Lys-464 probably has a repressive effect on AF-1 activity and ligand sensitivity.
Collapse
Affiliation(s)
- Hwa Hwa Chung
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
41
|
Chung HH, Sze SK, Tay ASL, Lin VCL. Acetylation at lysine 183 of progesterone receptor by p300 accelerates DNA binding kinetics and transactivation of direct target genes. J Biol Chem 2013; 289:2180-94. [PMID: 24302725 DOI: 10.1074/jbc.m113.517896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The identification of lysine acetylation of steroid hormone receptors has previously been based on the presence of consensus motif (K/R)XKK. This study reports the discovery by mass spectrometry of a novel progesterone receptor acetylation site at Lys-183 that is not in the consensus motif. In vivo acetylation and mutagenesis experiments revealed that Lys-183 is a primary site of progesterone receptor (PR) acetylation. Lys-183 acetylation is enhanced by p300 overexpression and abrogated by p300 gene silencing, suggesting that p300 is the major acetyltransferase for Lys-183 acetylation. Furthermore, p300-mediated Lys-183 acetylation is associated with heightened PR activity. Accordingly, the acetylation-mimicking mutant PRB-K183Q exhibited accelerated DNA binding kinetics and greater activity compared with the wild-type PRB on genes containing progesterone response element. In contrast, Lys-183 acetylation had no influence on PR tethering effect on the nuclear factor κ-light chain enhancer of activated B cells (NFκB). Additionally, increases of Lys-183 acetylation by p300 overexpression or inhibition of deacetylation resulted in increases of Ser-294 phosphorylation levels. In conclusion, PR acetylation at Lys-183 by p300 potentiates PR activity through accelerated binding of its direct target genes without affecting PR tethering on other transcription factors. The effect may be mediated by enhancing Ser-294 phosphorylation.
Collapse
Affiliation(s)
- Hwa Hwa Chung
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
42
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
43
|
Hagan CR, Knutson TP, Lange CA. A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells. Nucleic Acids Res 2013; 41:8926-42. [PMID: 23921636 PMCID: PMC3799453 DOI: 10.1093/nar/gkt706] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptors (PR) are transcription factors relevant to breast cancer biology. Herein, we describe an N-terminal common docking (CD) domain in PR-B, a motif first described in mitogen-activated protein kinases. Binding studies revealed PR-B interacts with dual-specificity phosphatase 6 (DUSP6) via the CD domain. Mutation of the PR-B CD domain (mCD) attenuated cell cycle progression and expression of PR-B target genes (including STAT5A and Wnt1); mCD PR-B failed to undergo phosphorylation on Ser81, a ck2-dependent site required for expression of these genes. PR-B Ser81 phosphorylation was dependent on binding with DUSP6 and required for recruitment of a transcriptional complex consisting of PR-B, DUSP6 and ck2 to an enhancer region upstream of the Wnt1 promoter. STAT5 was present at this site in the absence or presence of progestin. Furthermore, phospho-Ser81 PR-B was recruited to the STAT5A gene upon progestin treatment, suggestive of a feed-forward mechanism. Inhibition of JAK/STAT-signaling blocked progestin-induced STAT5A and Wnt1 expression. Our studies show that DUSP6 serves as a scaffold for ck2-dependent PR-B Ser81 phosphorylation and subsequent PR-B-specific gene selection in coordination with STAT5. Coregulation of select target genes by PR-B and STAT5 is likely a global mechanism required for growth promoting programs relevant to mammary stem cell biology and cancer.
Collapse
Affiliation(s)
- Christy R Hagan
- Departments of Medicine and Pharmacology, Cell Signaling Program; Masonic Cancer Center, University of Minnesota, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
44
|
Diep CH, Charles NJ, Gilks CB, Kalloger SE, Argenta PA, Lange CA. Progesterone receptors induce FOXO1-dependent senescence in ovarian cancer cells. Cell Cycle 2013; 12:1433-49. [PMID: 23574718 DOI: 10.4161/cc.24550] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loss of nuclear progesterone receptors (PR) and low circulating progesterone levels are associated with increased ovarian cancer (OC) risk. However, PR are abundantly expressed in a significant percentage of serous and endometrioid ovarian tumors; patients with PR+ tumors typically experience longer progression-free survival relative to those with PR-null tumors. The molecular mechanisms of these protective effects are poorly understood. To study PR action in OC in the absence of added estrogen (i.e., needed to induce robust PR expression), we created ES-2 OC cells stably expressing vector control or GFP-tagged PR-B (GFP-PR). Progestin (R5020) stimulation of ES-2 cells stably expressing GFP-PR induced cellular senescence characterized by altered cellular morphology, prolonged survival, senescence-associated β-galactosidase activity, G1 cell cycle arrest and upregulation of the cell cycle inhibitor, p21, as well as the Forkhead-box transcription factor, FOXO1; these results repeated in unmodified ER+/PR+ PEO4 OC cells. PR-B and FOXO1 were detected within the same PRE-containing regions of the p21 upstream promoter. Knockdown of p21 resulted in molecular compensation via FOXO1-dependent upregulation of numerous FOXO1 target genes (p15, p16, p27) and an increased rate of senescence. Inhibition of FOXO1 (with AS1842856) or stable FOXO1 knockdown inhibited progestin-induced p21 expression and blocked progestin-induced senescence. Overall, these findings support a role for PR as a tumor suppressor in OC cells, which exhibits inhibitory effects by inducing FOXO1-dependent cellular senescence. Clinical "priming" of the PR-FOXO1-p21 signaling pathway using PR agonists may provide a useful strategy to induce irreversible cell cycle arrest and thereby sensitize OC cells to existing chemotherapies as part of combination "two-step" therapies.
