1
|
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024; 16:3560. [PMID: 39458554 PMCID: PMC11510221 DOI: 10.3390/nu16203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Obesity, clinically defined as a body mass index (BMI) of 30 kg/m2 or higher, is a medical condition characterized by the excessive accumulation of body fat, which can lead to adverse health consequences. As a global public health issue with an escalating prevalence, controlling appetite and satiety is essential for regulating energy balance and managing body weight. Dietary proteins and peptides have gained interest in their potential to prevent and treat obesity by modulating satiety signals. This narrative review analyzes scientific evidence highlighting the role of dietary proteins and peptides in regulating satiety signals and investigates their therapeutic potential in preventing and treating obesity. METHODS A comprehensive literature search was conducted in multiple electronic databases, including PubMed, Scopus, and Web of Science. The search focused on articles examining the impact of dietary proteins and peptides on satiety and obesity, encompassing both preclinical and clinical trials. RESULTS Several studies have demonstrated a correlation between the intake of specific proteins or peptides from plant and animal sources and satiety regulation. These investigations identified mechanisms where amino acids and peptides interact with enteroendocrine cell receptors, activating intracellular signaling cascades that promote the release of anorexigenic gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). Both in vitro and in vivo assays have shown that these interactions contribute to appetite regulation and the sensation of satiety. CONCLUSIONS Using proteins and peptides in the diet may be an effective strategy for regulating appetite and controlling body weight. However, more research-including clinical trials-is needed to understand the underlying mechanisms better and optimize the application of these bioactive compounds in preventing and treating obesity.
Collapse
Affiliation(s)
- Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico;
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Mayvi Alvarado-Olivarez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa-Enríquez 91193, Veracruz, Mexico
| |
Collapse
|
2
|
Clavenzani P, Lattanzio G, Bonaldo A, Parma L, Busti S, Oterhals Å, Romarheim OH, Aspevik T, Gatta PP, Mazzoni M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals (Basel) 2023; 13:3020. [PMID: 37835626 PMCID: PMC10571541 DOI: 10.3390/ani13193020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating "open type" and "closed type" EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.
Collapse
Affiliation(s)
- Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Åge Oterhals
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Odd Helge Romarheim
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Tone Aspevik
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| |
Collapse
|
3
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
4
|
Gong Y, Yang B, Zhang D, Zhang Y, Tang Z, Yang L, Coate KC, Yin L, Covington BA, Patel RS, Siv WA, Sellick K, Shou M, Chang W, Danielle Dean E, Powers AC, Chen W. Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways. Nat Commun 2023; 14:235. [PMID: 36646689 PMCID: PMC9842633 DOI: 10.1038/s41467-022-35705-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.
Collapse
Affiliation(s)
- Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Dingdong Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Liu Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Ravi S Patel
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Walter A Siv
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Matthew Shou
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Wenhan Chang
- University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, 94158, USA
| | - E Danielle Dean
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
6
|
He Y, Su J, Gao H, Li J, Feng Z, Yin Y. Untargeted Metabolomics Reveals the Function of GPRC6A in Amino Acid and Lipid Metabolism in Mice. Metabolites 2022; 12:metabo12090776. [PMID: 36144181 PMCID: PMC9502419 DOI: 10.3390/metabo12090776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
GPRC6A is an amino acid sensor in the cytomembrane. Despite substantial evidence for the role of GPRC6A in metabolism, the specific effects and mechanism by which this gene acts on metabolic processes are still unresolved. In this study, serum biochemical parameters related to liver and kidney function and serum amino acid levels were determined in GPRC6A wild-type (WT) and knockout (KO) mice. An untargeted serum metabolomics analysis was also conducted for the first time, to the best of our knowledge, to decipher the function of GPRC6A in metabolic processes. GPRC6A was involved in lipid and amino acid metabolism, mainly by affecting liver function. A loss of GPRC6A function may perturb bile acid metabolism, thus leading to abnormal unsaturated fatty acid metabolism. GPRC6A KO may lead to excessive protein breakdown under starvation, and the loss of GPRC6A had a significant effect on phenylalanine metabolism-related pathways. Our metabolomics data provide a novel basis for further functional studies of GPRC6A.
Collapse
Affiliation(s)
- Yumin He
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Canter for Healthy Livestock and Poultry Production, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China(
- Animal Nutrition and Human Health Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jingyun Su
- Animal Nutrition and Human Health Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hongrui Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Canter for Healthy Livestock and Poultry Production, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China(
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jianzhong Li
- Animal Nutrition and Human Health Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Correspondence: (J.L.); (Z.F.)
| | - Zemeng Feng
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Canter for Healthy Livestock and Poultry Production, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China(
- Correspondence: (J.L.); (Z.F.)
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Canter for Healthy Livestock and Poultry Production, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China(
- Animal Nutrition and Human Health Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
7
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
8
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
9
|
Diepeveen J, Moerdijk‐Poortvliet TCW, van der Leij FR. Molecular insights into human taste perception and umami tastants: A review. J Food Sci 2022; 87:1449-1465. [PMID: 35301715 PMCID: PMC9314127 DOI: 10.1111/1750-3841.16101] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/08/2023]
Abstract
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
Collapse
Affiliation(s)
- Johan Diepeveen
- Research Group Marine Biobased SpecialtiesChemistry Department, HZ University of Applied SciencesVlissingenThe Netherlands
| | | | - Feike R. van der Leij
- Research and Innovation Centre Agri, Food & Life Sciences (RIC‐AFL)Inholland University of Applied SciencesDelftThe Netherlands
| |
Collapse
|
10
|
Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 2022; 15:14. [PMID: 35109896 PMCID: PMC8812204 DOI: 10.1186/s13041-022-00899-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke, caused by a lack of blood supply in brain tissues, is the third leading cause of human death and disability worldwide, and usually results in sensory and motor dysfunction, cognitive impairment, and in severe cases, even death. Autophagy is a highly conserved lysosome-dependent process in which eukaryotic cells removal misfolded proteins and damaged organelles in cytoplasm, which is critical for energy metabolism, organelle renewal, and maintenance of intracellular homeostasis. Increasing evidence suggests that autophagy plays important roles in pathophysiological mechanisms under ischemic conditions. However, there are still controversies about whether autophagy plays a neuroprotective or damaging role after ischemia. G-protein-coupled receptors (GPCRs), one of the largest protein receptor superfamilies in mammals, play crucial roles in various physiological and pathological processes. Statistics show that GPCRs are the targets of about one-fifth of drugs known in the world, predicting potential values as targets for drug research. Studies have demonstrated that nutritional deprivation can directly or indirectly activate GPCRs, mediating a series of downstream biological processes, including autophagy. It can be concluded that there are interactions between autophagy and GPCRs signaling pathway, which provides research evidence for regulating GPCRs-mediated autophagy. This review aims to systematically discuss the underlying mechanism and dual roles of autophagy in cerebral ischemia, and describe the GPCRs-mediated autophagy, hoping to probe promising therapeutic targets for ischemic stroke through in-depth exploration of the GPCRs-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Weichen Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yang Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
11
|
Wang D, Ye J, Shi R, Zhao B, Liu Z, Lin W, Liu X. Dietary protein and amino acid restriction: Roles in metabolic health and aging-related diseases. Free Radic Biol Med 2022; 178:226-242. [PMID: 34890767 DOI: 10.1016/j.freeradbiomed.2021.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity is a worldwide phenomenon in all age groups and is associated with aging-related diseases such as type 2 diabetes, as well metabolic and cardiovascular diseases. The use of dietary restriction (DR) while avoiding malnutrition has many profound beneficial effects on aging and metabolic health, and dietary protein or specific amino acid (AA) restrictions, rather than overall calorie intake, are considered to play key roles in the effects of DR on host health. Whereas comprehensive reviews of the underlying mechanisms are limited, protein restriction and methionine (Met) restriction improve metabolic health and aging-related neurodegenerative diseases, and may be associated with FGF21, mTOR and autophagy, improved mitochondrial function and oxidative stress. Circulating branched-chain amino acids (BCAAs) are inversely correlated with metabolic health, and BCAAs and leucine (Leu) restriction promote metabolic homeostasis in rodents. Although tryptophan (Trp) restriction extends the lifespan of rodents, the Trp-restricted diet is reported to increase inflammation in aged mice, while severe Trp restriction has side effects such as anorexia. Furthermore, inadequate protein intake in the elderly increases the risk of muscle-centric health. Therefore, the restriction of specific AAs may be an effective and executable dietary manipulation for metabolic and aging-related health in humans, which warrants further investigation to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wei Lin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
12
|
Lin CH, Li HY, Wang SH, Chen YH, Chen YC, Wu HT. Consumption of Non-Nutritive Sweetener, Acesulfame Potassium Exacerbates Atherosclerosis through Dysregulation of Lipid Metabolism in ApoE -/- Mice. Nutrients 2021; 13:nu13113984. [PMID: 34836239 PMCID: PMC8618357 DOI: 10.3390/nu13113984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Obesity is associated with the risk of cardiovascular disease, and non-nutritive sweetener, such as acesulfame potassium (AceK) has been used to combat obesity. However, the effects of AceK on cardiovascular disease are still unclear. In this study, high cholesterol diet (HCD)-fed ApoE-/- mice had dysregulated plasma lipid profile, and developed atherosclerosis, determined by atherosclerotic plaque in the aorta. Supplement of AceK in HCD worsened the dyslipidemia and increased atherosclerotic plaque, as compared with HCD-fed ApoE-/- mice. Since treatment of AceK in RAW264.7 macrophages showed no significant effects on inflammatory cytokine expressions, we then investigated the impacts of AceK on lipid metabolism. We found that AceK consumption enhanced hepatic lipogenesis and decreased β-oxidation in ApoE-/- mice. In addition, AceK directly increased lipogenesis and decreased β-oxidation in HepG2 cells. Taken together, a concurrent consumption of AceK exacerbated HCD-induced dyslipidemia and atherosclerotic lesion in ApoE-/- mice, and AceK might increase the risk of atherosclerosis under HCD.
Collapse
Affiliation(s)
- Cheng-Hsin Lin
- Department of Surgery, Shuang Ho Hospital, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Yue-Hwa Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan;
- School of Food Safety, Taipei Medical University, Taipei 110, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5205); Fax: +886-6-2353660
| |
Collapse
|
13
|
Cabezudo S, Sanz-Flores M, Caballero A, Tasset I, Rebollo E, Diaz A, Aragay AM, Cuervo AM, Mayor F, Ribas C. Gαq activation modulates autophagy by promoting mTORC1 signaling. Nat Commun 2021; 12:4540. [PMID: 34315875 PMCID: PMC8316552 DOI: 10.1038/s41467-021-24811-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.
Collapse
Affiliation(s)
- Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
- Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Sanz-Flores
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alvaro Caballero
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elena Rebollo
- Molecular Imaging Platform (MIP), Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Antonio Diaz
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna M Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Ana María Cuervo
- Department of Developmental and Molecular Biology and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
14
|
Watkins JD, Koumanov F, Gonzalez JT. Protein- and Calcium-Mediated GLP-1 Secretion: A Narrative Review. Adv Nutr 2021; 12:2540-2552. [PMID: 34192748 PMCID: PMC8634310 DOI: 10.1093/advances/nmab078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is an incretin hormone produced in the intestine that is secreted in response to nutrient exposure. GLP-1 potentiates glucose-dependent insulin secretion from the pancreatic β cells and promotes satiety. These important actions on glucose metabolism and appetite have led to widespread interest in GLP-1 receptor agonism. Typically, this involves pharmacological GLP-1 mimetics or targeted inhibition of dipeptidyl peptidase-IV, the enzyme responsible for GLP-1 degradation. However, nutritional strategies provide a widely available, cost-effective alternative to pharmacological strategies for enhancing hormone release. Recent advances in nutritional research have implicated the combined ingestion of protein and calcium with enhanced endogenous GLP-1 release, which is likely due to activation of receptors with high affinity and/or sensitivity for amino acids and calcium. Specifically targeting these receptors could enhance gut hormone secretion, thus providing a new therapeutic option. This narrative review provides an overview of the latest research on protein- and calcium-mediated GLP-1 release with an emphasis on human data, and a perspective on potential mechanisms that link potent GLP-1 release to the co-ingestion of protein and calcium. In light of these recent findings, potential future research directions are also presented.
Collapse
Affiliation(s)
- Jonathan D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - Françoise Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
15
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
16
|
Macronutrient Sensing in the Oral Cavity and Gastrointestinal Tract: Alimentary Tastes. Nutrients 2021; 13:nu13020667. [PMID: 33669584 PMCID: PMC7922037 DOI: 10.3390/nu13020667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
There are numerous and diverse factors enabling the overconsumption of foods, with the sense of taste being one of these factors. There are four well established basic tastes: sweet, sour, salty, and bitter; all with perceptual independence, salience, and hedonic responses to encourage or discourage consumption. More recently, additional tastes have been added to the basic taste list including umami and fat, but they lack the perceptual independence and salience of the basics. There is also emerging evidence of taste responses to kokumi and carbohydrate. One interesting aspect is the link with the new and emerging tastes to macronutrients, with each macronutrient having two distinct perceptual qualities that, perhaps in combination, provide a holistic perception for each macronutrient: fat has fat taste and mouthfeel; protein has umami and kokumi; carbohydrate has sweet and carbohydrate tastes. These new tastes can be sensed in the oral cavity, but they have more influence post- than pre-ingestion. Umami, fat, kokumi, and carbohydrate tastes have been suggested as an independent category named alimentary. This narrative review will present and discuss evidence for macronutrient sensing throughout the alimentary canal and evidence of how each of the alimentary tastes may influence the consumption of foods.