Collapse
Affiliation(s)
- Caroline H Diep
- Department of Medicine, Hematology, Oncology, and Transplantation Division, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y, Kim IK. Histone Deacetylase Inhibition Attenuates Transcriptional Activity of Mineralocorticoid Receptor Through Its Acetylation and Prevents Development of Hypertension. Circ Res 2013; 112:1004-12. [DOI: 10.1161/circresaha.113.301071] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Inhibition of histone deacetylases (HDACs) results in attenuated development of hypertension in deoxycorticosterone acetate–induced hypertensive rats and spontaneously hypertensive rats. However, the molecular mechanism remains elusive.
Objective:
We hypothesized that HDAC inhibition attenuates transcriptional activity of mineralocorticoid receptor (MR) through its acetylation and prevents development of hypertension in deoxycorticosterone acetate–induced hypertensive rats.
Methods and Results:
Expression of MR target genes was measured by quantitative real-time polymerase chain reaction. Recruitment of MR and RNA polymerase II on promoters of target genes was analyzed by chromatin immunoprecipitation assay. Live cell imaging was performed for visualization of nuclear translocation of MR. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Transcriptional activity of MR was determined by luciferase assay. For establishment of a hyperaldosteronism animal, Sprague-Dawley rats underwent uninephrectomy and received subcutaneous injection of 40 mg/kg per week of deoxycorticosterone acetate and drinking water containing 1% NaCl. Treatment with a HDAC class I inhibitor resulted in reduced expression of MR target genes in accordance with reduced recruitment of MR and RNA polymerase II on promoters of target genes. HDAC inhibition promoted MR acetylation, leading to decreased transcriptional activity of MR. Knockdown or inhibition of HDAC3 resulted in reduced expression of MR target genes induced by mineralocorticoids.
Conclusions:
These results indicate that HDAC inhibition attenuates transcriptional activity of MR through its acetylation and prevents development of hypertension in deoxycorticosterone acetate–induced hypertensive rats.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Dong-Youb Lee
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Hyun-Min Cho
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Sang-Yeob Kim
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Yasumasa Iwasaki
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - In Kyeom Kim
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| |
Collapse
|
46
|
Khan JA, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line. PLoS One 2012; 7:e45993. [PMID: 23029355 PMCID: PMC3454371 DOI: 10.1371/journal.pone.0045993] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/23/2012] [Indexed: 12/28/2022] Open
Abstract
Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.
Collapse
Affiliation(s)
- Junaid A. Khan
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Department of Physiology and Pharmacology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Catherine Bellance
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Hugues Loosfelt
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 693, Steroid Receptors: Endocrine and Metabolic Pathophysiology, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche UMR S693, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
47
|
Al-Sabbagh M, Lam EWF, Brosens JJ. Mechanisms of endometrial progesterone resistance. Mol Cell Endocrinol 2012; 358:208-15. [PMID: 22085558 DOI: 10.1016/j.mce.2011.10.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Throughout the reproductive years, the rise and fall in ovarian hormones elicit in the endometrium waves of cell proliferation, differentiation, recruitment of inflammatory cells, apoptosis, tissue breakdown and regeneration. The activated progesterone receptor, a member of the superfamily of ligand-dependent transcription factors, is the master regulator of this intense tissue remodelling process in the uterus. Its activity is tightly regulated by interaction with cell-specific transcription factors and coregulators as well as by specific posttranslational modifications that respond dynamically to a variety of environmental and inflammatory signals. Endometriosis, a chronic inflammatory disorder, disrupts coordinated progesterone responses throughout the reproductive tract, including in the endometrium. This phenomenon is increasingly referred to as 'progesterone resistance'. Emerging evidence suggests that progesterone resistance in endometriosis is not just a consequence of perturbed progesterone signal transduction caused by chronic inflammation but associated with epigenetic chromatin changes that determine the intrinsic responsiveness of endometrial cells to differentiation cues.