Collapse
|
17
|
Pizarroso NA, Fuciños P, Gonçalves C, Pastrana L, Amado IR. A Review on the Role of Food-Derived Bioactive Molecules and the Microbiota-Gut-Brain Axis in Satiety Regulation. Nutrients 2021; 13:632. [PMID: 33669189 PMCID: PMC7919798 DOI: 10.3390/nu13020632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a chronic disease resulting from an imbalance between energy intake and expenditure. The growing relevance of this metabolic disease lies in its association with other comorbidities. Obesity is a multifaceted disease where intestinal hormones such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY), produced by enteroendocrine cells (EECs), have a pivotal role as signaling systems. Receptors for these hormones have been identified in the gut and different brain regions, highlighting the interconnection between gut and brain in satiation mechanisms. The intestinal microbiota (IM), directly interacting with EECs, can be modulated by the diet by providing specific nutrients that induce environmental changes in the gut ecosystem. Therefore, macronutrients may trigger the microbiota-gut-brain axis (MGBA) through mechanisms including specific nutrient-sensing receptors in EECs, inducing the secretion of specific hormones that lead to decreased appetite or increased energy expenditure. Designing drugs/functional foods based in bioactive compounds exploiting these nutrient-sensing mechanisms may offer an alternative treatment for obesity and/or associated metabolic diseases. Organ-on-a-chip technology represents a suitable approach to model multi-organ communication that can provide a robust platform for studying the potential of these compounds as modulators of the MGBA.
Collapse
Affiliation(s)
| | | | | | | | - Isabel R. Amado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/ n, 4715-330 Braga, Portugal; (N.A.P.); (P.F.); (C.G.); (L.P.)
| |
Collapse
|
18
|
Abstract
Glucagon-like peptide-1 (GLP-1) is an enterohormone with a key role in several processes controlling body homeostasis, including glucose homeostasis and food intake regulation. It is secreted by the intestinal cells in response to nutrients, such as glucose, fat and amino acids. In the present review, we analyse the effect of protein on GLP-1 secretion and clearance. We review the literature on the GLP-1 secretory effects of protein and protein hydrolysates, and the mechanisms through which they exert these effects. We also review the studies on protein from different sources that has inhibitory effects on dipeptidyl peptidase-4 (DPP4), the enzyme responsible for GLP-1 inactivation, with particular emphasis on specific sources and treatments, and the gaps there still are in knowledge. There is evidence that the protein source and the hydrolytic processing applied to them can influence the effects on GLP-1 signalling. The gastrointestinal digestion of proteins, for example, significantly changes their effectiveness at modulating this enterohormone secretion in both in vivo and in vitro studies. Nevertheless, little information is available regarding human studies and more research is required to understand their potential as regulators of glucose homeostasis.
Collapse
|
19
|
Tulipano G. Role of Bioactive Peptide Sequences in the Potential Impact of Dairy Protein Intake on Metabolic Health. Int J Mol Sci 2020; 21:E8881. [PMID: 33238654 PMCID: PMC7700308 DOI: 10.3390/ijms21228881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
For years, there has been an increasing move towards elucidating the complexities of how food can interplay with the signalling networks underlying energy homeostasis and glycaemic control. Dairy foods can be regarded as the greatest source of proteins and peptides with various health benefits and are a well-recognized source of bioactive compounds. A number of dairy protein-derived peptide sequences with the ability to modulate functions related to the control of food intake, body weight gain and glucose homeostasis have been isolated and characterized. Their being active in vivo may be questionable mainly due to expected low bioavailability after ingestion, and hence their real contribution to the metabolic impact of dairy protein intake needs to be discussed. Some reports suggest that the differential effects of dairy proteins-in particular whey proteins-on mechanisms underlying energy balance and glucose-homeostasis may be attributed to their unique amino acid composition and hence the release of free amino acid mixtures enriched in essential amino acids (i.e., branched-chain-amino acids) upon digestion. Actually, the research reports reviewed in this article suggest that, among a number of dairy protein-derived peptides isolated and characterized as bioactive compounds in vitro, some peptides can be active in vivo post-oral administration through a local action in the gut, or, alternatively, a systemic action on specific molecular targets after entering the systemic circulation. Moreover, these studies highlight the importance of the enteroendocrine system in the cross talk between food proteins and the neuroendocrine network regulating energy balance.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
20
|
Hamill MJ, Afeyan R, Chakravarthy MV, Tramontin T. Endogenous Metabolic Modulators: Emerging Therapeutic Potential of Amino Acids. iScience 2020; 23:101628. [PMID: 33103071 PMCID: PMC7569218 DOI: 10.1016/j.isci.2020.101628] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multifactorial disease pathophysiology is complex and incompletely addressed by existing targeted pharmacotherapies. Amino acids (AAs) and related metabolites and precursors are a class of endogenous metabolic modulators (EMMs) that have diverse biological functions and, thus, have been explored for decades as potential multifactorial disease treatments. Here, we review the literature on this class of EMMs in disease treatment, with a focus on the emerging clinical studies on AAs and related metabolites and precursors as single- and combination-agents targeted to a single biology. These clinical research insights, in addition to increasing understanding of disease metabolic profiles and combinatorial therapeutic design principles, highlight an opportunity to develop EMM compositions with AAs and related metabolites and precursors to target multifactorial disease biology. EMM compositions are uniquely designed to enable a comprehensive approach, with potential to simultaneously and safely target pathways underlying multifactorial diseases and to regulate biological processes that promote overall health.
Collapse
|
21
|
Evaluation of an Amino Acid Mix on the Secretion of Gastrointestinal Peptides, Glucometabolic Homeostasis, and Appetite in Obese Adolescents Administered with a Fixed-Dose or ad Libitum Meal. J Clin Med 2020; 9:jcm9093054. [PMID: 32971830 PMCID: PMC7564111 DOI: 10.3390/jcm9093054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins have been demonstrated to reduce food intake in animals and humans via peripheral and central mechanisms. Supplementation of a dietetic regimen with single or mixed amino acids might represent an approach to improve the effectiveness of any body weight reduction program in obese subjects. The aim of the present study was to evaluate the effects of an amino acid mix (L-arginine + L-leucine + L-glutamine + L-tryptophan) on the secretion of some gastrointestinal peptides (i.e., ghrelin and glucagon-like peptide type 1, GLP-1), glucometabolic homeostasis (i.e., glucose, insulin, and glucagon), and appetite (hunger/satiety scored by visual analogue scale, VAS) in obese adolescents (n = 14; 10 females and 4 males; age: 16.6 ± 1.0 years; body mass index (BMI): 36.4 ± 4.6 kg/m²; fat-free mass (FFM): 54.9 ± 4.7%; fat mass (FM): 45.1 ± 4.4%) administered with a fixed-dose (lunch) or ad libitum (dinner) meal. Isocaloric maltodextrins were used as control treatment. During the lunch test, a significant increase in circulating levels of GLP-1, but not of ghrelin, was observed in the amino acid-treated group, which was congruent with significant changes in appetite, i.e., increase in satiety and decrease in hunger. A significant hyperglycemia was found in the maltodextrin-treated group during the prelunch period, without any significant changes in insulin and glucagon between the two groups. During the dinner test, there were no significant differences in appetite (hunger/satiety) and intake of calories. In conclusion, L-arginine, L-leucine, L-glutamine, and L-tryptophan, when administered to obese adolescents with a fixed-dose meal, are capable of evoking an anorexigenic response, which is, at least in part, mediated by an increase in GLP-1 released in circulation by L cells, which are capable of chemosensing specific amino acids present in the intestinal lumen. Further additional studies are requested to understand whether higher doses are necessary to inhibit ad libitum feeding.
Collapse
|
22
|
Liu H, Tan B, Kong X, Li J, Li G, He L, Bai M, Yin Y. Dietary Insect Powder Protein Sources Improve Protein Utilization by Regulation on Intestinal Amino Acid-Chemosensing System. Animals (Basel) 2020; 10:ani10091590. [PMID: 32906579 PMCID: PMC7552256 DOI: 10.3390/ani10091590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Insect powders, including Tenebrio molitor (TM), Musca domestica larvae (MDL) and Zophobas morio (ZM), as high-quality and renewable protein sources are commonly applied in livestock and poultry feed production. The molecular effect of insect protein on amino acid metabolism in pigs needs to be explored. We found that insect powder as a protein source in feed regulated the mTOR signal pathway and improved amino acid transportation in the intestine for growth promotion. Insect powder may be a potentially promising protein source for pig production. Abstract This study was conducted to evaluate the effects of dietary insect powder supplementation as a protein source on plasma amino acid profiles, intestinal amino acid transport and sensing in a piglet model. A total of 144 weanling piglets were randomly assigned to four experimental diets for two phases (Days 1–28 and Days 29–56), to assess the effects on amino acid profiles and transportation in the segments of the intestine. The groups were basal diet (control), control diet plus Tenebrio molitor (TM), control diet plus Musca domestica larvae (MDL) and control diet plus Zophobas morio (ZM). The plasma free amino acid levels were stable comparable among treatments, except that the lysine level was significantly reduced by dietary MDL and ZM supplementation in the first phase (p < 0.05). In the 1st phase, the sensitivity of intestinal segments to the regulation of the amino acid level by insect powder supplementation follows sequence: colon > ileum > jejunum, while the order switched to jejunum > colon > ileum in the 2nd phase. The relative RNA expressions of mitogen-activated protein 4 kinase 3 (MAP4K3), sodium dependent neutral amino acid transporter2 (SNAT2), the transient receptor potential cation channel subfamily V member 1 (TRPV1) and taste 1 receptor member 1/3 (T1R3) in the segments of the intestine were affected by different dietary insect powder supplementation. G protein-coupled receptor family C group 6 member A (GPRC6A) level in the jejunal and colonic mucosa was upregulated by MDL supplementation (p < 0.05). These results indicated that dietary insects improved the metabolism of the amino acid in the prophase (the 1st phase) through regulating the sensing gene and mTOR signal pathway in intestinal mucosa by targeting different receptors. The finding demonstrates that the insect powder is a potentially promising source for protein deposition.
Collapse
Affiliation(s)
| | - Bie Tan
- Correspondence: (B.T.); (X.K.)
| | | | | | | | | | | | | |
Collapse
|
23
|
Xie SZ, Yang G, Jiang XM, Qin DY, Li QM, Zha XQ, Pan LH, Jin CS, Luo JP. Polygonatum cyrtonema Hua Polysaccharide Promotes GLP-1 Secretion from Enteroendocrine L-Cells through Sweet Taste Receptor-Mediated cAMP Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6864-6872. [PMID: 32456438 DOI: 10.1021/acs.jafc.0c02058] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells is a pleiotropic hormone with beneficial potential related to islet function, diet control, glucose homeostasis, inflammation relief, and cardiovascular protection. The present study aimed at investigating the effect of Polygonatum cyrtonema polysaccharide (PCP) after structural identification on GLP-1 secretion and the possible mechanism involved in the PCP-stimulated secretion of GLP-1. It was found that GLP-1 secretion was effectively promoted (p < 0.01) by PCP both in rats with oral administration for 5 weeks (13.9 ± 0.3-35.8 ± 0.3 pmol/L) and ileal administration within 2 h (13.6 ± 0.4-34.1 ± 1.1 pmol/L) and in enteroendocrine NCI-H716 cells with direct stimulation within 24 h (2.05 ± 0.3-20.7 ± 0.2 pmol/L). The sweet taste receptor T1R2/T1R3 was identified to be essential for NCI-H716 cells to directly recognize PCP. The intervention experiments showed that PCP-stimulated GLP-1 secretion was significantly depressed (p < 0.01) not only by antibodies, siRNA, and the inhibitor of T1R2/T1R3 but also by an adenylate cyclase inhibitor. These results suggest that PCP stimulates GLP-1 secretion from enteroendocrine cells possibly through activation of the T1R2/T1R3-mediated cAMP signaling pathway.
Collapse
Affiliation(s)
- Song-Zi Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guang Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian-Min Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dan-Yang Qin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chuan-Shan Jin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
24
|
Chi F, Sharpley MS, Nagaraj R, Roy SS, Banerjee U. Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Dev Cell 2020; 53:9-26.e4. [PMID: 32197068 DOI: 10.1016/j.devcel.2020.02.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
The mouse embryo undergoes compaction at the 8-cell stage, and its transition to 16 cells generates polarity such that the outer apical cells are trophectoderm (TE) precursors and the inner cell mass (ICM) gives rise to the embryo. Here, we report that this first cell fate specification event is controlled by glucose. Glucose does not fuel mitochondrial ATP generation, and glycolysis is dispensable for blastocyst formation. Furthermore, glucose does not help synthesize amino acids, fatty acids, and nucleobases. Instead, glucose metabolized by the hexosamine biosynthetic pathway (HBP) allows nuclear localization of YAP1. In addition, glucose-dependent nucleotide synthesis by the pentose phosphate pathway (PPP), along with sphingolipid (S1P) signaling, activates mTOR and allows translation of Tfap2c. YAP1, TEAD4, and TFAP2C interact to form a complex that controls TE-specific gene transcription. Glucose signaling has no role in ICM specification, and this process of developmental metabolism specifically controls TE cell fate.
Collapse
Affiliation(s)
- Fangtao Chi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Raghavendra Nagaraj
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shubhendu Sen Roy
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Rigamonti AE, Leoncini R, De Col A, Tamini S, Cicolini S, Abbruzzese L, Cella SG, Sartorio A. The Appetite-Suppressant and GLP-1-Stimulating Effects of Whey Proteins in Obese Subjects are Associated with Increased Circulating Levels of Specific Amino Acids. Nutrients 2020; 12:nu12030775. [PMID: 32183423 PMCID: PMC7146343 DOI: 10.3390/nu12030775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/06/2023] Open
Abstract
The satiating effect of whey proteins depends upon their unique amino acid composition because there is no difference when comparing whey proteins or a mix of amino acids mimicking the amino acid composition of whey proteins. The specific amino acids underlying the satiating effect of whey proteins have not been investigated to date. AIMS AND METHODS The aim of the present study was to evaluate the appetite-suppressant effect of an isocaloric drink containing whey proteins or maltodextrins on appetite (satiety/hunger measured by a visual analogue scale or VAS), anorexigenic gastrointestinal peptides (circulating levels of glucagon-like peptide 1 (GLP-1) and peptide tyrosine tyrosine (PYY)) and amino acids (circulating levels of single, total [TAA] and branched-chain amino acids [BCAA]) in a cohort of obese female subjects (n = 8; age: 18.4 ± 3.1 years; body mass index, BMI: 39.2 ± 4.6 kg/m2). RESULTS Each drink significantly increased satiety and decreased hunger, the effects being more evident with whey proteins than maltodextrins. Similarly, circulating levels of GLP-1, PYY and amino acids (TAA, BCAA and alanine, arginine, asparagine, citrulline, glutamine, hydroxyproline, isoleucine, histidine, leucine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tyrosine, and valine) were significantly higher with whey proteins than maltodextrins. In subjects administered whey proteins (but not maltodextrins), isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, and valine were significantly correlated with hunger (negatively), satiety, and GLP-1 (positively). CONCLUSIONS Eight specific amino acids (isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, and valine) were implicated in the appetite-suppressant and GLP-1-stimulating effects of whey proteins, which may be mediated by their binding with nutrient-sensing receptors expressed by L cells within the gastrointestinal wall. The long-term satiating effect of whey proteins and the effectiveness of a supplementation with these amino acids (i.e., as a nutraceutical intervention) administered during body weight reduction programs need to be further investigated.