Collapse
Affiliation(s)
- Marwa Al-Sabbagh
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | |
Collapse
|
48
|
Clinckemalie L, Vanderschueren D, Boonen S, Claessens F. The hinge region in androgen receptor control. Mol Cell Endocrinol 2012; 358:1-8. [PMID: 22406839 DOI: 10.1016/j.mce.2012.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/19/2023]
Abstract
The region between the DNA-binding domain and the ligand-binding domain of nuclear receptors is termed the hinge region. Although this flexible linker is poorly conserved, diverse functions have been ascribed to it. For the androgen receptor (AR), the hinge region and in particular the (629)RKLKKL(634) motif, plays a central role in controlling AR activity, not only because it acts as the main part of the nuclear translocation signal, but also because it regulates the transactivation potential and intranuclear mobility of the receptor. It is also a target site for acetylation, ubiquitylation and methylation. The interplay between these different modifications as well as the phosphorylation at serine 650 will be discussed here. The hinge also has an important function in AR binding to classical versus selective androgen response elements. In addition, the number of coactivators/corepressors that might act via interaction with the hinge region is still growing. The importance of the hinge region is further illustrated by the different somatic mutations described in patients with androgen insensitivity syndrome and prostate cancer. In conclusion, the hinge region serves as an integrator for signals coming from different pathways that provide feedback to the control of AR activity.
Collapse
Affiliation(s)
- Liesbeth Clinckemalie
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
49
|
Jacobsen BM, Horwitz KB. Progesterone receptors, their isoforms and progesterone regulated transcription. Mol Cell Endocrinol 2012; 357:18-29. [PMID: 21952082 PMCID: PMC3272316 DOI: 10.1016/j.mce.2011.09.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/11/2011] [Accepted: 09/11/2011] [Indexed: 01/16/2023]
Abstract
This review discusses mechanisms by which progesterone receptors (PR) regulate transcription. We examine available data in different species and tissues regarding: (1) regulation of PR levels; and (2) expression profiling of progestin-regulated genes by total PRs, or their PRA and PRB isoforms. (3) We address current views about the composition of progesterone response elements, and postulate that PR monomers acting through "half-site" elements are common, entailing cooperativity with neighboring DNA-bound transcription factors. (4) We summarize transcription data for multiple progestin-regulated promoters as directed by total PR, or PRA vs. PRB. We conclude that current models and methods used to study PR function are problematical, and recommend that future work employ cells and receptors appropriate to the species, focusing on analyses of the effects of endogenous receptors targeting endogenous genes in native chromatin.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine/Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| | | |
Collapse
|
50
|
Hagan CR, Daniel AR, Dressing GE, Lange CA. Role of phosphorylation in progesterone receptor signaling and specificity. Mol Cell Endocrinol 2012; 357:43-9. [PMID: 21945472 PMCID: PMC3265648 DOI: 10.1016/j.mce.2011.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/08/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
Progesterone receptors (PR), in concert with peptide growth factor-initiated signaling pathways, initiate massive expansion of the epithelial cell compartment associated with the process of alveologenesis in the developing mammary gland. PR-dependent signaling events also contribute to inappropriate proliferation observed in breast cancer. Notably, PR-B isoform-specific cross talk with growth factor-driven pathways is required for the proliferative actions of progesterone. Indeed, PRs act as heavily phosphorylated transcription factor "sensors" for mitogenic protein kinases that are often elevated and/or constitutively activated in invasive breast cancers. In addition, phospho-PR-target genes frequently include the components of mitogenic signaling pathways, revealing a mechanism for feed-forward signaling that confers increased responsiveness of, PR +mammary epithelial cells to these same mitogenic stimuli. Understanding the mechanisms and isoform selectivity of PR/kinase interactions may yield further insight into targeting altered signaling networks in breast and other hormonally responsive cancers (i.e. lung, uterine and ovarian) in the clinic. This review focuses on PR phosphorylation by mitogenic protein kinases and mechanisms of PR-target gene selection that lead to increased cell proliferation.
Collapse
Affiliation(s)
- Christy R Hagan
- University of Minnesota, Departments of Medicine and Pharmacology, Division of Hematology, Oncology, and Transplantation, Women's Cancer Program, Masonic Cancer Center, Minneapolis, MN 55455, United States
| | | | | | | |
Collapse
|