Collapse
Affiliation(s)
- Antonello E. Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy;
- Correspondence: ; Tel.: +39-02-503-17013; Fax: +39-02-503-17011
| | - Roberto Leoncini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Alessandra De Col
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo (VB), Italy; (A.D.C.); (S.T.); (S.C.); (A.S.)
| | - Sofia Tamini
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo (VB), Italy; (A.D.C.); (S.T.); (S.C.); (A.S.)
| | - Sabrina Cicolini
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo (VB), Italy; (A.D.C.); (S.T.); (S.C.); (A.S.)
| | - Laura Abbruzzese
- Division of Auxology and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo (VB), Italy;
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy;
| | - Alessandro Sartorio
- Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo (VB), Italy; (A.D.C.); (S.T.); (S.C.); (A.S.)
- Division of Auxology and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo (VB), Italy;
| |
Collapse
|
26
|
Jørgensen CV, Bräuner‐Osborne H. Pharmacology and physiological function of the orphan GPRC6A receptor. Basic Clin Pharmacol Toxicol 2020; 126 Suppl 6:77-87. [DOI: 10.1111/bcpt.13397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Christinna V. Jørgensen
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
27
|
Zhu M, Qin YC, Gao CQ, Yan HC, Li XG, Wang XQ. Extracellular Glutamate-Induced mTORC1 Activation via the IR/IRS/PI3K/Akt Pathway Enhances the Expansion of Porcine Intestinal Stem Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9510-9521. [PMID: 31382738 DOI: 10.1021/acs.jafc.9b03626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glutamate (Glu) is a critical nutritional regulator of intestinal epithelial homeostasis. In addition, intestinal stem cells (ISCs) at crypt bases are known to play important roles in maintaining the renewal and homeostasis of the intestinal epithelium, and the aspects of communication between Glu and ISCs are still unknown. Here, we identify Glu and mammalian target of rapamycin complex 1 (mTORC1) as essential regulators of ISC expansion. The results showed that extracellular Glu promoted ISC expansion, indicated by increased intestinal organoid forming efficiency and budding efficiency as well as cell proliferation marker Ki67 immunofluorescence and differentiation marker Keratin 20 (KRT20) expression. Moreover, the insulin receptor (IR) mediating phosphorylation of the insulin receptor substrate (IRS) and downstream signaling phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was involved in this response in ISCs. As expected, Glu-induced mTORC1 signaling activation was observed in the intestinal porcine enterocyte cell line (IPEC-J2), and Glu activated the PI3K/Akt/mTORC1 pathway. Accordingly, PI3K inhibition partially suppressed Glu-induced mTORC1 activation. In addition, Glu increased the phosphorylation levels of IR and IRS, and inhibiting IR downregulated the IRS/PI3K/Akt pathway. Collectively, our findings first indicate that extracellular Glu activates mTORC1 via the IR/IRS/PI3K/Akt pathway and stimulates ISC expansion, providing a new perspective for regulating the growth and health of the intestinal epithelium.
Collapse
Affiliation(s)
- Min Zhu
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Ying-Chao Qin
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Chun-Qi Gao
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Hui-Chao Yan
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , China
| | - Xiu-Qi Wang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou 510642 , China
| |
Collapse
|
28
|
Sutton JA. The iso-osmo-resistivity theory of digestion. Med Hypotheses 2019; 130:109282. [PMID: 31383330 DOI: 10.1016/j.mehy.2019.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
This novel, iso-osmo-resistive theory offers electro-resistivity of food components as a new dimension for digestion. Firstly, fats, carbohydrates and proteins differ markedly in their resistivity, which offers a way to monitor them, especially when digestive enzymes cause consistent and distinctive changes. Secondly the state of iso-resistivity is in theory most likely to pass through the membranes of absorbing cells and be compatible with plasma in portal blood vessels. Hence, the theory proposes that the aim of the digestive process in the upper gut is to present digesta to absorption sites in a state at, or close to, iso-osmo-resistivity. It requires a method of monitoring resistivity which could be achieved by neuronal endings based in the upper gut mucosa. They could be simple nerve endings or, probably less likely, part of the structure of duodenal Brunner's Glands. They would monitor the overall effect of the various digestive processes initiated by the G-protein-coupled receptors (GPCRs). The combination of sensitive electroreceptor and osmoreceptor output would provide a system that would accurately monitor the overall progress of digestion to conserve enzyme production.
Collapse
|
29
|
Szczoczarz A, Marchwińska A, Dyś A, Boblewski K, Lehmann A, Lewko B, Rybczyńska A. Verapamil prevents the effect of calcium-sensing receptor activation on the blood glucose and insulin levels in rats. Pharmacol Rep 2019; 71:478-484. [PMID: 31003161 DOI: 10.1016/j.pharep.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND The Ca2+ triggered insulin exocytosis in β cells of the pancreatic islets may be the result of Ca2+ influx through L-type voltage dependent calcium channels (VDCC) localized in the plasma membrane, as well as of liberation of Ca2+ from intracellular storages, induced by activation of the calcium receptor (CaR) coupled with the PLC enzyme present in the pancreatic islets. The present study was designated to determine, in in vivo experiments, the effects of CaR activation by R-568 and inhibition of the receptor by NPS 2143 on the plasma glucose and insulin levels in the presence of verapamil, a calcium channel blocker. METHODS Wistar rats, after fasting for 14 h before the experiment, were anesthetized with inactin and loaded ip with 1 g/kg glucose. RESULTS In comparison to the control group, the verapamil-induced blockade of the calcium channels in glucose loaded animals increased the blood glucose level and decreased the insulin level, whereas CaR activation with R-568 induced opposite effects. However, in the presence of verapamil, R-568 did not change the concentration of glucose or insulin versus the control animals. Verapamil infusion did not alter elevated glucose concentration in the NPS 2143 animals. At the same time, verapamil reduced the plasma insulin level and potentiated the drop of insulin concentration induced by NPS 2143. CONCLUSION The observations suggest that under the in vivo conditions, calcium channel blockade may prevent changes in the blood glucose and insulin concentrations induced by the CaR activation.
Collapse
Affiliation(s)
- Anna Szczoczarz
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Marchwińska
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Konrad Boblewski
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Artur Lehmann
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Barbara Lewko
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Apolonia Rybczyńska
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
30
|
Umami as an 'Alimentary' Taste. A New Perspective on Taste Classification. Nutrients 2019; 11:nu11010182. [PMID: 30654496 PMCID: PMC6356469 DOI: 10.3390/nu11010182] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/29/2023] Open
Abstract
Applied taste research is increasingly focusing on the relationship with diet and health, and understanding the role the sense of taste plays in encouraging or discouraging consumption. The concept of basic tastes dates as far back 3000 years, where perception dominated classification with sweet, sour, salty, and bitter consistently featuring on basic taste lists throughout history. Advances in molecular biology and the recent discovery of taste receptors and ligands has increased the basic taste list to include umami and fat taste. There is potential for a plethora of other new basic tastes pending the discovery of taste receptors and ligands. Due to the possibility for an ever-growing list of basic tastes it is pertinent to critically evaluate whether new tastes, including umami, are suitably positioned with the four classic basic tastes (sweet, sour, salty, and bitter). The review critically examines the evidence that umami, and by inference other new tastes, fulfils the criteria for a basic taste, and proposes a subclass named ‘alimentary’ for tastes not meeting basic criteria.
Collapse
|
31
|
Johnson SC, Pan A, Li L, Sedensky M, Morgan P. Neurotoxicity of anesthetics: Mechanisms and meaning from mouse intervention studies. Neurotoxicol Teratol 2018; 71:22-31. [PMID: 30472095 DOI: 10.1016/j.ntt.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Volatile anesthetics are widely used in human medicine and generally considered to be safe in healthy individuals. In recent years, the safety of volatile anesthesia in pediatric patients has been questioned following reports of anesthetic induced neurotoxicity in pre-clinical studies. These studies in mice, rats, and primates have demonstrated that exposure to anesthetic agents during early post-natal periods can cause acute neurotoxicity, as well as later-life cognitive defects including deficits in learning and memory. In recent years, the focus of many pre-clinical studies has been on identifying candidate pathways or potential therapeutic targets through intervention trials. These reports have shed light on the mechanisms underlying anesthesia induced neurotoxicity as well as highlighting the challenges of pre-clinical modeling of anesthesia induced neurotoxicity in mice. Here, we summarize the data derived from intervention studies in neonatal mouse models of anesthetic exposure and provide an overview of mechanisms proposed to mediate anesthesia induced neurotoxicity in mice based on these reports. The majority of these studies implicate one of three mechanisms: reactive oxygen species (ROS) mediated stress and signaling, growth/nutrient signaling, or direct neuronal modulation.
Collapse
Affiliation(s)
- Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America.
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Li Li
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| | - Philip Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Anesthesiology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
32
|
Zhou Y, Zhou Z, Peng J, Loor JJ. Methionine and valine activate the mammalian target of rapamycin complex 1 pathway through heterodimeric amino acid taste receptor (TAS1R1/TAS1R3) and intracellular Ca 2+ in bovine mammary epithelial cells. J Dairy Sci 2018; 101:11354-11363. [PMID: 30268610 DOI: 10.3168/jds.2018-14461] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022]
Abstract
Amino acids play a key role in regulating milk protein synthesis partly through activation of the mammalian target of rapamycin (mTOR) signaling pathway. However, the involvement of extracellular AA sensing receptors in this process is not well understood. In nonruminants, it is well established that the AA taste 1 receptor member 1/3 (TAS1R1/TAS1R3) heterodimer contributes to the sensing of most l-AA. Whether this receptor is functional in bovine mammary cells is unknown. The objective of this study was to determine essential AA signaling through TAS1R1/TAS1R3 and their roles in regulating mTOR signaling pathway and casein mRNA abundance in primary bovine mammary epithelial cells and the Mac-T cell line. The bovine mammary epithelial cells were stimulated with complete Dulbecco's modified Eagle's medium (+EAA), medium without EAA (-EAA), or medium supplemented with only 1 of the 10 essential AA, respectively. The nonessential AA levels were the same across all treatments. Small interference RNA targeting TAS1R1 were designed and transfected into bovine primary mammary epithelial cells (bPMEC). Supplementation of a complete mixture of essential AA or Arg, Val, Leu, His, Phe, Met, and Ile individually led to greater mTOR phosphorylation. Phosphorylation of ribosomal protein S6 kinase β-1 was greater in the presence of Val, Leu, Trp, Met, and Ile. Valine, Leu, Met, and Ile led to greater eIF4E-binding protein 1 phosphorylation. Although +EAA and a few individual AA tested induced increases in intracellular calcium, Met and Val were the most potent. Knockdown of TAS1R1 decreased intracellular calcium in bPMEC cultured with both Val and Met. Phosphorylation of mTOR, ribosomal protein S6 kinase β-1, and eIF4E-binding protein 1 was lower when TAS1R1 was knocked-down in bPMEC supplemented with Val and Met. In addition, small interference RNA silencing of TAS1R1 resulted in lower β-casein (CSN2) abundance. The TAS1R1/TAS1R3 receptor may sense extracellular AA and activate mTOR signaling in bovine mammary cells, likely by elevating intracellular calcium concentration. This mechanism appears to have a role in Met- and Val-induced changes in CSN2 mRNA abundance. Further in vivo studies will have to be performed to assess the relevance of this mechanism in the mammary gland.
Collapse
Affiliation(s)
- Y Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China 430070; Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634.
| | - J Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China 430070
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
33
|
Rother KI, Conway EM, Sylvetsky AC. How Non-nutritive Sweeteners Influence Hormones and Health. Trends Endocrinol Metab 2018; 29:455-467. [PMID: 29859661 DOI: 10.1016/j.tem.2018.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/16/2023]
Abstract
Non-nutritive sweeteners (NNSs) elicit a multitude of endocrine effects in vitro, in animal models, and in humans. The best-characterized consequences of NNS exposure are metabolic changes, which may be mediated by activation of sweet taste receptors in oral and extraoral tissues (e.g., intestine, pancreatic β cells, and brain), and alterations of the gut microbiome. These mechanisms are likely synergistic and may differ across species and chemically distinct NNSs. However, the extent to which these hormonal effects are clinically relevant in the context of human consumption is unclear. Further investigation following prolonged exposure is required to better understand the role of NNSs in human health, with careful consideration of genetic, dietary, anthropometric, and other interindividual differences.
Collapse
Affiliation(s)
- Kristina I Rother
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA.
| | - Ellen M Conway
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Allison C Sylvetsky
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA; Department of Exercise and Nutrition Sciences, The George Washington University, 950 New Hampshire Avenue NW, 2nd floor, Washington DC 20052, USA; Sumner M. Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, 3rd floor, Washington DC 20052, USA
| |
Collapse
|
34
|
Abstract
The anatomical structure and function of beaks, bills and tongue together with the mechanics of deglutition in birds have contributed to the development of a taste system denuded of macrostructures visible to the human naked eye. Studies in chickens and other birds have revealed that the avian taste system consists of taste buds not clustered in papillae and located mainly (60 %) in the upper palate hidden in the crevasses of the salivary ducts. That explains the long delay in the understanding of the avian taste system. However, recent studies reported 767 taste buds in the oral cavity of the chicken. Chickens appear to have an acute sense of taste allowing for the discrimination of dietary amino acids, fatty acids, sugars, quinine, Ca and salt among others. However, chickens and other birds have small repertoires of bitter taste receptors (T2R) and are missing the T1R2 (related to sweet taste in mammals). Thus, T1R2-independent mechanisms of glucose sensing might be particularly relevant in chickens. The chicken umami receptor (T1R1/T1R3) responds to amino acids such as alanine and serine (known to stimulate the umami receptor in rodents and fish). Recently, the avian nutrient chemosensory system has been found in the gastrointestinal tract and hypothalamus related to the enteroendocrine system which mediates the gut-brain dialogue relevant to the control of feed intake. Overall, the understanding of the avian taste system provides novel and robust tools to improve avian nutrition.
Collapse
|
35
|
Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 2017; 200:203-217. [PMID: 29188341 DOI: 10.1007/s00203-017-1459-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Manoj Kumar Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
36
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|
37
|
Abstract
Rodents consume solutions of phosphates and pyrophosphates in preference to water. Recently, we found that the preference for trisodium pyrophosphate (Na3HP2O7) was greater in T1R3 knockout (KO) mice than wild-type (WT) controls, suggesting that T1R3 is a pyrophosphate detector. We now show that this heightened Na3HP2O7 preference of T1R3 KO mice extends to disodium phosphate (Na2HPO4), disodium and tetrasodium pyrophosphate (Na2H2PO4 and Na4H2PO4), a tripolyphosphate (Na5P3O10), a non-sodium phosphate [(NH4)2HPO4], and a non-sodium pyrophosphate (K4P2O7) but not to non-P salts with large anions (sodium gluconate, acetate, or propionate). Licking rates for Na3HP2O7 are higher in T1R2 KO mice than WT controls; Na3HP2O7 preference scores are increased even more in T1R2 KO mice and T1R2+T1R3 double KO mice than in T1R3 KO mice; preference scores for Na3HP2O7 are normal in T1R1 KO mice. These results implicate each subunit of the T1R2+T1R3 dimer in the behavioral response to P-containing taste compounds.
Collapse
|
38
|
Sparks SM, Spearing PK, Diaz CJ, Cowan DJ, Jayawickreme C, Chen G, Rimele TJ, Generaux C, Harston LT, Roller SG. Identification of potent, nonabsorbable agonists of the calcium-sensing receptor for GI-specific administration. Bioorg Med Chem Lett 2017; 27:4673-4677. [PMID: 28916340 DOI: 10.1016/j.bmcl.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/25/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Modulation of gastrointestinal nutrient sensing pathways provides a promising a new approach for the treatment of metabolic diseases including diabetes and obesity. The calcium-sensing receptor has been identified as a key receptor involved in mineral and amino acid nutrient sensing and thus is an attractive target for modulation in the intestine. Herein we describe the optimization of gastrointestinally restricted calcium-sensing receptor agonists starting from a 3-aminopyrrolidine-containing template leading to the identification of GI-restricted agonist 19 (GSK3004774).
Collapse
Affiliation(s)
- Steven M Sparks
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States.
| | - Paul K Spearing
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Caroline J Diaz
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - David J Cowan
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Channa Jayawickreme
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Grace Chen
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Thomas J Rimele
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Claudia Generaux
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Lindsey T Harston
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Shane G Roller
- Enteroendocrine Discovery Performance Unit and Platform Technologies and Science, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| |
Collapse
|
39
|
Whey protein-derived peptide sensing by enteroendocrine cells compared with osteoblast-like cells: Role of peptide length and peptide composition, focussing on products of β-lactoglobulin hydrolysis. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Shi J, Wang S, Ke Q, Lin J, Zheng Y, Wu S, Huang Z, Lin W. T1R1/T1R3 Taste Receptor Suppresses Granulocyte-Mediated Neuroinflammation after Spinal Cord Injury. J Neurotrauma 2017; 34:2353-2363. [PMID: 28474538 DOI: 10.1089/neu.2016.4952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As an active and predominant blood leukocyte population, granulocytes infiltrate into injured spinal cord and produce pro-inflammatory mediators to aggravate neuroinflammation. In the current study, we identify the role of the T1R1/T1R3 receptor in granulocyte-mediated neuroinflammation in a rat spinal cord injury (SCI) model. We found that T1R1 and T1R3 were substantially expressed in both circulating and infiltrating granulocytes. In vitro stimulation of T1R1/T1R3 receptor with L-serine notably reduced production of reactive oxygen species (ROS) and several pro-inflammatory cytokines. To evaluate the role of T1R1/T1R3 receptor in vivo, gurmarin, a selective T1R3 inhibitor, was injected into rats before and after SCI. Gurmarin administration significantly upregulated expression of interleukin (IL)-1β, IL-6, myeloperoxidase, and matrix metallopeptidase 9, as well as production of ROS in infiltrating granulocytes. Signal pathway analysis revealed that gurmarin promoted nuclear factor (NF)-κβ signaling in infiltrating granulocytes. Consistently, cell apoptosis and inflammatory mediator levels at the injury sites were increased by gurmarin, together with higher T lymphocyte recruitment. Our research indicates that the T1R1/T1R3 receptor is an anti-inflammatory receptor for infiltrating granulocytes after SCI. Simulation of T1R1/T1R3 receptor might be a prospective, or at least a supplemental, therapeutic approach to controlling neuroinflammation to promote functional recovery.
Collapse
Affiliation(s)
- Jinxing Shi
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Siyuan Wang
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Qingfeng Ke
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Jianhua Lin
- 2 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Yuhui Zheng
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Shiqiang Wu
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Zida Huang
- 2 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Wenping Lin
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| |
Collapse
|
41
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
42
|
Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J 2017; 474:1935-1963. [PMID: 28546457 PMCID: PMC5444488 DOI: 10.1042/bcj20160822] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
Collapse
|
43
|
Martin B, Wang R, Cong WN, Daimon CM, Wu WW, Ni B, Becker KG, Lehrmann E, Wood WH, Zhang Y, Etienne H, van Gastel J, Azmi A, Janssens J, Maudsley S. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. J Biol Chem 2017; 292:11508-11530. [PMID: 28522608 DOI: 10.1074/jbc.m116.773820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.
Collapse
Affiliation(s)
- Bronwen Martin
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Rui Wang
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wei-Na Cong
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Caitlin M Daimon
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wells W Wu
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Bin Ni
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Kevin G Becker
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Elin Lehrmann
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - William H Wood
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Yongqing Zhang
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Harmonie Etienne
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jaana van Gastel
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Abdelkrim Azmi
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jonathan Janssens
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Stuart Maudsley
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224, .,the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| |
Collapse
|
44
|
On the Emerging Role of the Taste Receptor Type 1 (T1R) Family of Nutrient-Sensors in the Musculoskeletal System. Molecules 2017; 22:molecules22030469. [PMID: 28294983 PMCID: PMC6155268 DOI: 10.3390/molecules22030469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023] Open
Abstract
The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R) family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-β2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.
Collapse
|
45
|
Kochem M, Breslin PAS. Clofibrate inhibits the umami-savory taste of glutamate. PLoS One 2017; 12:e0172534. [PMID: 28248971 PMCID: PMC5332072 DOI: 10.1371/journal.pone.0172534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/06/2017] [Indexed: 01/21/2023] Open
Abstract
In humans, umami taste can increase the palatability of foods rich in the amino acids glutamate and aspartate and the 5'-ribonucleotides IMP and GMP. Umami taste is transduced, in part, by T1R1-T1R3, a heteromeric G-protein coupled receptor. Umami perception is inhibited by sodium lactisole, which binds to the T1R3 subunit in vitro. Lactisole is structurally similar to the fibrate drugs. Clofibric acid, a lipid lowering drug, also binds the T1R3 subunit in vitro. The purpose of this study was to determine whether clofibric acid inhibits the umami taste of glutamate in human subjects. Ten participants rated the umami taste intensity elicited by 20 mM monosodium glutamate (MSG) mixed with varying concentrations of clofibric acid (0 to 16 mM). In addition, fourteen participants rated the effect of 1.4 mM clofibric acid on umami enhancement by 5' ribonucleotides. Participants were instructed to rate perceived intensity using a general Labeled Magnitude Scale (gLMS). Each participant was tested in triplicate. Clofibric acid inhibited umami taste intensity from 20 mM MSG in a dose dependent manner. Whereas MSG neat elicited "moderate" umami taste intensity, the addition of 16 mM clofibric acid elicited only "weak" umami intensity on average, and in some subjects no umami taste was elicited. We further show that 1.4 mM clofibric acid suppressed umami enhancement from GMP, but not from IMP. This study provides in vivo evidence that clofibric acid inhibits glutamate taste perception, presumably via T1R1-T1R3 inhibition, and lends further evidence that the T1R1-T1R3 receptor is the principal umami receptor in humans. T1R receptors are expressed extra-orally throughout the alimentary tract and in regulatory organs and are known to influence glucose and lipid metabolism. Whether clofibric acid as a lipid-lowering drug affects human metabolism, in part, through T1R inhibition warrants further examination.
Collapse
Affiliation(s)
- Matthew Kochem
- Rutgers University Department of Nutritional Sciences, New Brunswick, NJ, United States of America
| | - Paul A. S. Breslin
- Rutgers University Department of Nutritional Sciences, New Brunswick, NJ, United States of America
- Monell Chemical Senses Center Philadelphia, PA, United States of America
| |
Collapse
|
46
|
Rybczyńska A, Marchwińska A, Dyś A, Boblewski K, Lehmann A, Lewko B. Activity of the calcium-sensing receptor influences blood glucose and insulin levels in rats. Pharmacol Rep 2017; 69:709-713. [PMID: 28551530 DOI: 10.1016/j.pharep.2017.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The calcium-sensing receptor (CaR) has been found not only in parathyroid glands but also in other tissues, e.g. in β cells of the pancreatic islets. Therefore, CaR might likely mediate the mechanism of insulin secretion. The present study was designed to examine the in vivo effects of R-568, a CaR agonist, and NPS2143, a CaR inhibitor, on plasma insulin and blood glucose concentrations. METHODS Wistar rats, after fasting for 14h before the experiment, were anesthetized with inactin and loaded ip with 1g/kg glucose. RESULTS 20, 120 and 180min after iv R-568 administration, plasma insulin increased markedly (by approximately 30%), in glucose-loaded rats, as compared to the control animals. Simultaneously, 180min after R-568 administration, a significant drop by approximately 12% in blood glucose was observed. In contrast, administration of R-568 in rats not given glucose, did not influence the blood glucose or plasma insulin concentrations vs. the control group. Administration of NPS2143 increased the blood glucose level markedly (by about 18% vs. control group) at 180 and 210min of the experiment. Simultaneously, a significant decrease of insulin concentration was observed vs. control group (by about 18 and 23%, respectively). CONCLUSION We suggest that modulation of the CaR activity may participate in the mechanisms which mediate insulin secretion in rats.
Collapse
Affiliation(s)
- Apolonia Rybczyńska
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland.
| | - Aleksandra Marchwińska
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Konrad Boblewski
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Artur Lehmann
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Barbara Lewko
- Department of Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
47
|
Guerra ML, Kalwat MA, McGlynn K, Cobb MH. Sucralose activates an ERK1/2-ribosomal protein S6 signaling axis. FEBS Open Bio 2017; 7:174-186. [PMID: 28174684 PMCID: PMC5292669 DOI: 10.1002/2211-5463.12172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
The sweetener sucralose can signal through its GPCR receptor to induce insulin secretion from pancreatic β cells, but the downstream signaling pathways involved are not well‐understood. Here we measure responses to sucralose, glucagon‐like peptide 1, and amino acids in MIN6 β cells. Our data suggest a signaling axis, whereby sucralose induces calcium and cAMP, activation of ERK1/2, and site‐specific phosphorylation of ribosomal protein S6. Interestingly, sucralose acted independently of mTORC1 or ribosomal S6 kinase (RSK). These results suggest that sweeteners like sucralose can influence β‐cell responses to secretagogues like glucose through metabolic as well as GPCR‐mediated pathways. Future investigation of novel sweet taste receptor signaling pathways in β cells will have implications for diabetes and other emergent fields involving these receptors.
Collapse
Affiliation(s)
- Marcy L Guerra
- Department of Pharmacology UT Southwestern Medical Center Dallas TX USA; Present address: Stem Synergy Therapeutics Nashville TN USA
| | - Michael A Kalwat
- Department of Pharmacology UT Southwestern Medical Center Dallas TX USA
| | - Kathleen McGlynn
- Department of Pharmacology UT Southwestern Medical Center Dallas TX USA
| | - Melanie H Cobb
- Department of Pharmacology UT Southwestern Medical Center Dallas TX USA
| |
Collapse
|
48
|
Conde-Sieira M, Soengas JL. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis. Front Neurosci 2017; 10:603. [PMID: 28111540 PMCID: PMC5216673 DOI: 10.3389/fnins.2016.00603] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
49
|
Morris SM. Arginine Metabolism Revisited. J Nutr 2016; 146:2579S-2586S. [PMID: 27934648 DOI: 10.3945/jn.115.226621] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 01/20/2023] Open
Abstract
Mammalian arginine metabolism is complex due to the expression of multiple enzymes that utilize arginine as substrate and to interactions or competition between specific enzymes involved in arginine metabolism. Moreover, cells may contain multiple intracellular arginine pools that are not equally accessible to all arginine metabolic enzymes, thus presenting additional challenges to more fully understanding arginine metabolism. At the whole-body level, arginine metabolism ultimately results in the production of a biochemically diverse range of products, including nitric oxide, urea, creatine, polyamines, proline, glutamate, agmatine, and homoarginine. Included in this group of compounds are the methylated arginines (e.g., asymmetric dimethylarginine), which are released upon degradation of proteins containing methylated arginine residues. Changes in arginine concentration also can regulate cellular metabolism and function via a variety of arginine sensors. Although much is known about arginine metabolism, elucidation of the physiologic or pathophysiologic roles for all of the pathways and their metabolites remains an active area of investigation, as exemplified by current findings highlighted in this review.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
50
|
Zhou Y, Ren J, Song T, Peng J, Wei H. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca 2+-ERK1/2 Signal Transduction Process in C2C12 Cells. Int J Mol Sci 2016; 17:ijms17101684. [PMID: 27727170 PMCID: PMC5085716 DOI: 10.3390/ijms17101684] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.
Collapse
Affiliation(s)
- Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Jiao Ren
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|